Introduction of Hydrogen Energy

Size: px
Start display at page:

Download "Introduction of Hydrogen Energy"

Transcription

1 Introduction of Hydrogen Energy Bing Hung CHEN ( 陳炳宏 ) Department of Chemical Engineering National Cheng Kung University Tainan 70101, TAIWAN E mail: bkchen@mail.ncku.edu.tw Outline Introduction - hydrogen energy Hydrogen production Application of hydrogen energy Hydrogen storage High pressure tanks Liquefied hydrogen Metal hydrides Chemical hydrides NaBH 4 NH 3 BH 3 1

2 Introduction Energy and Environment 3 Ref. Ref. Züttel et al., 010 Introduction Renewable Energy 1. Wind Energy. Solar Energy 3. Geothermal Energy 4. Hydroelectricity / Hydropower 5. Biomass Energy 6. Biofuels: Ethanol & Biodiesel 7. Hydrogen Energy Ref. detail/zh_cn/993/ Ref. Ref. Ref. green living.prositeslab.com/zh tw/1/types ofalternative energy/ Ref. energy/biomassenergy/biomass energy.html Ref. innovation en US/renewableenergy en US/ 4

3 Introduction Renewable Energy 5 Ref. The US Energy Information Administration under the US Department of Energy Introduction Hydrogen Energy Secondary Energy Sources: (US DoE s definition) Secondary energy sources are also referred to as energy carriers, because they move energy in a useable form from one place to another. The two most well known energy carriers are: Electricity Hydrogen We get electricity and hydrogen from the conversion of other sources of energy, such as coal, nuclear, or solar energy. These are called primary sources. 6 Ref. The US Energy Information Administration 3

4 Introduction Hydrogen 1. Hydrogen gas was first artificially produced in the early 16th century, via the mixing of metals with strong acids.. In , Henry Cavendish was the first to recognize that hydrogen gas was a discrete substance. 3. Hydrogen is a concern in metallurgy as it can embrittle many metals complicating the design of pipelines and storage tanks. 4. Hydrogen is highly flammable and will burn in air at a very wide range of concentrations between 4% and 75% by volume. 5. Hydrogen is the lightest element ( au). 6. Hydrogen melts at K ( C) 7. Hydrogen condenses to a liquid at temperatures of 0.8K (-5.87 C) 7 Ref. Wikipedia on Hydrogen Application of Hydrogen Energy Ref. Kirubakaran et al., 009 Ref. U.S. Energy Information Administration 4

5 Application of Hydrogen Energy Anode: H H + + e E o = 0V vs SHE Cathode: ½ O + H + +e H O E o = 1.9 V vs SHE Overall reaction: H + ½ O H O E o = 1.9 V vs SHE In real applications: Commonly the PEMFC deliver a voltage in between 0.6 & 0.7 V; while the best performed one could give it around 0.8V. Ref. Kirubakaran et al., 009 Ref. U.S. Energy Information Administration Application of Hydrogen Energy 5

6 Application of Hydrogen Energy Application of Hydrogen Energy 6

7 Introduction Hydrogen Production Thermochemical methods CH H O CO 3H Steam Reforming of Methane CO HO CO H Partial Oxidation of Hydrocarbons (POX) Gasification of Biomass, Coal, or Wastes Sulfur-Iodine (S-I) Cycle Electrolysis of Water Biological Process Other processes 4 13 Ref. Züttel et al., 010 Ref. Ogden., 1999 Introduction Hydrogen Production 14 Ref. [Florida Solar Energy Center (FSEC)] 7

8 Introduction Hydrogen Production Sulfur-Iodine (S-I) Cycle: Recover heat to produce H Net reactions: H O H + O ( ~ 50%) The three reactions that produce hydrogen are as follows: (1) I + SO + H O HI + H SO 4 (393K) ~ Bunsen reaction. () H SO 4 SO + H O + O (1100K ~ 1400K) (3) HI I + H (70K) This S I process is a chemical heat engine. Heat enters the cycle in high temperature endothermic chemical reactions and 3, and heat exits the cycle in the low temperature exothermic reaction 1. The difference between the heat entering the cycle and the heat leaving the cycle exits the cycle in the form of the heat of combustion of the hydrogen produced. 15 Ref. Wikipedia on Sulfur iodine cycle Introduction Hydrogen Energy Property of liquid and gaseous hydrogen: 16 Ref. Midilli et al., 005 8

9 On-Board Hydrogen Storage - USA Targets were set by the FreedomCAR Partnership in January 00 between the United States Council for Automotive Research (USCAR) and U.S. DOE (Targets assume a 5 kg H storage system). The 005 targets were not reached in 005. The targets were revised in 009 to reflect new data on system efficiencies obtained from fleets of test cars. The ultimate goal for volumetric storage is still above the theoretical density of liquid hydrogen. Ref. Hydrogen Storage High-pressure tanks Compressed hydrogen tanks at 5,000 psi (~35 MPa) and 10,000 psi (~70 MPa) have been certified worldwide. Liquefied hydrogen The energy density of hydrogen can be improved by storing hydrogen in a liquid state. Metal hydrides Conventional high-capacity metal hydrides require high temperatures (300 to 350 C) to liberate hydrogen, but sufficient heat is not generally available in fuel cell transportation applications. Chemical hydrides Commonly reactions involve chemical hydrides with water or alcohols, called hydrolysis reactions, to produce hydrogen. Ref. 9

10 Hydrogen Storage 19 Hydrogen Storage 0 Ref. 10

11 High pressure tanks Carbon fiber-reinforced 5,000 psi and 10,000 psi compressed hydrogen gas tanks are under development by Quantum Technologies and others. The inner liner: high molecular weight polymer The intermediate shell: carbon fiber-epoxy resin composite The outer shell: carbon fiber reinforced plastic composite 1 Ref. Quantum Pressurized Storage Tank High pressure tanks For a vehicle running for 500 km, around 5~6 kg of hydrogen has to be stored in the car; that is, the working pressure will be raised at 35~70 MPa inevitably because of the size limitation for the space. Notably, the deviation between ideal and real gases becomes larger with the increase of working pressure. Ref. Eberle et al.,

12 High pressure tanks The disadvantages: 1. High weight of high pressure tanks decreases volumetric capacity (or energy density). The cost of high pressure tanks increases by using high molecular weight polymer than metals. 3. Energy consumption, refueling times and heat management need to be considered. 3 Ref. Ref. The 70MPa high-pressure hydrogen tank Liquefied hydrogen Hydrogen is liquefied and stored at 0.1 MPa and -53 C so that the insulating issue of the system has to be well considered. Currently, under utilization of insulated pressure vessels, around ~3 vol% of hydrogen is observed to evaporate per day, and the first run off of hydrogen is found after 3~4 days in parked cars. Ref. Zhou., 005 Ref. Cumalioglu et al., 008 The pipeline between the vessel and station has to be cool down to around -53 C for ensuring minimizes the loss of hydrogen. 4 1

13 Liquefied hydrogen Concerns: 1. Hydrogen boils-off. Hydrogen liquefaction 3. Volume 4. Weight 5. Tank cost 6. Safety 5 Ref. Ref. Metal hydrides Metal hydrides have the potential for reversible on-board hydrogen storage and release at low temperatures and pressures. The optimum "operating P-T window" for polymer electrolyte membrane (PEM) fuel cell vehicular applications is in the range of 1-10 atm and 5-10ºC. Gravimetric density: CoNi 5 H 6 : 1.1% LaNi 5 H 6 :0.9% low MgH : 7.6% Decomposition temperature too high 6 Ref. Annemieke et al., 008 Ref. 13

14 Metal hydrides Advantages of metal hydride: 1. No high-pressure gas or liquid involved. Safety concern over most existing hydrogen vehicles 3. Ideal for ships, with the extra weight providing to keep the ship stable. 7 Ref. Metal hydrides Metal hydrides could be directly dissociated by chemisorption and electrochemical reactions, as follows: x M + H MH x M + x HO + x e MH x x OH M: metal - - Metal and hydrogen usually form two different kinds of hydrides: α-phase only some hydrogen is absorbed β-phase hydride is fully formed Metal hydrides depends on different parameters and consists of several mechanistic steps. Metals have different ability in hydrogen dissociation, and the abilities depend on surface structure, morphology and purity. 8 Ref. Sakintuna et al.,

15 Metal hydrides Metal hydrides Hydrogen content (wt %) Decompose temperature ( o C) LiH MgH CuH TiH MgNiH TiCr H TiFeH TiMn 1.5 H TiCoH LaNi 5 H Chemical hydrides MH xh O M( OH) xh x x MXH 4H O 4H MOH H XO Chemical hydrides can directly react with water at ambient condition, leading to the generation of high purity of hydrogen with no CO, which can be directly fed into the fuel cell system without any purification. The reaction of NaH and LiH with water is too vigorous that is difficult to control so that is not a good choice to apply for portable device. 30 Ref. Liu and Li., 009; Fakioğlu et al., 004 Ref. Niemann et al., 008 Ref. Çakanyildirim and Gürü.,

16 Chemical hydrides 31 Chemical Hydrides for Hydrogen Storage The advantages of chemical hydrides: Higher purity of produced hydrogen Less energy-loss Lower operation pressure Gravimetric density (wt %) NaBH 4 NH 3 BH H can be released from hydrolysis of NaBH 4 and NH 3 BH 3 could proceed at room temperature. Both hydrolysis reactions can be catalyzed by acids (liquid or solid) or metal catalysts. Ref. Ref. C.H. Liu et al., Novel fabrication of solid-state NaBH 4/Ru-based catalyst composites for hydrogen evolution using a high-energy ball-milling process, Journal of Power Sources 195, (010) Ref. Catalysis 3 in hydrolysis of sodium borohydride and ammonia borane, and electrocatalysis in oxidation of sodium borohydride, Catalysis Today 170, 1- (011) 16

17 Chemical hydrides - NaBH 4 BOH ( ) 3 CHOH BOCH ( ) 3HO NaH B( OCH ) NaBH 3NaOCH Brown-Schlesinger process Na B O 16Na 8H 7SiO 4NaBH 7Na SiO Bayer process MgH NaB4O7 NaCO3 4NaBH4 8MgO CO Modified Bayer process NaBH 4 HO catalyst 4 H NaBO heat(17 kj ) log t1/ ph (0.034T 1.9) 33 Ref. Demirci and Miele., 009 Ref. Kojima and Haga., 00, 003 Ref. Haga and Kojima., 00 Ref. Broja and Schabacher., 1959 Chemical hydrides - NaBH 4 NaBH 4 solutions are nonflammable and can be stable in air for months. Hydrogen production only occurs in the presence of catalysts, even at 0 C, which is beneficial for some rigid regions worldwide. Hydrogen evolution rates are quite easily controlled. The reaction products are safe for the environment owingtotheonlygaseous product is water vapor. The gravimetric as well as volumetric H densities are relatively high. The product is able to be recycled. 34 Ref. Schubert et al., 1957 Ref. Wee., 006 Ref. Kreevoy and Jacobson., 1979 Ref. Marrero-Alfonso et al.,

18 Chemical hydrides - NaBH 4 NaBH 4 > Metal hydrides Liquid > Compressed Volume of 4 kg of hydrogen compacted in different ways, with size relative to the size of a car. NaBH 4 LaNi 5 H 6 Mg NiH 4 Liquefied H Compressed H (00bar) 35 Chemical hydrides Ammonia borane (NH 3 BH 3 or AB) The advantages of NH 3 BH 3 : The inherent hydrogen storage capacity of NH 3 BH 3 is 19.6 wt%. NH 3 BH 3 and its spent product after hydrolysis reaction are rarely toxic and stable. Long-term storage stability. More than 80 days stable in aqueous solution under an argon atmosphere. The smallest volume occupied for hydrogen supply ml for NH 3 BH 3 relative to 7.5 ml for NaBH 4 and 36 ml for liquefied hydrogen at 34 MPa to supply the same amount of hydrogen. Ref. C.H. Liu et al., Hydrogen generated from hydrolysis of ammonia borane using cobalt and ruthenium based catalysts, International Journal of Hydrogen Energy 37, (011) 18

19 Chemical hydrides Ammonia borane (NH 3 BH 3 or AB) Methods of produce hydrogen from NH 3 BH 3 Solid-state thermolysis: ~110 C nnh 3BH 3 NH BH n ~150 C NH BH HNBH n n 500 C n HNBH BN nh nh nh Transient-metal catalyzed dehydrogenation Ionic liquid catalyzed dehydrogenation Hydrothermolysis (thermolysis in solution phase) n Hydrolysis: NH BH H O catalyst 3H NH BO Chemical hydrides Ammonia borane (NH 3 BH 3 or AB) Hydrogen production from NH 3 BH 3 hydrolysis: Proposed hydrolysis reaction of ammonia borane: NH BH H O 3H NH BO catalyst Our previous work (in excess water): NH catalyst 3BH 3 H O 3 3 H NH H BO Our previous work (in limited water): NH BH x H O 3 H m H BO n HBO hydrate NH catalyst Ref. Liu et al., 01 Ref. Chou et al., 01 19

20 Chemical hydrides - NH 3 BH 3 and NaBH 4 Proposed total life cycle of ammonia borane for hydrogen generation. 39 Ref. Liu et al.,

Introduction of Hydrogen Energy

Introduction of Hydrogen Energy Introduction of Hydrogen Energy Bing Hung CHEN ( 陳炳宏 ) Department of Chemical Engineering National Cheng Kung University Tainan 70101, TAIWAN E mail: bkchen@mail.ncku.edu.tw Outline Introduction - hydrogen

More information

Hydrogen Storage for Automotive Applications. Hydrogen. Universe most abundant element Odourless and colorless gas. H 2

Hydrogen Storage for Automotive Applications. Hydrogen. Universe most abundant element Odourless and colorless gas. H 2 Hydrogen Storage for Automotive Applications Hydrogen Universe most abundant element Odourless and colorless gas. H 2 Boils at 253 o C. Density is 0.0899 grams/liter. Source Wilkipedia 1 Kg of hydrogen

More information

Brief Introduction to Fuel Cells, Hydrogen Production and Storage

Brief Introduction to Fuel Cells, Hydrogen Production and Storage Brief Introduction to Fuel Cells, Hydrogen Production and Storage Production Outline Intermediate Conversion Electrolysis Jens Oluf Jensen Energy Reforming Microbial Thermal Transmission Storage Fuel cells

More information

Module 4 : Hydrogen gas. Lecture 29 : Hydrogen gas

Module 4 : Hydrogen gas. Lecture 29 : Hydrogen gas 1 P age Module 4 : Hydrogen gas Lecture 29 : Hydrogen gas 2 P age Keywords: Electrolysis, steam reforming, partial oxidation, storage Hydrogen gas is obtained in a very trace amount in atmosphere. It is

More information

Hydrogen Workshop for Fleet Operators

Hydrogen Workshop for Fleet Operators Hydrogen Workshop for Fleet Operators Module 2, Hydrogen Production, Distribution and Delivery Hydrogen Production, Distribution, & Delivery Outline 1. Hydrogen Production 2. Hydrogen Delivery Pipeline

More information

A Hydrogen Economy. Dr. Mazen Abualtayef. Environmental Engineering Department. Islamic University of Gaza, Palestine

A Hydrogen Economy. Dr. Mazen Abualtayef. Environmental Engineering Department. Islamic University of Gaza, Palestine A Hydrogen Economy Dr. Mazen Abualtayef Environmental Engineering Department Islamic University of Gaza, Palestine Adapted from a presentation by Professor S.R. Lawrence, Leeds School of Business, Environmental

More information

To Hydrogen or not to Hydrogen. Potential as a Ship Fuel. Dr. John Emmanuel Kokarakis. Emmanuel John Kokarakis University of Crete

To Hydrogen or not to Hydrogen. Potential as a Ship Fuel. Dr. John Emmanuel Kokarakis. Emmanuel John Kokarakis University of Crete To Hydrogen or not to Hydrogen. Potential as a Ship Fuel Dr. John Emmanuel Kokarakis Emmanuel John Kokarakis University of Crete THE VISION "I believe that water will one day be employed as fuel, that

More information

The Concept about the Regeneration of Spent Borohydrides and Used Catalysts from Green Electricity

The Concept about the Regeneration of Spent Borohydrides and Used Catalysts from Green Electricity Materials 2015, 8, 3456-3466; doi:10.3390/ma8063456 Article OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials The Concept about the Regeneration of Spent Borohydrides and Used Catalysts

More information

Hydrogen Storage. Associate Professor Craig Buckley Department of Imaging and Applied Physics Curtin University, Perth, WA AUSTRALIA

Hydrogen Storage. Associate Professor Craig Buckley Department of Imaging and Applied Physics Curtin University, Perth, WA AUSTRALIA Hydrogen Storage Associate Professor Craig Buckley Department of Imaging and Applied Physics Curtin University, Perth, WA AUSTRALIA The World Petroleum Life Cycle R.C. Duncan and W. Youngquist Pollution

More information

Hydrogen- future society. From International Society of Hydrogen Energy

Hydrogen- future society. From International Society of Hydrogen Energy Hydrogen - Overview Hydrogen- future society From International Society of Hydrogen Energy Hydrogen Hydrogen is not a source of energy, while solar, wind, natural gas and oil are. There are no naturally

More information

Development of large scale H 2 storage and transportation technology with Liquid Organic Hydrogen Carrier (LOHC)

Development of large scale H 2 storage and transportation technology with Liquid Organic Hydrogen Carrier (LOHC) Development of large scale H 2 storage and transportation technology with Liquid Organic Hydrogen Carrier (LOHC) Abroad See Japan CO2 [H2 Plant] H2 CHIYODA H 2 Storage and Transportation Technology Metyhylcyclohexane

More information

Development of Novel Hydrogen-Based Power Systems for ITS Applications: Phase-I

Development of Novel Hydrogen-Based Power Systems for ITS Applications: Phase-I Development of Novel Hydrogen-Based Power Systems for ITS Applications: Phase-I Final Report Prepared by: Venkatram R. Mereddy Department of Chemistry and Biochemistry University of Minnesota Duluth CTS

More information

Hydrogen production via catalytic water splitting. Prospects of reducing greenhouse emission by hydrogen powered energy technologies

Hydrogen production via catalytic water splitting. Prospects of reducing greenhouse emission by hydrogen powered energy technologies Hydrogen production via catalytic water splitting Prospects of reducing greenhouse emission by hydrogen powered energy technologies Increasing molecular weight Mass energy densities for various fuels Fuel

More information

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES Hydrogen is the simplest and lightest element. Storage is one of the greatest problems for hydrogen. It leaks very easily from

More information

Hydrogen Storage Gaps and Priorities

Hydrogen Storage Gaps and Priorities Hydrogen Storage Gaps and Priorities Trygve Riis (1) and Gary Sandrock (2) Øystein Ulleberg (3) and Preben J.S. Vie (3) (Corresponding authors) Abstract The objective of this paper is to provide a brief

More information

Introduction Fuel Cells

Introduction Fuel Cells Introduction Fuel Cells Fuel cell applications PEMFC PowerCell AB, S2 PEMFC, 5-25 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the H2 gas 2. Intermediate

More information

Transportation in a Greenhouse Gas Constrained World

Transportation in a Greenhouse Gas Constrained World Transportation in a Greenhouse Gas Constrained World A Transition to Hydrogen? Rodney Allam Director of Technology Air Products PLC, Hersham, UK 3 4 The Problem: demand and cause People Prosperity Pollution

More information

Figure 8: Typical Process Flow Diagram Showing Major Components of Direct Hydrogen PEFC System. Lecture No.8 Page 1

Figure 8: Typical Process Flow Diagram Showing Major Components of Direct Hydrogen PEFC System. Lecture No.8 Page 1 PEFC Systems PEFC stacks require tight control of fuel and air feed quality, humidity level, and temperature for sustained high-performance operation. To provide this, PEFC stacks must be incorporated

More information

A REVIEW ON THE HYDROGEN STORAGE SYSTEM FOR FUEL CELL VEHICLES IN JAPAN

A REVIEW ON THE HYDROGEN STORAGE SYSTEM FOR FUEL CELL VEHICLES IN JAPAN Jurnal Mekanikal June 2010, No. 30, 17-23 A REVIEW ON THE HYDROGEN STORAGE SYSTEM FOR FUEL CELL VEHICLES IN JAPAN Akito Takasaki * Department of Engineering Science and Mechanics, Shibaura Institute of

More information

Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels

Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels Charles W. Forsberg Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 Email: forsbergcw@ornl.gov Abstract Liquid fuels (gasoline,

More information

Hydrogen Storage (I) The key to an efficient energy storage. NPRE 498 Energy Storage

Hydrogen Storage (I) The key to an efficient energy storage. NPRE 498 Energy Storage Hydrogen Storage (I) The key to an efficient energy storage Why Hydrogen? High gravimetric energy density Clean Abundant, the most numerous element in the universe! Therefore affordable, once made Why

More information

Towards the development of low cost non-platinum based catalysts for catalytic water splitting

Towards the development of low cost non-platinum based catalysts for catalytic water splitting Towards the development of low cost non-platinum based catalysts for catalytic water splitting Prospects of reducing greenhouse emission by hydrogen powered energy technologies Dr. Usman Ali Rana What

More information

The methanol synthesis. Antal Tungler Emeritus professzor MTA Centre for Energy Research 2017

The methanol synthesis. Antal Tungler Emeritus professzor MTA Centre for Energy Research 2017 The methanol synthesis Antal Tungler Emeritus professzor MTA Centre for Energy Research 2017 BME Contents: Introduction History of the methanol and it s uses Properties of the methanol Methanol Production

More information

Fuel Cells: Timing and limits to the transition to a hydrogen economy. Thomas J. Meyer. Strategic Research At LANL

Fuel Cells: Timing and limits to the transition to a hydrogen economy. Thomas J. Meyer. Strategic Research At LANL Fuel Cells: Timing and limits to the transition to a hydrogen economy Thomas J. Meyer SR-PRES_Fuel-cells_limits-to-Hydrogen.ppt 10/8/2003-1 CO 2 levels projected Energy Consumption by Fuel projected maximum

More information

Preliminary Assessment of Energy and GHG Emissions of Ammonia to H2 for Fuel Cell Vehicle Applications

Preliminary Assessment of Energy and GHG Emissions of Ammonia to H2 for Fuel Cell Vehicle Applications Preliminary Assessment of Energy and GHG Emissions of Ammonia to H2 for Fuel Cell Vehicle Applications Michael Wang, Ye Wu, and May Wu Center for Transportation Research Argonne National Laboratory Argonne

More information

Matériaux pour le stockage réversible de l hydrogène à température ambiante

Matériaux pour le stockage réversible de l hydrogène à température ambiante 1/23 Matériaux pour le stockage réversible de l hydrogène à température ambiante Fermin Cuevas Institut de Chimie et des Matériaux Paris Est CNRS / Université Paris Est Responsable axe-stophe, GdR HySPàC

More information

Career. NH as a Hydrogen of October th Annual NH 3 Fuel Association Conference

Career. NH as a Hydrogen of October th Annual NH 3 Fuel Association Conference NH as a Hydrogen 3 Career 1-22 of October 2012 9th Annual Fuel Association Conference Yoshitsugu Kojima Hiroshima University Institute for Advanced Materials Research Table of Contents 1. Energy and Environmental

More information

Hydrogen Systems Modelling, Analysis and Optimisation

Hydrogen Systems Modelling, Analysis and Optimisation Arnaud ETE Hydrogen Systems Modelling, Analysis and Optimisation MPhil Thesis September 2009 1 2 Table of contents ABSTRACT... 8 A. INTRODUCTION AND PRESENTATION OF THE PROJECT... 9 1. Hydrogen economy...

More information

Lecture 4. Ammonia: Production and Storage - Part 1

Lecture 4. Ammonia: Production and Storage - Part 1 Lecture 4 Ammonia: Production and Storage - Part 1 Ammonia or azane is a compound of nitrogen and hydrogen with the formula NH 3. It is a colourless gas with a characteristic pungent smell. Ammonia contributes

More information

Topic 6 National Chemistry Summary Notes. Fuels. Fuels and Combustion

Topic 6 National Chemistry Summary Notes. Fuels. Fuels and Combustion Topic 6 National Chemistry Summary Notes Fuels LI 1 Fuels and Combustion Coal, oil, gas and wood can all be used as fuels. These fuels have energy-rich chemical bonds which were created using the energy

More information

Your partner for sustainable hydrogen generation siemens.com/silyzer

Your partner for sustainable hydrogen generation siemens.com/silyzer Hydrogen Solutions Your partner for sustainable hydrogen generation siemens.com/silyzer Renewable energy Growth Renewable energy is playing an increasingly important role worldwide. It s the backbone of

More information

Trends in the Use of Fuel

Trends in the Use of Fuel Hydrogen Fuel Cell Trends in the Use of Fuel Wood Coal Oil Natural Gas Hydrogen Percentage of hydrogen content in fuel 19 th century: steam engine 20 th century: internal combustion engine 21 st century:

More information

HOW IT WORKS w w w. f u e l c e l l p a r t n e r s h i p. o r g

HOW IT WORKS w w w. f u e l c e l l p a r t n e r s h i p. o r g HOW IT WORKS w w w. f u e l c e l l p a r t n e r s h i p. o r g FUEL CELL ENERGY POWERS THE CAR! Electrical Current ELECTRONS The movement of electrons generates electricity to power the motor. OXYGEN

More information

REDUCTION OF CO 2 EMISSION TO METHANE USING HYDROGENATION WITH NICKEL (110) SURFACE CATALYST

REDUCTION OF CO 2 EMISSION TO METHANE USING HYDROGENATION WITH NICKEL (110) SURFACE CATALYST REDUCTION OF CO 2 EMISSION TO METHANE USING HYDROGENATION WITH NICKEL (110) SURFACE CATALYST G. Santoshi 1, Ch. SaiRam 2, M. Chaitanya 3 1,2,3 Civil Engineering,Miracle Educational Society Group of Institutions,

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Where is Transportation Going?

Where is Transportation Going? Where is Transportation Going? Conventional Engines Biofuels Electricity Hydrogen George Crabtree Materials Science Division Argonne National Laboratory Big Picture: Major Energy Challenges 25.00 2100:

More information

Review on hydrogen production technologies from solar energy

Review on hydrogen production technologies from solar energy European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 11) Las Palmas de Gran Canaria

More information

Development of Hydrogen energy creation type fuel cell system and Ubiquitous hydrogen energy supply system

Development of Hydrogen energy creation type fuel cell system and Ubiquitous hydrogen energy supply system Development of Hydrogen energy creation type fuel cell system and Ubiquitous hydrogen energy supply system Atsuhiro Yoshizaki and Keiichi Hirata Hydoric Power Systems Co., Ltd. Masayoshi Ishida University

More information

Electro fuels an introduction

Electro fuels an introduction Electro fuels an introduction Cédric Philibert, Renewable Energy Division, International Energy Agency EC-IEA Workshop on Electro fuels, Brussels, 10 Sept 2018 IEA Industry and transports: the hard-to-abate

More information

INFRASTRUCTURE SOLUTIONS

INFRASTRUCTURE SOLUTIONS HYDROGEN INFRASTRUCTURE SOLUTIONS THE LOHC COMPANY 2 The Hydrogenious Technologies GmbH is a pioneer and global industry leader in the field of hydrogen storage in Liquid Organic Hydrogen Carrier (LOHC)

More information

Solid State Ammonia Synthesis NHThree LLC

Solid State Ammonia Synthesis NHThree LLC Solid State Ammonia Synthesis NHThree LLC Jason C. Ganley John H. Holbrook Doug E. McKinley Ammonia - A Sustainable, Emission-Free Fuel October 15, 2007 1 Inside the Black Box: Steam Reforming + Haber-Bosch

More information

Hydrogen production including using plasmas

Hydrogen production including using plasmas Hydrogen production including using plasmas Dr. I. Aleknaviciute and Professor T. G. Karayiannis School of Engineering and Design Brunel University, London, UK Inno Week, Patras Greece 9 th July 2013 Diatomic

More information

Hydrogen Fuel Cell Vehicle

Hydrogen Fuel Cell Vehicle Hydrogen Fuel Cell Vehicle The newly invented hydrogen car is a vehicle that uses hydrogen as its main source of fuel. These cars convert the chemical energy of hydrogen to mechanical energy either by

More information

Application Note. Hydrogen Purity Analysis by FTIR PROBLEM BACKGROUND

Application Note. Hydrogen Purity Analysis by FTIR PROBLEM BACKGROUND Hydrogen Purity Analysis by FTIR PROBLEM Historically, hydrogen has been employed in a variety of industrial chemical processes. Typically, the purity requirements for this hydrogen have tolerated contaminant

More information

Prof. Mario L. Ferrari

Prof. Mario L. Ferrari Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems Dr. Ing. Mario L. Ferrari Thermochemical Power Group (TPG) - DiMSET University of Genoa, Italy Lesson IV: fuel cells (PEFC or PEM)

More information

Coupling Carbonless Electricity and Hydrogen Transportation

Coupling Carbonless Electricity and Hydrogen Transportation Coupling Carbonless Electricity and Hydrogen Transportation 9 July 2003 Gene Berry & Alan Lamont (berry6@llnl.gov) Energy and Environment Directorate Lawrence Livermore National Laboratory Livermore, CA

More information

Zn(s) Zn 2+ (aq) + 2 e - Oxidation Anode Cu 2+ (aq) + 2 e - Cu (s) Reduction Cathode

Zn(s) Zn 2+ (aq) + 2 e - Oxidation Anode Cu 2+ (aq) + 2 e - Cu (s) Reduction Cathode Zn(s) Zn 2+ (aq) + 2 e - Oxidation Anode Cu 2+ (aq) + 2 e - Cu (s) Reduction Cathode Anode: H 2 (g) 2 H + (aq) + 2 e - Cathode: ½ O 2 (g) + 2 H + (aq) + 2 e - H 2 O (l) Net: ½ O 2 (g) + H 2 (g) H 2 O (l)

More information

THE CONCEPT OF INTEGRATED CRYOGENIC ENERGY STORAGE FOR LARGE SCALE ELECTRICITY GRID SERVICES. Finland *corresponding author

THE CONCEPT OF INTEGRATED CRYOGENIC ENERGY STORAGE FOR LARGE SCALE ELECTRICITY GRID SERVICES. Finland *corresponding author THE CONCEPT OF INTEGRATED CRYOGENIC ENERGY STORAGE FOR LARGE SCALE ELECTRICITY GRID SERVICES Sakari Kaijaluoto 1, Markus Hurskainen 1,* and Pasi Vainikka 2 1 VTT Technical Research Centre of Finland, Koivurannantie

More information

Hydrogen from Renewable Fuels by Autothermal Reforming: Alcohols, Carbohydrates, and Biodiesel

Hydrogen from Renewable Fuels by Autothermal Reforming: Alcohols, Carbohydrates, and Biodiesel Hydrogen from Renewable Fuels by Autothermal Reforming: Alcohols, Carbohydrates, and Biodiesel Lanny D. Schmidt Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis

More information

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production Fuel Cell Systems and Hydrogen Production Fuel Cell Type < 5kW 5-250kW < 100W 250kW 250kW - MW 2kW - MW Electrochemical Reactions 11 Efficiency Efficiency Source: Hazem Tawfik, Sept 2003 Pressure Effects

More information

1 Chapter 1 K. NAGA MAHESH Introduction. Energy is the most essential and vital entity to survive on this Planet.

1 Chapter 1 K. NAGA MAHESH Introduction. Energy is the most essential and vital entity to survive on this Planet. 1 1.1 Hydrogen energy CHAPTER 1 INTRODUCTION Energy is the most essential and vital entity to survive on this Planet. From past few decades majority of the mankind depend on fossil fuels for transportation,

More information

An Analysis of Coupled PEM Fuel Cell Metal Hydride Hydrogen Storage Tank System

An Analysis of Coupled PEM Fuel Cell Metal Hydride Hydrogen Storage Tank System 2 nd European Conference on Polygeneration 30 th March-1 st April, 2011 Tarragona, Spain Rajpurohit,Venkatarathnam,Srinivasa Murthy An Analysis of Coupled PEM Fuel Cell-Metal Hydride Hydrogen Storage System

More information

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Hydrogen production and storage: an overview

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Hydrogen production and storage: an overview Laurea in Scienza dei Materiali Materiali Inorganici Funzionali Hydrogen production and storage: an overview Prof. Dr. Antonella Glisenti -- Dip. Scienze Chimiche -- Università degli Studi di di Padova

More information

Welcome to Linde Hydrogen

Welcome to Linde Hydrogen Welcome to Linde Hydrogen at Shell Eco-marathon. Dear Shell Eco-marathon hydrogen team, let us welcome you to the hydrogen community! Linde is the official sponsor and technology expert for hydrogen at

More information

DME as a carrier of Renewable Energy

DME as a carrier of Renewable Energy Annual Conference of Japan Institute of Energy, 6 August 2013 DME as a carrier of Renewable Energy Yotaro Ohno Corporation 1 Contents Introduction Comparison of Physical properties of Energy carriers Conversion

More information

S.E. (Chemical) (First Semester) EXAMINATION, 2012 PROCESS CALCULATIONS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (First Semester) EXAMINATION, 2012 PROCESS CALCULATIONS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4162]-185 S.E. (Chemical) (First Semester) EXAMINATION, 2012 PROCESS CALCULATIONS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

More information

Integrated Electrochemical Thermal Ammonia Production Process

Integrated Electrochemical Thermal Ammonia Production Process Integrated Electrochemical Thermal Ammonia Production Process Junhua Jiang, Ted Aulich, Alexey Ignatchenko, and Chris Zygarlicke, Energy & Environmental Research Center (EERC) University of North Dakota

More information

Biomass. The latter is not a new concept, homes and industries were, at one time, heated and powered by wood.

Biomass. The latter is not a new concept, homes and industries were, at one time, heated and powered by wood. Biomass Energy Content Biomass Conversion of Biomass in Energy Thermochemical Processes Extraction Processes Biological Processes Waste to Energy Mechanical Biological Treatment (MBT) Biofuels Biomass

More information

Energy From Electron Transfer. Chemistry in Context

Energy From Electron Transfer. Chemistry in Context Energy From Electron Transfer Chemistry in Context Energy Types Batteries Hybrid Cars (Electrical) H 2 (and Other) Fuel Cells Solar Fuel Cell Car Demo H 2 Fuel Cell Reactions Step 1: H 2 (g) 2H + (aq)

More information

Production and Utilization of Green Hydrogen. Mathias Mostertz GAFOE Meeting, April 27, 2013

Production and Utilization of Green Hydrogen. Mathias Mostertz GAFOE Meeting, April 27, 2013 Production and Utilization of Green Hydrogen Mathias Mostertz GAFOE Meeting, April 27, 2013 Agenda 1. The Linde Group General Overview Clean Energy Technology Biomass Program 2. Utilization of Green Hydrogen

More information

How Can Chemical Processes Be Designed to Optimise Efficiency?

How Can Chemical Processes Be Designed to Optimise Efficiency? How Can Chemical Processes Be Designed to Optimise Efficiency? Area of Study 1: What are the Options for Energy Production? Area of Study 2: How Can the Versatility of Non-Metals Be Explained? What is

More information

Session 4.1: Solid Storage Technology. Dr. N. Eigen (GKSS) 25 th 29 th September 2006 Ingolstadt. Session 1.2: Introductory Lectures. K.

Session 4.1: Solid Storage Technology. Dr. N. Eigen (GKSS) 25 th 29 th September 2006 Ingolstadt. Session 1.2: Introductory Lectures. K. Session 4.1: Solid Storage Technology Dr. N. Eigen (GKSS) 25 th 29 th September 2006 Ingolstadt Session 1.2: Introductory Lectures K. Hall 4.1 Solid Storage Technology CV Dr. N. Eigen Address: GKSS Research

More information

Properties of aqueous alkaline sodium borohydride solutions and by-products formed during hydrolysis

Properties of aqueous alkaline sodium borohydride solutions and by-products formed during hydrolysis Properties of aqueous alkaline sodium borohydride solutions and by-products formed during hydrolysis presented at the HYATT REGENCY SAN FRANCISCO AT EMBARCADERO CENTER BOARD ROOM B, ATRIUM LEVEL 5 EMBARCADERO

More information

Fuel Cells 101. Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013

Fuel Cells 101. Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013 Fuel Cells 101 Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013 1 Why are hydrogen and fuel cells important? Hydrogen and fuel cells are technology solutions

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam 2 CHEM 1100 Summer School 2017 PRACTICE EXAM Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The heat of combustion of ethane, C 2 H

More information

Plastics Recycling. Datchanee Pattavarakorn Industrial Chemistry, Science, CMU

Plastics Recycling. Datchanee Pattavarakorn Industrial Chemistry, Science, CMU 2 0 Plastics Recycling 9 7 8 3 Datchanee Pattavarakorn Industrial Chemistry, Science, CMU Why recycle plastics? Waste emissions Industrial waste Domestic waste Why recycle plastics? Waste emissions 640

More information

Hydrogen as an Energy Carrier

Hydrogen as an Energy Carrier CH2356 Energy Engineering Hydrogen as an Energy Carrier Dr. M. Subramanian 28-Feb-2011 Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

Hydrogen storage for transportation.. and other applications.

Hydrogen storage for transportation.. and other applications. Workshop on "Physics for Renewable Energy" October 17-29, 2005 301/1679-27 "Hydrogen Storage for Transportation & other Applications" P. Prosini ENEA- IDROCOMB Centro Ricerca della Casaccia S. Maria di

More information

Crude Oil National 4

Crude Oil National 4 Fuels National 4 A fuel is a chemical which burns to give out energy. When a fuel burns the chemical reaction is known as combustion. When combustion takes place the fuel is reacting with oxygen from the

More information

AC : DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS

AC : DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS AC 2007-2870: DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS Esther Ososanya, University of the District of Columbia Samuel Lakeou, University of the District of Columbia Abiyu Negede,

More information

Hydrogen and fuel cells: towards a sustainable energy future

Hydrogen and fuel cells: towards a sustainable energy future Hydrogen and fuel cells: towards a sustainable energy future Professor Peter P. Edwards Head of Inorganic Chemistry University of Oxford Co-ordinator UK Sustainable Hydrogen Energy Consortium UK representative

More information

HYDROGEN FUEL CELL TECHNOLOGY

HYDROGEN FUEL CELL TECHNOLOGY HYDROGEN FUEL CELL TECHNOLOGY Vikash, Vipin Yadav, Vipin Badgaiyan Dronacharya College of Engineering, Gurgaon Abstract: - Whereas the 19th century was the century of the steam engine and the 20th century

More information

The Hydrogen Society A National Feasibility Study

The Hydrogen Society A National Feasibility Study The Hydrogen Society A National Feasibility Study [Hydrogensamfunnet en nasjonal mulighetsstudie] May 2000 A report prepared by SINTEF Energy Research, Trondheim Institute for Energy Technology, Kjeller

More information

Fuel Cells Introduction Fuel Cell Basics

Fuel Cells Introduction Fuel Cell Basics Fuel Cells Introduction Did you know that the appliances, lights, and heating and cooling systems of our homes requiring electricity to operate consume approximately three times the energy at the power

More information

Modern Small-Scale LNG Plant Solutions

Modern Small-Scale LNG Plant Solutions Modern Small-Scale LNG Plant Solutions Clean and Stand-Alone Small Volume High Energy Density Many Possibilities LNG is becoming increasingly important all over the world for optimizing the natural gas

More information

Wet Cells, Dry Cells, Fuel Cells

Wet Cells, Dry Cells, Fuel Cells page 2 page 3 Teacher's Notes Wet Cells, Dry Cells, Fuel Cells How the various electrochemical cells work Grades: 7-12 Duration: 33 mins Program Summary This video is an introductory program outlining

More information

Fossil, Biomass, and Synthetic Fuels

Fossil, Biomass, and Synthetic Fuels Fossil, Biomass, and Synthetic Fuels Why do we care about heat engines? Waste heat U. S. electricity generation = 1.3 x 10 19 J/y Assuming 40% efficiency = 8 x 10 18 J/y waste heat Volume Lake Superior

More information

[20a] Development of Liquid Fuel Reformer Using Low Energy Pulse (LEP) Discharge at Room Temperature

[20a] Development of Liquid Fuel Reformer Using Low Energy Pulse (LEP) Discharge at Room Temperature [2a] Development of Liquid Fuel Reformer Using Low Energy Pulse (LEP) Discharge at Room Temperature Yasushi Sekine, Masahiko Matsukata, Eiichi Kikuchi, Shigeru Kado Waseda Univ. 55S62, Okubo, Shinjyuku

More information

Compiled by Rahul Arora What do you mean by corrosion? How can you prevent it?

Compiled by Rahul Arora What do you mean by corrosion? How can you prevent it? Rahul Arora 12. What do you mean by corrosion? How can you prevent it? 13. MnO2 + 4HCl MnCl2 + 2H2O + Cl2 In the above equation, name the compound which is oxidized and which is reduced? 14. Match the

More information

AP Chemistry A. Allan Chapter 18 - The Representative Elements: Groups 1A through 4A

AP Chemistry A. Allan Chapter 18 - The Representative Elements: Groups 1A through 4A AP Chemistry A. Allan Chapter 18 - The Representative Elements: Groups 1A through 4A 18.1 A Survey of the Representative Elements A. Basic Trends 1. Metals tend to lose electrons and form cations 2. Nonmetals

More information

Innovative Hydrogen Storage Solutions for Aerospace Applications

Innovative Hydrogen Storage Solutions for Aerospace Applications Innovative Hydrogen Storage Solutions for Aerospace Applications M. Keding, A. Reissner, G. Schmid, M. Tajmar This document appeared in Detlef Stolten, Thomas Grube (Eds.): 18th World Hydrogen Energy Conference

More information

HTR-TN. Liquid Hydrocarbons. European Commission, Joint Research Centre, Institute for Energy NL-1755 ZG Petten, The Netherlands. Michael A.

HTR-TN. Liquid Hydrocarbons. European Commission, Joint Research Centre, Institute for Energy NL-1755 ZG Petten, The Netherlands. Michael A. HTR-TN High Temperature Reactor Technology Network Let s Nuclear Power talk for the about Production of Liquid Hydrocarbons Michael A. Fütterer European Commission, Joint Research Centre, Institute for

More information

A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst

A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst International Journal of Hydrogen Energy 25 (2000) 969±975 www.elsevier.com/locate/ijhydene A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst Steven C. Amendola*,

More information

A Comparison of Two Engines. Benefits of an Electric Motor

A Comparison of Two Engines. Benefits of an Electric Motor Fuel Cells (http://www.stanford.edu/group/fuelcell/images/fuel%0cell%0components.jpg) Lecture prepared with the able assistance of Ritchie King, TA 1 A Comparison of Two Engines Internal-combustion engine

More information

HYDROGEN MANUFACTURING USING LOW CURRENT, NON-THERMAL PLASMA BOOSTED FUEL CONVERTERS

HYDROGEN MANUFACTURING USING LOW CURRENT, NON-THERMAL PLASMA BOOSTED FUEL CONVERTERS PSFC/RR-01-1 HYDROGEN MANUFACTURING USING LOW CURRENT, NON-THERMAL PLASMA BOOSTED FUEL CONVERTERS L. Bromberg, D.R. Cohn, A. Rabinovich and N. Alexeev December 11, 2000 * Plasma Science and Fusion Center

More information

PEFC Technology Development

PEFC Technology Development PEFC Technology Development Göran Lindbergh, Björn Eriksson, Annika Carlson, Rakel Wreland Lindström, Carina Lagergren, KTH Fuel Cell 2015 Arlanda, December 3, 2015 Layout of presentation Introduction

More information

RENEWABLE OPTIONS OF FUTURE MOBILITY: BEYOND OIL

RENEWABLE OPTIONS OF FUTURE MOBILITY: BEYOND OIL RENEWABLE OPTIONS OF FUTURE MOBILITY: BEYOND OIL Dr. Sanjay Kaul Professor Fitchburg State University Fitchburg, MA Conventional Oil reserves are concentrated in OPEC areas (>70%). The production maximum

More information

IV.0 Hydrogen Storage Program Overview

IV.0 Hydrogen Storage Program Overview IV.0 Hydrogen Storage Program Overview Introduction The Hydrogen Storage program supports research and development (R&D) of materials and technologies for compact, lightweight, and inexpensive storage

More information

atom biofuel biomass the smallest unit of a chemical element, made up of protons, neutrons, and electrons

atom biofuel biomass the smallest unit of a chemical element, made up of protons, neutrons, and electrons atom the smallest unit of a chemical element, made up of protons, neutrons, and electrons biofuel any fuel that comes directly from organic matter found in present-day living things biomass organic matter

More information

CHLOR-ALKALI INDUSTRY

CHLOR-ALKALI INDUSTRY CHLOR-ALKALI INDUSTRY The chlor-alkali industry represents of three major industrial chemicals: Soda ash (sodium carbonate-na 2 CO 3 ) Caustic soda (sodium hydroxide-naoh) Chlorine (Cl 2 ) These chemicals

More information

Energy storage in metal fuels energy and chemistry cycles

Energy storage in metal fuels energy and chemistry cycles Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer Energy storage in metal fuels energy and chemistry cycles Lehrstuhl für Energieanlagen und Energieprozesstechnik Martin

More information

Laboratory for Hydrogen Energy Technologies Joint Institute for High Temperatures Russian Academy of Sciences (IVTAN H2lab)

Laboratory for Hydrogen Energy Technologies Joint Institute for High Temperatures Russian Academy of Sciences (IVTAN H2lab) Hydrogen technologies for power engineering Laboratory for Hydrogen Energy Technologies Joint Institute for High Temperatures Russian Academy of Sciences (IVTAN H2lab) h2lab@mail.ru Hydrogen energy technologies

More information

An Integrated Hydrogen Storage and Delivery Approach Using Organic Liquid-Phase Carriers

An Integrated Hydrogen Storage and Delivery Approach Using Organic Liquid-Phase Carriers An Integrated Hydrogen Storage and Delivery Approach Using Organic Liquid-Phase Carriers Alan C. Cooper a, Karen M. Campbell b, Guido P. Pez c a Air Products and Chemicals, Inc., Corporate Science and

More information

Applicability of Dimethylether to Solid Oxide Fuel Cells

Applicability of Dimethylether to Solid Oxide Fuel Cells 17 Nov. 2011, 7th Asian DME Conference Applicability of Dimethylether to Solid Oxide Fuel Cells ~ Reforming and Cell Performance in Anode Off-gas Recycle ~ Yohei Tanaka, Katsutoshi Sato, Akihiko Momma,

More information

HTR Process Heat Applications

HTR Process Heat Applications HTR Process Heat Applications Training Course on High Temperature Gas-cooled Reactor Technology October 19-23, Serpong, Indonesia Japan Atomic Energy Agency HTR Heat Applications Hydrogen production Hydrogen

More information

Assessing hydrogen production from wind and solar power with an LCA

Assessing hydrogen production from wind and solar power with an LCA Assessing hydrogen production from wind and solar power with an LCA Christina Wulf, Martin Kaltschmitt Agenda Introduction System definition Environmental assessment Conclusions 2 Introduction Hydrogen

More information

Renewable Natural Gas via Catalytic Hydrothermal Gasification of Wet Biomass

Renewable Natural Gas via Catalytic Hydrothermal Gasification of Wet Biomass Renewable Natural Gas via Catalytic Hydrothermal Gasification of Wet Biomass October 2009 1 Overview of Gasification Process Catalytic Hydrothermal Gasification (CHG) is a wet process which produces renewable

More information

Comparison of On-board Hydrogen Storage Options

Comparison of On-board Hydrogen Storage Options Comparison of On-board Hydrogen Storage Options Fuel Cell Seminar November 14-18, 2005 Stephen Lasher Eric Carlson John Bowman Yong Yang Mark Marion TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 Tel.

More information

Fuel of the future. HafenCity hydrogen station

Fuel of the future. HafenCity hydrogen station Fuel of the future HafenCity hydrogen station Energy future becomes a reality Electromobility with hydrogen At the entrance to Hamburg s HafenCity you can find a piece of the future: one of the biggest

More information

The Future of the Hydrogen Economy: Bright or Bleak?

The Future of the Hydrogen Economy: Bright or Bleak? Final Report The Future of the Hydrogen Economy: Bright or Bleak? Ulf Bossel Fuel Cell Consultant Morgenacherstrasse 2F CH-5452 Oberrohrdorf / Switzerland +41-56-496-7292 Baldur Eliasson ABB Switzerland

More information