Identification of disease-related genes. Heymut Omran Department of Pediatrics and Adolescent Medicine; Freiburg; Germany

Size: px
Start display at page:

Download "Identification of disease-related genes. Heymut Omran Department of Pediatrics and Adolescent Medicine; Freiburg; Germany"

Transcription

1 Identification of disease-related genes Heymut Omran Department of Pediatrics and Adolescent Medicine; Freiburg; Germany

2 Gene identification strategies A. Position-independent strategies for identifying genes B. Positional cloning of disease genes C. Combination of both strategies Functional approach: Hemophila A patients lacked blood clotting factor VIII. Protein was purified, partially sequenced

3 Gene identification strategies A. Position-independent strategies for identifying genes B. Positional cloning of disease genes C. Combination of both strategies Positional approach: Gene localization on the human genome. Functional data are not necessary.

4 Position-independent strategies for identifying genes A. Detailed knowledge of the pathophysiology is mandatory

5 Position-independent strategies for identifying genes A. Enzyme deficiency Aminoacylases divide N-acetylated amino acids. Currently two distinct aminoacylases are known.

6 Gas chromatography mass-spectrometry (GC-MS) analysis (Urin)

7 NMR spectroscopy (urine) Metabolite OS-104 II-1 OS-17II- 1 OS-14 II- 1 OS-10 II- 1 sample 1 [mmol/ mol creatinine] sample [mmol/ mol creatinine] sample 3 [mmol/ mol creatinine] [mmol/ mol creatinine] [mmol/ mol creatinine] [mmol/ mol creatinine] N-acetylalanine N-acetylasparagine N-acetylglutamic acid N-acetylglutamine N-acetylisoleucine 18 3 < N-acetylglycine N-acetylvaline <10 <10 <10 30 nd nd N-acetylserine < N-acetylthreonine < N-acetylmethionine

8 Demonstration of ACY1-mutations

9 Position-independent strategies for identifying genes A. Detailed knowledge of the pathophysiology is mandatory B. Adequate disease models (mouse, C. elegans, D. melanogaster, S. cerevesiae, D. rerio, )

10 Position-independent strategies for identifying genes Zellweger Syndrome: Peroxysomal biogenesis disorder (increased very long chain fatty acids)

11 Position-independent strategies for Zellweger Syndrome: identifying genes A. In somatic cell hybridization analyses (fibroblasts) ten distinct complementation groups could be identified B. In Saccharomyces cerevisiae several complementation groups were found C. Cloning of the human S. cerevesiae orthologues allowed PEX gene identifications Reuber et al. Nat Genet 1997; Portsteffen et al. Nat Genet 1997

12 Positional cloning of disease genes A. In positional cloning, disease genes are identified using only knowledge of their chromosomal location

13 Positional cloning of disease genes A. In positional cloning, disease genes are identified using only knowledge of their chromosomal location B. Chromosomal aberrations

14 Positional cloning of disease genes Chromosomal aberrations Alagille Syndrome Autosomal dominant Cholestatic jaundice: Biliary tract paucity peripheral pulmonic stenosis others

15 Positional cloning of disease genes Chromosomal aberrations (Alagille syndrome) Deletions JAG1 gene Chromosomal breakpoint mapping (balanced translocations)

16 Positional cloning of disease genes A. In positional cloning, disease genes are identified using only knowledge of their chromosomal location B. Chromosomal aberrations C. Linkage studies

17 Positional cloning of disease genes Linkage studies Affected Affected Affected Affected Affected Affected

18 Positional cloning of disease genes Linkage studies (microsatellite markers) 1 3 Alleles:

19 Positional cloning of disease genes Linkage studies (SNP analyses) gcgtgattgttagtgc[a/g]gatctgtggtactgct SNP = single nucleotide polymorphism Most frequent genetic variation (appr bp) Frequency of the variation is >1% in gen. population < 1% of SNPs affect protein coding sequence Humane genome contains >3 x 10 6 SNP

20 SNP distribution along the human genome: 10K SNP Array Red: min. 1 SNP per 100 kb Black: Gaps (Median der Distanz zw. Markern: 108 kb)

21 SNP distribution along the human genome: 100K ( x 50K) SNP Array Red: min. 1 SNP per 100 kb Black: Gaps (Median der Distanz zw. Markern: 8 kb)

22 Positional cloning of disease genes Problems of linkage studies Genetics Environment Phenotype

23 Positional cloning of disease genes Problems of linkage studies Gene 1 Disorder Incomplete Penetrance

24 Positional cloning of disease genes Problems of linkage studies Gene 1 Environment Disorder Phenocopy

25 Positional cloning of disease genes Problems of linkage studies Gene 1 Gene Gene 3 + Disorder Polygenic Disorder

26 Positional cloning of disease genes Problems of linkage studies Gene 1 Gene Gene 3 Disorder Genetic Heterogenity

27 Positional cloning of disease genes Genetic heterogeneity Nephronophthisis loci NPHP1: q1-q13 NPHP: 9q-q31 NPHP3: 3q1-q NPHP4: 1p36 NPHP5: 3q1 NPHP6: 1q1

28 Positional cloning of disease genes Homozygosity mapping strategies autosomal rezessive

29 Positional cloning of disease genes Linkage studies (microsatellite markers) 1 3 Alleles:

30 (P) 1 14 Positional cloning of disease genes Homozygosity mapping strategies

31 HOMOZYGOSITY MAPPING STRATEGY Marker Chromosome 3 D3S178 D3S167 D3S370 D3S3573 D3S3607 D3S3606 D3S1587 D3S3548 D3S1541 D3S19 D3S1596 D3S173 D3S3 D3S190 D3S3713* D3S3657 D3S1485 D3S138 D3S3684 D3S3637 D3S1549 D3S3617 D3S1576 DS3554 LOD- Score: ZMAX = 5,9

32 (P) 1 14 Positional cloning of disease genes Physical mapping and search for deletions

33 NPH3 PATHOLOGY pcy Cysts at the corticomedullary junction Tubular atrophy and cystic dilatation Interstitial infiltration and fibrosis Tubular basement changes

34 (P) 1 14 Positional cloning of disease genes Orthology analyses

35 (P) 1 14 Positional cloning of disease genes Mutational analyses

36 (P) 1 14 Positional cloning of disease genes Mutational analyses

37 Gene identification strategies A. Position-independent strategies for identifying genes B. Positional cloning of disease genes C. Combination of both strategies D. Computational analyses

Association Mapping. Mendelian versus Complex Phenotypes. How to Perform an Association Study. Why Association Studies (Can) Work

Association Mapping. Mendelian versus Complex Phenotypes. How to Perform an Association Study. Why Association Studies (Can) Work Genome 371, 1 March 2010, Lecture 13 Association Mapping Mendelian versus Complex Phenotypes How to Perform an Association Study Why Association Studies (Can) Work Introduction to LOD score analysis Common

More information

Why learn linkage analysis?

Why learn linkage analysis? Why learn linkage analysis? - and some basic genetics Kaja Selmer 2013 Outline What is linkage analysis and why learn it? An example of a successful linkage analysis story Basic genetics DNA content and

More information

Lecture 2: Biology Basics Continued

Lecture 2: Biology Basics Continued Lecture 2: Biology Basics Continued Central Dogma DNA: The Code of Life The structure and the four genomic letters code for all living organisms Adenine, Guanine, Thymine, and Cytosine which pair A-T and

More information

Molecular Genetics of Disease and the Human Genome Project

Molecular Genetics of Disease and the Human Genome Project 9 Molecular Genetics of Disease and the Human Genome Project Fig. 1. The 23 chromosomes in the human genome. There are 22 autosomes (chromosomes 1 to 22) and two sex chromosomes (X and Y). Females inherit

More information

The Human Genome and its upcoming Dynamics

The Human Genome and its upcoming Dynamics The Human Genome and its upcoming Dynamics Matthias Platzer Genome Analysis Leibniz Institute for Age Research - Fritz-Lipmann Institute (FLI) Sequencing of the Human Genome Publications 2004 2001 2001

More information

Exome Sequencing Exome sequencing is a technique that is used to examine all of the protein-coding regions of the genome.

Exome Sequencing Exome sequencing is a technique that is used to examine all of the protein-coding regions of the genome. Glossary of Terms Genetics is a term that refers to the study of genes and their role in inheritance the way certain traits are passed down from one generation to another. Genomics is the study of all

More information

B) You can conclude that A 1 is identical by descent. Notice that A2 had to come from the father (and therefore, A1 is maternal in both cases).

B) You can conclude that A 1 is identical by descent. Notice that A2 had to come from the father (and therefore, A1 is maternal in both cases). Homework questions. Please provide your answers on a separate sheet. Examine the following pedigree. A 1,2 B 1,2 A 1,3 B 1,3 A 1,2 B 1,2 A 1,2 B 1,3 1. (1 point) The A 1 alleles in the two brothers are

More information

Lecture 12. Genomics. Mapping. Definition Species sequencing ESTs. Why? Types of mapping Markers p & Types

Lecture 12. Genomics. Mapping. Definition Species sequencing ESTs. Why? Types of mapping Markers p & Types Lecture 12 Reading Lecture 12: p. 335-338, 346-353 Lecture 13: p. 358-371 Genomics Definition Species sequencing ESTs Mapping Why? Types of mapping Markers p.335-338 & 346-353 Types 222 omics Interpreting

More information

3. human genomics clone genes associated with genetic disorders. 4. many projects generate ordered clones that cover genome

3. human genomics clone genes associated with genetic disorders. 4. many projects generate ordered clones that cover genome Lectures 30 and 31 Genome analysis I. Genome analysis A. two general areas 1. structural 2. functional B. genome projects a status report 1. 1 st sequenced: several viral genomes 2. mitochondria and chloroplasts

More information

COURSE OUTLINE Biology 103 Molecular Biology and Genetics

COURSE OUTLINE Biology 103 Molecular Biology and Genetics Degree Applicable I. Catalog Statement COURSE OUTLINE Biology 103 Molecular Biology and Genetics Glendale Community College November 2014 Biology 103 is an extension of the study of molecular biology,

More information

BIOLOGY - CLUTCH CH.20 - BIOTECHNOLOGY.

BIOLOGY - CLUTCH CH.20 - BIOTECHNOLOGY. !! www.clutchprep.com CONCEPT: DNA CLONING DNA cloning is a technique that inserts a foreign gene into a living host to replicate the gene and produce gene products. Transformation the process by which

More information

Midterm 1 Results. Midterm 1 Akey/ Fields Median Number of Students. Exam Score

Midterm 1 Results. Midterm 1 Akey/ Fields Median Number of Students. Exam Score Midterm 1 Results 10 Midterm 1 Akey/ Fields Median - 69 8 Number of Students 6 4 2 0 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 Exam Score Quick review of where we left off Parental type: the

More information

UNIVERSITY OF YORK BA, BSc, and MSc Degree Examinations

UNIVERSITY OF YORK BA, BSc, and MSc Degree Examinations Examination Candidate Number: Desk Number: UNIVERSITY OF YORK BA, BSc, and MSc Degree Examinations 2017-8 Department : BIOLOGY Title of Exam: Human genetics Time Allowed: 2 hours Marking Scheme: Total

More information

Bio 311 Learning Objectives

Bio 311 Learning Objectives Bio 311 Learning Objectives This document outlines the learning objectives for Biol 311 (Principles of Genetics). Biol 311 is part of the BioCore within the Department of Biological Sciences; therefore,

More information

GENE MAPPING. Genetica per Scienze Naturali a.a prof S. Presciuttini

GENE MAPPING. Genetica per Scienze Naturali a.a prof S. Presciuttini GENE MAPPING Questo documento è pubblicato sotto licenza Creative Commons Attribuzione Non commerciale Condividi allo stesso modo http://creativecommons.org/licenses/by-nc-sa/2.5/deed.it Genetic mapping

More information

Linking Genetic Variation to Important Phenotypes

Linking Genetic Variation to Important Phenotypes Linking Genetic Variation to Important Phenotypes BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2018 Anthony Gitter gitter@biostat.wisc.edu These slides, excluding third-party material, are licensed under

More information

Genome Sequence Assembly

Genome Sequence Assembly Genome Sequence Assembly Learning Goals: Introduce the field of bioinformatics Familiarize the student with performing sequence alignments Understand the assembly process in genome sequencing Introduction:

More information

Prof. Dr. Konstantin Strauch

Prof. Dr. Konstantin Strauch Genetic Epidemiology and Personalized Medicine Prof. Dr. Konstantin Strauch IBE - Lehrstuhl für Genetische Epidemiologie Ludwig-Maximilians-Universität Institut für Genetische Epidemiologie Helmholtz-Zentrum

More information

Trudy F C Mackay, Department of Genetics, North Carolina State University, Raleigh NC , USA.

Trudy F C Mackay, Department of Genetics, North Carolina State University, Raleigh NC , USA. Question & Answer Q&A: Genetic analysis of quantitative traits Trudy FC Mackay What are quantitative traits? Quantitative, or complex, traits are traits for which phenotypic variation is continuously distributed

More information

Integrated Course of HUMAN AND MEDICAL GENETICS

Integrated Course of HUMAN AND MEDICAL GENETICS Integrated Course of HUMAN AND MEDICAL GENETICS Scientific Fields: MEDICAL GENETICS (MED/03) APPLIED BIOLOGY (BIO/13) European Credit Transfer and Accumulation System = 7 Coordinator: Prof. BRUNELLA FRANCO,

More information

Concepts: What are RFLPs and how do they act like genetic marker loci?

Concepts: What are RFLPs and how do they act like genetic marker loci? Restriction Fragment Length Polymorphisms (RFLPs) -1 Readings: Griffiths et al: 7th Edition: Ch. 12 pp. 384-386; Ch.13 pp404-407 8th Edition: pp. 364-366 Assigned Problems: 8th Ch. 11: 32, 34, 38-39 7th

More information

AS91159 Demonstrate understanding of gene expression

AS91159 Demonstrate understanding of gene expression AS91159 Demonstrate understanding of gene expression Mutations and Metabolic Pathways (2015,2) In 1941 biologists George Beadle and Edward Tatum exposed the bread mould Neurospora crassa to radiation.

More information

GENETICS - CLUTCH CH.15 GENOMES AND GENOMICS.

GENETICS - CLUTCH CH.15 GENOMES AND GENOMICS. !! www.clutchprep.com CONCEPT: OVERVIEW OF GENOMICS Genomics is the study of genomes in their entirety Bioinformatics is the analysis of the information content of genomes - Genes, regulatory sequences,

More information

Let s call the recessive allele r and the dominant allele R. The allele and genotype frequencies in the next generation are:

Let s call the recessive allele r and the dominant allele R. The allele and genotype frequencies in the next generation are: Problem Set 8 Genetics 371 Winter 2010 1. In a population exhibiting Hardy-Weinberg equilibrium, 23% of the individuals are homozygous for a recessive character. What will the genotypic, phenotypic and

More information

Lecture 23: Causes and Consequences of Linkage Disequilibrium. November 16, 2012

Lecture 23: Causes and Consequences of Linkage Disequilibrium. November 16, 2012 Lecture 23: Causes and Consequences of Linkage Disequilibrium November 16, 2012 Last Time Signatures of selection based on synonymous and nonsynonymous substitutions Multiple loci and independent segregation

More information

Map-Based Cloning of Qualitative Plant Genes

Map-Based Cloning of Qualitative Plant Genes Map-Based Cloning of Qualitative Plant Genes Map-based cloning using the genetic relationship between a gene and a marker as the basis for beginning a search for a gene Chromosome walking moving toward

More information

Happy Monday! Have out: 15.1 Notes (due today) Pen or pencil. Upcoming: 15.1 Quiz on block day 15.2 Notes due Friday (2/1)

Happy Monday! Have out: 15.1 Notes (due today) Pen or pencil. Upcoming: 15.1 Quiz on block day 15.2 Notes due Friday (2/1) Happy Monday! Have out: 15.1 Notes (due today) Pen or pencil Upcoming: 15.1 Quiz on block day 15.2 Notes due Friday (2/1) Plan for today Check 15.1 Notes Go over 15.1 Practice problems 15.1: Human Chromosomes

More information

Mutations, Meioses, and Maps

Mutations, Meioses, and Maps Mutations, Meioses, and Maps Adaptive success of a population requires genetic variation Re-assortment of traits increases available variation Meiosis is the cellular mechanism of re-assortment Genetic

More information

Association studies (Linkage disequilibrium)

Association studies (Linkage disequilibrium) Positional cloning: statistical approaches to gene mapping, i.e. locating genes on the genome Linkage analysis Association studies (Linkage disequilibrium) Linkage analysis Uses a genetic marker map (a

More information

CS273B: Deep Learning in Genomics and Biomedicine. Recitation 1 30/9/2016

CS273B: Deep Learning in Genomics and Biomedicine. Recitation 1 30/9/2016 CS273B: Deep Learning in Genomics and Biomedicine. Recitation 1 30/9/2016 Topics Genetic variation Population structure Linkage disequilibrium Natural disease variants Genome Wide Association Studies Gene

More information

Genomes summary. Bacterial genome sizes

Genomes summary. Bacterial genome sizes Genomes summary 1. >930 bacterial genomes sequenced. 2. Circular. Genes densely packed. 3. 2-10 Mbases, 470-7,000 genes 4. Genomes of >200 eukaryotes (45 higher ) sequenced. 5. Linear chromosomes 6. On

More information

Crash-course in genomics

Crash-course in genomics Crash-course in genomics Molecular biology : How does the genome code for function? Genetics: How is the genome passed on from parent to child? Genetic variation: How does the genome change when it is

More information

dominance neither trait is dominant; in a hybrid condition, there is a blending in the phenotype.

dominance neither trait is dominant; in a hybrid condition, there is a blending in the phenotype. Genetics NAME Period Date dominance neither trait is dominant; in a hybrid condition, there is a blending in the phenotype. - a condition when both alleles show up in

More information

Answer: Sequence overlap is required to align the sequenced segments relative to each other.

Answer: Sequence overlap is required to align the sequenced segments relative to each other. 14 Genomes and Genomics WORKING WITH THE FIGURES 1. Based on Figure 14-2, why must the DNA fragments sequenced overlap in order to obtain a genome sequence? Answer: Sequence overlap is required to align

More information

CHAPTER 5 Principle of Genetics Review

CHAPTER 5 Principle of Genetics Review CHAPTER 5 Principle of Genetics Review I. Mendel s Investigations Gregor Johann Mendel Hybridized peas 1856-1864 Formulated Principles of Heredity published in 1866 II. Chromosomal Basis of Inheritance

More information

Bioinformatics Introduction to genomics and proteomics II

Bioinformatics Introduction to genomics and proteomics II Bioinformatics Introduction to genomics and proteomics II ulf.schmitz@informatik.uni-rostock.de Bioinformatics and Systems Biology Group www.sbi.informatik.uni-rostock.de Ulf Schmitz, Introduction to genomics

More information

BENG 183 Trey Ideker. Genome Assembly and Physical Mapping

BENG 183 Trey Ideker. Genome Assembly and Physical Mapping BENG 183 Trey Ideker Genome Assembly and Physical Mapping Reasons for sequencing Complete genome sequencing!!! Resequencing (Confirmatory) E.g., short regions containing single nucleotide polymorphisms

More information

Chapter 5. Structural Genomics

Chapter 5. Structural Genomics Chapter 5. Structural Genomics Contents 5. Structural Genomics 5.1. DNA Sequencing Strategies 5.1.1. Map-based Strategies 5.1.2. Whole Genome Shotgun Sequencing 5.2. Genome Annotation 5.2.1. Using Bioinformatic

More information

Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question in Section B and ONE question from Section C.

Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question in Section B and ONE question from Section C. UNIVERSITY OF EAST ANGLIA School of Biological Sciences Main Series UG Examination 2014-2015 GENETICS BIO-5009A/ BIO-2B17 Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question

More information

Chapter 11 Complex Inheritance and Human Heredity

Chapter 11 Complex Inheritance and Human Heredity Chapter 11 Complex Inheritance and Human Heredity 11.1 Basic Patterns of Human Inheritance o The inheritance of a trait over can be shown in a o Pedigrees can help us to track and understand Genetic Disorders

More information

Test Bank for Molecular Cell Biology 7th Edition by Lodish

Test Bank for Molecular Cell Biology 7th Edition by Lodish Test Bank for Molecular Cell Biology 7th Edition by Lodish Link download full: http://testbankair.com/download/test-bank-formolecular-cell-biology-7th-edition-by-lodish/ Chapter 5 Molecular Genetic Techniques

More information

Human Genetic Variation. Ricardo Lebrón Dpto. Genética UGR

Human Genetic Variation. Ricardo Lebrón Dpto. Genética UGR Human Genetic Variation Ricardo Lebrón rlebron@ugr.es Dpto. Genética UGR What is Genetic Variation? Origins of Genetic Variation Genetic Variation is the difference in DNA sequences between individuals.

More information

Sept 2. Structure and Organization of Genomes. Today: Genetic and Physical Mapping. Sept 9. Forward and Reverse Genetics. Genetic and Physical Mapping

Sept 2. Structure and Organization of Genomes. Today: Genetic and Physical Mapping. Sept 9. Forward and Reverse Genetics. Genetic and Physical Mapping Sept 2. Structure and Organization of Genomes Today: Genetic and Physical Mapping Assignments: Gibson & Muse, pp.4-10 Brown, pp. 126-160 Olson et al., Science 245: 1434 New homework:due, before class,

More information

Unit 6 DNA ppt 3 Gene Expression and Mutations Chapter 8.6 & 8.7 pg

Unit 6 DNA ppt 3 Gene Expression and Mutations Chapter 8.6 & 8.7 pg Unit 6 DNA ppt 3 Gene Expression and Mutations Chapter 8.6 & 8.7 pg 248-255 Which genes are transcribed on the chromosomes are carefully regulated at many points. Watch this! https://www.youtube.com/watch?v=oewozs_jtgk

More information

Einführung in die Genetik

Einführung in die Genetik Einführung in die Genetik Prof. Dr. Kay Schneitz (EBio Pflanzen) http://plantdev.bio.wzw.tum.de schneitz@wzw.tum.de Prof. Dr. Claus Schwechheimer (PlaSysBiol) http://wzw.tum.de/sysbiol claus.schwechheimer@wzw.tum.de

More information

of heritable factor ). 1. The alternative versions of genes are called alleles. Chapter 9 Patterns of Inheritance

of heritable factor ). 1. The alternative versions of genes are called alleles. Chapter 9 Patterns of Inheritance Chapter 9 Biology and Society: Our Longest-Running Genetic Experiment: Dogs Patterns of Inheritance People have selected and mated dogs with preferred traits for more than 15,000 years. Over thousands

More information

SYLLABUS AND SAMPLE QUESTIONS FOR JRF IN BIOLOGICAL ANTHROPOLGY 2011

SYLLABUS AND SAMPLE QUESTIONS FOR JRF IN BIOLOGICAL ANTHROPOLGY 2011 SYLLABUS AND SAMPLE QUESTIONS FOR JRF IN BIOLOGICAL ANTHROPOLGY 2011 SYLLABUS 1. Introduction: Definition and scope; subdivisions of anthropology; application of genetics in anthropology. 2. Human evolution:

More information

Introduction to some aspects of molecular genetics

Introduction to some aspects of molecular genetics Introduction to some aspects of molecular genetics Julius van der Werf (partly based on notes from Margaret Katz) University of New England, Armidale, Australia Genetic and Physical maps of the genome...

More information

Before starting, write your name on the top of each page Make sure you have all pages

Before starting, write your name on the top of each page Make sure you have all pages Biology 105: Introduction to Genetics Name Student ID Before starting, write your name on the top of each page Make sure you have all pages You can use the back-side of the pages for scratch, but we will

More information

Name: Review HW 20 Mendelian Genetics and Humn Inheritance

Name: Review HW 20 Mendelian Genetics and Humn Inheritance Name: Review HW 20 Bio AP Mendelian Genetics and Humn Inheritance 1. Four genes on a chromosome C are mapped and their crossover frequencies were determined. Genes Crossover Frequency K and J 10 J and

More information

Linking Genetic Variation to Important Phenotypes: SNPs, CNVs, GWAS, and eqtls

Linking Genetic Variation to Important Phenotypes: SNPs, CNVs, GWAS, and eqtls Linking Genetic Variation to Important Phenotypes: SNPs, CNVs, GWAS, and eqtls BMI/CS 776 www.biostat.wisc.edu/bmi776/ Colin Dewey cdewey@biostat.wisc.edu Spring 2012 1. Understanding Human Genetic Variation

More information

BST227 Introduction to Statistical Genetics

BST227 Introduction to Statistical Genetics Introduction to Statistical Genetics BIO 227 Lecture 1 Introduction and Overview of Genetic http BST227 Introduction to Statistical Genetics Lecture 1: Introduction and Overview of Genetic Disease http://aryeelab.org/bst227

More information

Mutations, Genetic Testing and Engineering

Mutations, Genetic Testing and Engineering Mutations, Genetic Testing and Engineering Objectives Describe how techniques such as DNA fingerprinting, genetic modifications, and chromosomal analysis are used to study the genomes of organisms (TEKS

More information

BENG 183 Trey Ideker. Genotyping. To be covered in one 1.5 hr lecture

BENG 183 Trey Ideker. Genotyping. To be covered in one 1.5 hr lecture BENG 183 Trey Ideker Genotyping To be covered in one 1.5 hr lecture Genetic variation: Some basic definitions Allele Alternative form of a genetic locus inherited separately from each parent Polymorphism

More information

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015 Biology Concepts and Applications 9e Starr Evers Starr Chapter 13 Observing Patterns in Inherited Traits 13.1 How Do Alleles Contribute to Traits? Blending inheritance 19th century idea Failed to explain

More information

The Human Genome Project has always been something of a misnomer, implying the existence of a single human genome

The Human Genome Project has always been something of a misnomer, implying the existence of a single human genome The Human Genome Project has always been something of a misnomer, implying the existence of a single human genome Of course, every person on the planet with the exception of identical twins has a unique

More information

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Test Disease Population Triad Disease name Alagille syndrome 2 OMIM number for disease 610205 Disease alternative names please

More information

MRC-Holland MLPA. Description version 07;

MRC-Holland MLPA. Description version 07; SALSA MLPA probemix P267-A3 Dandy-Walker Malformation Lot A3-0813. As compared to the previous lot A2-0209, two reference probes have been replaced and one added. Also, the control fragments have been

More information

Chapter 14: Genes in Action

Chapter 14: Genes in Action Chapter 14: Genes in Action Section 1: Mutation and Genetic Change Mutation: Nondisjuction: a failure of homologous chromosomes to separate during meiosis I or the failure of sister chromatids to separate

More information

A brief introduction to Marker-Assisted Breeding. a BASF Plant Science Company

A brief introduction to Marker-Assisted Breeding. a BASF Plant Science Company A brief introduction to Marker-Assisted Breeding a BASF Plant Science Company Gene Expression DNA is stored in chromosomes within the nucleus of each cell RNA Cell Chromosome Gene Isoleucin Proline Valine

More information

What determines if a mutation is deleterious, neutral, or beneficial?

What determines if a mutation is deleterious, neutral, or beneficial? BIO 184 - PAL Problem Set Lecture 6 (Brooker Chapter 18) Mutations Section A. Types of mutations Define and give an example the following terms: allele; phenotype; genotype; Define and give an example

More information

MI615 Syllabus Illustrated Topics in Advanced Molecular Genetics Provisional Schedule Spring 2010: MN402 TR 9:30-10:50

MI615 Syllabus Illustrated Topics in Advanced Molecular Genetics Provisional Schedule Spring 2010: MN402 TR 9:30-10:50 MI615 Syllabus Illustrated Topics in Advanced Molecular Genetics Provisional Schedule Spring 2010: MN402 TR 9:30-10:50 DATE TITLE LECTURER Thu Jan 14 Introduction, Genomic low copy repeats Pierce Tue Jan

More information

Basics in Genetics. Teruyoshi Hishiki

Basics in Genetics. Teruyoshi Hishiki Basics in Genetics Teruyoshi Hishiki Advanced Bioinformatics 10/Apr/2017 1 Contents 1. Human Genetics: an application A case study of Familial Mediterranean Fever (FMF) patients 2. Introduction to human

More information

Linking Genetic Variation to Important Phenotypes: SNPs, CNVs, GWAS, and eqtls

Linking Genetic Variation to Important Phenotypes: SNPs, CNVs, GWAS, and eqtls Linking Genetic Variation to Important Phenotypes: SNPs, CNVs, GWAS, and eqtls BMI/CS 776 www.biostat.wisc.edu/bmi776/ Mark Craven craven@biostat.wisc.edu Spring 2011 1. Understanding Human Genetic Variation!

More information

Gregor Mendel solved the puzzle of heredity

Gregor Mendel solved the puzzle of heredity 11.1 Mendel and the Garden Pea Heredity: the tendency for traits to be passed from parent to offspring heritable features: characters traits are alternative forms of a character Genes Alleles loci Gregor

More information

3I03 - Eukaryotic Genetics Repetitive DNA

3I03 - Eukaryotic Genetics Repetitive DNA Repetitive DNA Satellite DNA Minisatellite DNA Microsatellite DNA Transposable elements LINES, SINES and other retrosequences High copy number genes (e.g. ribosomal genes, histone genes) Multifamily member

More information

Finding the gene for cystic fibrosis. Finding the gene for cystic fibrosis. How to find genetic determinants of naturally varying traits?

Finding the gene for cystic fibrosis. Finding the gene for cystic fibrosis. How to find genetic determinants of naturally varying traits? Fining the gene for cystic fibrosis Fining the gene for cystic fibrosis Why is this in quotes? A. CF is not cause by a gene, it s cause by multiple genes. B. CF is not cause by genetic factors. C. CF is

More information

Huether and McCance: Understanding Pathophysiology, 5 th Edition

Huether and McCance: Understanding Pathophysiology, 5 th Edition Huether and McCance: Understanding Pathophysiology, 5 th Edition Chapter 02: Genes and Genetic Diseases Test Bank MULTIPLE CHOICE 1. A nurse recalls the basic components of DNA are: a. Pentose sugars and

More information

This place covers: Methods or systems for genetic or protein-related data processing in computational molecular biology.

This place covers: Methods or systems for genetic or protein-related data processing in computational molecular biology. G16B BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY Methods or systems for genetic

More information

SENIOR BIOLOGY. Blueprint of life and Genetics: the Code Broken? INTRODUCTORY NOTES NAME SCHOOL / ORGANISATION DATE. Bay 12, 1417.

SENIOR BIOLOGY. Blueprint of life and Genetics: the Code Broken? INTRODUCTORY NOTES NAME SCHOOL / ORGANISATION DATE. Bay 12, 1417. SENIOR BIOLOGY Blueprint of life and Genetics: the Code Broken? NAME SCHOOL / ORGANISATION DATE Bay 12, 1417 Bay number Specimen number INTRODUCTORY NOTES Blueprint of Life In this part of the workshop

More information

This is a closed book, closed note exam. No calculators, phones or any electronic device are allowed.

This is a closed book, closed note exam. No calculators, phones or any electronic device are allowed. MCB 104 MIDTERM #2 October 23, 2013 ***IMPORTANT REMINDERS*** Print your name and ID# on every page of the exam. You will lose 0.5 point/page if you forget to do this. Name KEY If you need more space than

More information

Introduction to Plant Genomics and Online Resources. Manish Raizada University of Guelph

Introduction to Plant Genomics and Online Resources. Manish Raizada University of Guelph Introduction to Plant Genomics and Online Resources Manish Raizada University of Guelph Genomics Glossary http://www.genomenewsnetwork.org/articles/06_00/sequence_primer.shtml Annotation Adding pertinent

More information

Structural variation. Marta Puig Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona

Structural variation. Marta Puig Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona Structural variation Marta Puig Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona Genetic variation How much genetic variation is there between individuals? What type of variants

More information

Unit 10: Genetics. Chapter 9: Read P

Unit 10: Genetics. Chapter 9: Read P Unit 10: Genetics Chapter 9: Read P. 145-167 10.0 Genetics The Definition of Genetics The study of heredity and how traits are passed on through generations. Gregor Mendel: The Father of Genetics Gregor

More information

Concepts of Genetics Ninth Edition Klug, Cummings, Spencer, Palladino

Concepts of Genetics Ninth Edition Klug, Cummings, Spencer, Palladino PowerPoint Lecture Presentation for Concepts of Genetics Ninth Edition Klug, Cummings, Spencer, Palladino Chapter 5 Chromosome Mapping in Eukaryotes Copyright Copyright 2009 Pearson 2009 Pearson Education,

More information

Genomes contain all of the information needed for an organism to grow and survive.

Genomes contain all of the information needed for an organism to grow and survive. Section 3: Genomes contain all of the information needed for an organism to grow and survive. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the components of the

More information

Chapter 5 Genetic Analysis in Cell Biology. (textbook: Molecular Cell Biology 6 ed, Lodish section: )

Chapter 5 Genetic Analysis in Cell Biology. (textbook: Molecular Cell Biology 6 ed, Lodish section: ) Chapter 5 Genetic Analysis in Cell Biology (textbook: Molecular Cell Biology 6 ed, Lodish section: 5.1+5.4-5.5) Understanding gene function: relating function, location, and structure of gene products

More information

Genetics Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Genetics Test. Multiple Choice Identify the choice that best completes the statement or answers the question. Genetics Test Multiple Choice Identify the choice that best completes the statement or answers the question. 41. Situations in which one allele for a gene is not completely dominant over another allele

More information

Einführung in die Genetik

Einführung in die Genetik Einführung in die Genetik Prof. Dr. Kay Schneitz (EBio Pflanzen) http://plantdev.bio.wzw.tum.de schneitz@wzw.tum.de Prof. Dr. Claus Schwechheimer (PlaSysBiol) http://wzw.tum.de/sysbiol claus.schwechheimer@wzw.tum.de

More information

HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007

HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007 MIT OpenCourseWare http://ocw.mit.edu HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Biology 163 Laboratory in Genetics, Final Exam, Dec. 10, 2005

Biology 163 Laboratory in Genetics, Final Exam, Dec. 10, 2005 1 Biology 163 Laboratory in Genetics, Final Exam, Dec. 10, 2005 Honor Pledge: I have neither given nor received any unauthorized help on this exam: Name Printed: Signature: 1. (2 pts) If you see the following

More information

Text Reference: Ch and 12-2

Text Reference: Ch and 12-2 Text Reference: Ch. 12-1 and 12-2 Name Date Block Part I: Short Answer/ Completion 1. What combination of sex chromosomes produces a female? 2. What combination of sex chromosomes produces a male? 3. Which

More information

Basics of Heredity. Heredity and Genetics. Unity and Diversity

Basics of Heredity. Heredity and Genetics. Unity and Diversity Basics of Heredity João Paulo Oliveira Basic Genetics for ART Practitioners ESHRE Campus 2010 Porto, Portugal, 16 April 2010 Organised by the ESHRE Special Interest Group Reproductive Genetics Heredity

More information

Authors: Vivek Sharma and Ram Kunwar

Authors: Vivek Sharma and Ram Kunwar Molecular markers types and applications A genetic marker is a gene or known DNA sequence on a chromosome that can be used to identify individuals or species. Why we need Molecular Markers There will be

More information

Answers to additional linkage problems.

Answers to additional linkage problems. Spring 2013 Biology 321 Answers to Assignment Set 8 Chapter 4 http://fire.biol.wwu.edu/trent/trent/iga_10e_sm_chapter_04.pdf Answers to additional linkage problems. Problem -1 In this cell, there two copies

More information

Familial Breast Cancer

Familial Breast Cancer Familial Breast Cancer SEARCHING THE GENES Samuel J. Haryono 1 Issues in HSBOC Spectrum of mutation testing in familial breast cancer Variant of BRCA vs mutation of BRCA Clinical guideline and management

More information

Your name: BSCI410-LIU/Spring 2007 Homework #2 Due March 27 (Tu), 07

Your name: BSCI410-LIU/Spring 2007 Homework #2 Due March 27 (Tu), 07 BSCI410-LIU/Spring 2007 Homework #2 Due March 27 (Tu), 07 KEY 1. What are each of the following molecular markers? (Indicate (a) what they stand for; (b) the nature of the molecular polymorphism and (c)

More information

Non-Mendelian Inheritance

Non-Mendelian Inheritance Non-Mendelian Inheritance Objectives Predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses and non-mendelian inheritance (TEKS 6F) Background Information

More information

AP Biology Review Chapters Review Questions Chapter 11: Mendelian Patterns of Inheritance Chapter 12: Molecular Biology of the Gene

AP Biology Review Chapters Review Questions Chapter 11: Mendelian Patterns of Inheritance Chapter 12: Molecular Biology of the Gene AP Biology Review Chapters 11-12 Review Questions Chapter 11: Mendelian Patterns of Inheritance a) Know genotypes and phenotypes of a monohybrid cross in the P, F1, and F2 generations. Be familiar with

More information

This pedigree shows a family affected by an autosomal dominant genetic disease. Genotypes for five markers, A through E, are shown

This pedigree shows a family affected by an autosomal dominant genetic disease. Genotypes for five markers, A through E, are shown Molecular Genetics Exam 3 Key page 1 of 5 This pedigree shows a family affected by an autosomal dominant genetic disease. Genotypes for five markers, A through E, are shown I 1 2 II 1 2 III The genotypes

More information

Introduction to Genetics and Pharmacogenomics

Introduction to Genetics and Pharmacogenomics Introduction to Genetics and Pharmacogenomics Ching-Lung Cheung, PhD Assistant Professor, Department of Pharmacology and Pharmacy, Centre for Genomic Sciences, HKU Survey on pharmacogenomic knowledge Survey

More information

Human Genetics. Final examination Practical Part

Human Genetics. Final examination Practical Part 1. Define the terms. Give examples: Gene imprinting Aneuploidy Balanced chromosomal aberration Unbalanced chromosomal aberration Reproduction disorder Anticipation HDNB Genetic disease Cancerogenesis Monofactoriale

More information

Practical Part. 1. Define the terms. Give examples:

Practical Part. 1. Define the terms. Give examples: Practical Part Human Genetics. Final examination 2015 1. Define the terms. Give examples: Allele Allele heterogeneity Amorphic gene Aneuploid gamete Aneuploide clone Aneuploidy Anticipation Autosomal gene

More information

5/18/2017. Genotypic, phenotypic or allelic frequencies each sum to 1. Changes in allele frequencies determine gene pool composition over generations

5/18/2017. Genotypic, phenotypic or allelic frequencies each sum to 1. Changes in allele frequencies determine gene pool composition over generations Topics How to track evolution allele frequencies Hardy Weinberg principle applications Requirements for genetic equilibrium Types of natural selection Population genetic polymorphism in populations, pp.

More information

Danika Bannasch DVM PhD. School of Veterinary Medicine University of California Davis

Danika Bannasch DVM PhD. School of Veterinary Medicine University of California Davis Genetics 101 Danika Bannasch DVM PhD Maxine Adler Endowed Chair in Genetics School of Veterinary Medicine University of California Davis Outline Basic genetics: The Rules Not so basic genetics: The exceptions

More information

I.1 The Principle: Identification and Application of Molecular Markers

I.1 The Principle: Identification and Application of Molecular Markers I.1 The Principle: Identification and Application of Molecular Markers P. Langridge and K. Chalmers 1 1 Introduction Plant breeding is based around the identification and utilisation of genetic variation.

More information

BICD100 Midterm (10/27/10) KEY

BICD100 Midterm (10/27/10) KEY BICD100 Midterm (10/27/10) KEY 1. Variation in tail length is characteristic of some dog breeds, such as Pembroke Welsh Corgis, which sometimes show a bob tail (short tail) phenotype (see illustration

More information

Heritable Diseases. Lecture 2 Linkage Analysis. Genetic Markers. Simple Assumed Example. Definitions. Genetic Distance

Heritable Diseases. Lecture 2 Linkage Analysis. Genetic Markers. Simple Assumed Example. Definitions. Genetic Distance Lecture 2 Linkage Analysis Jurg Ott Heritable Diseases Diseases may run in families why? Infections can be passed from one family member to another Genes also run in families Genetic Markers Loci that

More information

Index. Index 377. ASH, see Allele-specific hybridization

Index. Index 377. ASH, see Allele-specific hybridization Index 377 Index A Allele-specific hybridization (ASH), genotyping principles, 14, 15 Amplification refractory mutation system-polymerase chain reaction (ARMS-PCR), cystic fibrosis diagnosis, amplification,

More information

From Genotype to Phenotype

From Genotype to Phenotype From Genotype to Phenotype Johanna Vilkki Green technology, Natural Resources Institute Finland Systems biology Genome Transcriptome genes mrna Genotyping methodology SNP TOOLS, WG SEQUENCING Functional

More information