STUDIES TOWARDS THE PRODUCTION OF PHARMACEUTICALLY IMPORTANT PROTEIN IGF-1 IN TOBACCO (Nicotina tobaccum)

Size: px
Start display at page:

Download "STUDIES TOWARDS THE PRODUCTION OF PHARMACEUTICALLY IMPORTANT PROTEIN IGF-1 IN TOBACCO (Nicotina tobaccum)"

Transcription

1 STUDIES TOWARDS THE PRODUCTION OF PHARMACEUTICALLY IMPORTANT PROTEIN IGF-1 IN TOBACCO (Nicotina tobaccum) M. Kajan S 9962 Dissertation submitted to the Department of Chemistry in partial fulfillment of the requirement for the B.Sc. General Degree in Biochemistry & Molecular Biology Department of Chemistry, University of Colombo, Colombo 03, Sri Lanka. [February 2014]

2 DECLARATION OF AUTHORSHIP I certify that this dissertation does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university and to the best of my knowledge and belief it does not contain any material previously published or written or orally communicated by another person except where due references is made in the text.... M. Kajan Date Department of Chemistry, University of Colombo. To the best of my/our knowledge the above particulars are correct.... Supervisor Date Dr. N. V. Chandrasekharan Senior lecturer, Department of Chemistry, University of Colombo.... Supervisor Date Dr. C. M. Hettiarachchi Senior lecturer, Department of Chemistry, University of Colombo. ii

3 ABSTRACT Human recombinant Insulin-Like Growth Factor-1 is a pharmaceutically important protein which is used to treat secondary growth failures such as growth hormone insensitivity / Laron syndrome. Human IGF-1 is a 70 amino acid long protein molecule in active form that is secreted in response to growth hormone signal in the Liver and promotes functions in the body relevant to growth and development. Recombinant Human IGF-1 is called Mecasermin and sold under the trade name Increlex or Iplex and is usually produced in Escherichia Coli. It s a FDA approved drug. IGF-1 produced by recombinant DNA technology in Escherichia Coli is expensive and a 40 mg vial of Increlex injections cost about 230 US dollars. Producing important proteins in transgenic plants makes the production fold less expensive than producing in bacteria depending on the protein structure, compatibility with the producing plant system and the types of post-translational modifications that take place to the protein structure. The aim of this research was to produce low cost recombinant IGF-1. Total RNA was extracted from human whole blood using Tricol reagent, reverse transcribed and then the IGF-1 cdna was amplified using PCR. Tobacco Ribulose-1,5- bisphosphate small subunit genes chloroplast transit peptide (CTP) was amplified using PCR from genomic DNA. Amplified CTP region was fused with the IGF-1 gene ligated to pgem-t easy vector and transformed into E.Coli JM109 strain. PCR amplified IGF-1 gene using Pfu DNA polymerase was cloned into the pet-28a vector and transformed into the E.coli JM109 bacterial strain for the expression of recombinant protein inside E.coli BL21 bacterial strain. In this study CTP, IGF-1 fused coding sequence was successfully cloned into pgem-t easy vector and then IGF-1 coding region was cloned into pet-28a vector. iii

4 ACKNOWLEDGEMENTS I would like to take the opportunity and thank all the people who spent their time and shared their knowledge to help me to complete this research. This research would not have been possible without their essential and gracious support. I wish to express my most profound gratitude to my supervisors Dr. N. V. Chandrasekharan & Dr. C. M. Hettiarachchi for their inspiring guidance, constant encouragement and support given to me so that this dissertation became a reality. Without their guidance and persistent help this dissertation would not have been possible. I also thank Mr. Palitha Harasgama and Mr. M. N. Wickramanayake of the Biotechnology Laboratory and all the other technical staff in the Department of Chemistry, University of Colombo, who helped me in my work. I take this opportunity to record my sincere thanks to all postgraduate students of Biotechnology laboratory, Department of Chemistry, University of Colombo for their friendly support & guidance they have provided whenever I struggled to accomplish any tasks. I sincerely thank my colleagues for their continuous help, support and advices which made this report a success. iv

5 TABLE OF CONTENTS COVER PAGE DECLARATION OF AUTHORSHIP ABSTRACT ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES ABBREVIATIONS i ii iii iv v ix xi xii CHAPTER 1 INTRODUCTION Introduction to Insulin-like growth factors IGF-I IGF-II IGF Receptors IGF Binding Proteins (IGFBPs) Physiology of IGF Chemical Structure of IGF Roles of IGF Contributing to aging Neuropathy Diabetes Healing Potential Kidney Diseases Osteoporosis Osteoarthritis 13 v

6 1.4.8 Atherosclerosis Dwarfism Role in sports Transformation of foreign gens in plants Molecular Mechanism of Agrobacterium-mediated gene transfer Bacteriology, Host Range and Opines Tumor-inducing (Ti) Plasmid Transfer DNA (T-DNA) of Ti Plasmid Induction of vir Gene Expression Pili Formation T-complex, an Intermediate of T-DNA Transfer Binary Vectors of Ti Plasmid Factors to Increase Gene Expression and Transformation Efficiency Tobacco as an expression host Downstream processing Why IGF-1 in tobacco? Recombinant protein targeting into chloroplasts 26 CHAPTER 2 - INSTRUMENTS AND METHODOLOGY Instruments & Equipments Materials Methodology Designing of primers for PCR amplification Primers for amplification of Human IGF Primers for amplification of Tobacco CTP coding sequence 30 vi

7 2.3.2 Sterilization Solutions Preparation Total RNA Extraction from Blood (Mini scale) Total RNA Extraction from Blood (Large scale) Analysis of Isolated RNA Non denaturing agarose gel electrophoresis of total RNA First strand cdna synthesis PCR amplification PCR amplification of human IGF-1 gene PCR amplification of Tobacco CTP region of ribulose- 1,5-Bisphosphate carboxylase small subunit gene Fusion PCR amplification of CTP-human IGF Column Elution of PCR product using Wizard SV Gel and PCR Clean-Up System Cloning and Transformation with pgem-t easy vector Plasmid isolation and DNA sequencing of positive Cloning and transformation with pet-28 vector 47 CHAPTER 3 - RESULTS AND DISCUSSION Non denaturing agarose gel electrophoresis of total RNA PCR amplification of human IGF-1 gene PCR amplification of Tobacco CTP region of ribulose-1,5-bisphosphate carboxylase (RuBisCO) small subunit gene Fusion PCR amplification of CTP-human IGF Cloning and Transformation with pgem-t easy vector Plasmid isolation and DNA sequencing of positive pet-28a plasmid vector Isolation and Confirmation 63 vii

8 3.8 Preparing insert and vector Cloning and transformation 66 CONCLUSION 68 FUTURE WORK 69 ANNEXURE 70 REFERENCES 89 viii

9 LIST OF FIGURES Figure 1.1 Chromosomal Location of Human IGF-1 Figure 1.2 Structurally related Insulin Receptor and IGF-1 Receptor Figure 1.3 Origin of IGF-1 and its main functions in human Figure 1.4 IGF-1 and IGF-I receptors, their main downstream pathways Figure 1.5 IGF1 expression levels in normal human tissues Figure 1.6 2D Structural Comparison of IGF-1, Pro Insulin and Insulin Figure 1.7 Regions of immature IGF-1 Figure 1.8 The 3D structure of IGF-1 Figure 1.9 Insulin/IGF1 signaling pathways in the regulation of ageing Figure 1.10 Reduced IGF1 signalling is related to the classic 'rate of living' hypothesis. Figure 1.11 IGF-1 receptor targeting: cancer therapeutic strategies Figure 1.12 Octopine type Ti-Plasmid Figure 1.13 Agrobacterium-mediated Transformation Figure 3.2 Gel image of PCR amplified Human G6PD Figure 3.3 Construct of IGF-1 PCR product including elements added using primers Figure 3.4 PCR amplification of IGF-1 using rhigf-1 primers and reverse transcribed total RNA from human blood Figure 3.5 Construct of RuBisCO CTP PCR product including elements added using primers Figure 3.6 PCR amplification of RuBisCO CTP using CTP primers Figure 3.7 Construct of Fusion PCR product Figure 3.8 Gel picture of Fusion PCR product with DNA markers Figure 3.9 Grid Plate after Transformation to JM109 Figure 3.10 Gel picture of Colony PCR products Figure 3.11 Gel picture of Isolated Plasmid DNA before and after the RNase Treatment ix

10 Figure 3.12 Gel picture of EcoRI Restriction digested putative pgem-t recombinant clone Figure 3.13 Spot gel with spotted Plasmid DNA and concentration marker Figure 3.14 Gel picture of digested and undigested pet-28a vector Figure 3.15 Undigested and XbaI digested pet-28a vector Figure 3.16 Pfu DNA polymerase amplified IGF-1 and 200bp marker Figure 3.17 Prepared pet-28a vector and insert before gel elution Figure 3.18 Spot gel with spotted concentration markers, prepared vector and Insert Figure 3.19 Spread plate of transformation mixture and grid plate prepared from spread plate x

11 LIST OF TABLES Table 1.1 Characteristics of the six IGFBPs Table 2.1 Reaction setup for first strand cdna synthesis using oligo dt primers. Table 2.2 PCR reaction mixture to amplify 210bp region of Human IGF-1 cdna Table 2.3 Optimized PCR thermo cycle parameters for amplifying IGF-1 using rhigf-1 Primers Table 2.4 PCR reaction mixture to amplify 168bp region of tobacco gdna. Table 2.5 Optimized PCR thermo cycle parameters for amplifying Tobacco CTP using CTP primers Table 2.6 PCR reaction mixture to amplify 427bp Fused genes. Table 2.7 Optimized PCR thermo-cycle parameters for fusing IGF-1 and CTP Table 2.8 Constituents of Ligation mixture Table 2.9 PCR reaction mixture to amplify the insert inside the bacterial colony. Table 2.10 Optimized PCR thermo cycle parameters for Colony PCR Table 2.11 Restriction Digestion of putative pgem-t recombinant clone Table 2.12 Restriction Digestion setup for cleaving pet-28a Table 2.13 Xba1 Restriction Digestion of pet-28a Table 2.14 Blunting Xba1 Digested pet-28a Table 2.15 BamHI Restriction Digestion of Blunted pet-28a Table 2.16 PCR amplification of IGF-1 from pgem-t Clone Table 2.17 Optimized PCR thermo cycle parameters for Pfu polymerase Table 2.18 Restriction Digestion with BamHI Table 2.19 Constituents of pet-28 Ligation mixture xi

12 ABBREVIATIONS A Adenine aa Amino acids Amp r Ampicillin resistant gene ATP Adenosine triphosphate BLAST Basic local alignment search tool bp Base pairs BP Binding Protein BSA Bovine serum albumin CaMV Cauliflower Mosaic Virus C-terminal Carboxyl (COOH)-terminal CTP Chloroplast Transit Peptide cdna Complementary deoxyribonucleic acids DMSO Dimethyl sulfoxide DNA Deoxy-ribo Nucleic Acid EC Additional bases required for efficient cut EDTA Ethylene Diamine Tetra Acetic acid EGF Epidermal growth factor ELISA Enzyme Linked Immunosorbent Assay ER Endoplasmic reticulum EtBr Ethidium Bromide G Guanine GH Growth Hormone GFP Green Fluorescent Protein GUS β-1,4-glucuronidase xii

13 HPT Hygromycin Phosphotransferase IGF Insulin-like Growth Factor IGFBP Insulin-like growth factor binding protein IGFR Insulin like growth factor receptor IPTG Isopropyl β-d-thiogalactopyranoside or Isopropyl thiogalactoside kb Kilo bases LB Luria Bertani MAP Mitogen-activated protein mrna Messenger ribonucleic acids NPTII Neomycin Phosphotransferase II NSILA Non-suppressible insulin-like activity PAGE Polyacrylamide-gel electrophoresis PBS Phosphate buffered saline PCR Polymerase chain reaction rpm Revolutions per minute RT-PCR Reverse transcriptase polymerase chain reaction RuBisCO Ribulose 1, 5-bisphosphate carboxylase SD Standard Deviation SDS Sodium dodecyl Sulfate T Thymine T-DNA Transfer-DNA T-Pilus Transfer Pilus TBE Tris Boric EDTA TE Tris EDTA Ti plasmid Tumor-Inducing Plasmid xiii

14 Tra protein T-DNA transfer protein UV Ultra Violet vir gene Virulence Gene X-Gal 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside xiv

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere

More information

BIOTECHNOLOGY. Sticky & blunt ends. Restriction endonucleases. Gene cloning an overview. DNA isolation & restriction

BIOTECHNOLOGY. Sticky & blunt ends. Restriction endonucleases. Gene cloning an overview. DNA isolation & restriction BIOTECHNOLOGY RECOMBINANT DNA TECHNOLOGY Recombinant DNA technology involves sticking together bits of DNA from different sources. Made possible because DNA & the genetic code are universal. 2004 Biology

More information

Molecular Cell Biology - Problem Drill 11: Recombinant DNA

Molecular Cell Biology - Problem Drill 11: Recombinant DNA Molecular Cell Biology - Problem Drill 11: Recombinant DNA Question No. 1 of 10 1. Which of the following statements about the sources of DNA used for molecular cloning is correct? Question #1 (A) cdna

More information

Chapter 20 Recombinant DNA Technology. Copyright 2009 Pearson Education, Inc.

Chapter 20 Recombinant DNA Technology. Copyright 2009 Pearson Education, Inc. Chapter 20 Recombinant DNA Technology Copyright 2009 Pearson Education, Inc. 20.1 Recombinant DNA Technology Began with Two Key Tools: Restriction Enzymes and DNA Cloning Vectors Recombinant DNA refers

More information

Reading Lecture 8: Lecture 9: Lecture 8. DNA Libraries. Definition Types Construction

Reading Lecture 8: Lecture 9: Lecture 8. DNA Libraries. Definition Types Construction Lecture 8 Reading Lecture 8: 96-110 Lecture 9: 111-120 DNA Libraries Definition Types Construction 142 DNA Libraries A DNA library is a collection of clones of genomic fragments or cdnas from a certain

More information

2014 Pearson Education, Inc. CH 8: Recombinant DNA Technology

2014 Pearson Education, Inc. CH 8: Recombinant DNA Technology CH 8: Recombinant DNA Technology Biotechnology the use of microorganisms to make practical products Recombinant DNA = DNA from 2 different sources What is Recombinant DNA Technology? modifying genomes

More information

Chapter 10 Genetic Engineering: A Revolution in Molecular Biology

Chapter 10 Genetic Engineering: A Revolution in Molecular Biology Chapter 10 Genetic Engineering: A Revolution in Molecular Biology Genetic Engineering Direct, deliberate modification of an organism s genome bioengineering Biotechnology use of an organism s biochemical

More information

B. Incorrect! Ligation is also a necessary step for cloning.

B. Incorrect! Ligation is also a necessary step for cloning. Genetics - Problem Drill 15: The Techniques in Molecular Genetics No. 1 of 10 1. Which of the following is not part of the normal process of cloning recombinant DNA in bacteria? (A) Restriction endonuclease

More information

CH 8: Recombinant DNA Technology

CH 8: Recombinant DNA Technology CH 8: Recombinant DNA Technology Biotechnology the use of microorganisms to make practical products Recombinant DNA = DNA from 2 different sources What is Recombinant DNA Technology? modifying genomes

More information

2054, Chap. 14, page 1

2054, Chap. 14, page 1 2054, Chap. 14, page 1 I. Recombinant DNA technology (Chapter 14) A. recombinant DNA technology = collection of methods used to perform genetic engineering 1. genetic engineering = deliberate modification

More information

The Biotechnology Toolbox

The Biotechnology Toolbox Chapter 15 The Biotechnology Toolbox Cutting and Pasting DNA Cutting DNA Restriction endonuclease or restriction enzymes Cellular protection mechanism for infected foreign DNA Recognition and cutting specific

More information

BIOTECHNOLOGY : PRINCIPLES AND PROCESSES

BIOTECHNOLOGY : PRINCIPLES AND PROCESSES CHAPTER 11 BIOTECHNOLOGY : PRINCIPLES AND PROCESSES POINTS TO REMEMBER Bacteriophage : A virus that infects bacteria. Bioreactor : A large vessel in which raw materials are biologically converted into

More information

Design. Construction. Characterization

Design. Construction. Characterization Design Construction Characterization DNA mrna (messenger) A C C transcription translation C A C protein His A T G C T A C G Plasmids replicon copy number incompatibility selection marker origin of replication

More information

Computational Biology 2. Pawan Dhar BII

Computational Biology 2. Pawan Dhar BII Computational Biology 2 Pawan Dhar BII Lecture 1 Introduction to terms, techniques and concepts in molecular biology Molecular biology - a primer Human body has 100 trillion cells each containing 3 billion

More information

Biotechnology. Biotechnology is difficult to define but in general it s the use of biological systems to solve problems.

Biotechnology. Biotechnology is difficult to define but in general it s the use of biological systems to solve problems. MITE 2 S Biology Biotechnology Summer 2004 Austin Che Biotechnology is difficult to define but in general it s the use of biological systems to solve problems. Recombinant DNA consists of DNA assembled

More information

XXII DNA cloning and sequencing. Outline

XXII DNA cloning and sequencing. Outline XXII DNA cloning and sequencing 1) Deriving DNA for cloning Outline 2) Vectors; forming recombinant DNA; cloning DNA; and screening for clones containing recombinant DNA [replica plating and autoradiography;

More information

Chapter 4. Recombinant DNA Technology

Chapter 4. Recombinant DNA Technology Chapter 4 Recombinant DNA Technology 5. Plasmid Cloning Vectors Plasmid Plasmids Self replicating Double-stranded Mostly circular DNA ( 500 kb) Linear : Streptomyces, Borrelia burgdorferi Replicon

More information

PLNT2530 (2018) Unit 6b Sequence Libraries

PLNT2530 (2018) Unit 6b Sequence Libraries PLNT2530 (2018) Unit 6b Sequence Libraries Molecular Biotechnology (Ch 4) Analysis of Genes and Genomes (Ch 5) Unless otherwise cited or referenced, all content of this presenataion is licensed under the

More information

Recombinant DNA Technology. The Role of Recombinant DNA Technology in Biotechnology. yeast. Biotechnology. Recombinant DNA technology.

Recombinant DNA Technology. The Role of Recombinant DNA Technology in Biotechnology. yeast. Biotechnology. Recombinant DNA technology. PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 8 Recombinant DNA Technology The Role of Recombinant DNA Technology in Biotechnology Biotechnology?

More information

Selected Techniques Part I

Selected Techniques Part I 1 Selected Techniques Part I Gel Electrophoresis Can be both qualitative and quantitative Qualitative About what size is the fragment? How many fragments are present? Is there in insert or not? Quantitative

More information

Molecular Cloning. Genomic DNA Library: Contains DNA fragments that represent an entire genome. cdna Library:

Molecular Cloning. Genomic DNA Library: Contains DNA fragments that represent an entire genome. cdna Library: Molecular Cloning Genomic DNA Library: Contains DNA fragments that represent an entire genome. cdna Library: Made from mrna, and represents only protein-coding genes expressed by a cell at a given time.

More information

Figure 1. Map of cloning vector pgem T-Easy (bacterial plasmid DNA)

Figure 1. Map of cloning vector pgem T-Easy (bacterial plasmid DNA) Texas A&M University-Corpus Christi CHEM4402 Biochemistry II Laboratory Laboratory 6: Ligation & Bacterial Transformation (Bring your text and laptop to class if you wish to work on your assignment during

More information

CHAPTER 9 DNA Technologies

CHAPTER 9 DNA Technologies CHAPTER 9 DNA Technologies Recombinant DNA Artificially created DNA that combines sequences that do not occur together in the nature Basis of much of the modern molecular biology Molecular cloning of genes

More information

Basics of Recombinant DNA Technology Biochemistry 302. March 5, 2004 Bob Kelm

Basics of Recombinant DNA Technology Biochemistry 302. March 5, 2004 Bob Kelm Basics of Recombinant DNA Technology Biochemistry 302 March 5, 2004 Bob Kelm Applications of recombinant DNA technology Mapping and identifying genes (DNA cloning) Propagating genes (DNA subcloning) Modifying

More information

7.02 Recombinant DNA Methods Spring 2005 Exam Study Questions Answer Key

7.02 Recombinant DNA Methods Spring 2005 Exam Study Questions Answer Key MIT Department of Biology 7.02 Experimental Biology & Communication, Spring 2005 7.02/10.702 Spring 2005 RDM Exam Study Questions 7.02 Recombinant DNA Methods Spring 2005 Exam Study Questions Answer Key

More information

Genetic Engineering & Recombinant DNA

Genetic Engineering & Recombinant DNA Genetic Engineering & Recombinant DNA Chapter 10 Copyright The McGraw-Hill Companies, Inc) Permission required for reproduction or display. Applications of Genetic Engineering Basic science vs. Applied

More information

BIOLOGY - CLUTCH CH.20 - BIOTECHNOLOGY.

BIOLOGY - CLUTCH CH.20 - BIOTECHNOLOGY. !! www.clutchprep.com CONCEPT: DNA CLONING DNA cloning is a technique that inserts a foreign gene into a living host to replicate the gene and produce gene products. Transformation the process by which

More information

Lecture Four. Molecular Approaches I: Nucleic Acids

Lecture Four. Molecular Approaches I: Nucleic Acids Lecture Four. Molecular Approaches I: Nucleic Acids I. Recombinant DNA and Gene Cloning Recombinant DNA is DNA that has been created artificially. DNA from two or more sources is incorporated into a single

More information

7.1 Techniques for Producing and Analyzing DNA. SBI4U Ms. Ho-Lau

7.1 Techniques for Producing and Analyzing DNA. SBI4U Ms. Ho-Lau 7.1 Techniques for Producing and Analyzing DNA SBI4U Ms. Ho-Lau What is Biotechnology? From Merriam-Webster: the manipulation of living organisms or their components to produce useful usually commercial

More information

3 Designing Primers for Site-Directed Mutagenesis

3 Designing Primers for Site-Directed Mutagenesis 3 Designing Primers for Site-Directed Mutagenesis 3.1 Learning Objectives During the next two labs you will learn the basics of site-directed mutagenesis: you will design primers for the mutants you designed

More information

Contents... vii. List of Figures... xii. List of Tables... xiv. Abbreviatons... xv. Summary... xvii. 1. Introduction In vitro evolution...

Contents... vii. List of Figures... xii. List of Tables... xiv. Abbreviatons... xv. Summary... xvii. 1. Introduction In vitro evolution... vii Contents Contents... vii List of Figures... xii List of Tables... xiv Abbreviatons... xv Summary... xvii 1. Introduction...1 1.1 In vitro evolution... 1 1.2 Phage Display Technology... 3 1.3 Cell surface

More information

Expression of spider silk and spider silk-like proteins in potato and tobacco

Expression of spider silk and spider silk-like proteins in potato and tobacco Expression of spider silk and spider silk-like proteins in potato and tobacco Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen

More information

Multiple choice questions (numbers in brackets indicate the number of correct answers)

Multiple choice questions (numbers in brackets indicate the number of correct answers) 1 Multiple choice questions (numbers in brackets indicate the number of correct answers) February 1, 2013 1. Ribose is found in Nucleic acids Proteins Lipids RNA DNA (2) 2. Most RNA in cells is transfer

More information

STANDARD CLONING PROCEDURES. Shotgun cloning (using a plasmid vector and E coli as a host).

STANDARD CLONING PROCEDURES. Shotgun cloning (using a plasmid vector and E coli as a host). STANDARD CLONING PROCEDURES Shotgun cloning (using a plasmid vector and E coli as a host). 1) Digest donor DNA and plasmid DNA with the same restriction endonuclease 2) Mix the fragments together and treat

More information

Bootcamp: Molecular Biology Techniques and Interpretation

Bootcamp: Molecular Biology Techniques and Interpretation Bootcamp: Molecular Biology Techniques and Interpretation Bi8 Winter 2016 Today s outline Detecting and quantifying nucleic acids and proteins: Basic nucleic acid properties Hybridization PCR and Designing

More information

DNA PURIFICATION KITS PLASMID DNA ISOLATION

DNA PURIFICATION KITS PLASMID DNA ISOLATION LIST -NEW v.01-02- DNA PURIFICATION KITS PLASMID DNA ISOLATION Plasmid Mini ultrapure, high and medium copy number plasmid DNA isolation from 1.5-3 ml of bacteria culture PURIFICATION TECHNOLOGY SM 020-50

More information

M Keramatipour 2. M Keramatipour 1. M Keramatipour 4. M Keramatipour 3. M Keramatipour 5. M Keramatipour

M Keramatipour 2. M Keramatipour 1. M Keramatipour 4. M Keramatipour 3. M Keramatipour 5. M Keramatipour Molecular Cloning Methods Mohammad Keramatipour MD, PhD keramatipour@tums.ac.ir Outline DNA recombinant technology DNA cloning co Cell based PCR PCR-based Some application of DNA cloning Genomic libraries

More information

Biotechnology and DNA Technology

Biotechnology and DNA Technology 11/27/2017 PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College CHAPTER 9 Biotechnology and DNA Technology Introduction to Biotechnology Learning Objectives Compare

More information

Molecular Genetics Techniques. BIT 220 Chapter 20

Molecular Genetics Techniques. BIT 220 Chapter 20 Molecular Genetics Techniques BIT 220 Chapter 20 What is Cloning? Recombinant DNA technologies 1. Producing Recombinant DNA molecule Incorporate gene of interest into plasmid (cloning vector) 2. Recombinant

More information

AGRO/ANSC/BIOL/GENE/HORT 305 Fall, 2017 Recombinant DNA Technology (Chpt 20, Genetics by Brooker) Lecture outline: (#14)

AGRO/ANSC/BIOL/GENE/HORT 305 Fall, 2017 Recombinant DNA Technology (Chpt 20, Genetics by Brooker) Lecture outline: (#14) AGRO/ANSC/BIOL/GENE/HORT 305 Fall, 2017 Recombinant DNA Technology (Chpt 20, Genetics by Brooker) Lecture outline: (#14) - RECOMBINANT DNA TECHNOLOGY is the use of in vitro molecular techniques to isolate

More information

Chapter 8: Recombinant DNA. Ways this technology touches us. Overview. Genetic Engineering

Chapter 8: Recombinant DNA. Ways this technology touches us. Overview. Genetic Engineering Chapter 8 Recombinant DNA and Genetic Engineering Genetic manipulation Ways this technology touches us Criminal justice The Justice Project, started by law students to advocate for DNA testing of Death

More information

Chapter 10 (Part II) Gene Isolation and Manipulation

Chapter 10 (Part II) Gene Isolation and Manipulation Biology 234 J. G. Doheny Chapter 10 (Part II) Gene Isolation and Manipulation Practice Questions: Answer the following questions with one or two sentences. 1. What does PCR stand for? 2. What does the

More information

Development of Positive Control for Hepatitis B Virus

Development of Positive Control for Hepatitis B Virus Human Journals Research Article December 2015 Vol.:2, Issue:2 All rights are reserved by Saurabh Bandhavkar et al. Development of Positive Control for Hepatitis B Virus Keywords: Hepatitis B virus, pbluescript,

More information

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning Section A: DNA Cloning 1. DNA technology makes it possible to clone genes for basic research and commercial applications: an overview 2. Restriction enzymes are used to make recombinant DNA 3. Genes can

More information

Synthetic Biology for

Synthetic Biology for Synthetic Biology for Plasmids and DNA Digestion Plasmids Plasmids are small DNA molecules that are separate from chromosomal DNA They are most commonly found as double stranded, circular DNA Typical plasmids

More information

Cat # Box1 Box2. DH5a Competent E. coli cells CCK-20 (20 rxns) 40 µl 40 µl 50 µl x 20 tubes. Choo-Choo Cloning TM Enzyme Mix

Cat # Box1 Box2. DH5a Competent E. coli cells CCK-20 (20 rxns) 40 µl 40 µl 50 µl x 20 tubes. Choo-Choo Cloning TM Enzyme Mix Molecular Cloning Laboratories User Manual Version 3.3 Product name: Choo-Choo Cloning Kits Cat #: CCK-10, CCK-20, CCK-096, CCK-384 Description: Choo-Choo Cloning is a highly efficient directional PCR

More information

Hetero-Stagger PCR Cloning Kit

Hetero-Stagger PCR Cloning Kit Product Name: Code No: Size: DynaExpress Hetero-Stagger PCR Cloning Kit DS150 20 reactions Kit Components: Box 1 (-20 ) phst-1 Vector, linearized Annealing Buffer Ligase Mixture phst Forward Sequence Primer

More information

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 20 Biotechnology PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

Chapter 20 Biotechnology

Chapter 20 Biotechnology Chapter 20 Biotechnology Manipulation of DNA In 2007, the first entire human genome had been sequenced. The ability to sequence an organisms genomes were made possible by advances in biotechnology, (the

More information

Recitation CHAPTER 9 DNA Technologies

Recitation CHAPTER 9 DNA Technologies Recitation CHAPTER 9 DNA Technologies DNA Cloning: General Scheme A cloning vector and eukaryotic chromosomes are separately cleaved with the same restriction endonuclease. (A single chromosome is shown

More information

Lecture 22: Molecular techniques DNA cloning and DNA libraries

Lecture 22: Molecular techniques DNA cloning and DNA libraries Lecture 22: Molecular techniques DNA cloning and DNA libraries DNA cloning: general strategy -> to prepare large quantities of identical DNA Vector + DNA fragment Recombinant DNA (any piece of DNA derived

More information

The study of the structure, function, and interaction of cellular proteins is called. A) bioinformatics B) haplotypics C) genomics D) proteomics

The study of the structure, function, and interaction of cellular proteins is called. A) bioinformatics B) haplotypics C) genomics D) proteomics Human Biology, 12e (Mader / Windelspecht) Chapter 21 DNA Which of the following is not a component of a DNA molecule? A) a nitrogen-containing base B) deoxyribose sugar C) phosphate D) phospholipid Messenger

More information

Genetics Lecture 21 Recombinant DNA

Genetics Lecture 21 Recombinant DNA Genetics Lecture 21 Recombinant DNA Recombinant DNA In 1971, a paper published by Kathleen Danna and Daniel Nathans marked the beginning of the recombinant DNA era. The paper described the isolation of

More information

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 20 Biotechnology PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

MOLECULAR BIOLOGY GREATEST HITS. Marketplace. Essentials Tour molecular biology. thermofisher.com/marketplace

MOLECULAR BIOLOGY GREATEST HITS. Marketplace. Essentials Tour molecular biology. thermofisher.com/marketplace molecular biology Marketplace MOLECULAR BIOLOGY GREATEST HITS Special offers on Thermo Scientific products: Cloning kits Restriction and modifying enzymes IPTG and X-Gal DNA ladders Agarose tablets Nucleic

More information

Recombinant DNA Technology

Recombinant DNA Technology History of recombinant DNA technology Recombinant DNA Technology (DNA cloning) Majid Mojarrad Recombinant DNA technology is one of the recent advances in biotechnology, which was developed by two scientists

More information

Molecular Genetics II - Genetic Engineering Course (Supplementary notes)

Molecular Genetics II - Genetic Engineering Course (Supplementary notes) 1 von 12 21.02.2015 15:13 Molecular Genetics II - Genetic Engineering Course (Supplementary notes) Figures showing examples of cdna synthesis (currently 11 figures) cdna is a DNA copy synthesized from

More information

Computational Biology I LSM5191

Computational Biology I LSM5191 Computational Biology I LSM5191 Lecture 5 Notes: Genetic manipulation & Molecular Biology techniques Broad Overview of: Enzymatic tools in Molecular Biology Gel electrophoresis Restriction mapping DNA

More information

DNA REPLICATION & BIOTECHNOLOGY Biology Study Review

DNA REPLICATION & BIOTECHNOLOGY Biology Study Review DNA REPLICATION & BIOTECHNOLOGY Biology Study Review DNA DNA is found in, in the nucleus. It controls cellular activity by regulating the production of, which includes It is a very long molecule made up

More information

Biotechnolog y and DNA Technology

Biotechnolog y and DNA Technology PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 9 Biotechnolog y and DNA Technology Introduction to Biotechnology Biotechnology: the use of microorganisms,

More information

Contents. 1 Basic Molecular Microbiology of Bacteria... 1 Exp. 1.1 Isolation of Genomic DNA Introduction Principle...

Contents. 1 Basic Molecular Microbiology of Bacteria... 1 Exp. 1.1 Isolation of Genomic DNA Introduction Principle... Contents 1 Basic Molecular Microbiology of Bacteria... 1 Exp. 1.1 Isolation of Genomic DNA... 1 Introduction... 1 Principle... 1 Reagents Required and Their Role... 2 Procedure... 3 Observation... 4 Result

More information

Edexcel (B) Biology A-level

Edexcel (B) Biology A-level Edexcel (B) Biology A-level Topic 7: Modern Genetics Notes Using Gene Sequencing Genome = all of an organism s DNA, including mitochondrial/chloroplast DNA. Polymerase chain reaction (PCR) is used to amplify

More information

Recombinant DNA recombinant DNA DNA cloning gene cloning

Recombinant DNA recombinant DNA DNA cloning gene cloning DNA Technology Recombinant DNA In recombinant DNA, DNA from two different sources, often two species, are combined into the same DNA molecule. DNA cloning permits production of multiple copies of a specific

More information

DNA Technology. Asilomar Singer, Zinder, Brenner, Berg

DNA Technology. Asilomar Singer, Zinder, Brenner, Berg DNA Technology Asilomar 1973. Singer, Zinder, Brenner, Berg DNA Technology The following are some of the most important molecular methods we will be using in this course. They will be used, among other

More information

Exam 2 Key - Spring 2008 A#: Please see us if you have any questions!

Exam 2 Key - Spring 2008 A#: Please see us if you have any questions! Page 1 of 5 Exam 2 Key - Spring 2008 A#: Please see us if you have any questions! 1. A mutation in which parts of two nonhomologous chromosomes change places is called a(n) A. translocation. B. transition.

More information

Buffers & Gel Stain Chemicals

Buffers & Gel Stain Chemicals Buffers & Gel Stain Chemicals 01 Buffers & Gel Stain Buffers 3 Gel Stain SilverStar Staining Kit 6 Buffers Overview Bioneer provides over 40 types of buffer and chemical essential for life science research.

More information

HiPer RT-PCR Teaching Kit

HiPer RT-PCR Teaching Kit HiPer RT-PCR Teaching Kit Product Code: HTBM024 Number of experiments that can be performed: 5 Duration of Experiment: Protocol: 4 hours Agarose Gel Electrophoresis: 45 minutes Storage Instructions: The

More information

Bio 101 Sample questions: Chapter 10

Bio 101 Sample questions: Chapter 10 Bio 101 Sample questions: Chapter 10 1. Which of the following is NOT needed for DNA replication? A. nucleotides B. ribosomes C. Enzymes (like polymerases) D. DNA E. all of the above are needed 2 The information

More information

Learning Objectives. 2. Restriction Endonucleases 3. Cloning 4. Genetic Engineering 5. DNA libraries 6. PCR 7. DNA Fingerprinting

Learning Objectives. 2. Restriction Endonucleases 3. Cloning 4. Genetic Engineering 5. DNA libraries 6. PCR 7. DNA Fingerprinting Fig. 13-CO, p.330 Learning Objectives 1. Purification & detection of nucleic acids. 2. Restriction Endonucleases 3. Cloning 4. Genetic Engineering 5. DNA libraries 6. PCR 7. DNA Fingerprinting Gel Electrophoresis

More information

Amplified segment of DNA can be purified from bacteria in sufficient quantity and quality for :

Amplified segment of DNA can be purified from bacteria in sufficient quantity and quality for : Transformation Insertion of DNA of interest Amplification Amplified segment of DNA can be purified from bacteria in sufficient quantity and quality for : DNA Sequence. Understand relatedness of genes and

More information

CHEM 4420 Exam I Spring 2013 Page 1 of 6

CHEM 4420 Exam I Spring 2013 Page 1 of 6 CHEM 4420 Exam I Spring 2013 Page 1 of 6 Name Use complete sentences when requested. There are 100 possible points on this exam. The multiple choice questions are worth 2 points each. All other questions

More information

GeNei TM Transformation Teaching Kit Manual

GeNei TM Transformation Teaching Kit Manual Teaching Kit Manual Cat No. New Cat No. KT07 107385 KT07A 106220 Revision No.: 00060505 CONTENTS Page No. Objective 3 Principle 3 Kit Description 6 Materials Provided 7 Procedure 9 Observation & Interpretation

More information

DNA and Biotechnology Form of DNA Form of DNA Form of DNA Form of DNA Replication of DNA Replication of DNA

DNA and Biotechnology Form of DNA Form of DNA Form of DNA Form of DNA Replication of DNA Replication of DNA 21 DNA and Biotechnology DNA and Biotechnology OUTLINE: Replication of DNA Gene Expression Mutations Regulating Gene Activity Genetic Engineering Genomics DNA (deoxyribonucleic acid) Double-stranded molecule

More information

Molecular Biology Techniques Supporting IBBE

Molecular Biology Techniques Supporting IBBE Molecular Biology Techniques Supporting IBBE Jared Cartwright Protein Production Lab Head Contact Details: email jared.cartwright@york.ac.uk Phone 01904 328797 Presentation Aims Gene synthesis Cloning

More information

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory 13 Biotechnology Concept 13.1 Recombinant DNA Can Be Made in the Laboratory It is possible to modify organisms with genes from other, distantly related organisms. Recombinant DNA is a DNA molecule made

More information

DNA miniprep by Alkaline Lysis (activity)

DNA miniprep by Alkaline Lysis (activity) DNA miniprep by Alkaline Lysis (activity) Contents 1 Alkaline Lysis 2 Exercise 1: Plasmid DNA Mini-Prep by Alkaline Lysis 3 Identification of Plasmid DNA 4 Exercise 2: Restriction Digestion Identification

More information

Antisense RNA Insert Design for Plasmid Construction to Knockdown Target Gene Expression

Antisense RNA Insert Design for Plasmid Construction to Knockdown Target Gene Expression Vol. 1:7-15 Antisense RNA Insert Design for Plasmid Construction to Knockdown Target Gene Expression Ji, Tom, Lu, Aneka, Wu, Kaylee Department of Microbiology and Immunology, University of British Columbia

More information

Biosc10 schedule reminders

Biosc10 schedule reminders Biosc10 schedule reminders Review of molecular biology basics DNA Is each person s DNA the same, or unique? What does DNA look like? What are the three parts of each DNA nucleotide Which DNA bases pair,

More information

Justin Veazey. Experiment 3; Analysis of digestion products of puc19, GFPuv, and pgem-t easy

Justin Veazey. Experiment 3; Analysis of digestion products of puc19, GFPuv, and pgem-t easy Veazey 1 Justin Veazey 7A Experiment 3; Analysis of digestion products of puc19, GFPuv, and pgem-t easy Construction of recombinants GFPuv-pGEM-T easy and GFPuv-pUC19 Transformation and analysis of recombinant

More information

Texas A&M University-Corpus Christi CHEM4402 Biochemistry II Laboratory Laboratory 4 - Polymerase Chain Reaction (PCR)

Texas A&M University-Corpus Christi CHEM4402 Biochemistry II Laboratory Laboratory 4 - Polymerase Chain Reaction (PCR) Texas A&M University-Corpus Christi CHEM4402 Biochemistry II Laboratory Laboratory 4 - Polymerase Chain Reaction (PCR) Progressing with the sequence of experiments, we are now ready to amplify the green

More information

winter savings one place High Quality Costs Less Look inside to find great deals on Thermo Scientific products for all your molecular biology needs

winter savings one place High Quality Costs Less Look inside to find great deals on Thermo Scientific products for all your molecular biology needs A quarterly publication containing special offers for significant savings on a variety of molecular biology products CDA winter savings High Quality Costs Less RNAi PCR / qpcr Look inside to find great

More information

4/26/2015. Cut DNA either: Cut DNA either:

4/26/2015. Cut DNA either: Cut DNA either: Ch.20 Enzymes that cut DNA at specific sequences (restriction sites) resulting in segments of DNA (restriction fragments) Typically 4-8 bp in length & often palindromic Isolated from bacteria (Hundreds

More information

Enzyme that uses RNA as a template to synthesize a complementary DNA

Enzyme that uses RNA as a template to synthesize a complementary DNA Biology 105: Introduction to Genetics PRACTICE FINAL EXAM 2006 Part I: Definitions Homology: Comparison of two or more protein or DNA sequence to ascertain similarities in sequences. If two genes have

More information

BIO 202 Midterm Exam Winter 2007

BIO 202 Midterm Exam Winter 2007 BIO 202 Midterm Exam Winter 2007 Mario Chevrette Lectures 10-14 : Question 1 (1 point) Which of the following statements is incorrect. a) In contrast to prokaryotic DNA, eukaryotic DNA contains many repetitive

More information

MIT Department of Biology 7.013: Introductory Biology - Spring 2005 Instructors: Professor Hazel Sive, Professor Tyler Jacks, Dr.

MIT Department of Biology 7.013: Introductory Biology - Spring 2005 Instructors: Professor Hazel Sive, Professor Tyler Jacks, Dr. MIT Department of Biology 7.01: Introductory Biology - Spring 2005 Instructors: Professor Hazel Sive, Professor Tyler Jacks, Dr. Claudette Gardel iv) Would Xba I be useful for cloning? Why or why not?

More information

CHAPTER 2A HOW DO YOU BEGIN TO CLONE A GENE? CHAPTER 2A STUDENT GUIDE 2013 Amgen Foundation. All rights reserved.

CHAPTER 2A HOW DO YOU BEGIN TO CLONE A GENE? CHAPTER 2A STUDENT GUIDE 2013 Amgen Foundation. All rights reserved. CHAPTER 2A HOW DO YOU BEGIN TO CLONE A GENE? 35 INTRODUCTION In the Program Introduction, you learned that the increase in diabetes in the United States has resulted in a great demand for its treatment,

More information

Chapter 20 DNA Technology & Genomics. If we can, should we?

Chapter 20 DNA Technology & Genomics. If we can, should we? Chapter 20 DNA Technology & Genomics If we can, should we? Biotechnology Genetic manipulation of organisms or their components to make useful products Humans have been doing this for 1,000s of years plant

More information

How Do You Clone a Gene?

How Do You Clone a Gene? S-20 Edvo-Kit #S-20 How Do You Clone a Gene? Experiment Objective: The objective of this experiment is to gain an understanding of the structure of DNA, a genetically engineered clone, and how genes are

More information

Chapter 13: Biotechnology

Chapter 13: Biotechnology Chapter Review 1. Explain why the brewing of beer is considered to be biotechnology. The United Nations defines biotechnology as any technological application that uses biological system, living organism,

More information

Texas A&M University-Corpus Christi CHEM4402 Biochemistry II Laboratory Laboratory 8: DNA Restriction Digest (II) and DNA Sequencing (I)

Texas A&M University-Corpus Christi CHEM4402 Biochemistry II Laboratory Laboratory 8: DNA Restriction Digest (II) and DNA Sequencing (I) Texas A&M University-Corpus Christi CHEM4402 Biochemistry II Laboratory Laboratory 8: DNA Restriction Digest (II) and DNA Sequencing (I) We have made considerable progress in our analysis of the gene for

More information

Unit 1: DNA and the Genome. Sub-Topic (1.3) Gene Expression

Unit 1: DNA and the Genome. Sub-Topic (1.3) Gene Expression Unit 1: DNA and the Genome Sub-Topic (1.3) Gene Expression Unit 1: DNA and the Genome Sub-Topic (1.3) Gene Expression On completion of this subtopic I will be able to State the meanings of the terms genotype,

More information

SITE-DIRECTED MUTAGENESIS OF SUPERFOLDER GREEN FLUORESCENT PROTEIN

SITE-DIRECTED MUTAGENESIS OF SUPERFOLDER GREEN FLUORESCENT PROTEIN SITE-DIRECTED MUTAGENESIS OF SUPERFOLDER GREEN FLUORESCENT PROTEIN By LEE SOCK IM A project report submitted to the Department of Biological Science Faculty of Science Universiti Tunku Abdul Rahman in

More information

Learning Objectives :

Learning Objectives : Learning Objectives : Understand the basic differences between genomic and cdna libraries Understand how genomic libraries are constructed Understand the purpose for having overlapping DNA fragments in

More information

Overview: The DNA Toolbox

Overview: The DNA Toolbox Overview: The DNA Toolbox Sequencing of the genomes of more than 7,000 species was under way in 2010 DNA sequencing has depended on advances in technology, starting with making recombinant DNA In recombinant

More information

Chapter 6 - Molecular Genetic Techniques

Chapter 6 - Molecular Genetic Techniques Chapter 6 - Molecular Genetic Techniques Two objects of molecular & genetic technologies For analysis For generation Molecular genetic technologies! For analysis DNA gel electrophoresis Southern blotting

More information

Optimizing a Conventional Polymerase Chain Reaction (PCR) and Primer Design

Optimizing a Conventional Polymerase Chain Reaction (PCR) and Primer Design Optimizing a Conventional Polymerase Chain Reaction (PCR) and Primer Design The Polymerase Chain Reaction (PCR) is a powerful technique used for the amplification of a specific segment of a nucleic acid

More information

Table of Contents. IX. Application example XII. Related products... 11

Table of Contents. IX. Application example XII. Related products... 11 Table of Contents I. Description...2 II. Components... 3 III. Vector map... 4 IV. Form... 5 V. Purity... 5 VI. Storage... 5 VII. Protocol... 6 VIII. Multicloning site of pcold I-IV (SP4) DNAs... 7 IX.

More information

Plasmids. BIL 333 Lecture I. Plasmids. Useful Plasmids. Useful Plasmids. Useful Plasmids. ( Transfection ) v Small, circular, double-stranded DNA

Plasmids. BIL 333 Lecture I. Plasmids. Useful Plasmids. Useful Plasmids. Useful Plasmids. ( Transfection ) v Small, circular, double-stranded DNA BIL 333 Lecture I Plasmids v Small, circular, double-stranded DNA v Exogenous to genome! v Origin of Replication v Marker Gene v ( Reporter Gene ) Plasmids v Marker Gene Changes Phenotype Of Host v (Antibiotic

More information

DNA Cloning with Cloning Vectors

DNA Cloning with Cloning Vectors Cloning Vectors A M I R A A. T. A L - H O S A R Y L E C T U R E R O F I N F E C T I O U S D I S E A S E S F A C U L T Y O F V E T. M E D I C I N E A S S I U T U N I V E R S I T Y - E G Y P T DNA Cloning

More information

Chapter 10 (Part I) Gene Isolation and Manipulation

Chapter 10 (Part I) Gene Isolation and Manipulation Biology 234 J. G. Doheny Chapter 10 (Part I) Gene Isolation and Manipulation Practice Questions: Answer the following questions with one or two sentences. 1. From which types of organisms were most restriction

More information