Evolution of species range limits. Takuji Usui (Angert Lab) BIOL Nov 2017

Size: px
Start display at page:

Download "Evolution of species range limits. Takuji Usui (Angert Lab) BIOL Nov 2017"

Transcription

1 Evolution of species range limits Takuji Usui (Angert Lab) BIOL Nov 2017

2 Range limits often occur on continuous ecological gradients Range maps modified from Sheth et al. (2014). J Biogeogr., 41, Mimulus photo credit see end

3 A fundamental evolutionary question With enough time for mutation and selection to act, when and why does adaptation fail at the range margin?

4 A fundamental evolutionary question With enough time for mutation and selection to act, when and why does adaptation fail at the range margin? (1) Populations typically smaller and more fragmented towards margin Allee effects Greater genetic drift Less in situ mutations Center Margin (2) Populations act as sink to central populations (swamped by gene flow) Haldane (1956) Proc R Soc Lond B Biol Sci 145,

5 Theoretical models of range limits Models at different types of range margins 1. Abiotic environment 2. Competitive margins 3. Hybridization at margins

6 Modelling selection and gene flow Kirkpatrick & Barton, 1997 Populations along a continuous 1D environmental gradient Density-dependent population growth Random dispersal Kirkpatrick & Barton (1997). Am Nat., 150, 1-23

7 Demography is linked to selection on quantitative trait Kirkpatrick & Barton, 1997 Trait distribution of populations Ecological optimum trait value Kirkpatrick & Barton (1997). Am Nat., 150, 1-23 Figure adapted from Bridle & Vines (2006). TREE, 22,

8 Demography is linked to selection on quantitative trait Kirkpatrick & Barton, 1997 Stabilizing selection for optimum phenotype Optimum trait changes linearly with habitat θ x = bx Demography linked to deviation from optimum fitness Kirkpatrick & Barton (1997). Am Nat., 150, 1-23 Figure adapted from Bridle & Vines (2006). TREE, 22,

9 Equilibrium 1: Continuous range expansion Populations at equal density across gradient N x = K Each local population at ecological optimum z& x = bx Kirkpatrick & Barton (1997). Am Nat., 150, 1-23 Figure adapted from Bridle & Vines (2006). TREE, 22,

10 Equilibrium 2: Range limit Net gene flow from high to low density populations Flow of maladaptive alleles to peripheral populations Peripheral populations act as a demographic sink Kirkpatrick & Barton (1997). Am Nat., 150, 1-23 Figure adapted from Bridle & Vines (2006). TREE, 22,

11 Model predictions Gradient/dispersal B = Range limit Extinction Range expansion A = Genetic potential Figure adapted from Kirkpatrick & Barton (1997). Am Nat., 150, 1-23

12 Model predictions Gradient/dispersal B = Range limit Extinction Range expansion Range limit occurs when Steeper ecological gradient Greater dispersal kernel Range expansion is easier with Increasing stabilizing selection Increasing heritability A = Genetic potential Figure adapted from Kirkpatrick & Barton (1997). Am Nat., 150, 1-23

13 Model assumptions Gradient/dispersal B = Range limit Extinction Range expansion Environments constant with time Large local population size Constant genetic variance A = Genetic potential Figure adapted from Kirkpatrick & Barton (1997). Am Nat., 150, 1-23

14 Selection, gene flow (+ genetic variation and drift) Barton 2001; Polechova & Barton 2016 Adds the evolution of genetic variance and effects of drift Migration among populations with different trait means = V G Barton (2001). Integrating Ecology and Evolution over spatial contexts

15 Selection, gene flow (+ genetic variation and drift) Barton 2001; Polechova & Barton 2016 Adds the evolution of genetic variance and effects of drift Migration among populations with different trait means = V G With drift, however, V G and sharp range limits form: B > Nσ s Effective environmental gradient i.e. fitness cost of dispersal Efficacy of selection relative to drift Nσ = population size (N) within dispersal kernel (σ) s = strength of selection per locus Polechova & Barton (2014). PNAS, 112,

16 Gene flow and elevational range limit of M. laciniatus Sampled populations from elevational range Genomic DNA from leaf tissue Figure adapted from Sexton et al. (2016). Molec Ecol, 25,

17 Gene flow and elevational range limit of M. laciniatus Sampled populations from elevational range Genomic DNA from leaf tissue Graph-theory approach to estimate gene flow IBD = isolation by distance IBE = isolation by environment Figure adapted from Sexton et al. (2016). Molec Ecol, 25,

18 Lack of evidence for gene flow limiting species range Lack of evidence for drift and swamping gene flow from central populations Abundance and genetic variation similar across range No directional gene flow between central and edge populations Gene flow was by IBE not IBD Figure adapted from Sexton et al. (2016). Molec Ecol, 25,

19 Theoretical models of range limits Models at different types of range margins 1. Abiotic environment 2. Competitive margins 3. Hybridization at margins

20 Modelling selection, gene flow, multispecies competition Case & Taper 2000 Species can be excluded from the range of others due to competition Adaptation is required at range margin in the presence of another species As before, gene flow and low population density may limit adaptation at range edge Darwin (1859). Origin of Species by Natural Selection Case & Taper (2000). Am Nat, 155,

21 Selection, gene flow, multispecies competition Gradient/dispersal C = disruptive: stabilizing Range limit Predictions: Competition makes range limits easier to achieve B = A = Genetic potential Figure adapted from Case & Taper (2000). Am Nat, 155,

22 Model predictions C = disruptive: stabilizing selection High Low Predictions: Gradient/dispersal Range limit Competition makes range limits easier to achieve Range limits break down when: Disruptive > stabilizing (low C) B = A = Genetic potential This divergence will enable species to spread into full sympatry Figure adapted from Case & Taper (2000). Am Nat, 155,

23 Character displacement may lead to range limits Species A Species coexistence will require character displacement Phenotype Species B but character displacement itself may also lead to evolution of range limits Evidence is limited in nature Space Figure adapted from Case & Taper (2000). Am Nat, 155,

24 Theoretical models of range limits Models at different types of range margins 1. Abiotic environment 2. Competitive margins 3. Hybridization at margins

25 Hybridization effects on range limits Hybridization In addition to migration load, there is genetic load due to low hybrid fitness Linkage disequilibria may hamper fixation of locally beneficial alleles Increase likelihood of range limit occurring Goldberg & Lande (2006). Evolution, 60,

26 Hybridization effects on range limits Hybridization In addition to migration load, there is genetic load due to low hybrid fitness Linkage disequilibria may hamper fixation of locally beneficial alleles Increase likelihood of range limit occurring Goldberg & Lande 2006 Low rate of interspecific mating sharp range limit Evolution of hybridization avoidance and character displacement range expansion Goldberg & Lande (2006). Evolution, 60,

27 Summary Since Kirkpatrick & Barton 1997, many models have tested the evolution of range limits Theory predicts importance of maladaptive gene flow, drift, and biotic interactions in setting range limits Empirical evidence testing theories on adaptation at range limits is limited Understanding range limits has many evolutionary and ecological implications

POPULATION GENETICS Winter 2005 Lecture 18 Quantitative genetics and QTL mapping

POPULATION GENETICS Winter 2005 Lecture 18 Quantitative genetics and QTL mapping POPULATION GENETICS Winter 2005 Lecture 18 Quantitative genetics and QTL mapping - from Darwin's time onward, it has been widely recognized that natural populations harbor a considerably degree of genetic

More information

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool.

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool. 11.1 Genetic Variation Within Population KEY CONCEPT A population shares a common gene pool. 11.1 Genetic Variation Within Population Genetic variation in a population increases the chance that some individuals

More information

A Primer of Ecological Genetics

A Primer of Ecological Genetics A Primer of Ecological Genetics Jeffrey K. Conner Michigan State University Daniel L. Hartl Harvard University Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A. Contents Preface xi Acronyms,

More information

Section KEY CONCEPT A population shares a common gene pool.

Section KEY CONCEPT A population shares a common gene pool. Section 11.1 KEY CONCEPT A population shares a common gene pool. Genetic variation in a population increases the chance that some individuals will survive. Why it s beneficial: Genetic variation leads

More information

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool.

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool. 11.1 Genetic Variation Within Population KEY CONCEPT A population shares a common gene pool. 11.1 Genetic Variation Within Population! Genetic variation in a population increases the chance that some individuals

More information

The evolutionary significance of structure. Detecting and describing structure. Implications for genetic variability

The evolutionary significance of structure. Detecting and describing structure. Implications for genetic variability Population structure The evolutionary significance of structure Detecting and describing structure Wright s F statistics Implications for genetic variability Inbreeding effects of structure The Wahlund

More information

Lesson Overview. What would happen when genetics answered questions about how heredity works?

Lesson Overview. What would happen when genetics answered questions about how heredity works? 17.1 Darwin developed his theory of evolution without knowing how heritable traits passed from one generation to the next or where heritable variation came from. What would happen when genetics answered

More information

University of York Department of Biology B. Sc Stage 2 Degree Examinations

University of York Department of Biology B. Sc Stage 2 Degree Examinations Examination Candidate Number: Desk Number: University of York Department of Biology B. Sc Stage 2 Degree Examinations 2016-17 Evolutionary and Population Genetics Time allowed: 1 hour and 30 minutes Total

More information

The Theory of Evolution

The Theory of Evolution The Theory of Evolution Mechanisms of Evolution Notes Pt. 4 Population Genetics & Evolution IMPORTANT TO REMEMBER: Populations, not individuals, evolve. Population = a group of individuals of the same

More information

Population Genetics. Ben Hecht CRITFC Genetics Training December 11, 2013

Population Genetics.   Ben Hecht CRITFC Genetics Training December 11, 2013 Population Genetics http://darwin.eeb.uconn.edu/simulations/drift.html Ben Hecht CRITFC Genetics Training December 11, 2013 1 Population Genetics The study of how populations change genetically over time

More information

16.2 Evolution as Genetic Change

16.2 Evolution as Genetic Change 16.2 Evolution as Genetic Change 1 of 40 16-2 Evolution as Genetic Change 16-2 Evolution as Genetic Change If an individual dies without reproducing, it does not contribute to the gene pool. If an individual

More information

An Introduction to Population Genetics

An Introduction to Population Genetics An Introduction to Population Genetics THEORY AND APPLICATIONS f 2 A (1 ) E 1 D [ ] = + 2M ES [ ] fa fa = 1 sf a Rasmus Nielsen Montgomery Slatkin Sinauer Associates, Inc. Publishers Sunderland, Massachusetts

More information

Lecture 10: Introduction to Genetic Drift. September 28, 2012

Lecture 10: Introduction to Genetic Drift. September 28, 2012 Lecture 10: Introduction to Genetic Drift September 28, 2012 Announcements Exam to be returned Monday Mid-term course evaluation Class participation Office hours Last Time Transposable Elements Dominance

More information

11.1. A population shares a common gene pool. The Evolution of Populations CHAPTER 11. Fill in the concept map below.

11.1. A population shares a common gene pool. The Evolution of Populations CHAPTER 11. Fill in the concept map below. SECTION 11.1 GENETIC VARIATION WITHIN POPULATIONS Study Guide KEY CONCEPT A population shares a common gene pool. VOCABULARY gene pool allele frequency MAIN IDEA: Genetic variation in a population increases

More information

Biol Lecture Notes

Biol Lecture Notes Biol 303 1 Evolutionary Forces: Generation X Simulation To launch the GenX software: 1. Right-click My Computer. 2. Click Map Network Drive 3. Don t worry about what drive letter is assigned in the upper

More information

5/2/ Genes and Variation. How Common Is Genetic Variation? Variation and Gene Pools

5/2/ Genes and Variation. How Common Is Genetic Variation? Variation and Gene Pools 16-1 Genes 16-1 and Variation Genes and Variation 1 of 24 How Common Is Genetic Variation? How Common Is Genetic Variation? Many genes have at least two forms, or alleles. All organisms have genetic variation

More information

Bio 312, Exam 3 ( 1 ) Name:

Bio 312, Exam 3 ( 1 ) Name: Bio 312, Exam 3 ( 1 ) Name: Please write the first letter of your last name in the box; 5 points will be deducted if your name is hard to read or the box does not contain the correct letter. Written answers

More information

mrna for protein translation

mrna for protein translation Biology 1B Evolution Lecture 5 (March 5, 2010), Genetic Drift and Migration Mutation What is mutation? Changes in the coding sequence Changes in gene regulation, or how the genes are expressed as amino

More information

5/18/2017. Genotypic, phenotypic or allelic frequencies each sum to 1. Changes in allele frequencies determine gene pool composition over generations

5/18/2017. Genotypic, phenotypic or allelic frequencies each sum to 1. Changes in allele frequencies determine gene pool composition over generations Topics How to track evolution allele frequencies Hardy Weinberg principle applications Requirements for genetic equilibrium Types of natural selection Population genetic polymorphism in populations, pp.

More information

Population- group of individuals of the SAME species that live in the same area Species- a group of similar organisms that can breed and produce

Population- group of individuals of the SAME species that live in the same area Species- a group of similar organisms that can breed and produce Dr. Bertolotti Essential Question: Population- group of individuals of the SAME species that live in the same area Species- a group of similar organisms that can breed and produce FERTILE offspring Allele-

More information

MECHANISMS FOR EVOLUTION CHAPTER 20

MECHANISMS FOR EVOLUTION CHAPTER 20 MECHANISMS FOR EVOLUTION CHAPTER 20 Objectives State the Hardy-Weinburg theorem Write the Hardy-Weinburg equation and be able to use it to calculate allele and genotype frequencies List the conditions

More information

The Evolution of Populations

The Evolution of Populations Microevolution The Evolution of Populations C H A P T E R 2 3 Change in allele frequencies over generations Three mechanisms cause allele frequency change: Natural selection (leads to adaptation) Genetic

More information

TEST FORM A. 2. Based on current estimates of mutation rate, how many mutations in protein encoding genes are typical for each human?

TEST FORM A. 2. Based on current estimates of mutation rate, how many mutations in protein encoding genes are typical for each human? TEST FORM A Evolution PCB 4673 Exam # 2 Name SSN Multiple Choice: 3 points each 1. The horseshoe crab is a so-called living fossil because there are ancient species that looked very similar to the present-day

More information

Evolutionary Mechanisms

Evolutionary Mechanisms Evolutionary Mechanisms Tidbits One misconception is that organisms evolve, in the Darwinian sense, during their lifetimes Natural selection acts on individuals, but only populations evolve Genetic variations

More information

Why do we need statistics to study genetics and evolution?

Why do we need statistics to study genetics and evolution? Why do we need statistics to study genetics and evolution? 1. Mapping traits to the genome [Linkage maps (incl. QTLs), LOD] 2. Quantifying genetic basis of complex traits [Concordance, heritability] 3.

More information

Distinguishing Among Sources of Phenotypic Variation in Populations

Distinguishing Among Sources of Phenotypic Variation in Populations Population Genetics Distinguishing Among Sources of Phenotypic Variation in Populations Discrete vs. continuous Genotype or environment (nature vs. nurture) Phenotypic variation - Discrete vs. Continuous

More information

POPULATION GENETICS. Evolution Lectures 4

POPULATION GENETICS. Evolution Lectures 4 POPULATION GENETICS Evolution Lectures 4 POPULATION GENETICS The study of the rules governing the maintenance and transmission of genetic variation in natural populations. Population: A freely interbreeding

More information

COMPUTER SIMULATIONS AND PROBLEMS

COMPUTER SIMULATIONS AND PROBLEMS Exercise 1: Exploring Evolutionary Mechanisms with Theoretical Computer Simulations, and Calculation of Allele and Genotype Frequencies & Hardy-Weinberg Equilibrium Theory INTRODUCTION Evolution is defined

More information

Outline of lectures 9-11

Outline of lectures 9-11 GENOME 453 J. Felsenstein Evolutionary Genetics Autumn, 2011 Genetics of quantitative characters Outline of lectures 9-11 1. When we have a measurable (quantitative) character, we may not be able to discern

More information

POPULATION GENETICS. Evolution Lectures 1

POPULATION GENETICS. Evolution Lectures 1 POPULATION GENETICS Evolution Lectures 1 POPULATION GENETICS The study of the rules governing the maintenance and transmission of genetic variation in natural populations. Population: A freely interbreeding

More information

EXERCISE 1. Testing Hardy-Weinberg Equilibrium. 1a. Fill in Table 1. Calculate the initial genotype and allele frequencies.

EXERCISE 1. Testing Hardy-Weinberg Equilibrium. 1a. Fill in Table 1. Calculate the initial genotype and allele frequencies. Biology 152/153 Hardy-Weinberg Mating Game EXERCISE 1 Testing Hardy-Weinberg Equilibrium Hypothesis: The Hardy-Weinberg Theorem says that allele frequencies will not change over generations under the following

More information

Lab 2: Mathematical Modeling: Hardy-Weinberg 1. Overview. In this lab you will:

Lab 2: Mathematical Modeling: Hardy-Weinberg 1. Overview. In this lab you will: AP Biology Name Lab 2: Mathematical Modeling: Hardy-Weinberg 1 Overview In this lab you will: 1. learn about the Hardy-Weinberg law of genetic equilibrium, and 2. study the relationship between evolution

More information

b. (3 points) The expected frequencies of each blood type in the deme if mating is random with respect to variation at this locus.

b. (3 points) The expected frequencies of each blood type in the deme if mating is random with respect to variation at this locus. NAME EXAM# 1 1. (15 points) Next to each unnumbered item in the left column place the number from the right column/bottom that best corresponds: 10 additive genetic variance 1) a hermaphroditic adult develops

More information

Variation Chapter 9 10/6/2014. Some terms. Variation in phenotype can be due to genes AND environment: Is variation genetic, environmental, or both?

Variation Chapter 9 10/6/2014. Some terms. Variation in phenotype can be due to genes AND environment: Is variation genetic, environmental, or both? Frequency 10/6/2014 Variation Chapter 9 Some terms Genotype Allele form of a gene, distinguished by effect on phenotype Haplotype form of a gene, distinguished by DNA sequence Gene copy number of copies

More information

Introduction to Population Genetics. Spezielle Statistik in der Biomedizin WS 2014/15

Introduction to Population Genetics. Spezielle Statistik in der Biomedizin WS 2014/15 Introduction to Population Genetics Spezielle Statistik in der Biomedizin WS 2014/15 What is population genetics? Describes the genetic structure and variation of populations. Causes Maintenance Changes

More information

Ecological genomics and molecular adaptation: state of the Union and some research goals for the near future.

Ecological genomics and molecular adaptation: state of the Union and some research goals for the near future. Ecological genomics and molecular adaptation: state of the Union and some research goals for the near future. Louis Bernatchez Genomics and Conservation of Aquatic Resources Université LAVAL! Molecular

More information

Evolutionary Genetics: Part 1 Polymorphism in DNA

Evolutionary Genetics: Part 1 Polymorphism in DNA Evolutionary Genetics: Part 1 Polymorphism in DNA S. chilense S. peruvianum Winter Semester 2012-2013 Prof Aurélien Tellier FG Populationsgenetik Color code Color code: Red = Important result or definition

More information

QTL Mapping Using Multiple Markers Simultaneously

QTL Mapping Using Multiple Markers Simultaneously SCI-PUBLICATIONS Author Manuscript American Journal of Agricultural and Biological Science (3): 195-01, 007 ISSN 1557-4989 007 Science Publications QTL Mapping Using Multiple Markers Simultaneously D.

More information

Lecture #3 1/23/02 Dr. Kopeny Model of polygenic inheritance based on three genes

Lecture #3 1/23/02 Dr. Kopeny Model of polygenic inheritance based on three genes Lecture #3 1/23/02 Dr. Kopeny Model of polygenic inheritance based on three genes Reference; page 230 in textbook 13 Genotype; The genetic constitution governing a heritable trait of an organism Phenotype:

More information

Park /12. Yudin /19. Li /26. Song /9

Park /12. Yudin /19. Li /26. Song /9 Each student is responsible for (1) preparing the slides and (2) leading the discussion (from problems) related to his/her assigned sections. For uniformity, we will use a single Powerpoint template throughout.

More information

Summary Genes and Variation Evolution as Genetic Change. Name Class Date

Summary Genes and Variation Evolution as Genetic Change. Name Class Date Chapter 16 Summary Evolution of Populations 16 1 Genes and Variation Darwin s original ideas can now be understood in genetic terms. Beginning with variation, we now know that traits are controlled by

More information

Introduction to population genetics. CRITFC Genetics Training December 13-14, 2016

Introduction to population genetics. CRITFC Genetics Training December 13-14, 2016 Introduction to population genetics CRITFC Genetics Training December 13-14, 2016 What is population genetics? Population genetics n. In culture: study of the genetic composition of populations; understanding

More information

BST227 Introduction to Statistical Genetics. Lecture 3: Introduction to population genetics

BST227 Introduction to Statistical Genetics. Lecture 3: Introduction to population genetics BST227 Introduction to Statistical Genetics Lecture 3: Introduction to population genetics 1 Housekeeping HW1 due on Wednesday TA office hours today at 5:20 - FXB G11 What have we studied Background Structure

More information

Quantitative Genetics

Quantitative Genetics Quantitative Genetics Polygenic traits Quantitative Genetics 1. Controlled by several to many genes 2. Continuous variation more variation not as easily characterized into classes; individuals fall into

More information

Questions we are addressing. Hardy-Weinberg Theorem

Questions we are addressing. Hardy-Weinberg Theorem Factors causing genotype frequency changes or evolutionary principles Selection = variation in fitness; heritable Mutation = change in DNA of genes Migration = movement of genes across populations Vectors

More information

FRWS 3810 Exam II. March 30, 2005

FRWS 3810 Exam II. March 30, 2005 FRWS 3810 Exam II. March 30, 2005 ID code: I. Match the appropriate term. There is one best answer (8 points). a. character displacement e. mutation load i. pseudosink b. n-dimensional hypervolume f. natal

More information

Study Guide A. Answer Key. The Evolution of Populations

Study Guide A. Answer Key. The Evolution of Populations The Evolution of Populations Answer Key SECTION 1. GENETIC VARIATION WITHIN POPULATIONS 1. b 2. d 3. gene pool 4. combinations of alleles 5. allele frequencies 6. ratio or percentage 7. mutation 8. recombination

More information

Conifer Translational Genomics Network Coordinated Agricultural Project

Conifer Translational Genomics Network Coordinated Agricultural Project Conifer Translational Genomics Network Coordinated Agricultural Project Genomics in Tree Breeding and Forest Ecosystem Management ----- Module 3 Population Genetics Nicholas Wheeler & David Harry Oregon

More information

SYLLABUS AND SAMPLE QUESTIONS FOR JRF IN BIOLOGICAL ANTHROPOLGY 2011

SYLLABUS AND SAMPLE QUESTIONS FOR JRF IN BIOLOGICAL ANTHROPOLGY 2011 SYLLABUS AND SAMPLE QUESTIONS FOR JRF IN BIOLOGICAL ANTHROPOLGY 2011 SYLLABUS 1. Introduction: Definition and scope; subdivisions of anthropology; application of genetics in anthropology. 2. Human evolution:

More information

Marginal and peripheral forests: a key genetic resource for enhancing the resilience of European forests to global change

Marginal and peripheral forests: a key genetic resource for enhancing the resilience of European forests to global change FPS COST Action FP1202 Policy Brief Marginal and peripheral forests: a key genetic resource for enhancing the resilience of European forests to global change Global environmental change, and particularly

More information

Genetic drift 10/13/2014. Random factors in evolution. Sampling error. Genetic drift. Random walk. Genetic drift

Genetic drift 10/13/2014. Random factors in evolution. Sampling error. Genetic drift. Random walk. Genetic drift Random factors in evolution Mutation is random is random is random fluctuations in frequencies of alleles or haplotypes Due to violation of HW assumption of large population size Can result in nonadaptive

More information

BIOLOGY 3201 UNIT 4 EVOLUTION CH MECHANISMS OF EVOLUTION

BIOLOGY 3201 UNIT 4 EVOLUTION CH MECHANISMS OF EVOLUTION BIOLOGY 3201 UNIT 4 EVOLUTION CH. 20 - MECHANISMS OF EVOLUTION POPULATION GENETICS AND HARDY WEINBERG PRINCIPLE Population genetics: this is a study of the genes in a population and how they may or may

More information

Population Genetics Modern Synthesis Theory The Hardy-Weinberg Theorem Assumptions of the H-W Theorem

Population Genetics Modern Synthesis Theory The Hardy-Weinberg Theorem Assumptions of the H-W Theorem Population Genetics A Population is: a group of same species organisms living in an area An allele is: one of a number of alternative forms of the same gene that may occur at a given site on a chromosome.

More information

Chapter 25 Population Genetics

Chapter 25 Population Genetics Chapter 25 Population Genetics Population Genetics -- the discipline within evolutionary biology that studies changes in allele frequencies. Population -- a group of individuals from the same species that

More information

Chapter 3: Evolutionary genetics of natural populations

Chapter 3: Evolutionary genetics of natural populations Chapter 3: Evolutionary genetics of natural populations What is Evolution? Change in the frequency of an allele within a population Evolution acts on DIVERSITY to cause adaptive change Ex. Light vs. Dark

More information

Mutation and sexual reproduction produce the genetic variation that makes evolution possible. [2]

Mutation and sexual reproduction produce the genetic variation that makes evolution possible. [2] GUIDED READING - Ch. 23 POPULATION EVOLUTION NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper will not be accepted.

More information

Lecture 5: Genetic Variation and Inbreeding. September 7, 2012

Lecture 5: Genetic Variation and Inbreeding. September 7, 2012 Lecture 5: Genetic Variation and Inbreeding September 7, 01 Announcements I will be out of town Thursday Sept 0 through Sunday, Sept 4 No office hours Friday, Sept 1: Prof. Hawkins will give a guest lecture

More information

REVIEW 5: EVOLUTION UNIT. A. Top 10 If you learned anything from this unit, you should have learned:

REVIEW 5: EVOLUTION UNIT. A. Top 10 If you learned anything from this unit, you should have learned: Period Date REVIEW 5: EVOLUTION UNIT A. Top 10 If you learned anything from this unit, you should have learned: 1. Darwin s Principle of Natural Selection a. Variation individuals within a population possess

More information

The role of genomic islands of divergence during speciation. Connor Morgan-Lang November 18th

The role of genomic islands of divergence during speciation. Connor Morgan-Lang November 18th The role of genomic islands of divergence during speciation Connor Morgan-Lang November 18th Outline 1) Review of speciation 2) Genomic architectures 3) Genomic islands of divergence 4) Methods for identification

More information

5 FINGERS OF EVOLUTION

5 FINGERS OF EVOLUTION MICROEVOLUTION Student Packet SUMMARY EVOLUTION IS A CHANGE IN THE GENETIC MAKEUP OF A POPULATION OVER TIME Microevolution refers to changes in allele frequencies in a population over time. NATURAL SELECTION

More information

Molecular Evolution. H.J. Muller. A.H. Sturtevant. H.J. Muller. A.H. Sturtevant

Molecular Evolution. H.J. Muller. A.H. Sturtevant. H.J. Muller. A.H. Sturtevant Molecular Evolution Arose as a distinct sub-discipline of evolutionary biology in the 1960 s Arose from the conjunction of a debate in theoretical population genetics and two types of data that became

More information

Chapter 23: The Evolution of Populations

Chapter 23: The Evolution of Populations AP Biology Reading Guide Name Chapter 23: The Evolution of Populations This chapter begins with the idea that we focused on as we closed the last chapter: Individuals do not evolve! Populations evolve.

More information

Exam 1, Fall 2012 Grade Summary. Points: Mean 95.3 Median 93 Std. Dev 8.7 Max 116 Min 83 Percentage: Average Grade Distribution:

Exam 1, Fall 2012 Grade Summary. Points: Mean 95.3 Median 93 Std. Dev 8.7 Max 116 Min 83 Percentage: Average Grade Distribution: Exam 1, Fall 2012 Grade Summary Points: Mean 95.3 Median 93 Std. Dev 8.7 Max 116 Min 83 Percentage: Average 79.4 Grade Distribution: Name: BIOL 464/GEN 535 Population Genetics Fall 2012 Test # 1, 09/26/2012

More information

UNIT 4: EVOLUTION Chapter 11: The Evolution of Populations

UNIT 4: EVOLUTION Chapter 11: The Evolution of Populations CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

The Evolution of Populations

The Evolution of Populations The Evolution of Populations Population genetics Population: a localized group of individuals belonging to the same species Species: a group of populations whose individuals have the potential to interbreed

More information

V SEMESTER ZOOLOGY HARDY-WEINBERG S LAW

V SEMESTER ZOOLOGY HARDY-WEINBERG S LAW V SEMESTER ZOOLOGY HARDY-WEINBERG S LAW The most fundamental idea in a population genetics was proposed by English-man G.H. Hardy and German W. Weinberg simultaneously in the year 1908. At that time it

More information

CHAPTER 12 MECHANISMS OF EVOLUTION

CHAPTER 12 MECHANISMS OF EVOLUTION CHAPTER 12 MECHANISMS OF EVOLUTION 12.1 Genetic Variation DNA biological code for inheritable traits GENES units of DNA molecule in a chromosome LOCI location of specific gene on DNA molecules DIPLOID

More information

Quantitative Genetics for Using Genetic Diversity

Quantitative Genetics for Using Genetic Diversity Footprints of Diversity in the Agricultural Landscape: Understanding and Creating Spatial Patterns of Diversity Quantitative Genetics for Using Genetic Diversity Bruce Walsh Depts of Ecology & Evol. Biology,

More information

Allegheny-Clarion Valley School District

Allegheny-Clarion Valley School District Allegheny-Clarion Valley School District Jr./Sr. High School Name of Course: Ecology Grade Level: 9-12 Persons Writing/Revising Curriculum: Joni Runyan Laura Jamison *** Created 2015-16 School Year Unit

More information

Population Genetics Simulations Heath Blackmon and Emma E. Goldberg last updated:

Population Genetics Simulations Heath Blackmon and Emma E. Goldberg last updated: Population Genetics Simulations Heath Blackmon and Emma E. Goldberg last updated: 2016-04-02 Contents Introduction 1 Evolution Across Generations....................................... 1 Lauching the Population

More information

BST227 Introduction to Statistical Genetics. Lecture 3: Introduction to population genetics

BST227 Introduction to Statistical Genetics. Lecture 3: Introduction to population genetics BST227 Introduction to Statistical Genetics Lecture 3: Introduction to population genetics!1 Housekeeping HW1 will be posted on course website tonight 1st lab will be on Wednesday TA office hours have

More information

Papers for 11 September

Papers for 11 September Papers for 11 September v Kreitman M (1983) Nucleotide polymorphism at the alcohol-dehydrogenase locus of Drosophila melanogaster. Nature 304, 412-417. v Hishimoto et al. (2010) Alcohol and aldehyde dehydrogenase

More information

Introduction to Quantitative Genetics

Introduction to Quantitative Genetics Introduction to Quantitative Genetics Fourth Edition D. S. Falconer Trudy F. C. Mackay PREFACE TO THE THIRD EDITION PREFACE TO THE FOURTH EDITION ACKNOWLEDGEMENTS INTRODUCTION ix x xi xiii f GENETIC CONSTITUTION

More information

Neutrality Test. Neutrality tests allow us to: Challenges in neutrality tests. differences. data. - Identify causes of species-specific phenotype

Neutrality Test. Neutrality tests allow us to: Challenges in neutrality tests. differences. data. - Identify causes of species-specific phenotype Neutrality Test First suggested by Kimura (1968) and King and Jukes (1969) Shift to using neutrality as a null hypothesis in positive selection and selection sweep tests Positive selection is when a new

More information

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section A: Population Genetics

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section A: Population Genetics CHAPTER 23 THE EVOLUTIONS OF POPULATIONS Section A: Population Genetics 1. The modern evolutionary synthesis integrated Darwinian selection and Mendelian inheritance 2. A population s gene pool is defined

More information

1) (15 points) Next to each term in the left-hand column place the number from the right-hand column that best corresponds:

1) (15 points) Next to each term in the left-hand column place the number from the right-hand column that best corresponds: 1) (15 points) Next to each term in the left-hand column place the number from the right-hand column that best corresponds: natural selection 21 1) the component of phenotypic variance not explained by

More information

Random Allelic Variation

Random Allelic Variation Random Allelic Variation AKA Genetic Drift Genetic Drift a non-adaptive mechanism of evolution (therefore, a theory of evolution) that sometimes operates simultaneously with others, such as natural selection

More information

A brief introduction to population genetics

A brief introduction to population genetics A brief introduction to population genetics Population genetics Definition studies distributions & changes of allele frequencies in populations over time effects considered: natural selection, genetic

More information

Lecture 1: Introduction to Population Genetics. August 20, 2012

Lecture 1: Introduction to Population Genetics. August 20, 2012 Lecture 1: Introduction to Population Genetics August 20, 2012 Instructors Steve DiFazio 5200 Life Sciences Building Office Hours: Mon, Wed, Thurs 1 to 2 pm Hari Chhetri (TA) 5206 Life Sciences Building

More information

Marker Assisted Selection Where, When, and How. Lecture 18

Marker Assisted Selection Where, When, and How. Lecture 18 Marker Assisted Selection Where, When, and How 1 2 Introduction Quantitative Genetics Selection Based on Phenotype and Relatives Information ε µ β + + = d Z d X Y Chuck = + Y Z Y X A Z Z X Z Z X X X d

More information

Introduction Chapter 23 - EVOLUTION of

Introduction Chapter 23 - EVOLUTION of Introduction Chapter 23 - EVOLUTION of POPULATIONS The blue-footed booby has adaptations that make it suited to its environment. These include webbed feet, streamlined shape that minimizes friction when

More information

AP Biology: Allele A1 Lab

AP Biology: Allele A1 Lab AP Biology: Allele A1 Lab Allele A1 Download: http://tinyurl.com/8henahs In today s lab we will use a computer program called AlleleA 1 to study the effects of the different evolutionary forces mutation,

More information

Recent Advances Towards An Intraspecific Theory of Human Variation for Digital Models

Recent Advances Towards An Intraspecific Theory of Human Variation for Digital Models Recent Advances Towards An Intraspecific Theory of Human Variation for Digital Models By Bradly Alicea freejumper@yahoo.com Department of Telecommunication, Information Studies, and Media and Cognitive

More information

Population Genetics (Learning Objectives)

Population Genetics (Learning Objectives) Population Genetics (Learning Objectives) Recognize the quantitative nature of the study of population genetics and its connection to the study of genetics and its applications. Define the terms population,

More information

Population Genetics (Learning Objectives)

Population Genetics (Learning Objectives) Population Genetics (Learning Objectives) Recognize the quantitative nature of the study of population genetics and its connection to the study of genetics and its applications. Define the terms population,

More information

DEDICATIONS. To the people who have inspired and sustained me throughout my life: Mom, Dad, Mary, Dorothy, Suzie and Antonio. TW

DEDICATIONS. To the people who have inspired and sustained me throughout my life: Mom, Dad, Mary, Dorothy, Suzie and Antonio. TW FOREST GENETICS DEDICATIONS To the people who have inspired and sustained me throughout my life: Mom, Dad, Mary, Dorothy, Suzie and Antonio. TW To Cathy, Christine, Michael, Patrick, Neal, Kenda, Halli,

More information

17.1 What Is It That Evolves? Microevolution. Microevolution. Ch. 17 Microevolution. Genes. Population

17.1 What Is It That Evolves? Microevolution. Microevolution. Ch. 17 Microevolution. Genes. Population Ch. 17 Microevolution 17.1 What Is It That Evolves? Microevolution Population Defined as all the members of a single species living in a defined geographical area at a given time A sexually reproducing

More information

4 th Exam is Thursday, December 9. Review session will be at 5:00 PM Wednesday, December 8

4 th Exam is Thursday, December 9. Review session will be at 5:00 PM Wednesday, December 8 4 th Exam is Thursday, December 9 Review session will be at 5:00 PM Wednesday, December 8 Final Exam Final exam will be Dec. 16, 8:00-10:00 AM Yellow Sheets: You will be allowed to put whatever you want

More information

Algorithms for Genetics: Introduction, and sources of variation

Algorithms for Genetics: Introduction, and sources of variation Algorithms for Genetics: Introduction, and sources of variation Scribe: David Dean Instructor: Vineet Bafna 1 Terms Genotype: the genetic makeup of an individual. For example, we may refer to an individual

More information

Population Dynamics. Population: all the individuals of a species that live together in an area

Population Dynamics. Population: all the individuals of a species that live together in an area Population Dynamics Population Dynamics Population: all the individuals of a species that live together in an area Demography: the statistical study of populations, make predictions about how a population

More information

How Populations Evolve. Chapter 15

How Populations Evolve. Chapter 15 How Populations Evolve Chapter 15 Populations Evolve Biological evolution does not change individuals It changes a population Traits in a population vary among individuals Evolution is change in frequency

More information

a) In terms of the gene pool, evolution can be defined as a generation to generation change in the allele frequencies within a population.

a) In terms of the gene pool, evolution can be defined as a generation to generation change in the allele frequencies within a population. I. Population Genetics Figure 1: Gene Pool Gene Pool: a) In terms of the gene pool, evolution can be defined as a generation to generation change in the allele frequencies within a population. Figure 2:

More information

Conifer Translational Genomics Network Coordinated Agricultural Project

Conifer Translational Genomics Network Coordinated Agricultural Project Conifer Translational Genomics Network Coordinated Agricultural Project Genomics in Tree Breeding and Forest Ecosystem Management ----- Module 4 Quantitative Genetics Nicholas Wheeler & David Harry Oregon

More information

MSc specialization Animal Breeding and Genetics at Wageningen University

MSc specialization Animal Breeding and Genetics at Wageningen University MSc specialization Animal Breeding and Genetics at Wageningen University The MSc specialization Animal Breeding and Genetics focuses on the development and transfer of knowledge in the area of selection

More information

Week 7 - Natural Selection and Genetic Variation for Allozymes

Week 7 - Natural Selection and Genetic Variation for Allozymes Week 7 - Natural Selection and Genetic Variation for Allozymes Introduction In today's laboratory exercise, we will explore the potential for natural selection to cause evolutionary change, and we will

More information

Population genetics. Population genetics provides a foundation for studying evolution How/Why?

Population genetics. Population genetics provides a foundation for studying evolution How/Why? Population genetics 1.Definition of microevolution 2.Conditions for Hardy-Weinberg equilibrium 3.Hardy-Weinberg equation where it comes from and what it means 4.The five conditions for equilibrium in more

More information

Population and Community Dynamics. The Hardy-Weinberg Principle

Population and Community Dynamics. The Hardy-Weinberg Principle Population and Community Dynamics The Hardy-Weinberg Principle Key Terms Population: same species, same place, same time Gene: unit of heredity. Controls the expression of a trait. Can be passed to offspring.

More information

The Hardy-Weinberg Principle. Essential Learning Objectives 1.A.1 (g) and 1.A.1 (h)

The Hardy-Weinberg Principle. Essential Learning Objectives 1.A.1 (g) and 1.A.1 (h) The Hardy-Weinberg Principle Essential Learning Objectives 1.A.1 (g) and 1.A.1 (h) Evolution of Populations Individuals do not evolve, but rather, populations evolve Scientists use mathematical models

More information

The genetic architecture of hybrid incompatibilities and their effect on barriers to introgression in secondary contact

The genetic architecture of hybrid incompatibilities and their effect on barriers to introgression in secondary contact ORIGINAL ARTICLE doi:10.1111/evo.12725 The genetic architecture of hybrid incompatibilities and their effect on barriers to introgression in secondary contact Dorothea Lindtke 1,2,3 and C. Alex Buerkle

More information

Identifying Genes Underlying QTLs

Identifying Genes Underlying QTLs Identifying Genes Underlying QTLs Reading: Frary, A. et al. 2000. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 289:85-87. Paran, I. and D. Zamir. 2003. Quantitative

More information