The plasmid for the HLY production was constructed by using the MutliSite Gateway TM

Size: px
Start display at page:

Download "The plasmid for the HLY production was constructed by using the MutliSite Gateway TM"

Transcription

1 Supplementary methods and table The plasmid for the HLY production The plasmid for the HLY production was constructed by using the MutliSite Gateway TM system (Mabashi et al. 00). The HLY gene was amplified with two combinations of the primers [primer and primer, primer and primer (Supplementary table 1)] and pmar-hly (Tsuchiya et al. ) as a template. The two DNA fragments were cloned as center and entry clones (pgchly' and pg'hly, respectively) and then mixed with the entry clone, pg'pfa, and the destination vector, pgdsn (Mabashi et al. 00), for LR clonase reaction. The resulting plasmid, pals, contains the amyb-hly-hly fusion gene under the control of the amyb promoter along with the Aspergillus nidulans sc marker (Yamada et al. ). The Kex cleavage site (-Lys-Arg-) was placed at the upstream of HLY. 1 The plasmid for pepa gene disruption 0 1 The plasmid for pepa gene disruption was constructed by fusion PCR. Using the genomic DNA of the A. oryzae RIB0 strain as a template, PCR was carried out with the primers [pepa-a and pepa-b for the flanking region of the pepa gene (1. kb), pepa-c and pepa-d for the flanking region of the pepa gene (1. kb), adea-f and adea-r for the adea gene (.0 kb) (Supplementary table 1)] using Pfx DNA polymerase (Invitrogen, San Diego, CA, USA). The three DNA fragments were mixed, and fusion 1

2 PCR was performed by LA Taq DNA polymerase (TaKaRa, Kyoto, Japan). This reaction was performed as follows: denaturation at C for min; followed by 0 cycles of C for 0 sec, C for 0 sec and C for min (The temperature was gradually raised from C to C at 1 C/ sec). The amplified DNA fragment was cloned into ptblue vector (Novagen, Madison, WI, USA), generating the plasmid, pdpepa. Using the resulting plasmid as a template, the DNA fragment for pepa gene disruption was amplified and introduced into the HLY producing strain. The plasmid for pepe gene disruption The plasmid for pepe gene disruption was constructed by the MultiSite Gateway TM system. Using the genomic DNA of the RIB0 strain as a template, PCR was carried out with the primers [attbf-ppepe and attb1r-ppepe for the flanking region of the pepe gene (.0 kb), attbf-tpepe and attbr-tpepe for the flanking region of the pepe gene (.0 kb), attb1f-adea and attbr-adea for the adea gene (.0 kb) (Supplementary table 1)]. The three DNA fragments were inserted into entry donor vectors of the MultiSite Gateway TM system to generate three types of entry clones. Subsequently, these entry clones and the destination vector (pdest TM R-R; Invitrogen) were connected by LR recombination reaction. The resultant plasmid (pgdestforδpepe) was used as a template for PCR to amplify the DNA fragment for pepe gene disruption in the HLY producing strain.

3 The plasmid for alpa gene disruption The plasmid, pdalpa, for alpa gene disruption was constructed by fusion PCR. Using the genomic DNA of the RIB0 strain as a template, PCR was carried out with the primers [alpa-a and alpa-b for the flanking region of the pepa gene (1. kb), pepa-c and pepa-d for the flanking region of the pepa gene (1. kb), adea-f (alpa) and adea-r (alpa) for the adea gene (1. kb) (Supplementary table 1)]. The fusion PCR and subsequent procedures were performed as described for pepa gene disruption. 1 The plasmid for tppa gene disruption with the adea marker The plasmid, pdtppa, for tppa gene disruption was constructed by fusion PCR. Using the genomic DNA of A. oryzae RIB0 as a template, PCR was carried out with the primers [tppa-a and tppa-b for the flanking region of the tppa gene (1. kb), tppa-c and tppa-d for the flanking region of the tppa gene (1. kb), adea-f(tppa) and adea-r(tppa) for the adea gene (1. kb) (Supplementary table 1)]. The fusion PCR and the subsequent procedures were performed as described for pepa gene disruption. 0 1 The plasmid for palb gene disruption The plasmid, pgdpab, for palb gene disruption was constructed by using the MultiSite

4 Gateway TM system. Using the genomic DNA of RIB0 strain as a template, PCR was carried out with primers [palb-f and palb-b for the flanking region of the palb gene (1. kb), palb-c and palb-r for the flanking region of the pepe gene (.0 kb) (Supplementary table 1)]. The amplified DNA fragments were inserted into entry donor vectors to generate entry clones. The following experiments were carried out as described for pepe gene disruption. The plasmid for tppa gene disruption with the argb marker The plasmid, pgdtpa, for tppa gene disruption was constructed by using the MultiSite Gateway TM system. Using the genomic DNA of the RIB0 strain as a template, PCR was carried out with the primers [tppa-f and tppa-b for the flanking region of the tppa gene (1. kb), tppa-c and tppa-r for the flanking region of the pepe gene (1. kb), argb-f() and argb-r() for the argb gene (.1 kb) (Supplementary table 1)]. The amplified DNA fragments were inserted into entry donor vectors to generate entry clones. The subsequent experiments were as described for pepe gene disruption.

5 Supplementary table 1 Primers used in this study Name Sequence (' to ') Directions HLY production Primer ggggacaagtttgtacaaaaaagcaggcttgaagcgcaaggttttcgaacgttgtgaattg *1, Forward Primer ggggaccactttgtacaagaaagctgggttgacaccacaaccttgaacgtattg Reverse Primer ggggacagctttcttgtacaaagtgggtaagcgcaaggttttcgaacgttgtgaattg Forward Primer ggggacaactttgtataataaagttgttagacaccacaaccttgaacgta Reverse Disruption of the pepa gene pepa-a ggactgatttcgttgattgagccg Forward pepa-b ctgacctatcttcctggacatgacggagcacaagcctagacgaactcaga * Reverse pepa-c ggactcgtatgctgttgcgcagcatctactaacacctctctccag Forward pepa-d cgatcaattcttcaacagctccac Reverse adea-f ccgtcatgtccaggaagataggtcag Forward adea-r ctgcgcaacagcatacgagtccacag Reverse Disruption of the pepe gene attbf-ppepe ggggacaactttgtatagaaaagttggtcgtccggattctatccac Forward attb1r-ppepe ggggactgctttttttgacaaacttgtgggcgacaacggcgacaaa Reverse attbf-tpepe ggggacagctttcttgtacaaagtggtacatgatagcctgcctcgg Forward attbr-tpepe ggggacaactttgtataataaagttgcccaagcccaatctctagct Reverse attb1f-adea ggggacaagtttgtacaaaaaagcaggcttgcgcaacagcatacgagtc Forward attbr-adea ggggaccactttgtacaagaaagctgggtcatgccgtcatgtccaggaa Reverse Disruption of alpa gene alpa-a gggccattcaggttgtgcctaa Forward alpa-b ttcctggacatgacggcatgagggtacgcttgatggactgcatg Reverse alpa-c gtcgtatatataacgctcaattgtccaccaggagtacgtcgcaggatt Forward alpa-d ctccgggttttctcccttacac Reverse adea-f(alpa) catgcagtccatcaagcgtaccctcatgccgtcatgtccaggaa Forward adea-r(alpa) aatcctgcgacgtactcctggtggacaattgagcgttatatatacgac Reverse Disruption of the tppa gene tppa-a gcgagacaacagctacaacacag Forward tppa-b ttcctggacatgacggcatgagctttggaacggcagacagcttc Reverse tppa-c gtcgtatatataacgctcaattgtccacgtgagggtaaactatggggt Forward tppa-d tcgatcttcctggcctctgtca Reverse adea-f(tppa) gaagctgtctgccgttccaaagctcatgccgtcatgtccaggaa Forward adea-r(tppa) accccatagtttaccctcacgtggacaattgagcgttatatatacgac Reverse tppa-f ggggacaactttgtatagaaaagttggcgagacaacagctacaacacag Forward tppa-b ggggactgcttttttgtacaaacttgctttggaacggcagacagcttc Reverse tppa-c ggggacagctttcttgtacaaagtggacgtgagggtaaactatggggt Forward tppa-r ggggacaactttgtataataaagttgtcgatcttcctggcctctgtca Reverse argb-f() ggggacaagtttgtacaaaaaagcaggctgaggagtaaaggggtggattcgga Forward argb-r() ggggaccactttgtacaagaaagctgggtgggttgttggccttgttttgtcgg Reverse Disruption of the palb gene palb-f ggggacaactttgtatagaaaagttgagcccgggtgggagcgacatctatttcagg * Forward palb-b ggggactgcttttttgtacaaacttgacccgggttcggtctagacatactggcag Reverse palb-c ggggacagctttcttgtacaaagtggagcccgggtgcttgatctcttatcctgcag Forward palb-r ggggacaactttgtataataaagttgacccgggaagaggtcttgagtgaagctcc Reverse *1 The attb sequences are underlined. * The Kex cleavage sites are shown in italic letters. * The nucleotide sequences of the adea gene are shown in bold letters. * The SmaI sites are shown in capital letters.

Molecular Cell Biology - Problem Drill 11: Recombinant DNA

Molecular Cell Biology - Problem Drill 11: Recombinant DNA Molecular Cell Biology - Problem Drill 11: Recombinant DNA Question No. 1 of 10 1. Which of the following statements about the sources of DNA used for molecular cloning is correct? Question #1 (A) cdna

More information

Lecture 18. PCR Technology. Growing PCR Industry

Lecture 18. PCR Technology. Growing PCR Industry Lecture 18 PCR Technology Growing PCR Industry Basic PCR, Cloning of PCR product, RT-PCR, RACE, Quantitative PCR, Multiplex PCR, Hot start PCR, Touchdown PCR,PCR sequencing.. How PCR started The DNA duplex

More information

Protocols for cloning SEC-based repair templates using SapTrap assembly

Protocols for cloning SEC-based repair templates using SapTrap assembly Protocols for cloning SEC-based repair templates using SapTrap assembly Written by Dan Dickinson (ddickins@live.unc.edu) and last updated July 2016. Overview SapTrap (Schwartz and Jorgensen, 2016) is a

More information

Gateway Cloning Protocol (Clough Lab Edition) This document is a modification of the Gateway cloning protocol developed by Manju in Chris Taylor's lab

Gateway Cloning Protocol (Clough Lab Edition) This document is a modification of the Gateway cloning protocol developed by Manju in Chris Taylor's lab Gateway Cloning Protocol (Clough Lab Edition) This document is a modification of the Gateway cloning protocol developed by Manju in Chris Taylor's lab With the Gateway cloning system, a PCR fragment is

More information

Vector Linearization. igem TU/e 2015 Biomedical Engineering

Vector Linearization. igem TU/e 2015 Biomedical Engineering igem TU/e 2015 Biomedical Engineering Eindhoven University of Technology Room: Ceres 0.04 Den Dolech 2, 5612 AZ Eindhoven The Netherlands Tel. no. +31 50 247 55 59 2015.igem.org/Team:TU_Eindhoven Vector

More information

Manipulating DNA. Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates.

Manipulating DNA. Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates. Lesson Overview 14.3 Studying the Human Genome Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates. Nucleic acids are chemically different from other macromolecules

More information

The Polymerase Chain Reaction. Chapter 6: Background

The Polymerase Chain Reaction. Chapter 6: Background The Polymerase Chain Reaction Chapter 6: Background PCR Amplify= Polymerase Chain Reaction (PCR) Invented in 1984 Applications Invention of PCR Kary Mullis Mile marker 46.58 in April of 1983 Pulled off

More information

Recombinant DNA Technology

Recombinant DNA Technology History of recombinant DNA technology Recombinant DNA Technology (DNA cloning) Majid Mojarrad Recombinant DNA technology is one of the recent advances in biotechnology, which was developed by two scientists

More information

DNA Replication. DNA Replication. Meselson & Stahl Experiment. Contents

DNA Replication. DNA Replication. Meselson & Stahl Experiment. Contents DNA Replication Contents 1 DNA Replication 1.1 Meselson & Stahl Experiment 1.2 Replication Machinery 2 Polymerase Chain Reaction (PCR) 3 External Resources: DNA Replication Meselson & Stahl Experiment

More information

2x PCR LongNova-RED PCR Master Mix

2x PCR LongNova-RED PCR Master Mix 2x PCR LongNova-RED Components RP85L 100 reactions (50 μl) RP85L-10 1000 reactions (50 μl) 2x PCR LongNova-RED 2 x 1.25 ml 20 x 1.25 ml PCR grade water 2 x 1.5 ml 20 x 1.5 ml Storage & Shiing Storage conditions

More information

Cat # Box1 Box2. DH5a Competent E. coli cells CCK-20 (20 rxns) 40 µl 40 µl 50 µl x 20 tubes. Choo-Choo Cloning TM Enzyme Mix

Cat # Box1 Box2. DH5a Competent E. coli cells CCK-20 (20 rxns) 40 µl 40 µl 50 µl x 20 tubes. Choo-Choo Cloning TM Enzyme Mix Molecular Cloning Laboratories User Manual Version 3.3 Product name: Choo-Choo Cloning Kits Cat #: CCK-10, CCK-20, CCK-096, CCK-384 Description: Choo-Choo Cloning is a highly efficient directional PCR

More information

TrueORF TM cdna Clones and PrecisionShuttle TM Vector System

TrueORF TM cdna Clones and PrecisionShuttle TM Vector System TrueORF TM cdna Clones and PrecisionShuttle TM Vector System Application Guide Table of Contents Package Contents and Storage Conditions... 2 Related, Optional Reagents... 2 Related Products... 2 Available

More information

Table S1. List of primers used in this study

Table S1. List of primers used in this study Table S1. List of primers used in this study Name KanMx-F2 KanMx-A2 FEN1-DG-S FEN1-DG-A SUR4-DG-S SUR4-DG-A CaARG4-R1130 CaARG4-F61 CaHIS1-DR CaHIS1-ter CaFEN1-US1 CaFEN1-UA1 CaFEN1-DS2 CaFEN1-DA2 CaFEN1-DG-S

More information

Molecular Biology: DNA sequencing

Molecular Biology: DNA sequencing Molecular Biology: DNA sequencing Author: Prof Marinda Oosthuizen Licensed under a Creative Commons Attribution license. SEQUENCING OF LARGE TEMPLATES As we have seen, we can obtain up to 800 nucleotides

More information

2054, Chap. 14, page 1

2054, Chap. 14, page 1 2054, Chap. 14, page 1 I. Recombinant DNA technology (Chapter 14) A. recombinant DNA technology = collection of methods used to perform genetic engineering 1. genetic engineering = deliberate modification

More information

Genome Sequence Assembly

Genome Sequence Assembly Genome Sequence Assembly Learning Goals: Introduce the field of bioinformatics Familiarize the student with performing sequence alignments Understand the assembly process in genome sequencing Introduction:

More information

Genetic Engineering & Recombinant DNA

Genetic Engineering & Recombinant DNA Genetic Engineering & Recombinant DNA Chapter 10 Copyright The McGraw-Hill Companies, Inc) Permission required for reproduction or display. Applications of Genetic Engineering Basic science vs. Applied

More information

DNA Technology. Asilomar Singer, Zinder, Brenner, Berg

DNA Technology. Asilomar Singer, Zinder, Brenner, Berg DNA Technology Asilomar 1973. Singer, Zinder, Brenner, Berg DNA Technology The following are some of the most important molecular methods we will be using in this course. They will be used, among other

More information

SEQUENCING DNA. Jos. J. Schall Biology Department University of Vermont

SEQUENCING DNA. Jos. J. Schall Biology Department University of Vermont SEQUENCING DNA Jos. J. Schall Biology Department University of Vermont SEQUENCING DNA Start with PCR product (your end result of a PCR). Remember, your template DNA in the PCR was extracted DNA that included

More information

Bio Rad PCR Song Lyrics

Bio Rad PCR Song Lyrics Bio Rad PCR Song Lyrics There was a time when to amplify DNA, You had to grow tons and tons of tiny cells. (Oooh) Then along came a guy named Dr. Kary Mullis, Said you can amplify in vitro just as well.

More information

Construction of plant complementation vector and generation of transgenic plants

Construction of plant complementation vector and generation of transgenic plants MATERIAL S AND METHODS Plant materials and growth conditions Arabidopsis ecotype Columbia (Col0) was used for this study. SALK_072009, SALK_076309, and SALK_027645 were obtained from the Arabidopsis Biological

More information

MightyAmp DNA Polymerase Ver.3

MightyAmp DNA Polymerase Ver.3 Cat. # R076A For Research Use MightyAmp DNA Polymerase Ver.3 Product Manual Table of Contents I. Description... 3 II. Components... 3 III. Storage... 3 IV. General PCR Reaction Mix... 3 V. Primer Design...

More information

CHAPTER 9 DNA Technologies

CHAPTER 9 DNA Technologies CHAPTER 9 DNA Technologies Recombinant DNA Artificially created DNA that combines sequences that do not occur together in the nature Basis of much of the modern molecular biology Molecular cloning of genes

More information

MIT Department of Biology 7.013: Introductory Biology - Spring 2005 Instructors: Professor Hazel Sive, Professor Tyler Jacks, Dr.

MIT Department of Biology 7.013: Introductory Biology - Spring 2005 Instructors: Professor Hazel Sive, Professor Tyler Jacks, Dr. MIT Department of Biology 7.01: Introductory Biology - Spring 2005 Instructors: Professor Hazel Sive, Professor Tyler Jacks, Dr. Claudette Gardel iv) Would Xba I be useful for cloning? Why or why not?

More information

1. A brief overview of sequencing biochemistry

1. A brief overview of sequencing biochemistry Supplementary reading materials on Genome sequencing (optional) The materials are from Mark Blaxter s lecture notes on Sequencing strategies and Primary Analysis 1. A brief overview of sequencing biochemistry

More information

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech )

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech ) NOTES - CH 15 (and 14.3): DNA Technology ( Biotech ) Vocabulary Genetic Engineering Gene Recombinant DNA Transgenic Restriction Enzymes Vectors Plasmids Cloning Key Concepts What is genetic engineering?

More information

Supplemental Materials. DNA preparation. Dehalogenimonas lykanthroporepellens strain BL-DC-9 T (=ATCC

Supplemental Materials. DNA preparation. Dehalogenimonas lykanthroporepellens strain BL-DC-9 T (=ATCC Supplemental Materials DNA preparation. Dehalogenimonas lykanthroporepellens strain BL-DC-9 T (=ATCC BAA-1523 = JCM 15061) was grown in defined basal medium amended with 0.5 mm 1,1,2- trichloroethane (1,1,2-TCA)

More information

PV92 PCR Bio Informatics

PV92 PCR Bio Informatics Purpose of PCR Chromosome 16 PV92 PV92 PCR Bio Informatics Alu insert, PV92 locus, chromosome 16 Introduce the polymerase chain reaction (PCR) technique Apply PCR to population genetics Directly measure

More information

Guide-it Indel Identification Kit User Manual

Guide-it Indel Identification Kit User Manual Clontech Laboratories, Inc. Guide-it Indel Identification Kit User Manual Cat. No. 631444 (120114) Clontech Laboratories, Inc. A Takara Bio Company 1290 Terra Bella Avenue, Mountain View, CA 94043, USA

More information

Table of Contents. PrimeScript TM RT-PCR Kit. I. Kit Contents...2. Storage...3. Principle...4. Features...5. V. Notes...5. Protocol...

Table of Contents. PrimeScript TM RT-PCR Kit. I. Kit Contents...2. Storage...3. Principle...4. Features...5. V. Notes...5. Protocol... Table of Contents I. Kit Contents...2 II. III. IV. Storage...3 Principle...4 Features...5 V. Notes...5 VI. Protocol...6 VII. PCR Condition...8 VIII. Application...8 IX. Preparation of RNA sample...10 X.

More information

Lecture Four. Molecular Approaches I: Nucleic Acids

Lecture Four. Molecular Approaches I: Nucleic Acids Lecture Four. Molecular Approaches I: Nucleic Acids I. Recombinant DNA and Gene Cloning Recombinant DNA is DNA that has been created artificially. DNA from two or more sources is incorporated into a single

More information

Supplementary Material

Supplementary Material Supplementary Material Gene Inactivation Study on gntk, a Putative C-methyltransferase Gene in Gentamicin Biosynthesis from Micromonospora echinospora Suman Karki Jin-Yong Kim Si-Hyung Park Hyung-Jin Kwon

More information

Mutating Asn-666 to Glu in the O-helix region of the taq DNA polymerase gene

Mutating Asn-666 to Glu in the O-helix region of the taq DNA polymerase gene Research in Pharmaceutical Sciences, April 2010; 5(1): 15-19 Received: Oct 2009 Accepted: Jan 2010 School of Pharmacy & Pharmaceutical Sciences 15 Isfahan University of Medical Sciences Original Article

More information

3 Designing Primers for Site-Directed Mutagenesis

3 Designing Primers for Site-Directed Mutagenesis 3 Designing Primers for Site-Directed Mutagenesis 3.1 Learning Objectives During the next two labs you will learn the basics of site-directed mutagenesis: you will design primers for the mutants you designed

More information

2 Gene Technologies in Our Lives

2 Gene Technologies in Our Lives CHAPTER 15 2 Gene Technologies in Our Lives SECTION Gene Technologies and Human Applications KEY IDEAS As you read this section, keep these questions in mind: For what purposes are genes and proteins manipulated?

More information

601 CTGTCCACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGAGAGACCACATGGTCCTT GACAGGTGTGTTAGACGGGAAAGCTTTCTAGGGTTGCTTTTCTCTCTGGTGTACCAGGAA >>>>>>>>>>>>>>>>>>

601 CTGTCCACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGAGAGACCACATGGTCCTT GACAGGTGTGTTAGACGGGAAAGCTTTCTAGGGTTGCTTTTCTCTCTGGTGTACCAGGAA >>>>>>>>>>>>>>>>>> BIO450 Primer Design Tutorial The most critical step in your PCR experiment will be designing your oligonucleotide primers. Poor primers could result in little or even no PCR product. Alternatively, they

More information

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning Section A: DNA Cloning 1. DNA technology makes it possible to clone genes for basic research and commercial applications: an overview 2. Restriction enzymes are used to make recombinant DNA 3. Genes can

More information

Supplementary Information

Supplementary Information Supplementary Information Deletion of the B-B and C-C regions of inverted terminal repeats reduces raav productivity but increases transgene expression Qingzhang Zhou 1, Wenhong Tian 2, Chunguo Liu 3,

More information

Laboratory #7 PCR PCR

Laboratory #7 PCR PCR 1 Laboratory #7 Polymerase chain reaction () is DNA replication in a test tube. In vitro enzymatic amplification of a specific segment of DNA. Many Applications. direct cloning from DNA or cdna. Mutagenesis

More information

Protocol for tissue-specific gene disruption in zebrafish

Protocol for tissue-specific gene disruption in zebrafish Protocol for tissue-specific gene disruption in zebrafish Overview This protocol describes a method to inactivate genes in zebrafish in a tissue-specific manner. It can be used to analyze mosaic loss-of-function

More information

INTRODUCTION TO REVERSE TRANSCRIPTION PCR (RT-PCR) ABCF 2016 BecA-ILRI Hub, Nairobi 21 st September 2016 Roger Pelle Principal Scientist

INTRODUCTION TO REVERSE TRANSCRIPTION PCR (RT-PCR) ABCF 2016 BecA-ILRI Hub, Nairobi 21 st September 2016 Roger Pelle Principal Scientist INTRODUCTION TO REVERSE TRANSCRIPTION PCR (RT-PCR) ABCF 2016 BecA-ILRI Hub, Nairobi 21 st September 2016 Roger Pelle Principal Scientist Objective of PCR To provide a solution to one of the most pressing

More information

Table of contents. I. Flowchart of blunt end cloning of PCR products...2. II. Description...3. III. Kit Components...3

Table of contents. I. Flowchart of blunt end cloning of PCR products...2. II. Description...3. III. Kit Components...3 Table of contents I. Flowchart of blunt end cloning of PCR products...2 II. Description...3 III. Kit Components...3 IV. Reagents and Instruments Required...3 V. Storage...3 VI. About puc118 Hinc II/BAP...4

More information

Cat. # R006A. For Research Use. TaKaRa Z-Taq DNA Polymerase. Product Manual. v201411da

Cat. # R006A. For Research Use. TaKaRa Z-Taq DNA Polymerase. Product Manual. v201411da Cat. # R006A For Research Use TaKaRa Z-Taq DNA Polymerase Product Manual Table of Contents I. Description... 3 II. Components... 3 III. Specifications... 3 IV. Optimization of Reaction Conditions... 4

More information

Antisense RNA Insert Design for Plasmid Construction to Knockdown Target Gene Expression

Antisense RNA Insert Design for Plasmid Construction to Knockdown Target Gene Expression Vol. 1:7-15 Antisense RNA Insert Design for Plasmid Construction to Knockdown Target Gene Expression Ji, Tom, Lu, Aneka, Wu, Kaylee Department of Microbiology and Immunology, University of British Columbia

More information

FOR RESEARCH USE ONLY. NOT FOR HUMAN OR DIAGNOSTIC USE.

FOR RESEARCH USE ONLY. NOT FOR HUMAN OR DIAGNOSTIC USE. Instruction manual KOD -Plus- 1207 F0934K KOD -Plus- Contents [1] Introduction [2] Components [3] Quality testing [4] Primer design [5] Cloning of PCR products [6] Protocol 1. Standard reaction setup 2.

More information

The Polymerase Chain Reaction. Chapter 6: Background

The Polymerase Chain Reaction. Chapter 6: Background The Polymerase Chain Reaction Chapter 6: Background Invention of PCR Kary Mullis Mile marker 46.58 in April of 1983 Pulled off the road and outlined a way to conduct DNA replication in a tube Worked for

More information

BS 50 Genetics and Genomics Week of Nov 29

BS 50 Genetics and Genomics Week of Nov 29 BS 50 Genetics and Genomics Week of Nov 29 Additional Practice Problems for Section Problem 1. A linear piece of DNA is digested with restriction enzymes EcoRI and HinDIII, and the products are separated

More information

M Keramatipour 2. M Keramatipour 1. M Keramatipour 4. M Keramatipour 3. M Keramatipour 5. M Keramatipour

M Keramatipour 2. M Keramatipour 1. M Keramatipour 4. M Keramatipour 3. M Keramatipour 5. M Keramatipour Molecular Cloning Methods Mohammad Keramatipour MD, PhD keramatipour@tums.ac.ir Outline DNA recombinant technology DNA cloning co Cell based PCR PCR-based Some application of DNA cloning Genomic libraries

More information

DNA sequencing. Course Info

DNA sequencing. Course Info DNA sequencing EECS 458 CWRU Fall 2004 Readings: Pevzner Ch1-4 Adams, Fields & Venter (ISBN:0127170103) Serafim Batzoglou s slides Course Info Instructor: Jing Li 509 Olin Bldg Phone: X0356 Email: jingli@eecs.cwru.edu

More information

BENG 183 Trey Ideker. Genome Assembly and Physical Mapping

BENG 183 Trey Ideker. Genome Assembly and Physical Mapping BENG 183 Trey Ideker Genome Assembly and Physical Mapping Reasons for sequencing Complete genome sequencing!!! Resequencing (Confirmatory) E.g., short regions containing single nucleotide polymorphisms

More information

Polymerase Chain Reaction (PCR)

Polymerase Chain Reaction (PCR) Laboratory for Environmental Pathogens Research Department of Environmental Sciences University of Toledo Polymerase Chain Reaction (PCR) Background information The polymerase chain reaction (PCR) is an

More information

A Simple and Efficient Method to Determine the Terminal Sequences of Restriction Fragments Containing Known Sequences

A Simple and Efficient Method to Determine the Terminal Sequences of Restriction Fragments Containing Known Sequences DNA RESEARCH 7, 151-155 (2000) Short Communication A Simple and Efficient Method to Determine the Terminal Sequences of Restriction Fragments Containing Known Sequences Takeo KOHDA 1 -* and Kazunari TAIRA

More information

NAME TA SEC Problem Set 3 FRIDAY March 5, Problem sets will NOT be accepted late.

NAME TA SEC Problem Set 3 FRIDAY March 5, Problem sets will NOT be accepted late. MIT Department of Biology 7.013: Introductory Biology - Spring 2004 Instructors: Professor Hazel Sive, Professor Tyler Jacks, Dr. laudette ardel NME T SE 7.013 Problem Set 3 FRIDY March 5, 2004 Problem

More information

Multiple choice questions (numbers in brackets indicate the number of correct answers)

Multiple choice questions (numbers in brackets indicate the number of correct answers) 1 Multiple choice questions (numbers in brackets indicate the number of correct answers) February 1, 2013 1. Ribose is found in Nucleic acids Proteins Lipids RNA DNA (2) 2. Most RNA in cells is transfer

More information

MgCl 2 (25 mm) 1.6 ml 1.6 ml 1.6 ml 1.6 ml

MgCl 2 (25 mm) 1.6 ml 1.6 ml 1.6 ml 1.6 ml Technical Data Sheet KAPA2G Fast PCR Kit Kit components KK 5008 Product codes KK 5010 KK 5009 KK 5011 KAPA2G Fast DNA polymerase (5 U/μl) 100 U 100 U 250 U 250 U 1. Production Description The KAPA2G Fast

More information

Enzymatic assembly of DNA molecules up to several hundred kilobases

Enzymatic assembly of DNA molecules up to several hundred kilobases nature methods Enzymatic assembly of DNA molecules up to several hundred kilobases Daniel G Gibson, Lei Young, Ray-Yuan Chuang, J Craig Venter, Clyde A Hutchison III & Hamilton O Smith Supplementary figures

More information

Ramp1 EPD0843_4_B11. EUCOMM/KOMP-CSD Knockout-First Genotyping

Ramp1 EPD0843_4_B11. EUCOMM/KOMP-CSD Knockout-First Genotyping EUCOMM/KOMP-CSD Knockout-First Genotyping Introduction The majority of animals produced from the EUCOMM/KOMP-CSD ES cell resource contain the Knockout-First-Reporter Tagged Insertion allele. As well as

More information

Genetics Lecture 21 Recombinant DNA

Genetics Lecture 21 Recombinant DNA Genetics Lecture 21 Recombinant DNA Recombinant DNA In 1971, a paper published by Kathleen Danna and Daniel Nathans marked the beginning of the recombinant DNA era. The paper described the isolation of

More information

Usp14 EPD0582_2_G09. EUCOMM/KOMP-CSD Knockout-First Genotyping

Usp14 EPD0582_2_G09. EUCOMM/KOMP-CSD Knockout-First Genotyping EUCOMM/KOMP-CSD Knockout-First Genotyping Introduction The majority of animals produced from the EUCOMM/KOMP-CSD ES cell resource contain the Knockout-First-Reporter Tagged Insertion allele. As well as

More information

In Vitro DNA Recombination by Random Priming

In Vitro DNA Recombination by Random Priming DNA Recombination by Random Priming 99 13 In Vitro DNA Recombination by Random Priming Olga Esteban, Ryan D. Woodyer, and Huimin Zhao 1. Introduction Variation coupled to selection is the hallmark of natural

More information

Chapter 20: Biotechnology

Chapter 20: Biotechnology Name Period The AP Biology exam has reached into this chapter for essay questions on a regular basis over the past 15 years. Student responses show that biotechnology is a difficult topic. This chapter

More information

Technical Review. Real time PCR

Technical Review. Real time PCR Technical Review Real time PCR Normal PCR: Analyze with agarose gel Normal PCR vs Real time PCR Real-time PCR, also known as quantitative PCR (qpcr) or kinetic PCR Key feature: Used to amplify and simultaneously

More information

strain devoid of the aox1 gene [1]. Thus, the identification of AOX1 in the intracellular

strain devoid of the aox1 gene [1]. Thus, the identification of AOX1 in the intracellular Additional file 2 Identification of AOX1 in P. pastoris GS115 with a Mut s phenotype Results and Discussion The HBsAg producing strain was originally identified as a Mut s (methanol utilization slow) strain

More information

Introducing new DNA into the genome requires cloning the donor sequence, delivery of the cloned DNA into the cell, and integration into the genome.

Introducing new DNA into the genome requires cloning the donor sequence, delivery of the cloned DNA into the cell, and integration into the genome. Key Terms Chapter 32: Genetic Engineering Cloning describes propagation of a DNA sequence by incorporating it into a hybrid construct that can be replicated in a host cell. A cloning vector is a plasmid

More information

Session 3 Cloning Overview & Polymerase Chain Reaction

Session 3 Cloning Overview & Polymerase Chain Reaction Session 3 Cloning Overview & Polymerase Chain Reaction Learning Objective: In this lab exercise, you will become familiar with the steps of a polymerase chain reaction, the required reagents for a successful

More information

Quant One Step RT-PCR Kit

Quant One Step RT-PCR Kit 1. Quant One Step RT-PCR Kit For fast and sensitive one-step RT-PCR www.tiangen.com/en RT121221 Quant One Step RT-PCR Kit Kit Contents Cat. no. KR113 Contents Hotmaster Taq Polymerase (2.5 U/μl) Quant

More information

Instructions for Use Life Science Kits & Assays

Instructions for Use Life Science Kits & Assays Instructions for Use Life Science Kits & Assays Content Content 1 Product and order number... I 2 Storage conditions... I 3 Description... II 3.1 Quality data... II 3.2 Unit definition... II 4 Delivered

More information

Using mutants to clone genes

Using mutants to clone genes Using mutants to clone genes Objectives 1. What is positional cloning? 2. What is insertional tagging? 3. How can one confirm that the gene cloned is the same one that is mutated to give the phenotype

More information

Efficient Multi-site-directed Mutagenesis directly from Genomic Template.

Efficient Multi-site-directed Mutagenesis directly from Genomic Template. Efficient Multi-site-directed Mutagenesis directly from Genomic Template. Fengtao Luo 1, Xiaolan Du 1, Tujun Weng 1, Xuan Wen 1, Junlan Huang 1, Lin Chen 1 Running title: Multi-site-directed Mutagenesis

More information

FMF NIRCA PROTOCOL STEP 1.

FMF NIRCA PROTOCOL STEP 1. FMF NIRCA PROTOCOL STEP 1. After you have isolated patient s DNA and DNA from a healthy donor (wild type), you perform a nested PCR. The primers used to amplify exon 2 and exon 10 of the mefv gene are

More information

Chapter 15 Gene Technologies and Human Applications

Chapter 15 Gene Technologies and Human Applications Chapter Outline Chapter 15 Gene Technologies and Human Applications Section 1: The Human Genome KEY IDEAS > Why is the Human Genome Project so important? > How do genomics and gene technologies affect

More information

Polymerase Chain Reaction (PCR) and Its Applications

Polymerase Chain Reaction (PCR) and Its Applications Polymerase Chain Reaction (PCR) and Its Applications What is PCR? PCR is an exponentially progressing synthesis of the defined target DNA sequences in vitro. It was invented in 1983 by Dr. Kary Mullis,

More information

FOR RESEARCH USE ONLY. NOT FOR HUMAN OR DIAGNOSTIC USE.

FOR RESEARCH USE ONLY. NOT FOR HUMAN OR DIAGNOSTIC USE. Instruction manual KOD -Plus- Neo 1109 F1066K KOD -Plus- Neo Contents [1] Introduction [2] Components [3] Quality testing [4] Primer design [5] Cloning of PCR products [6] Protocol 1. Standard reaction

More information

A tool kit for rapid cloning and expression of. recombinant antibodies

A tool kit for rapid cloning and expression of. recombinant antibodies A tool kit for rapid cloning and expression of recombinant antibodies Tihomir S Dodev 1,4, Panagiotis Karagiannis 1,2, Amy E Gilbert 1,2, Debra H Josephs 1,2,3, Holly Bowen 1,4, Louisa K James 4, Heather

More information

PRODUCT INFORMATION Long PCR Enzyme Mix #K0182 500 u Lot Exp. 00.0000 Store at -20 C. CERTIFICATE OF ANALYSIS Long PCR Enzyme Mix is functionally tested in PCR amplification of 47.4 kb fragment from lambda

More information

3'-Full RACE Core Set

3'-Full RACE Core Set Table of Contents Description... 2 Principle... 4 Preparation of RNA Sample... 5 Note... 5 Protocol 1. General Protocol... 6 2. Application example... 8 Also available from Takara PCR related products

More information

Polymerase Chain Reaction (PCR) May 23, 2017

Polymerase Chain Reaction (PCR) May 23, 2017 Polymerase Chain Reaction (PCR) May 23, 2017 Outline History of PCR Uses of PCR How PCR works How to set up and run PCR The structure of DNA PCR Polymerase chain reaction Selective amplification of target

More information

PCR Laboratory Exercise

PCR Laboratory Exercise PCR Laboratory Exercise Advance Protocol (updated 1/2018) Introduction Detection of TPA-25 Alu by PCR A Human DNA Fingerprinting Lab Protocol 1994 Cold Spring Harbor Laboratory DNA Learning Center In this

More information

Chapter 17. PCR the polymerase chain reaction and its many uses. Prepared by Woojoo Choi

Chapter 17. PCR the polymerase chain reaction and its many uses. Prepared by Woojoo Choi Chapter 17. PCR the polymerase chain reaction and its many uses Prepared by Woojoo Choi Polymerase chain reaction 1) Polymerase chain reaction (PCR): artificial amplification of a DNA sequence by repeated

More information

Recombinant DNA Technology. The Role of Recombinant DNA Technology in Biotechnology. yeast. Biotechnology. Recombinant DNA technology.

Recombinant DNA Technology. The Role of Recombinant DNA Technology in Biotechnology. yeast. Biotechnology. Recombinant DNA technology. PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 8 Recombinant DNA Technology The Role of Recombinant DNA Technology in Biotechnology Biotechnology?

More information

Diagnosis Sanger. Interpreting and Troubleshooting Chromatograms. Volume 1: Help! No Data! GENEWIZ Technical Support

Diagnosis Sanger. Interpreting and Troubleshooting Chromatograms. Volume 1: Help! No Data! GENEWIZ Technical Support Diagnosis Sanger Interpreting and Troubleshooting Chromatograms GENEWIZ Technical Support DNAseq@genewiz.com Troubleshooting This troubleshooting guide is based on common issues seen from samples within

More information

Manipulation of Purified DNA

Manipulation of Purified DNA Manipulation of Purified DNA To produce the recombinant DNA molecule, the vector, as well as the DNA to be cloned, must be cut at specific points and then joined together in a controlled manner by DNA

More information

P HENIX. PHENIX PCR Enzyme Guide Tools For Life Science Discovery RESEARCH PRODUCTS

P HENIX. PHENIX PCR Enzyme Guide Tools For Life Science Discovery RESEARCH PRODUCTS PHENIX PCR Enzyme Guide PHENIX offers a broad line of premium quality PCR Enzymes. This PCR Enzyme Guide will help simplify your polymerase selection process. Each DNA Polymerase has different characteristics

More information

Lecture 14 - PCR Applications and Lab Practicum (AMG text pp ) October 9, 2001

Lecture 14 - PCR Applications and Lab Practicum (AMG text pp ) October 9, 2001 Lecture 14 - PCR Applications and Lab Practicum (AMG text pp. 159-169) October 9, 2001 Diagnostic Applications of PCR There are three primary diagnostic applications of PCR: - detecting pathogens using

More information

Q1 (1 point): Explain why a lettuce leaf wilts when it is placed in a concentrated salt solution.

Q1 (1 point): Explain why a lettuce leaf wilts when it is placed in a concentrated salt solution. Short questions 1 point per question. Q1 (1 point): Explain why a lettuce leaf wilts when it is placed in a concentrated salt solution. Answer: Water is sucked out of the cells by osmosis (this reduces

More information

Agilent SureCycler 8800

Agilent SureCycler 8800 Agilent SureCycler 8800 CHOOSING THE RIGHT THERMAL CYCLER HAS NEVER BEEN EASIER SURELY BETTER PCR FUNCTIONALITY FOR YOUR LAB Remote access experiment from across the room or across town hardware purchase

More information

Journal of Experimental Microbiology and Immunology (JEMI) Vol. 20: Copyright April 2016, M&I UBC

Journal of Experimental Microbiology and Immunology (JEMI) Vol. 20: Copyright April 2016, M&I UBC The Major Periplasmic Domain of YidC May Be Required for Polar Localization of a Green Fluorescence Protein Tagged YidC Variant Protein in Escherichia coli Peter Xu, Kevin He, Steven Yan Department of

More information

R1 12 kb R1 4 kb R1. R1 10 kb R1 2 kb R1 4 kb R1

R1 12 kb R1 4 kb R1. R1 10 kb R1 2 kb R1 4 kb R1 Bcor101 Sample questions Midterm 3 1. The maps of the sites for restriction enzyme EcoR1 (R1) in the wild type and mutated cystic fibrosis genes are shown below: Wild Type R1 12 kb R1 4 kb R1 _ _ CF probe

More information

Certificate of Analysis

Certificate of Analysis Certificate of Analysis pet6xhn Expression Vector Set Contents Product Information... 1 pet6xhn-n, pet6xhn-c, and pet6xhn-gfpuv Vector Information... 2 Location of Features... 4 Additional Information...

More information

Bio 101 Sample questions: Chapter 10

Bio 101 Sample questions: Chapter 10 Bio 101 Sample questions: Chapter 10 1. Which of the following is NOT needed for DNA replication? A. nucleotides B. ribosomes C. Enzymes (like polymerases) D. DNA E. all of the above are needed 2 The information

More information

Lecture 3 (FW) January 28, 2009 Cloning of DNA; PCR amplification Reading assignment: Cloning, ; ; 330 PCR, ; 329.

Lecture 3 (FW) January 28, 2009 Cloning of DNA; PCR amplification Reading assignment: Cloning, ; ; 330 PCR, ; 329. Lecture 3 (FW) January 28, 2009 Cloning of DNA; PCR amplification Reading assignment: Cloning, 240-245; 286-87; 330 PCR, 270-274; 329. Take Home Lesson(s) from Lecture 2: 1. DNA is a double helix of complementary

More information

Fundamentals of Real Time PCR

Fundamentals of Real Time PCR Fundamentals of Real Time PCR Mohamed Abdel Fattah Senior Technical Specialist Scientific Support - Molecular Biology Dept. AnalysisAB Co. Mobile: 012 27 906 74 E-mail: analysis@analysis-ab.com What is

More information

Guidelines for Preventing Contamination of PCR Reference Guidelines for Primer Design Estimation of Primer Melting Temperature

Guidelines for Preventing Contamination of PCR Reference Guidelines for Primer Design Estimation of Primer Melting Temperature Guidelines for Preventing Contamination of PCR During PCR more than 10 million copies of a template DNA are generated. Therefore, care must be taken to avoid contamination with other templates and amplicons

More information

TaKaRa PCR Amplification Kit

TaKaRa PCR Amplification Kit Cat. # R011 For Research Use TaKaRa PCR Amplification Kit Product Manual Table of Contents I. Description... 3 II. Components... 3 III. Storage... 4 IV. Materials Required but not Provided... 4 V. Principle...

More information

KOD -Plus- Mutagenesis Kit

KOD -Plus- Mutagenesis Kit Instruction manual KOD -Plus- Mutagenesis Kit 0811 F0936K KOD -Plus- Mutagenesis Kit SMK-101 20 reactions Store at -20 C Contents [1] Introduction [2] Flow chart [3] Components [4] Notes [5] Protocol 1.

More information

TRANSPOSON INSERTION SITE VERIFICATION

TRANSPOSON INSERTION SITE VERIFICATION TRANSPOSON INSERTION SITE VERIFICATION Transposon and T-DNA insertion in Arabidopsis genes can be identified using the Arabidopsis thaliana Insertion Database (ATIdb) (http://atidb.org/cgi-perl/gbrowse/atibrowse).

More information

PrimeScript RT Master Mix (Perfect Real Time)

PrimeScript RT Master Mix (Perfect Real Time) Cat. # RR036A For Research Use PrimeScript RT Master Mix (Perfect Real Time) Product Manual Table of Contents I. Description... 3 II. Kit Components... 3 III. Materials Required but not Provided... 3 IV.

More information

QUANTITATIVE RT-PCR PROTOCOL (SYBR Green I) (Last Revised: April, 2007)

QUANTITATIVE RT-PCR PROTOCOL (SYBR Green I) (Last Revised: April, 2007) QUANTITATIVE RT-PCR PROTOCOL (SYBR Green I) (Last Revised: April, 007) Please contact Center for Plant Genomics (CPG) facility manager Hailing Jin (hljin@iastate.edu) regarding questions or corrections.

More information