PART A: DURUM WHEAT. 3.1A Introduction

Size: px
Start display at page:

Download "PART A: DURUM WHEAT. 3.1A Introduction"

Transcription

1 PART A: DURUM WHEAT 3.1A Introduction Global area under durum is about 17 million hectares and production is about 25 million metric tones. India is one of the major durum producers and almost entire produce of 2.5 million tons which is used to meet domestic requirements (Jag Shoran et al., 2004). In Central and Peninsular Zone of India, durum wheat is traditionally cultivated under residual soil moisture conditions. Even with changed and improved irrigation scenario in these regions, water is still a major limiting factor for wheat production. In majority of cases wheat crop receives 2-4 irrigations in Central and Peninsular Zone (Pandey, 2004). Breeding strategy for identifying genotypes for these situations is becoming a major challenge for all breeders in Central and Peninsular India. Several morphophysiological traits have been proposed as screening criteria for drought tolerance (Turner, 1997) such as relative water content (RWC). Transpiration efficiency (TE: the ratio of dry matter produced to water transpired) is an interesting attribute for growth in dry areas. The use of carbon isotope discrimination ( ) as a related criterion which affords an easy way of screening for TE.The negative relationship between and TE was established firstly by Farquhar and Richards (1984) and confirmed by other workers, who then proposed as an indirect selection criterion for TE (Condon et al., 1987; Ehdaie and Waines, 1993; Acevedo, 1993) During photosynthesis, plants discriminate against the heavy isotope of carbon ( 13 C) which leads to depletion of the plant dry matter in 13 C.Carbon isotope discrimination is a measure of 13 C/ 12 C ratio in plant dry matter compared with the value of the same ratio in atmosphere (Farquhar and Richards 1984). In C 3 Species, including bread wheat and barley, was found to be positively correlated with C i /C a (i.e., the ratio of internal leaf CO 2 concentration to ambient CO 2 concentration) and negatively associated with TE, (Farquhar and Richards 1984, Ehdaie et al., 1991, Johnson and Bassett1991, Read et al., 1991, Acevedo 1993). Values appear to provide a useful integration of TE of C 3 crop species, and therefore have been proposed as potential criterion for TE (Farquhar et al., 1989). Carbon isotope analysis, using mass spectrometry, is however very expensive, especially for the screening of large collections of genetic resources. Attempts have 53

2 been made to develop alternative screening methods. Ash content (m a ) and dry mass per unit of leaf area (LDM) have been proposed as surrogates for (Masle et al., 1992; Wright et al., 1993; Voltas et al., 1998) and as an alternative selection criterion for TE and yield. Other morphological traits associated with yield, such as grain number and HI, can be used in visual selection of breeding lines. Several workers have shown a clear association of CTD with yield in both warm and temperate environments. CTD shows high genetic correlation with yield and high values of proportion of direct response to selection (Reynolds et al., 1998), indicating that the trait is heritable and therefore amenable to early generation selection. Since an integrated CTD value can be measured almost instantaneously on scores of plants in a small breeding plot (thus reducing error), work has been conducted to evaluate its potential as an indirect selection criterion for genetic gains in yield. The objectives of the present study were to identify traits associated with yield. The potential value of, m a and CTD as an indirect selection criterion for yield was identified. On the basis of this criterion selections were made to increase the grain yield under water stress condition. 3.2 A Materials and Methods A Selection of wheat varieties and procurement of seed Twenty semi-dwarf durum wheat genotypes including released varieties were selected (Table 3.1A). The experiment was conducted for two consecutive years and for the confirmation of the results. 54

3 Table3.1 A: List of durum wheat genotypes included in and trial. Sr.No. Name of the genotype Source Suitable for 1 HI 8627 IARI RRS Indore irrigated 2 UAS 405 UAS Dharwad Irrigated 3 UAS 401 UAS Dharwad Irrigated 4 HI 8666 IARI RRS Indore Rainfed 5 HI 8498 IARI RRS Indore Irrigated 6 MACS 2694 ARI,Pune Irrigated 7 NIDW 295 ARS Niphad Irrigated 8 MACS 3618 ARI,Pune Irrigated 9 MACS 3125 ARI,Pune irrigated 10 MACS 3572 ARI,Pune irrigated 11 MACS 3518 ARI,Pune irrigated 12 HI 8641 IARI RRS Indore irrigated 13 NIDW 350 ARS Niphad irrigated 14 DD 07 DWR Karnal irrigated 15 MACS 3640 ARI,Pune irrigated 16 MACS 2846 ARI,Pune irrigated 17 HD 4672 IARI, New delhi rainfed 18 RKD 111 KOTA,Rajasthan irrigated 19 UAS 404 UAS Dharwad irrigated 20 MACS 3571 ARI,Pune irrigated 55

4 3.2.2A Experimental Trials Trials were conducted at the Experimental Farm of Agharkar Research Institute, located at Hol Distt. Pune, India (18.04º N, 74.21º E and m above sea level) during and cropping seasons. The experiment was conducted in a randomized block design (RBD) with3 replications and 3 treatments. The treatments were Residual Soil Moisture Stress (RSMS), Post-Anthesis Water Stress (PAWS) and Well-Watered (WW) conditions. Seeds were sown in 4m x 6 rows spaced 23 cm apart (260 seeds/m 2 ). Fertilizer application (N P K) was done as per recommended doses (60:30:40) for RSMS, (80:40:40) for PAWS and (100:50:40) for WW conditions. Nitrogen application in PAWS & WW was given in two times i.e., half at sowing time and half 25 days after sowing at first irrigation A Climatic conditions During and total precipitation received was mm and mm respectively (Table 3.2A). Table 3.2 A. Rainfall and irrigation during crop seasons ( to ) Rainfall/ Irrigation (mm) Year March February January December November May to October (Irrigation) Total Rain (Irrigation) RSMS WW (Irrigation) PAWS Crop was flood irrigated. First irrigation was given immediately after sowing to ensure proper germination of experiment. No irrigation was given to RSMS; three irrigations were given to PAWS (180 mm) and five irrigations to WW (300mm) A Observations Observations were recorded as follows: A. Agronomical traits Data on agronomical traits were recorded as mentioned in chapter 2, section

5 B Physiological traits Carbon isotope discrimination Ash content Canopy temperature depression For physiological traits, observations on CID and ash content were recorded as mentioned in chapter 2, section C. Canopy Temperature Depression (CTD) Canopy temperature depression data was recorded for 20 genotypes at anthesis (CTD a ) and at maturity (CTD m ) using a portable infrared thermometer during full sunshine hours (Model AG-42, Telatemp Corporation, Fullerton, CA). 3.3A Statistical analysis Data were analyzed using Agrobase 99 software for all the traits where replicated trial data was recorded. Combined ANOVA was done to estimate G X E interactions over environments and compare differences between environments. For CID analysis, data from individual samples were analyzed and SD was calculated. Phenotypic correlations were estimated (r) to determine the relationship between traits and grain yield. 3.4A Results Significant differences were found for grain yield between the three water treatments. The highest grain yield were recorded under WW regime, followed by PAWS and RSMS.Average grain yield was 4.58, 3.65 and 2.34 t/ha, for and 4.532, and t/ha for season, respectively. Genotypes x Treatment (Environment) interaction was highly significant for grain yield, harvest index, plantlet leaf ash (m a L p ), leaf ash at boot stage (m a L b ),leaf ash at anthesis (m a L a ) grain ash (m a G m ), grain Carbon isotope discrimination ( G m ) except for biomass and leaf carbon isotope discrimination at anthesis ( L a ) in both the seasons(table3.3). 57

6 Table 3.3 A. MS of combined ANOVA for grain yield, biomass, harvest index and ash content ( ) and ( ). Season Source of Variation d.f. Yield Biomass HI m a L p m a L b m a L a m a G m L a G m Treatments (T) *** *** *** *** 19.03ns *** 1.49 *** *** 26.6 *** Genotype (G) * 5.70 ** ** 1.93ns 7.46ns 4.79 * 0.13 *** * *** *** G x T *** *** *** 1.76 *** 5.38 *** 2.34 *** 0.05 *** *** Treatments (T) *** *** *** *** *** *** 0.98 *** *** *** Genotype (G) G x T ns *** 2.96 *** 4.47ns 1.851** ns ns 7.839ns 3.768ns *** ** *** *** *** 0.35 *** *** *** *, **, ***, significant at p=<0.05, 0.0 and respectively. ns = non significant m a G m, m a L p, m a L b m a L a m a L m, magm: Ash content in grain at maturity, plantlet and flag leaf at boot stage, anthesis and grain respectively; L a and G m: CID at flag leaf at anthesis and grain, respectively. HI = Harvest Index 58

7 Table 3.4 A: Ash content, biomass, yield, CID and CTD under the different water regimes in ( ) and ( ) season. RSMS PAWS WW Season Trait Mean S.D. Mean S.D. Mean S.D. F value L a ( ) G m ( ) MaLp (%) m a L b (%) m a L a (%) CTDb CTDa m a G m (%) ** Yield (T/ha) Biomass (T/ha) Harvest Index (%) b a a *** b a a *** b a a *** a a a *** a a b *** a a a *** b a a ns b b a *** b a a *** b a a *** c b a *** b a b *** b a a *** a a a *** a b c *** b b a *** b a a *** c b a *** a b a ** a a b *** *** Significant at p=< ; RSMS: Residual Soil Moisture Stress, PAWS: Post Anthesis Water Stress, WW: Well Watered. L p and L a and G m: Carbon isotope discrimination in plantlet, flag leaf at anthesis and grain at maturity, respectively MaGm, m al p, m al b m al a m al m: Ash content in grain at maturity, plantlet and flag leaf at boot stage, anthesis and maturity respectively. Mean values on same line without a common letter are significantly different (P< 0.05) according to the Duncan comparison test.$ = values from pooled samples, analyzed at UAS Bangalore; # = values from individual plots, analyzed at Siberdorf lab CTD a, CTD b canopy temperature depressin at boot and anthesis, mean values on same line without a common letter are significantly different (P< 0.05) according to the Duncan comparison test Highest grain ash values were found in WW (1.73, 1.53) followed by PAWS (1.58, 1.52) and RSMS (1.41, 1.31) in both the seasons respectively. For plantlet leaf ash highest values were recorded in RSMS (16.07, 15.85) followed by PAWS (15.42, 15.43) and WW condition (12.54, 15.14) in respective seasons. Similar trend was 59

8 obtained during season. Higher leaf ash content at anthesis was recorded for WW (12.58, 12.06) followed by PAWS (12.31, 11.19) and RSMS (9.77, 8.83) during both the seasons (table 3.4A) A Effect of water regime on grain yield, carbon isotope discrimination and ash content Significant differences in the treatments were observed between grain yield and ash content due to water regimes. Highest grain yield was observed under WW conditions.similarly highest values for leaf ash at anthesis and grain ash were recorded under WW followed by PAWS and RSMS conditions. Grain yield, biomass and ash content showed highest values under WW condition suggesting that high yield was associated with low transpiration efficiency. Similar results were obtained for previous season (Misra et al., 2006).On the contrary plantlet leaf ash showed highest values under RSMS followed by PAWS and WW condition (Table3.4A). Under RSMS, PAWS and WW regimes, grain yield showed significant correlation with BIOM (0.445 ***, ***, *** ) and (0.788 ***, ***, *** ) for and season respectively. Grain yield also showed significant correlation with HI under these three environments (0.748 ***, ***, *** ) and (0.530 ***, ***, *** ) for and season respectively (Table 3.5A). For carbon isotope discrimination, G m showed highest value under PAWS (17.14) condition in however, in season under WW condition G m showed highest value (17.59). Canopy temperature depression at boot stage (CTD b ) showed highest value under WW (4.23) condition followed by PAWS (2.67) and RSMS (1.70) condition. Canopy temperature depression at anthesis stage (CTD a ) showed highest value under PAWS (4.48) followed by RSMS (2.88) and WW (2.82) environment. In season DF and DM showed significant negative correlation with yield under WW condition ( *** and *** ) respectively whereas in season DF and DM showed significant negative correlation under PAWS condition ( *** and *** ) respectively (Table 3.5A). 60

9 TABLE3.5A. Correlation between phenological and morphological characters and yield and BM HI DF DM TGW HT CTD a CTD b RSMS PAWS WW *** *** *** *** ** *** ** ** ** *** *** ** *** *** * ** ** *** *** *** ** ** ** *** *** * RWC m a L p m a L b m a L a m a L m m a G m L a G m RSMS PAWS WW *** *** * *** ** *** ** *** ** * ** ** *** * * *** * *, *** and *** Significant at p=<0.05, 0.01, RSMS-Residual Soil moisture stress, PAWS-post anthesis water stress, WW-Well watered regime. BM: Biomass, HI: Harvest index, DF: Days to flower, DM: Days to Maturity, TGW: Thousand Grain Weight and HT: Plant height, CTD a Canopy temperature depression at anthesis, CTDb : Canopy temperature depression at boot stage, RWC: Relative water content. L p and L a and G m: Carbon isotope discrimination in plantlet, flag leaf at anthesis and grain filling stage, respectively MaGm, m a L p, m a L b m a L a m a L m : Ash content in grain at maturity, plantlet and flag leaf at boot stage and anthesis and maturity, respectively; - 61

10 3.4.2A Relationship between grain yield, carbon isotope discrimination, canopy temperature depression and ash content under residual soil moisture stress condition Under RSMS environment, higher values of ash at plantlet stage were recorded in both seasons. Grain yield showed significant positive correlation with biomass and HI (table 3.5A).Non significant negative correlation ( ***,-0.066) was observed between grain yield and canopy temperature depression at anthesis (CTD a) in season. For grain ash content grain yield showed negative significant correlation in the both the seasons. No correlation was observed between m a L p and m a L b under both the seasons. In grain yield showed significant correlation with leaf ash at anthesis (0.235 *** ) whereas in season no correlation was observed between grain yield and leaf ash at anthesis (m a L a ). Under RSMS condition grain yield showed significant positive correlation(0.447 *** and *** ) with leaf carbon isotope discrimination ( L a ) and grain carbon isotope discrimination ( G m ) respectively in season.in season there is a lack of correlation between grain yield, L a and G m.(table3.5a). Grain carbon isotope discrimination showed significant correlation (0.386 ***, *** ) for leaf ash content at anthesis (m a L a ) in both the seasons. Grain carbon isotope discrimination ( G m ) also showed significant negative correlation ( ***, ) for canopy temperature depression at anthesis (CTD a) and significant positive correlation (0.386 ***, *** ) for leaf carbon isotope discrimination ( L a ) in both seasons respectively (table 3.6A) Leaf carbon isotope discrimination at anthesis showed significant correlation (0.303*, 0.311*) for leaf ash content at anthesis (m a L a ) in both the seasons. It also showed significant correlation (0.475 *** ) for leaf ash content at maturity (m a L m ) in season and significant negative correlation ( ***,-0.024) for canopy temperature depression at anthesis (CTD a ) in seasons. (table 3.6A) 3.4.3A Relationship between grain yield, carbon isotope discrimination, canopy temperature depression and ash content under post anthesis water stress condition Under PAWS condition, grain yield showed significant positive correlation with biomass and HI in season. Significant negative correlation was observed ( ***, *** ) and ( ***, *** ) between canopy temperature depression 62

11 at boot stage (CTD b ) and canopy temperature depression at anthesis (CTD a ) in both the seasons respectively (table 3.5A). For ash content significant negative correlation ( *** ) was observed between grain yield and grain ash (m a G m ) in season. Grain yield also showed significant positive correlation (0.256 *** ) with leaf ash content at anthesis (m a L a ) in season. There is lack of correlation between GY, m a L a and m a G m in season. In season it showed significant positive correlation (0.337 ***, *** ) with plantlet leaf ash (m a L p ) and leaf ash content at boot stage (m a L b ) respectively. Grain yield showed significant correlation (0.447 *** and *** ) with leaf carbon isotope discrimination ( L a) and grain carbon isotope discrimination ( G m ) respectively in season. No correlation was found between GY, L a and G m.in season. Under limited irrigation condition, grain carbon isotope discrimination showed significant negative correlation ( ***, *** ) for canopy temperature depression at anthesis (CTD a ) and significant positive correlation (0.334 ***, *** ) for leaf carbon isotope discrimination ( L a ) in both the seasons (table 3.6A). Leaf carbon isotope discrimination at anthesis showed significant correlation (0.364 **, *, * ) for plantlet leaf ash (m a L p ), leaf ash at boot stage (m a L b ), and leaf ash at anthesis (m a L a ) only in seasons respectively. It showed significant correlation (0.291 * ) for leaf ash at maturity (m a L m ) only in season. It also showed significant negative correlation ( * ) for canopy temperature depression at anthesis (CTD a ) in season (table 3.6A) A Relationship between grain yield, carbon isotope discrimination, canopy temperature depression and ash content under well watered condition Under WW condition, Grain yield showed significant positive correlation with biomass and HI (0.492 ***, *** ) and (0.772 ***, *** ) in and season respectively. Negative correlation (-0.072, * ) and (-0.006,-0.238) was observed in both the seasons for canopy temperature depression at boot stage (CTD b ) and at anthesis (CTD a ) respectively. In season, CTD a showed significant negative correlation ( * ) with grain yield. For ash content, significant negative correlation ( **,-0,250 * ) was observed between grain yield and grain ash (m a G m ) in both the seasons. There is a lack of 63

12 correlation between GY, leaf ash at boot stage (m a L b ) and leaf ash at anthesis (m a L a ). In season GY showed significant positive correlation ( ** ) with plantlet leaf ash (m a L p ) which was not observed in season. Under WW condition GY showed significant positive correlation (0.447 *** and *** ) with leaf carbon isotope discrimination ( L a ) and grain carbon isotope discrimination ( G m in both the seasons (0.352 ***, ** ) and (0.528 ***, *** ) respectively. Grain carbon isotope discrimination showed significant positive correlation (0.450 *** ) for leaf ash at maturity (m a L m ). It also showed significant negative correlation ( ** ) for canopy temperature depression at anthesis (CTD a) in season and significant positive correlation (0.252 * ) in season. Significant positive correlation (0.387 ***, *** ) was observed between grain carbon isotope discrimination and leaf carbon isotope discrimination (table 3.6A) Leaf carbon isotope discrimination at anthesis showed significant correlation (0.310 * ) for leaf ash at maturity (m a L m ) and negative significant (0.379 **,-0.171) correlation observed for canopy temperature depression at anthesis (table 3.6A). 64

13 Table 3.6 A: Correlation between, m a and CTD a during and Year G m m a L p m a L b m a L a m a L m m a G m CTD a L a RSMS * 0.386** ** 0.386** *** *** PAWS *** 0.334** * ** *** WW *** * 0.252* 0.387** ** *** Year L a m a L p m a L b m a L a m a L m m a G m CTD a RSMS * *** ** ** 0.311* PAWS * ** 0.245* 0.282* * WW * * ** *, **, ***, significant at p=<0.05, 0.0 and respectively. ns = non significant RSMS: Residual Soil Moisture Stress, PAWS: Post Anthesis Water Stress, WW: Well Watered MaGm, m a L p, m a L b m a L a m a L m, magm: Ash content in grain at maturity, plantlet and flag leaf at boot stage, anthesis maturity and grain respectively; CTD a = Canopy temperature depression at anthesis L a and G m: Carbon isotope discrimination in flag leaf at anthesis and grain at maturity, respectively. 65

14 3.5A Discussion 3.5.1A Effect of water treatment on Grain yield, and m a Different irrigation treatments resulted in significant differences in grain yield, biomass, harvest index, carbon isotope discrimination and ash content.in all treatments, there was a strong decrease of discrimination,after anthesis.highest ash content values were obtained under WW environment followed by PAWS and RSMS environments at all stages except for plantlet leaf ash. Plantlet leaf ash showed highest ash content values under RSMS environment followed by WW and PAWS environment suggesting transpiration rate is higher in this treatment. Yield and biomass showed highest values under WW condition indicating high yield was associated with low transpiration efficiency. Similar results were obtained for previous season (Misra et al., 2006) A Relationship between GY,, CTD and m a under residual soil moisture stress Under RSMS condition, grain yield showed significant positive correlation with leaf carbon isotope discrimination ( L a ) and grain carbon isotope discrimination ( G m ). Monneveux et al.,(2005) reported a significant association between grain carbon isotope discrimination ( Gm) and grain yield under moderate residual soil moisture stress. The sign and the magnitude of the association between (whatever the stage and organ sampled) and yield under residual moisture stress seems to be depend highly on the quantity of water stored in soil at sowing as suggested by Monneveux et al.,(2005). According to Condon and Richards genotype with high discrimination values at vegetative stages tend to grow faster than low discrimination genotypes, under RSMS condition by covering the ground more quickly, they would be more efficient in reducing soil evaporation. The negative correlation obtained under RSMS treatment between grain yield and grain ash (m a G m ) has been previously reported in Barley (Febrero et al.,1994,voltas et al., 1998),durum wheat (Araus et al.,1998, Merah et al.,1999,2001a) and bread wheat (Tokatlidis et al.,2004) under severe terminal stress. On the other hand no correlation was found between yield and grain ash (m a G m ) by Monneveux et al., 2005 for wheat under RSMS condition. Non significant negative correlation was observed between grain yield and canopy temperature depression at anthesis (CTD a ). According to Reynolds et al., (1994), CTD 66

15 shows a good association with grain yield. Under RSMS condition, negative correlation was observed between yield and grain ash (m a G m ) and significant positive correlation with leaf carbon isotope discrimination ( L a ) and grain carbon isotope discrimination ( G m ) in seasons, suggests that mineral accumulation in kernels is probably regulated by physiological process other than transpiration and would be more related to re-mobilization A Relationship between GY, Δ, CTD and ma under post anthesis water stress (PAWS) condition In and season grain yield showed highly significant correlation with biomass and HI indicating the importance of biomass production and translocation of assimilates in determining grain yield. In season grain yield showed significant negative correlation with DF and DM indicating earliness is required in this environment. In both the seasons GY showed significant positive correlation with height suggesting that medium height is advantageous for higher yield. GY showed significant negative correlation with canopy temperature depression at anthesis (CTD a ).Canopy temperature depends on quantity of water transpired by the leaves. It is an integrative measure of a group of a mechanisms that ranges from radical absorption of water to the stomatal control of transpiration, when stomata close because of reduced water status, leaf temperature rises above ambient air temperature(ludlow and Muchow 1990).In fact under drought stress those genotypes present smaller canopy temperature will use more of available water in soil, thus limiting the negative effect of water stress on grain yield (Blum 1988). In season significant negative correlation was observed between grain yield and grain ash (m a G m ) which are in agreement with the results of Araus et al., (1998) and Merah et al., (1999, 2001) These results also fully confirm the results obtained by Voltas et al., (1992), Merah et al., (1999a) suggesting that the grain ash could be used as alternative criteria for grain carbon isotope discrimination ( G m ) to predict grain yield and in a range of climatic conditions, including under drought. On the other hand, in season there is no significant correlation between grain yield and grain ash but GY showed significant correlation with plantlet leaf ash (m a L p ) and leaf ash at boot stage (m a L b ). 67

16 In both the season GY showed significant correlation with L a and G m.according to Condon and Richards (1993), high discrimination genotypes tend to grow faster than low discrimination genotypes. By covering ground more quickly they are more successful in reducing soil evaporation having higher biomass at anthesis and more reserves they are able to translocate larger amount of stored assimilate to fill the grain. High may also reflect high stomatal conductance, particularly after anthesis when soil moisture decreases and stress becomes stronger. Ash concentration in mature grain could indicate the importance of retranslocation process during grain filling since discrimination ( ) and ash content in grain were negatively correlated in durum wheat (Merah et al.,1999).these result suggest that grain ash content is higher ( G being thus lower ) in genotypes more affected by drought during grain filling. According to Loss and Siddique (1994) photosynthesis is more affected by drought than translocation A Relationship between GY,, CTD and ma under well watered (WW) conditions Information on relationship between ash content, carbon isotope discrimination (CID), canopy temperature depression (CTD) and grain yield under irrigated condition is limited. GY showed significant positive correlation between biomass and HI and significant negative correlation with canopy temperature depression at anthesis (CTD a ). GY showed significant negative correlation with grain ash in both the seasons suggesting that grain ash could be used as alternative criteria for grain carbon isotope discrimination ( G m ) to predict grain yield.gy also showed significant correlation with L a and G m in both the seasons.gy showed significant positive correlation with plantlet leaf ash (m a L p ) which indicate that transpiration at seedling stage strongly influence the biomass production. A significant positive association was recorded between leaf ash at maturity (m a L m ) and grain yield in season. Greater transpiration increases the amount of passively transported minerals in leaves (Masle et al., 1992).A more efficient translocation of carbon products from the vegetative parts to grain could have contributed to an increase of mineral concentration in leaves(araus et al., 2001). 68

17 WW r=-0.348** MaGm RSMS r = PAWS r =-0.398** Yield MaGm PAWS r =0.004 RSMS r = WW r=-0.282* Yield Fig3.1A: Relationship between grain yield and grain ash in and seasons. 69

18 PAWS r =0.256** 17.0 MaLa RSMS r =0.235** WW r= Yield (04-05) PAWS r =0.188 MaLa WW r= Fig 3.2 A: Relationship between grain yield and flag leaf ash at anthesis in and seasons. RSMS r =0.149 Yield

19 22 21 PAWS r = WW r= MaLb RSMS r = Yield WW r = MaLb PAWS r = 0.448*** 9 RSMS r = Yield Fig 3.3A: Relationship between grain yield and flag leaf ash at boot stage in and seasons. 71

20 20 MaLp RSMS r = PAWS r = Yield WW r= 0.321** RSMS r = PAWS r = MaLp WW r = Yield Fig 3.4 A: Relationship between grain yield and plantlet leaf ash in and seasons. 72

21 PAWS r = 0.268* 17.0 CID La WW r = 0.528*** RSMS r = Yield CID La PAWS r = 0.353** WW r = 0.446*** 17.5 RSMS r = 0.447*** Yield Fig 3.5A: Relationship between grain yield and flag leaf discrimination at anthesis in and seasons. 73

22 22 21 PAWS r = WW r = 0.351** CID Grain RSMS r = Yield WW r = 0.513*** 17.5 CID Grain PAWS r = 0.435*** RSMS r = 0.568*** Yield Fig 3.6 A: Relationship between grain yield and grain carbon isotope discrimination in and seasons. 74

23 PART B: AESTIVUM WHEAT 3.1 B: Selection of wheat varieties and procurement of seed Twenty semi dwarf aestivum wheat genotypes were selected from All India Co-ordinated wheat programme, CIMMYT advanced lines and varieties from ARIs breeding material are included in the trial (table 3.1B) Table3.1 B: List of aestivum wheat genotypes included in and trial Sr.No. Name of the Source Suitable for Variety 1 GW 361 Junagarh,Gujarat rainfed 2 CBW 30 DWR, Karnal rainfed 3 MACS 6236 ARI,Pune irrigated 4 HI 1547 IARI RRS,Indore irrigated 5 CG 5026 Chhattisgarh,Madhyapradesh irrigated 6 GW 363 Junagarh, Gujarat irrigated 7 NIAW 917 ARS Niphad irrigated 8 MACS 2496 ARI,Pune irrigated 9 HD 2189 IARI Delhi irrigated 10 MACS 6158 ARI,Pune irrigated 11 GW 344 Junagarh, Rajasthan irrigated 12 IND 61 IARI RRS,Indore irrigated 13 MP 4028 Madhyapradesh irrigated 14 HI 1531 IARI RRS,Indore rainfed 15 MACS 6222 ARI,Pune irrigated 16 HI 1418 IARI RRS,Indore irrigated 17 GW 322 Chhattisgarh,Madhyapradesh irrigated 18 MACS 6221 ARI,Pune irrigated 19 UAS 231 UAS Dharwad irrigated 20 HD 2781 IARI Delhi rainfed 75

24 3.2 B Experimental conditions Experimental conditions were same as described in section and except for aestivum trials were conducted only in two different water regimes viz. limited irrigation condition (PAWS) and well watered condition (WW). 3.3 B Measurements Data on agronomical and physiological traits were recorded as per given in chapter 2, section , and chapter 3. section B Statistical analysis Data were analyzed using Agrobase 99 software. Combined anova was done to estimate G x E interaction over the environments and compare the differences between the environments. For, data from pooled sample were analyzed and SD was calculated. Phenotypic correlations (r) were estimated to determine the relationship between the traits and grain yield. 3.5 B Results Significant differences were found for grain yield between the two treatments in both the seasons i.e and seasons. The highest yields were recorded under WW regime followed by PAWS. Average yield for PAWS and WW was 4.26 and 5.62 t/ha in and 3.64 and 4.72 t/ha in season respectively. 76

25 Table3.2 B: Mean squares of combined ANOVA for GY, BIOM, HI, Ash content and CID under Limited Irrigation (PAWS) condition. Sourc sea son e of variat d.f Yield (T) Bioma ss(t) HI m a L p m a L b m a L a m a G m CTD a ion Treat ment *** 5 *** 72 *** 04 *** 4 *** 5 *** 5 *** 61 *** 200 Genot ype *** * ** *** ** * *** 6 *** *** * ** 4- Treat 05 ment Genot *** * ** *** ** * *** 1 *** *** * ** ype Treat ment *** *** *** 7 *** 45 *** 15 *** *** *** 200 Genot ype *** * ** *** ** * * ** *** *** * ** 5- Treat 06 ment Genot *** * ** *** ** * * ** * ** *** * ** ype 77

26 In both the seasons Genotype x Environment interaction was highly significant for yield, HI, plantlet leaf ash, and grain ash.highest grain ash values were found in PAWS followed by WW condition and for plantlet leaf ash the highest values were recorded under WW condition followed by PAWS condition. Exactly reverse trend was observed for durum wheat. Flowering duration ranged between and Maturity duration ranged between days. Highest biomass was obtained under WW condition followed by PAWS condition B Effect of water regime on grain yield, ash content and CID Water regime induced significant differences in ash content and grain yield.the highest plantlet leaf ash values were obtained under WW conditions suggesting that transpiration rate was much higher in this treatment. Similarly the highest grain ash values were obtained under limited irrigation condition followed by WW condition. Under PAWS and WW water regimes yield showed significant correlation for biomass and HI for both the seasons. Grain yield showed significant correlation with biomass and HI in both the seasons and for both the treatments. Whereas, under PAWS grain yield was negatively correlated with DF and DM in both the seasons. DF showed ( ***,-0.298) and DM showed ( ***, *** ) in and season respectively. Under WW condition, non significant negative correlations were observed for DF and DM in and season B Relationship between grain yield, canopy temperature depression (CTD) and ash content under PAWS condition Under PAWS, grain yield showed significant correlation with biomass (0.550 *, 0.374) and for HI (0.941 ***, ** ) in both the seasons. GY showed significant negative correlation with DF and DM in both the seasons suggesting that early maturity is required in this environment. There is lack of correlation for all ash content stages and canopy temperature depression at anthesis. There is significant positive correlation between grain yield and grain carbon isotope discrimination stage (0.473*, 0.454*) in nd season respectively. 78

27 Fig 3.1 B: Relationship between grain yield and plantlet leaf ash in and seasons. 79

28 Fig 3.2 B: Relationship between grain yield and leaf ash at anthesis in and seasons. 80

29 Fig 3.3 B: Relationship between grain yield and grain ash in and seasons. 81

30 Fig 3.4 B: Relationship between grain yield and canopy temperature depression at anthesis in and seasons. 82

31 Fig 3.5 B Relationship between grain yield and grain carbon isotope discrimination in and seasons. 83

32 Table 3.3 B: Ash content values, yield, biomass and harvest index under diff water regimes ( ) and ( ) Trait m a L p m a L a m a G m Yield(T/Ha) Biomass(T/Ha) HI CTD an CID_G season PAWS WW Mean Sd F value mean sd F value *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

33 3.5.3 B Relationship between grain yield, CTD and m a under well watered condition Grain yield showed significant positive correlation with biomass (0.624 ***, *** ) and HI (0.680 ***, *** ) in and season respectively. Grain yield showed non- significant negative correlation for DF and DM in both the seasons. It also showed significant correlation for leaf ash at anthesis in both the seasons and non significant negative correlation for grain ash. There is lack of correlation between grain yield and grain carbon isotope discrimination. 3.6 B Discussion The highest grain ash and grain carbon isotope discrimination values were noted in the PAWS treatment which corresponded to severe water stress and resulted in lowest grain yield. Despite the strong terminal water stress grain carbon isotope discrimination values were higher in the PAWS treatment than those reported by Araus et al., (1997) and Merah et al., (2001c) probably because of higher water supply before anthesis and accelerated grain filling. The different irrigation treatments resulted in significant differences in grain yield, biomass, HI, carbon isotope discrimination and ash content. Ash content values in leaves at anthesis and at grain stage were higher than those reported. The mineral accumulation in kernels primarily depends on remobilization from leaves and stems and on minerals removed from the vegetative parts of the plant after the onset of senescence (Wardlaw 1990).Under drought stress, translocation is less affected than photosynthesis (Loss and Siddique 1994).Remobilization of minerals from vegetative tissues is consequently higher leading to increase in grain ash content (Masle et al., 1992, Merah et al., 1999).Thus, low leaf ash at anthesis and higher grain ash values observed in this study probably reflect severe terminal stress experienced by the crop and its effect on transpiration and remobilization. In this study, the highest values of leaf ash at anthesis were observed in WW conditions while the highest grain ash values were noted in the PAWS treatment. Similar results were obtained by Misra et al.,

34 Table 3.4 B: Correlation between phenological and morphological characters and yield in and season Treatment Year Biom HI DF DM PH m a L p m a L a m a G m CTD a CID_G PAWS * *** ** ** o.473* * ** * WW *** *** ** * *** **

35 3.6.1 B Relationship between grain yield, morphological and phenological traits Under water stress condition (PAWS), grain yield was significantly negatively associated with DF and DM in both the seasons.since wheat crop in the peninsular zone was generally exposed to heat and water stress, there is need to select for earliness under such conditions. Under both the water regimes, grain yield was highly significantly positively correlated to biomass and HI. HI showed a wide range of variation among the cultivars. Correlation between grain yield, biomass and HI under heat stress is well documented. Significant association was found in these conditions between grain yield and harvest index by Al-Khatib and Paulsen (1990), Rahman et al., (1997) and Singh et al., (1997). Reynolds et al., (1994) and Singh et al., (1997) also reported a positive association between grain yield and biomass under heat stress conditions. As a result, the average growth rate of biomass appeared to be a reliable and easy criterion for heat tolerance, regardless of the water availability B Relationship between grain yield, CTD, and m a under PAWS conditions The significant association between grain carbon isotope discrimination and grain yield observed under PAWS supports the results of Sayre et al., (1995), Araus et al., (1998), Merah et al., (2001b), Tsialtas et al., (2001), Monneveux et al., (2005), Misra et al., (2006) and Xu et al., (2007). Various hypotheses could explain this association. First, high grain discrimination could also characterize genotypes more dependent on the remobilization of pre-anthesis reserves for grain filling. Under severe post-anthesis water stress, photosynthesis is more reduced than translocation (Loss and Siddique 1994). Under these conditions, plants would mainly use assimilates from pre-anthesis reserves that were accumulated during period of reduced stress and have consequently higher values. This could also explain the positive correlation between and harvest index, observed in our experiment and by Merah et al., (2001c). Secondly, high grain discrimination could reflect an ability to maintain open stomata after anthesis, when soil moisture decreases and water stress becomes more severe (Morgan et al., 1993, Sayre et al., 1995, Merah et al., 1999, 2001b). 87

36 Finally, under conditions of high temperatures and high evaporative demand during grain filling (as was the case in peninsular zone), high discrimination, that reflects high leaf and canopy transpiration rates, may reduce leaf temperature and contribute to heat avoidance (Delgado et al., 1994, Sayre et al., 1995). However, leaf ash content, a trait associated with leaf transpiration (Masle et al., 1992), did not correlate to grain yield, in contrast to the results of Merah et al., (1999) and Tsialtas et al., (2002). The lack of relationship between and phenological traits, despite the large variation in phenology among cultivars, also disagrees with Araus et al., (1997) and Merah et al., (2001c). These differences are likely to be due to different environmental conditions and the germplasm used B Relationship between grain yield, canopy temperature depression, carbon isotope discrimination and ash content under WW conditions In the present study, grain carbon isotope discrimination was higher under WW than under water stress and was not associated with grain yield. These results were in full agreement with Monneveux et al., (2004b), Misra et al., (2006) and Xu et al., (2007).Information on the relationship between and grain yield under irrigated condition is limited. Grain yield of irrigated cereals was found to positively correlate with carbon isotope discrimination in the peduncle (Morgan et al., 1993) and grain (Araus et al., 1998, Fischer et al., 1998).In all these experiments, the crop experienced a subtle drought stress during the grain filling, despite the irrigation. However Condon and Richards (1993) observed a negative correlation between leaf discrimination and the biomass of young seedling cultivated in the absence of water stress. Under WW conditions, stomatal conductance is likely to be high in all cultivars resulting in increased Ci/Ca and discrimination values (Morgan et al., 1993), while increased photosynthetic capacity potentially decreases Ci/Ca. The decrease in Ci/Ca associated with increased photosynthetic capacity is consequently offset by the Ci/Ca increase resulting from stomatal aperture, hence reducing the possibility of association between discrimination and grain yield (Monneveux et al., 2005). A significant positive correlation was noted in this treatment between leaf ash at anthesis and grain yield. Ash content in leaf at anthesis consequently appears as a useful indirect selection criterion in this environment where does not show any correlation with yield. 88

TABLE OF CONTENTS. Abbreviations List of figures List of Tables Acknowledgements Abstract..1-2

TABLE OF CONTENTS. Abbreviations List of figures List of Tables Acknowledgements Abstract..1-2 TABLE OF CONTENTS Abbreviations List of figures List of Tables Acknowledgements Abstract..1-2 Chapter 1: Introduction and Review of literature......3-30 1.1. Introduction: Wheat 1.1.1. Economic importance

More information

YIELD AND QUALITY PARAMETERS OF WHEAT GENOTYPES AS AFFECTED BY SOWING DATES AND HIGH TEMPERATURE STRESS

YIELD AND QUALITY PARAMETERS OF WHEAT GENOTYPES AS AFFECTED BY SOWING DATES AND HIGH TEMPERATURE STRESS Pak. J. Bot., 37(3): 575-584, 2005. YIELD AND QUALITY PARAMETERS OF WHEAT GENOTYPES AS AFFECTED BY SOWING DATES AND HIGH TEMPERATURE STRESS MAHBOOB ALI SIAL, M. AFZAL ARAIN, SHAMADAD KHANZADA MAZHAR H.

More information

GROWTH AND SEED YIELD COMPONENTS OF INDIAN MUSTARD (BRASSICA JUNCEA L.) AND CANOLA (BRASSICA NAPUS L.) IN A LOW RAINFALL SHORT SEASON MEDITERRANEAN TYPE ENVIRONMENT C. P. Gunasekera 1, L.D. Martin 1, G.H.

More information

4.6 Field Screening for Drought Tolerance in Groundnut

4.6 Field Screening for Drought Tolerance in Groundnut 4.6 Field Screening for Drought Tolerance in Groundnut S N Nigam 1, R C Nageswara Rao 2, and G C Wright 3 Drought is a major abiotic stress affecting yield and quality of rainfed groundnut worldwide. Yield

More information

Effect of post-anthesis heat stress on grain yield of barley, durum and bread wheat genotypes

Effect of post-anthesis heat stress on grain yield of barley, durum and bread wheat genotypes Journal of Scientific Research and Development 2 (6): 127-131, 2015 Available online at www.jsrad.org ISSN 1115-7569 2015 JSRAD Effect of post-anthesis heat stress on grain yield of barley, durum and bread

More information

THE VIRGINIA SOYBEAN BOARD

THE VIRGINIA SOYBEAN BOARD PROJECT PROPOSAL TO THE VIRGINIA SOYBEAN BOARD Title: Physiology of Soybean Yield and Variety Advancement in Virginia Cropping Systems Cooperators: Drs. Maria Balota and David Holshouser Assistant Professor,

More information

Relationship between carbon isotope discrimination and grain yield of rainfed winter wheat in a semi-arid region

Relationship between carbon isotope discrimination and grain yield of rainfed winter wheat in a semi-arid region Relationship between carbon isotope discrimination and grain yield of rainfed winter wheat in a semi-arid region Guorong Zhang, Robert Aiken & Terry Joe Martin Euphytica International Journal of Plant

More information

HARI RAM*, GURJOT SINGH, G S MAVI and V S SOHU

HARI RAM*, GURJOT SINGH, G S MAVI and V S SOHU Journal 147 of Agrometeorology 14 (2) : 147-153 (December HARI 2012) RAM et al [Vol. 14, No. 2 Accumulated heat unit requirement and yield of irrigated wheat (Triticum aestivum L.) varieties under different

More information

Chapter 1. Canopy temperature Julian Pietragalla

Chapter 1. Canopy temperature Julian Pietragalla Chapter 1. Canopy temperature Julian Pietragalla The surface temperature of the canopy is related to the amount of transpiration resulting in evaporative cooling. A hand-held infrared thermometer (IRT)

More information

Ash content might predict carbon isotope discrimination

Ash content might predict carbon isotope discrimination Research Ash content might predict carbon isotope discrimination Blackwell Science Ltd and grain yield in durum wheat Othmane Merah 1,2, Eliane Deléens 1, Irenée Souyris 2 and Philippe Monneveux 2 1 Institut

More information

Report to California Wheat Commission: GH Experiments

Report to California Wheat Commission: GH Experiments Report to California Wheat Commission: GH 2011-2012 Experiments J. G. Waines, UC Riverside. Title: Determination of optimum root and shoot size in bread wheat for increased water and nutrient-use efficiency

More information

Study of Genetic Variability Parameters For Yield And Yield Attributing Traits in F5 Population of Dicoccum Wheat

Study of Genetic Variability Parameters For Yield And Yield Attributing Traits in F5 Population of Dicoccum Wheat Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. Life Sci., Vol 6 Special issue [1] 2017: 189-193 2017 Academy for Environment and Life Sciences, India Online ISSN 2277-1808

More information

College of Agriculture, S.K. Rajasthan Agricultural University, Bikaner , India

College of Agriculture, S.K. Rajasthan Agricultural University, Bikaner , India Annals of Arid Zone 52(2): 95-99, 2013 Effect of Nitrogen Levels and its Scheduling on Growth, Yield and Grain Quality of Malt Barley (Hordeum vulgare L.) under Normal and Late Sown Conditions in North-West

More information

Int.J.Curr.Microbiol.App.Sci (2017) 6(10):

Int.J.Curr.Microbiol.App.Sci (2017) 6(10): International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 10 (2017) pp. 3664-3670 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.610.430

More information

Timing of sampling for the canopy temperature depression can be critical for the best differentiation of drought tolerance in chickpea

Timing of sampling for the canopy temperature depression can be critical for the best differentiation of drought tolerance in chickpea 1 Timing of sampling for the canopy temperature depression can be critical for the best differentiation of drought tolerance in chickpea R Purushothaman 1, 2 and L Krishnamurthy 1 * 1 International Crops

More information

Timing of sampling for the canopy temperature depression can be critical for the best differentiation of drought tolerance in chickpea

Timing of sampling for the canopy temperature depression can be critical for the best differentiation of drought tolerance in chickpea 1 Timing of sampling for the canopy temperature depression can be critical for the best differentiation of drought tolerance in chickpea R Purushothaman 1, 2 and L Krishnamurthy 1 * 1 International Crops

More information

The Stay-Green Trait in Sorghum

The Stay-Green Trait in Sorghum The Stay-Green Trait in Sorghum David Jordan Principal Sorghum Breeder Queensland Primary Industries and Fisheries Introduction This paper describes the value and impact of stay-green in sorghum based

More information

Durum Wheat (Triticum durum Desf.) Evaluation under Semi Arid Conditions in Eastern Algeria by Path Analysis

Durum Wheat (Triticum durum Desf.) Evaluation under Semi Arid Conditions in Eastern Algeria by Path Analysis Journal of Agriculture and Sustainability ISSN 2201-4357 Volume 3, Number 2, 2013, 238-246 Durum Wheat (Triticum durum Desf.) Evaluation under Semi Arid Conditions in Eastern Algeria by Path Analysis A.

More information

Evaluation of Drought Tolerance Indices in Bread Wheat (Triticum aestivum L.) Genotypes under Post Anthesis Drought Stress

Evaluation of Drought Tolerance Indices in Bread Wheat (Triticum aestivum L.) Genotypes under Post Anthesis Drought Stress J. Agric. Technol., 1(1): 36-42 (2014) ISSN: 2348-4721 Evaluation of Drought Tolerance Indices in Bread Wheat (Triticum aestivum L.) Genotypes under Post Anthesis Drought Stress Manmatha Hansda 1 and Saikat

More information

Association studies for agro-physiological and quality traits of triticale X bread wheat derivatives in relation to drought and cold stress

Association studies for agro-physiological and quality traits of triticale X bread wheat derivatives in relation to drought and cold stress Journal of Environmental Biology April 2007, 28(2) 265-269 (2007) Triveni Enterprises, Lucknow (India) For personal use only Free paper downloaded from: www. jeb.co.in Commercial distribution of this copy

More information

Traits and technologies to design crop breeding systems for climate change

Traits and technologies to design crop breeding systems for climate change Genotype Breeding method Spectral signature Phenotype (yield) Environment Stress pattern Traits and technologies to design crop breeding systems for climate change SC Chapman1, MF Dreccer1, K Chenu2, D

More information

EFFECT OF TEMPERATURE ON DEVELOPMENT AND GRAIN FORMATION IN SPRING WHEAT

EFFECT OF TEMPERATURE ON DEVELOPMENT AND GRAIN FORMATION IN SPRING WHEAT Pak. J. Bot., 42(2): 899-906, 2010. EFFECT OF TEMPERATURE ON DEVELOPMENT AND GRAIN FORMATION IN SPRING WHEAT RIAZ-UD-DIN, GHULAM MAHBOOB SUBHANI*, NAEEM AHMAD, MAKHDOOM HUSSAIN AND AZIZ UR REHMAN Wheat

More information

GENETIC PARAMETERS FOR YIELD TRAITS IN WHEAT UNDER IRRIGATED AND RAINFED ENVIRONMENTS

GENETIC PARAMETERS FOR YIELD TRAITS IN WHEAT UNDER IRRIGATED AND RAINFED ENVIRONMENTS Sarhad J. Agric. Vol. 23, No. 4, 2007 GENETIC PARAMETERS FOR YIELD TRAITS IN WHEAT UNDER IRRIGATED AND RAINFED ENVIRONMENTS Imran Khan *, Iftikhar Hussain Khalil *, and Nasir-ud-Din ** ABSTRACT A set of

More information

Assessment of correlation and path analysis in wheat under drought stress

Assessment of correlation and path analysis in wheat under drought stress Journal of Biodiversity and Environmental Sciences (JBES) ISSN: 2220-6663 (Print) 2222-3045 (Online) Vol. 6, No. 5, p. 78-83, 205 http://www.innspub.net RESEARCH PAPER OPEN ACCESS Assessment of correlation

More information

PHENOTYPIC DIVERSITY AND TRAIT ASSOCIATION IN BREAD WHEAT (TRITICUM AESTIVUM L.) LANDRACES FROM BALUCHISTAN, PAKISTAN

PHENOTYPIC DIVERSITY AND TRAIT ASSOCIATION IN BREAD WHEAT (TRITICUM AESTIVUM L.) LANDRACES FROM BALUCHISTAN, PAKISTAN Pak. J. Bot., 37(4): 949-957, 2005. PHENOTYPIC DIVERSITY AND TRAIT ASSOCIATION IN BREAD WHEAT (TRITICUM AESTIVUM L.) LANDRACES FROM BALUCHISTAN, PAKISTAN M. SHAHID MASOOD, ASIF JAVAID, M. ASHIQ RABBANI

More information

J. BORT 1*, M. BELHAJ FRAJ 2,3, K. LATIRI 3, Z. KEHEL 4 AND J. L. ARAUS 1

J. BORT 1*, M. BELHAJ FRAJ 2,3, K. LATIRI 3, Z. KEHEL 4 AND J. L. ARAUS 1 Journal of Agricultural Science, Page 1 of 19. Cambridge University Press 2013 doi:10.1017/s0021859613000269 CROPS AND SOILS RESEARCH PAPER Comparative performance of the stable isotope signatures of carbon,

More information

EVALUATION OF MAIZE S 2 LINES IN TEST CROSS COMBINATIONS I: FLOWERING AND MORPHOLOGICAL TRAITS

EVALUATION OF MAIZE S 2 LINES IN TEST CROSS COMBINATIONS I: FLOWERING AND MORPHOLOGICAL TRAITS Pak. J. Bot., 42(3): 1619-1627, 2010. EVALUATION OF MAIZE S 2 LINES IN TEST CROSS COMBINATIONS I: FLOWERING AND MORPHOLOGICAL TRAITS H. RAHMAN 1*, ARIFUDDIN 1, Z. SHAH 2, S.M. ALI SHAH 1, M. IQBAL 3, AND

More information

Growth and yield of faba bean (Vicia faba.l) under rain fed and irrigated conditions in Jordan.

Growth and yield of faba bean (Vicia faba.l) under rain fed and irrigated conditions in Jordan. Research Article ISISnet Publishers Bioscience Research, 6(1): 35-39, 2009 www.isisn.org Growth and yield of faba bean (Vicia faba.l) under rain fed and irrigated conditions in Jordan. Talal Thalji* Seed

More information

GENOTYPIC AND PHENOTYPIC CORRELATION AMONG YIELD COMPONENTS IN BREAD WHEAT UNDER NORMAL AND LATE PLANTINGS

GENOTYPIC AND PHENOTYPIC CORRELATION AMONG YIELD COMPONENTS IN BREAD WHEAT UNDER NORMAL AND LATE PLANTINGS Sarhad J. Agric. Vol.26, No. 2, 2010 GENOTYPIC AND PHENOTYPIC CORRELATION AMONG YIELD COMPONENTS IN BREAD WHEAT UNDER NORMAL AND LATE PLANTINGS BASHIR AHMAD*, IFTIKHAR H. KHALIL**, MUHAMMAD IQBAL* and

More information

Pearlmillet ( Pennisetum glaucum L.) is one of the

Pearlmillet ( Pennisetum glaucum L.) is one of the researcharticle International Journal of Plant Sciences, (July, 2010) Vol. 5 Issue 2 : 463-467 Growth and yield attributes of summer pearlmillet (Pennisetum glaucum L.) as influenced by irrigation, mulches

More information

Determination of Heat Susceptibility Indices for Some Quantitative Traits in Bread Wheat (Triticum aestivum L. em. Thell.)

Determination of Heat Susceptibility Indices for Some Quantitative Traits in Bread Wheat (Triticum aestivum L. em. Thell.) Available online at www.ijpab.com Bhardwaj et al Int. J. Pure App. Biosci. 5 (2): 230-239 (2017) ISSN: 2320 7051 DOI: http://dx.doi.org/10.18782/2320-7051.2853 ISSN: 2320 7051 Int. J. Pure App. Biosci.

More information

fertilization, Editor, Grzebisz W.

fertilization, Editor, Grzebisz W. 3(28) Physiological and agrotechnical principles of spring barley fertilization, Editor, Grzebisz W. Przygocka-Cyna,K., Grzebisz,W. Yield and technological quality of malting barley in response to elemental

More information

STUDIES ON INTEGRATED NUTRIENT MANAGEMENT IN WHEAT

STUDIES ON INTEGRATED NUTRIENT MANAGEMENT IN WHEAT STUDIES ON INTEGRATED NUTRIENT MANAGEMENT IN WHEAT THESIS ABSTRACT SUBMITTED TO CHAUDHARY CHARAN SINGH UNIVERSITY, MEERUT, U.P. FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN AGRONOMY BY BHUPENDRA KUMAR Enrol.

More information

Correlation and Path Analysis Studies in Barley (Hordeum vulgare L.) Genotypes under Normal and Limited Moisture Conditions

Correlation and Path Analysis Studies in Barley (Hordeum vulgare L.) Genotypes under Normal and Limited Moisture Conditions International Journal Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 8 (2017) pp. 1850-1856 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.608.218

More information

HEAT USE EFFICIENCY AND HELIO-THERMAL UNITS FOR MAIZE GENOTYPES AS INFLUENCED BY DATES OF SOWING UNDER SOUTHERN TRANSITIONAL ZONE OF KARNATAKA STATE

HEAT USE EFFICIENCY AND HELIO-THERMAL UNITS FOR MAIZE GENOTYPES AS INFLUENCED BY DATES OF SOWING UNDER SOUTHERN TRANSITIONAL ZONE OF KARNATAKA STATE I.J.S.N., VOL. 2(3) 2011: 529-533 ISSN 2229 6441 HEAT USE EFFICIENCY AND HELIO-THERMAL UNITS FOR MAIZE GENOTYPES AS INFLUENCED BY DATES OF SOWING UNDER SOUTHERN TRANSITIONAL ZONE OF KARNATAKA STATE 1 Girijesh,

More information

Spring Rapeseed Cultivars Response to Water Stress in Winter Planting

Spring Rapeseed Cultivars Response to Water Stress in Winter Planting Spring Rapeseed s Response to Water Stress in Winter Planting Amir Hossein Shirani Rad Department of Oilseed Crops, Seed and Plant Improvement Institute, Karaj, Iran Abstract- A two year field experiment

More information

Remobilization of Dry Matter in Wheat: Effects of Nitrogen Application and Post-Anthesis Water Deficit During Grain Filling

Remobilization of Dry Matter in Wheat: Effects of Nitrogen Application and Post-Anthesis Water Deficit During Grain Filling 2011 International Conference on Biology, Environment and Chemistry IPCBEE vol.24 (2011) (2011)IACSIT Press, Singapoore Remobilization of Dry Matter in Wheat: Effects of Nitrogen Application and Post-Anthesis

More information

Study the heat unit requirement of soybean (Glycine max) varieties under varied weather condition at Parbhani

Study the heat unit requirement of soybean (Glycine max) varieties under varied weather condition at Parbhani 2018; 7(3): 526-530 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2018; 7(3): 526-530 Received: 04-03-2018 Accepted: 06-04-2018 KK Chavan Research Scholar, Deptt. of AM Khobragade Asst. Professor, Deptt. Of

More information

G.J.B.B., VOL.6 (3) 2017: ISSN

G.J.B.B., VOL.6 (3) 2017: ISSN G.J.B.B., VOL.6 (3) 2017: 528-534 ISSN 2278 9103 EVALUATION OF CHLOROPHYLL CONTENT INDEX AND NORMALIZED DIFFERENCE VEGETATION INDEX AS INDICATORS FOR COMBINE EFFECTS OF DROUGHT AND HIGH TEMPERATURE IN

More information

GENETIC VARIATION AND MORPHOLOGICAL DIVERSITY IN FOXTAIL MILLET

GENETIC VARIATION AND MORPHOLOGICAL DIVERSITY IN FOXTAIL MILLET International Journal of Science, Environment and Technology, Vol. 4, No 6, 2015, 1496 1502 ISSN 2278-3687 (O) 2277-663X (P) GENETIC VARIATION AND MORPHOLOGICAL DIVERSITY IN FOXTAIL MILLET L.N. Yogeesh*,

More information

H. E. Shashidhar Professor (Genetics & Plant Breeding) Department of Biotechnology UAS, Bangalore, India

H. E. Shashidhar Professor (Genetics & Plant Breeding) Department of Biotechnology UAS, Bangalore, India Development and Release of Drought Resistant Aerobic Rice ARB 6 in India H. E. Shashidhar Professor (Genetics & Plant Breeding) Department of Biotechnology UAS, Bangalore, India ARB 6 (Aerobic Rice Bangalore

More information

Impact of Heat Stress on Yield and Yield Attributing Traits in Wheat (Triticum aestivum L.) Lines during Grain Growth Development

Impact of Heat Stress on Yield and Yield Attributing Traits in Wheat (Triticum aestivum L.) Lines during Grain Growth Development Available online at www.ijpab.com Prasad et al Int. J. Pure App. Biosci. 4 (4): 179-184 (216) ISSN: 232 751 DOI: http://dx.doi.org/1.18782/232-751.2316 ISSN: 232 751 Int. J. Pure App. Biosci. 4 (4): 179-184

More information

SINCE THE GENETIC BASIS of yield improvement in wheat

SINCE THE GENETIC BASIS of yield improvement in wheat Published online February 1, 2006 Spectral Reflectance Indices as a Potential Indirect Selection Criteria for Wheat Yield under Irrigation M. A. Babar, M. P. Reynolds, M. van Ginkel, A. R. Klatt,* W. R.

More information

Evaluation of Lentil (Lens culunaris Medrik) Genotypes for Moisture Stress Plant Traits, Yield and Seed Quality under Rainfed Condition

Evaluation of Lentil (Lens culunaris Medrik) Genotypes for Moisture Stress Plant Traits, Yield and Seed Quality under Rainfed Condition International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Special Issue-7 pp. 3176-3180 Journal homepage: http://www.ijcmas.com Original Research Article Evaluation of Lentil (Lens

More information

EFFECT OF POST ANTHESIS DROUGHT ON CERTAIN AGRONOMICAL CHARACTERISTICS OF WHEAT UNDER TWO DIFFERENT NITROGEN APPLICATION CONDITIONS

EFFECT OF POST ANTHESIS DROUGHT ON CERTAIN AGRONOMICAL CHARACTERISTICS OF WHEAT UNDER TWO DIFFERENT NITROGEN APPLICATION CONDITIONS Turkish Journal of Field Crops, 2012, 17(1):19-23 EFFECT OF POST ANTHESIS DROUGHT ON CERTAIN AGRONOMICAL CHARACTERISTICS OF WHEAT UNDER TWO DIFFERENT NITROGEN APPLICATION CONDITIONS Mithat Nuri GEVREK*

More information

THE PERFORMANCE OF NEW PEARL MILLET HYBRIDS WITH GREENGRAM UNDER SOLE CROPPING AND INTERCROPPING SYSTEMS IN SEMI-ARID ENVIRONMENT

THE PERFORMANCE OF NEW PEARL MILLET HYBRIDS WITH GREENGRAM UNDER SOLE CROPPING AND INTERCROPPING SYSTEMS IN SEMI-ARID ENVIRONMENT Forage Res., 43 (1) : pp. 26-30 (2017) http://forageresearch.in THE PERFORMANCE OF NEW PEARL MILLET HYBRIDS WITH GREENGRAM UNDER SOLE CROPPING AND INTERCROPPING SYSTEMS IN SEMI-ARID ENVIRONMENT RENU*,

More information

LODGING CAUSE HEIGHT AT THE CENTRE OF GRAVITY CHANGES DURING VEGETATION PERIOD FOR OAT

LODGING CAUSE HEIGHT AT THE CENTRE OF GRAVITY CHANGES DURING VEGETATION PERIOD FOR OAT AGRICULTURAL SCIENCES (CROP SCIENCES, ANIMAL SCIENCES) LODGING CAUSE HEIGHT AT THE CENTRE OF GRAVITY CHANGES DURING VEGETATION PERIOD FOR OAT Linda Brunava,2, Ina Alsiņa Latvia University of Agriculture

More information

EFFECT OF DROUGHT CONDITION ON GROWTH, YIELD AND GRAIN QUALITY OF UPLAND RICE

EFFECT OF DROUGHT CONDITION ON GROWTH, YIELD AND GRAIN QUALITY OF UPLAND RICE American Journal of Agricultural and Biological Sciences 9 (3): 439-444, 2014 ISSN: 1557-4989 2014 Nokkoul and Wichitparp, This open access article is distributed under a Creative Commons Attribution (CC-BY)

More information

D3.1. Whealbi. Wheat and barley Legacy for Breeding Improvement. Grant agreement number: FP Collaborative Project SEVENTH FRAMEWORK PROGRAMME

D3.1. Whealbi. Wheat and barley Legacy for Breeding Improvement. Grant agreement number: FP Collaborative Project SEVENTH FRAMEWORK PROGRAMME Whealbi Wheat and barley Legacy for Breeding Improvement Grant agreement number: FP7613556 Collaborative Project SEVENTH FRAMEWORK PROGRAMME Deliverable Report on phenotypic evaluation of the basic adaptive

More information

EFFECTS OF FOLIAR APPLICATION OF POTASSIUM ORTHOPHOSPHATE ON GRAIN YIELD AND KERNEL QUALITY OF WHEAT (Triticum aestivum) UNDER TERMINAL HEAT STRESS

EFFECTS OF FOLIAR APPLICATION OF POTASSIUM ORTHOPHOSPHATE ON GRAIN YIELD AND KERNEL QUALITY OF WHEAT (Triticum aestivum) UNDER TERMINAL HEAT STRESS ISSN 0258-7122 Bangladesh J. Agril. Res. 39(1): 67-77, March 2014 EFFECTS OF FOLIAR APPLICATION OF POTASSIUM ORTHOPHOSPHATE ON GRAIN YIELD AND KERNEL QUALITY OF WHEAT (Triticum aestivum) UNDER TERMINAL

More information

EFFECT OF INTEGRATED NUTRIENT MANAGEMENT ON GROWTH CHARACTERISTIC OF KHARIF MAIZE

EFFECT OF INTEGRATED NUTRIENT MANAGEMENT ON GROWTH CHARACTERISTIC OF KHARIF MAIZE EFFECT OF INTEGRATED NUTRIENT MANAGEMENT ON GROWTH CHARACTERISTIC OF KHARIF MAIZE Madane K. T., M. S. Narale and D. M.Sawant Asst. Prof. Department of Agronomy, Shriram College of Agriculture, Paniv Received:

More information

Genetic Divergence Studies in Maize (Zea mays L.)

Genetic Divergence Studies in Maize (Zea mays L.) International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 7 (2017) pp. 360-365 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.607.042

More information

Ahmadu Bello University Zaria, Nigeria *Corresponding author: Tel: ABSTRACT

Ahmadu Bello University Zaria, Nigeria *Corresponding author: Tel: ABSTRACT ISSN - 2277-2755 UNAAB 2010 Journal of Agricultural Science and Environment YIELD AND YIELD CHARACTERS OF SORGHUM (Sorghum bicolor L. Moench )VARIETIES AS INFLUENCED BY IRRIGATION INTERVAL AND PLANT DENSITY

More information

*Note - this report may contain independently supported projects, which complement the work in this GRDC research program.

*Note - this report may contain independently supported projects, which complement the work in this GRDC research program. Title Response of osmotic adjustment and seed yield in Brassica to water deficit at different growth stages Description Research Update for Growers - Western Region - February 2004 GRDC Project Authors

More information

M.D. Tandale* and S.S.Ubale Department of Agricultural Botany, Mahatma Phule Krishi Vidyapeeth, RAHURI (M.S.) INDIA

M.D. Tandale* and S.S.Ubale Department of Agricultural Botany, Mahatma Phule Krishi Vidyapeeth, RAHURI (M.S.) INDIA Internat. J. agric. Sci. Vol.3 No. January 007 : 9-3 9 Evaluation of effect of growth parameters, leaf area index (LAI), leaf area duration (LAD), crop growth rate (CGR) on seed yield of soybean during

More information

Increasing Wheat Yield Potential: UK-CIMMYT workshop June 26 th, 2007, John Innes Centre

Increasing Wheat Yield Potential: UK-CIMMYT workshop June 26 th, 2007, John Innes Centre Increasing Wheat Yield Potential: UK-CIMMYT workshop June 26 th, 2007, John Innes Centre Genetic yield potential (YP) increases at a steady rate (0.5% pa); not enough to keep pace with predicted global

More information

Field phenotyping to improve drought tolerance of spring wheat

Field phenotyping to improve drought tolerance of spring wheat Field phenotyping to improve drought tolerance of spring wheat Alejandro del Pozo and Gustavo A. Lobos Drought stress It is expected that environmental constrains for crop production will increase world

More information

Crop response to water stress: eco-physiological and proximate sensing techniques

Crop response to water stress: eco-physiological and proximate sensing techniques ACLIMAS training courses Advanced tools to predict water stress and its effect on yield Hammamet (Tunisia) 24-27/11/2014 Crop response to water stress: eco-physiological and proximate sensing techniques

More information

Concepts and theory: Spectral reflectance, canopy temperature and chlorophyll content

Concepts and theory: Spectral reflectance, canopy temperature and chlorophyll content SWIM - Sustainable Water Integrated Management Demonstration Project Concepts and theory: Spectral reflectance, canopy temperature and chlorophyll content Water status Aridity projected Index to 2025 Aridity

More information

Yield Maximization of Wheat (Triticum aestivum L.) Cultivars through Improved Water Management Strategy

Yield Maximization of Wheat (Triticum aestivum L.) Cultivars through Improved Water Management Strategy International Journal of Bioresource Science Citation: IJBS: 3(2): 67-71, December 2016 DOI: 10.5958/2454-9541.2016.00017.7 2016 New Delhi Publishers. All rights reserved Yield Maximization of Wheat (Triticum

More information

EFFECT OF THE COMPLEXITY OF SUNFLOWER GROWING REGIONS ON THE GENETIC PROGRESS ACHIEVED BY BREEDING PROGRAMS

EFFECT OF THE COMPLEXITY OF SUNFLOWER GROWING REGIONS ON THE GENETIC PROGRESS ACHIEVED BY BREEDING PROGRAMS HELIA, 35, Nr. 57, p.p. 113-122, (2012) UDC 633.584.78:631.523:631.527.53 DOI: 10.2298/HEL1257113V EFFECT OF THE COMPLEXITY OF SUNFLOWER GROWING REGIONS ON THE GENETIC PROGRESS ACHIEVED BY BREEDING PROGRAMS

More information

Effect of growing degree day on different growth processes of wheat (Triticum aestivum L.)

Effect of growing degree day on different growth processes of wheat (Triticum aestivum L.) Journal of Crop and Weed, 8(2):18-22(2012) Effect of growing degree day on different growth processes of wheat (Triticum aestivum L.) S. BASU, M. PARYA, S. K. DUTTA, S. JENA, S. MAJI, R. NATH, 1 D. MAZUMDAR

More information

STABILITY ANALYSIS TO ASCERTAIN THE PERFORMANCE OF DIFFERENT GENOTYPES OF WHEAT [TRITICUM AESTIVUM L.]

STABILITY ANALYSIS TO ASCERTAIN THE PERFORMANCE OF DIFFERENT GENOTYPES OF WHEAT [TRITICUM AESTIVUM L.] NSave Nature to Survive 10(2): 929-933, 2015 (Supplement on Genetics and Plant Breeding) www.thebioscan.in STABILITY ANALYSIS TO ASCERTAIN THE PERFORMANCE OF DIFFERENT GENOTYPES OF WHEAT [TRITICUM AESTIVUM

More information

Abu Dhabi Food Control Authority Development Sector Research & Development Division

Abu Dhabi Food Control Authority Development Sector Research & Development Division تقرير فني Technical Report Title العنوان Evaluation the Production of Wheat Genotypes under the UAE Condition Project Team فريق العمل Dr. Ihsan Abu Al-rub and Eng. Ahmed Aran Duration فترة المشروع From:

More information

K. S. SOMASHEKAR*, B. G. SHEKARA 1, K. N. KALYANA MURTHY AND L. HARISH 2 SUMMARY

K. S. SOMASHEKAR*, B. G. SHEKARA 1, K. N. KALYANA MURTHY AND L. HARISH 2 SUMMARY Forage Res., 40 (1) : pp. 23-27 (2014) http://forageresearch.in YIELD, NITROGEN UPTAKE, AVAILABLE SOIL NUTRIENTS AND ECONOMICS OF MULTICUT FODDER SORGHUM (SORGHUM SUDANENSE L.) TO DIFFERENT SEED RATES

More information

Effect of Wheat Residue Management and Fertilizer Levels on Growth and Yield of Fodder Maize (Zea mays L.)

Effect of Wheat Residue Management and Fertilizer Levels on Growth and Yield of Fodder Maize (Zea mays L.) International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 10 (2017) pp. 25-29 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.610.004

More information

Water use efficiency in C3 cereals under Mediterranean conditions: a review of some physiological aspects

Water use efficiency in C3 cereals under Mediterranean conditions: a review of some physiological aspects Water use efficiency in C3 cereals under Mediterranean conditions: a review of some physiological aspects Tambussi E.A., Bort J., Araus J.L. in Lamaddalena N. (ed.), Shatanawi M. (ed.), Todorovic M. (ed.),

More information

GENETIC VARIABILITY AND DIVERGENCE STUDIES IN OATS (AVENA SATIVA L.) FOR GREEN FODDER AND GRAIN YIELD

GENETIC VARIABILITY AND DIVERGENCE STUDIES IN OATS (AVENA SATIVA L.) FOR GREEN FODDER AND GRAIN YIELD Forage Res., 42 (1) : pp. 51-55 (2016) http://forageresearch.in GENETIC VARIABILITY AND DIVERGENCE STUDIES IN OATS (AVENA SATIVA L.) FOR GREEN FODDER AND GRAIN YIELD JAIPAL AND S. S. SHEKHAWAT* AICRP on

More information

Shading effects on the yield of an Argentinian wheat cultivar

Shading effects on the yield of an Argentinian wheat cultivar Journal of Agricultural Science, Cambridge (1991), 116, 1-7. Printed in Great Britain Shading effects on the yield of an Argentinian wheat cultivar R. SAVIN AND G. A. SLAFER Cdtedra de Cerealicultura,

More information

The study of dry matter and nitrogen remobilization in different rice cultivars under water stress conditions

The study of dry matter and nitrogen remobilization in different rice cultivars under water stress conditions Proceedings of The Fourth International Iran & Russia Conference 957 The study of dry matter and nitrogen remobilization in different rice cultivars under water stress conditions Hemmatollah Pirdashti

More information

Varietal Variation in Growth, Physiology and Yield of Sugarcane under Two Contrasting Water Regimes

Varietal Variation in Growth, Physiology and Yield of Sugarcane under Two Contrasting Water Regimes Tropical Agricultural Research Vol. 16: 1-12 (2004) Varietal Variation in Growth, Physiology and Yield of Sugarcane under Two Contrasting Water Regimes A.L.C. De Silva and W.A.J.M. De Costa 1 Postgraduate

More information

Growth and Yield of Soybean as Influenced by Different Ratios and Levels of Nitrogen and Phosphorus under Rainfed Situations

Growth and Yield of Soybean as Influenced by Different Ratios and Levels of Nitrogen and Phosphorus under Rainfed Situations International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 11 (2017) pp. 570-576 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.611.069

More information

WIDE AND SPECIFIC ADAPTATION OF BREAD WHEAT INBRED LINES FOR YIELD UNDER RAINFED CONDITIONS

WIDE AND SPECIFIC ADAPTATION OF BREAD WHEAT INBRED LINES FOR YIELD UNDER RAINFED CONDITIONS Pak. J. Bot., 39(1): 67-71, 2007. WIDE AND SPECIFIC ADAPTATION OF BREAD WHEAT INBRED LINES FOR YIELD UNDER RAINFED CONDITIONS A. J. KHAN *, F. AZAM, A. ALI, M. TARIQ, M. AMIN AND T. MUHAMMAD Nuclear Institute

More information

Performance of Wheat Varieties under Late and Very Late Sowing Conditions

Performance of Wheat Varieties under Late and Very Late Sowing Conditions International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 9 (2017) pp. 3488-3492 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.609.428

More information

Thermal imaging assesses water status and growth in durum wheat

Thermal imaging assesses water status and growth in durum wheat OPTICHINA 2nd WORKSHOP Barcelona Spain, 17-21 September 2012 Thermal imaging assesses water status and growth in durum wheat Elazab A., Sánchez R., Serret M.D., Bort J., Zhou B.W., Nieto-Taladriz, M.T.,

More information

Genetic Variability and Inter Relationship between Yield and Yield Components in Some Rice Genotypes

Genetic Variability and Inter Relationship between Yield and Yield Components in Some Rice Genotypes American Journal of Experimental Agriculture 2(2): 233-239, 2012 SCIENCEDOMAIN international www.sciencedomain.org Genetic Variability and Inter Relationship between Yield and Yield Components in Some

More information

GE NETIC VARI ABIL ITY AND TRAIT AS SO CI A TION IN CO RI AN DER (Coriandrum sativum L.) UN DER DIF FER ENT DATES OF SOW ING

GE NETIC VARI ABIL ITY AND TRAIT AS SO CI A TION IN CO RI AN DER (Coriandrum sativum L.) UN DER DIF FER ENT DATES OF SOW ING Progressive Research 8 (Special) : 34-350 (2013) Society for Sci. Dev. in Agric. and Tech. GE NETIC VARI ABIL ITY AND TRAIT AS SO CI A TION IN CO RI AN DER (Coriandrum sativum L.) UN DER DIF FER ENT DATES

More information

A STUDY OF SOURCE AND SINK RELATIONSHIPS TO SELECT WHEAT LINES AND GENOTYPES FOR DROUGHT TOLERANCE

A STUDY OF SOURCE AND SINK RELATIONSHIPS TO SELECT WHEAT LINES AND GENOTYPES FOR DROUGHT TOLERANCE THE SOURCE AND SINK RELATIONSHIPS TO SELECT WHEAT LINES FOR DROUGHT TOLERANCE DOI: 10.1515/cerce-2016-0023 Available online: www.uaiasi.ro/cercet_agromold/ Print ISSN 0379-5837; Electronic ISSN 2067-1865

More information

SELECTION OF DROUGHT TOLERANT AND HIGH WATER USE EFFICIENT RICE CULTIVARS THROUGH 13 C ISOTOPE DISCRIMINATION TECHNIQUE

SELECTION OF DROUGHT TOLERANT AND HIGH WATER USE EFFICIENT RICE CULTIVARS THROUGH 13 C ISOTOPE DISCRIMINATION TECHNIQUE Pak. J. Bot., 42(6): 3887-3897, 2010. SELECTION OF DROUGHT TOLERANT AND HIGH WATER USE EFFICIENT RICE CULTIVARS THROUGH 13 C ISOTOPE DISCRIMINATION TECHNIQUE J. AKHTER 1, P. MONNEVEUX 2, S.A. SABIR 1,

More information

Correlation and Path Coefficient Analysis in Bread Wheat under Drought Stress and Normal Conditions

Correlation and Path Coefficient Analysis in Bread Wheat under Drought Stress and Normal Conditions Pakistan Journal of Biological Sciences 3 (1): 72-77, 2000 Copyright by the Capricorn Publication 2000 Correlation and Path Coefficient Analysis in Bread Wheat under Drought Stress and Normal Conditions

More information

Correlation and Path Coefficient Analysis of Yield Components in Rice under Drought Condition

Correlation and Path Coefficient Analysis of Yield Components in Rice under Drought Condition International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Special Issue-7 pp. 4116-4122 Journal homepage: http://www.ijcmas.com Original Research Article Correlation and Path Coefficient

More information

Water requirement of wheat crop for optimum production using CROPWAT model

Water requirement of wheat crop for optimum production using CROPWAT model 2017; 5(3): 338-342 ISSN (E): 2320-3862 ISSN (P): 2394-0530 NAAS Rating 2017: 3.53 JMPS 2017; 5(3): 338-342 2017 JMPS Received: 20-03-2017 Accepted: 22-04-2017 Krishna Deo SR Mishra AK Singh AN Mishra

More information

MARS and MABB for Drought and Heat Tolerance with Rust Resistance in Wheat

MARS and MABB for Drought and Heat Tolerance with Rust Resistance in Wheat Genomics for Crop Improvement, Bengaluru Feb 18-20, 2013 MARS and MABB for Drought and Heat Tolerance with Rust Resistance in Wheat GP Singh, Neelu Jain, Vinod, JB Sharma, T Ramya and KV Prabhu Division

More information

Combining Ability Analysis for Yield and Spot Blotch Disease Resistance in Tetraploid Wheat

Combining Ability Analysis for Yield and Spot Blotch Disease Resistance in Tetraploid Wheat International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 01 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.701.224

More information

DILIP SINGH*, D. R. SINGH, V. NEPALIA AND AMINA KUMARI

DILIP SINGH*, D. R. SINGH, V. NEPALIA AND AMINA KUMARI Forage Res., 38 (3) : pp. 133-137 (2012) http://forageresearch.in PERFORMANCE OF DUAL PURPOSE BARLEY (HORDEUM VULGARE L.) VARIETIES FOR GREEN FODDER AND SUBSEQUENT PRODUCTIVITY UNDER VARYING SEED RATE

More information

Impact of climate change on wheat productivity in Ludhiana and Bathinda of Punjab

Impact of climate change on wheat productivity in Ludhiana and Bathinda of Punjab Indian J. Agric. Res., 49 (4) 2015: 368-372 Print ISSN:0367-8245 / Online ISSN:0976-058X AGRICULTURAL RESEARCH COMMUNICATION CENTRE www.arccjournals.com/www.ijarjournal.com Impact of climate change on

More information

EFFECT OF DIFFERENT IRRIGATIONS ON YIELD AND ITS ASSOCIATED TRAITS IN WHEAT (Triticum aestivum L.)

EFFECT OF DIFFERENT IRRIGATIONS ON YIELD AND ITS ASSOCIATED TRAITS IN WHEAT (Triticum aestivum L.) International Journal of Science, Environment and Technology, Vol. 3, No 6, 2014, 2169 2175 ISSN 2278-3687 (O) EFFECT OF DIFFERENT IRRIGATIONS ON YIELD AND ITS ASSOCIATED TRAITS IN WHEAT (Triticum aestivum

More information

Effects of planting patterns on biomass accumulation and yield of summer maize

Effects of planting patterns on biomass accumulation and yield of summer maize Ecosystems and Sustainable Development VI 437 Effects of planting patterns on biomass accumulation and yield of summer maize L. Quanqi 1,2, C. Yuhai 2, L. Mengyu 1, Y. Songlie 2, Z. Xunbo 2 & D. Baodi

More information

PERFORMANCE OF CANOLA (BRASSICA NAPUS L.) UNDER DIFFERENT IRRIGATION LEVELS

PERFORMANCE OF CANOLA (BRASSICA NAPUS L.) UNDER DIFFERENT IRRIGATION LEVELS Pak. J. Bot., 39(3): 739-746, 2007. PERFORMANCE OF CANOLA (BRASSICA NAPUS L.) UNDER DIFFERENT IRRIGATION LEVELS MUHAMMAD TAHIR, ASGHAR ALI, MUHAMMAD ATHER NADEEM, ASIF TANVEER AND Q.M. SABIR Department

More information

Agronomic Evaluation of Somaclonal Variants from Durum Wheat Cultivars. 27, Apdo. Postal 6-641, MEX-06600, Mexico, D.F., MEXICO

Agronomic Evaluation of Somaclonal Variants from Durum Wheat Cultivars. 27, Apdo. Postal 6-641, MEX-06600, Mexico, D.F., MEXICO Agronomic Evaluation of Somaclonal Variants from Durum Wheat Cultivars Borjat, J.; O.S. Abda1Ja1, A. Mujeeb-Kazit, N. Ter-Kuilet, and E. Autriquet 1 International Maize and Wheat Improvement Center (CIMMYT),

More information

SS Rao, Principal Scientist & PI

SS Rao, Principal Scientist & PI Progress and achievements in Physiology-K&R 2015-16 SS Rao, Principal Scientist & PI (AICSIP Team: Akola, Phaltan, Rahuri, Solapur, Bijapur, Hyderbad, Tandur, Gulbarga) 1. Phenotyping kharif sorghum germplasm

More information

Research Article Effects of Water-retention and Slow-release Fertilizers on Photosynthetic Rate of Summer Maize and Winter Wheat

Research Article Effects of Water-retention and Slow-release Fertilizers on Photosynthetic Rate of Summer Maize and Winter Wheat Advance Journal of Food Science and Technology 10(4): 292-296, 2016 DOI: 10.19026/ajfst.10.2071 ISSN: 2042-4868; e-issn: 2042-4876 2016 Maxwell Scientific Publication Corp. Submitted: February 3, 2015

More information

Developing Pearl Millet Seed Parents Adapted to Arid Regions of North- Western India

Developing Pearl Millet Seed Parents Adapted to Arid Regions of North- Western India Annals of Arid Zone 52(1): 71-75, 2013 Developing Pearl Millet Seed Parents Adapted to Arid Regions of North- Western India V.K. Manga and Arun Kumar Central Arid Zone Research Institute, Jodhpur 342 003,

More information

Agrometeorological Indices Requirement for Wheat Crop under Different Irrigation Levels

Agrometeorological Indices Requirement for Wheat Crop under Different Irrigation Levels International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 4 (2017) pp. 1547-1553 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.604.190

More information

Developing a high throughput screen for source:sink balance to tap photosynthetic potential

Developing a high throughput screen for source:sink balance to tap photosynthetic potential Developing a high throughput screen for source:sink balance to tap photosynthetic potential It is well established that there is a dynamic interaction in plants between source and sink. As seen in economic

More information

PERFORMANCE OF WHEAT GENOTYPES UNDER OPTIMUM AND LATE SOWING CONDITION

PERFORMANCE OF WHEAT GENOTYPES UNDER OPTIMUM AND LATE SOWING CONDITION Int. J. Sustain. Crop Prod. 4(6): 34-39 (November 2009) PERFORMANCE OF WHEAT GENOTYPES UNDER OPTIMUM AND LATE SOWING CONDITION M.M. RAHMAN 1, AKBAR HOSSAIN 2, M.A. HAKIM 2, M.R. KABIR 2 and M.M.R. SHAH

More information

Physiology-aided breeding for stress environments. BOLOGNA Course June 2006 Jordi Bort Universitat de Barcelona

Physiology-aided breeding for stress environments. BOLOGNA Course June 2006 Jordi Bort Universitat de Barcelona Physiology-aided breeding for stress environments BOLOGNA Course June 2006 Jordi Bort Universitat de Barcelona Genetic gains of major crops Grain Yield (t/ha) 10 8 6 4 2 Average maize yields in the US

More information

Screening and Genetic Variability Studies in Submergence Tolerance Rice Germplasm Lines under Flood Prone Lowlands of Hill Zone of Karnataka, India

Screening and Genetic Variability Studies in Submergence Tolerance Rice Germplasm Lines under Flood Prone Lowlands of Hill Zone of Karnataka, India International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 7 (2017) pp. 1254-1260 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.607.152

More information

Int.J.Curr.Microbiol.App.Sci (2017) 6(8):

Int.J.Curr.Microbiol.App.Sci (2017) 6(8): International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 8 (2017) pp. 2061-2066 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.608.245

More information

Introducing the new planting methods for cultivation of alfalfa cultivars in highly saline soils

Introducing the new planting methods for cultivation of alfalfa cultivars in highly saline soils International Journal of Farming and Allied Sciences Available online at www.ijfas.com 2014 IJFAS Journal-2014-3-8/935-939/ 31 August, 2014 ISSN 2322-4134 2014 IJFAS Introducing the new planting methods

More information