Fatigue of Maritime Structures A Wider View

Size: px
Start display at page:

Download "Fatigue of Maritime Structures A Wider View"

Transcription

1 Fatigue of Maritime Structures A Wider View Volker Bertram, ENSIETA, Brest/France, volker.bertram@ensieta.fr Fatigue is increasingly important in the structural design of maritime structures and associated rules. New paradigms in design for fatigue pose problems for traditional cost estimates. Current efforts towards design for production will also benefit fatigue life, as forming of non-developable plates imposes internal stresses and reduces fatigue life. 1. Introduction Maritime structures were traditionally designed for static maximum loads (design loads). However, ship and offshore structures are very much subject to dynamic loads, coming from, Fig.1: - propellers and diesel engines excite elastic vibrations in local structures. The number of load cycles is usually much higher than for those due to seaways. - Seaways excite local changing pressures. Typical frequencies are 0.1 Hz leading to load cycle number of 10 7 to 10 8 over the life span of ships. In addition, sudden impacts in seaways (slamming) can trigger ship vibrations called whipping. - Changing loading conditions (cargo and ballast cycles) yield few load cycles with high stress amplitudes In extreme cases, fatigue failure can lead to total loss of offshore structures or ships, Fig.2. source: Germanischer Lloyd Fig.1: Various sources excite vibrations causing eventually fatigue problems Structural failure due to dynamic loads differs from failure due to static loads: - Failure due to static loads may be due to plastic deformation, buckling and brittle fractures. The failure appears after a single load. - Failure due to dynamic loads is characterized as follows: During crack initiation, microscopic cracks appear due to accumulated plastic deformations at microscopic scale. Single micro-cracks may grow individually or combine with other cracks to macro-cracks. During crack propagation, the macro-crack growths orthogonal to the direction of maximum main stress. The crack propagation speed is typically mm per load cycle. There is no spontaneous failure ( stable crack growth ), but cracks may still be unacceptable e.g.

2 due to leakages. If a critical crack length is reached, the structure fails rapidly having insufficient residual strength. Fig.2: Spectacular maritime disaster linked to fatigue of structures: Alexander L. Kielland Fig.3: Fatigue testing at TU Hamburg-Harburg Several factors have contributed to the increasing importance of fatigue strength: - structures are increasingly sophisticated. Finite-element analyses are used as standard tools to minimize the structural material reducing thus also margins for fatigue strength. - High-tensile steels are increasingly used. These increase static strength, but have the same features as mild steel for corrosion and fatigue. - As the power-to-weight ratio of ships increased, so did problems with vibrations. 2. Investigation approaches for fatigue The increasing importance of fatigue strength for maritime structures has resulted corresponding research activities and recommendations for design, fabrication and operation of maritime structures to counter the increased risks described above. These worldwide research efforts, for more than three decades now, have produced an amount of publications that it is impossible to give a comprehensive overview. The best starting point for at least extensive literature surveys remains the proceedings of the ISSC (International Ship Structure Conference). In reality, fatigue problems appear after a certain number of load cycles, often only after months or even years of operation. The feedback for design is then often slow. Experiments allow to accelerate the time scale in applying realistic loads at a much higher frequency and observing then fatigue problems (after the same number of load cycles) in much shorter time, namely hours or days. As fatigue concerns microscopic structures failure, at a level where the material can no longer be considered as a homogeneous substance, neither scaled down models (one cannot easily scale down appropriately the grain size of the investigated material) nor classical structural analysis (based on continuous mechanics) were suitable tools for investigations of mechanisms. This left initially mainly fullscale model testing with then necessarily small specimens. Eventually, a few large testing facilities appeared worldwide which allow to test at least some structural details composed of complex 3-d structural elements, such as stiffeners, brackets, flanges etc. These allowed investigation of real(istic) ship details particularly prone to fatigue problems. Fig.3 shows the large testing facility in Hamburg with such a structural detail. 3-d complex assembled structures have a different fatigue behavior than simple plane material specimen or even single welds which are frequently tested in smaller testing fa-

3 cilities. ENSIETA in Brest is in the process of installing one of the larger such testing facilities which will add to France s capabilities (and competence) in the field of maritime fatigue. Fig.4: Excerpt from classification rules showing catalogue of structural details and stress concentration factor corrections Fig.5: Structural design: conventional (left) and designed for fatigue strength (right) Over several decades, test data were accumulated for many typical ship structures and these data have been used by classification societies (along with feedback from fatigue damages on actual ships) to compile catalogues of stress increasing factors, Fig.4. These catalogues allow a simple, pragmatic approach to structural design. The structural designer can compute macroscopic nominal stress using long established and widely available standard tools for structural analysis. The catalogues then give a correction for the influence of a discontinuity (like a weld or a corner) allowing to transform fatigue strength into a changed upper limit for the static stresses. The approach is pragmatic, but not applicable to structures which are not (yet) found in the catalogues. This poses problems each time new structural details or new materials are used. The collective experience of model tests, advanced structural analysis and feedback from ship operations has also resulted in recommendations how to design certain, frequent structural designs in ships, but design for fatigue is rarely taught in universities. (Theory of fatigue is widely taught and published, practical design not, as it requires typically industry experience and knowledge less widely disseminated.) Fig.5 shows one example, namely how to conventional holes for weld intersections are often designed (using the simple circle segments dating from pre-cad eras) and how they can be designed for improved fatigue strength. Fig.6: Increasingly fine finite-element models are used in fatigue and fracture analysis, Fricke??? Traditional dimensioning of ship structures followed simple semi-empirical formulae giving directly the thickness of plates of stiffeners or a required section modulus. Fatigue strength, however, requires a more detailed stress analysis, Fig.6. Complex ship structures are increasingly analyzed using 3D finite elements models. These models allow a realistic distribution of loads and capture the interaction between the main structures. Usually the whole ship hull with its main structures is modeled using plate elements. Secondary structures like stiffeners are modeled simplified using truss elements. The

4 analysis gives global nominal stress distributions for coarse grids. For fine grids, effects of effective width and geometry of the structure are also captured. Local finite-element models serve to determine the stress increase due to geometry of the structure. Usually plain-strain plate elements suffice to determine the notch stress at plate edges of holes. For hot-spot stress at weld toes and plate structures, either plate elements of volume elements are employed. Volume elements require more effort, but consider the stiffness and load distributing effect of the weld better. The definition of the hot-spot stress requires the evaluation of the linear stress component over the plate thickness. This is automatically given for plate elements. For volume elements, an elegant solution is arranging only one element over the plate thickness. Then intermediate nodes are necessary at the element edges to capture the bending properly. Using only 2 integration points over the thickness yields directly the linear stress component. This can then be extrapolated to the plate edge to give the hot-spot stress. The loads for the local finite-element models come either from prescribed external stresses or deformations. These are taken either from a defined initial state or from a global analysis. The notch stress at the weld toe respectively the notch factor is usually determined in a 2D model with very fine grids. Such models employ plain-strain plate elements. Linear-elastic analyses can employ boundary element methods reducing the effort for the model considerably. Both finite-element and boundary-element methods require a grid refinement near regions with high stress gradients. 3. Wider implications of fatigue strength Despite the considerable progress in understanding fatigue mechanisms and transforming this understanding into design and manufacturing procedures, there is no shortage of open questions around fatigue of maritime structures: 1. Maritime structures (ships and offshore platforms) are among the largest man-made structures in the world. Since scaled-down model tests are not possible, only relatively small structural details can be tested. Both machine size and energy consumption become exhibitively expensive as we try to move to larger test specimen. Therefore, test machines are increasingly used to validate numerical procedures for specimen of limited size and complexity, and larger structural details can only be investigated by (hopefully) validated numerical approaches. Both scope of validation and numerical performance (efficiency of algorithms and available hardware) show potential for improvement. 2. Maritime structures are usually subject to multi-frequency, multi-amplitude excitation, e.g. broadband random excitation from the seaway superimposed on narrow-band frequency excitation from engines and propellers. While fatigue life is easily determined for single-frequency, singleamplitude excitation, the order in which different frequencies in a spectrum appear in the excitation history appears to influence the fatigue life of a specimen. This poses then questions on how (in what tile order) to apply loads in tests to derive appropriate predictions. 3. One of the excitation sources for load cycles in maritime structures is the seaway which can only be described in a stochastic manner. In addition, current numerical methods to analyze maritime structures in seaways are typically validated only for some global motion. Extensive validation of numerical tools for local loads is expected to be a major research goal for the global research community for the next decade. First tentative steps, Bertram (1997), Iwashita et al. (2000), show already that methods yielding good global results (for heave and pitch motion) may well show large errors for local pressures (and thus probably also for stresses). 4. Fatigue tests for maritime structures usually accelerate time by using a higher frequency of loadcycles than in reality. The inherent assumption is that the structure as such does not change during the simulated test time. This is acceptable for cases where fatigue damage occurs within hours to weeks, typically induced by high-frequency propeller or engine excitation. However, if fatigue failure occurs after several years of operation in a corrosive environment (like ships and offshore platforms), interaction of corrosion and fatigue becomes important. Corrosion will certainly influence fatigue as specimens will be reduced in strength to start with. However, fatigue and associated micro-cracks may also influence progress of corrosion. At present, we see no possibility to

5 accelerate appropriately (and in a controlled fashion) the corrosion as well as the load-cycles. Interaction of corrosion and fatigue for high-frequency load-cycles (where the corrosion state is considered as steady during the investigated period) will be subject to investigations at ENSIETA in the near future. 5. Fatigue failures are usually detected in inspections of classification societies. While fatigue problems are frequent, catastrophes due to fatigue are quite rare, because micro-cracks take usually a long time (sometimes months to years) before progressing to structure failure. They are then typically detected and rectified at an early stage. The inspection requires surveyors (representatives of the classification society inspecting on-board) to look at the structures up close. This poses problems in narrow spaces. The quest for more ships safety has already made double-hull constructions mandatory for tankers and double-hull constructions are under debate for bulk carriers (the second largest segment of the world fleet in terms of tonnage). The space between the inner and outer hull is quite narrow and difficult to access for humans. Here, robotics combined with machine vision is seen as one future solution to detect fatigue problems early in these new ship constructions, Fig.7, Weiss et al.(2004). Fig.7: Narrow passage in double-hull tanker (left), inspection robot (right) Fig.8: Aspects of plate forming are transformed into a producibility index which reflects at the same time internal stresses which are bad for fatigue life 6. Ship hull forms are traditionally designed following hydrodynamics aspects. Only recently, aspects of ship productions are considered in some shipyards already when designing the ship hull, Bertram and El Moctar (2002). Ship hulls contain many plates that require forming, either using heat (thermal forming) or hydraulic pressure (cold forming). Both processes induce internal stresses in the formed parts which are increased by degree of curvature and twist, as well as misfits in assembly which are corrected by brute force and corrective welding with increased thermal energy input inducing further internal stresses. This traditional approach leads to both increased building cost and reduced fatigue life. Maximizing the amount of developable plates and accurate

6 manufacturing in turn reduces both production cost and fatigue problems. Methods to integrate approaches to evaluate (and maximize) the producibility in current CAD for ship structures are subject to ongoing research at ENSIETA in the framework of the Intership project, Fig.8, Potoudis (2004). 7. Estimating the production cost is a fundamental part of ship design. Traditionally, shipyards employ empirical methods to estimate the cost of a new ship, as ships typically are one-of-a-kind products and orders are won based on early bids, i.e. naval architects must estimate costs a priori and within relatively short time (order of several days). Most of these traditional cost estimate approaches are related to the ship weight, which in turn is estimated based on ship type and main dimensions as well as installed power and equipment and outfit, Schneekluth and Bertram (1998). Design for fatigue leads to much more elaborate structural design and assembly procedures, requiring e.g. polishing welds to reduce notch stresses. The structural weight is virtually unaffected, but the construction costs are naturally significantly higher. Thus a cost estimate following the traditional approach with traditional empirical coefficients based on yesterday s practice underestimates costs. New approaches to cost estimates need to be developed to reflect modern design-forfatigue, design-for-production approaches in ship building. Such approaches are pursued worldwide at a few places and also subject to a research and development project involving ENSIETA, Bertram et al. (2004). The general idea is to decompose the production process into small elements and add costs for each elementary step in a structural design or simulation phase. 4. Conclusion Fatigue for maritime structures has far more implications and aspects than just the experimental and numerical aspects of mechanical investigations. Ultimately, engineering research is expected to yield better products and better procedures to support these products (from design to operation). A wider view shows many facets that need to be addressed. In my personal view, we will only succeed if we address the topic with a wider view, without reducing the importance of focused or even fundamental research. References BERTRAM, V. (1997), Vergleich verschiedener 3D-Verfahren zur Berechnung des Seeverhaltens von Schiffen (Comparison of various 3-d methods to compute the seakeeping behaviour of ships), Jahrbuch der Schiffbautechnischen Gesellschaft, Springer BERTRAM, V.; EL MOCTAR, O.M. (2002), Design for production in ship hull design, 37 th WEGEMT School, Madrid BERTRAM, V., MAISONNEUVE, J.J.; CAPRACE, J.D.; RIGO, P. (2004), Cost assessment in ship production, paper prepared for submission to The Naval Architect IWASHITA, H., NECHITA, M., COLAGROSSI, A., LANDRINI, M., BERTRAM, V. (2000), A critical assessment of potential flow models for ship seakeeping, 4 th Osaka Colloquium on Seakeeping Performance of Ships, Osaka POTOUDIS, D. (2004), Etude de la fabricabilité des coques de navires (Study of the producibility of ship hulls), Final year project (PFE) report, ENSIETA SCHNEEKLUTH, H.; BERTRAM, V. (1998), Ship design for efficiency and economy, Butterworth+Heinemann, Oxford WEISS, P. ; ANDRITSOS, F. ; SCHOM, F. ; FIDANI, A. (2004), Innovative robotic solutions for the survey and certification of ships and mobile offshore units, 3 rd Conf. Computer and IT Applications in the Maritime Industries (Eds. Armada and Bertram), Siguenza, pp

Fatigue Analysis of a Welded Structure in a Random Vibration Environment

Fatigue Analysis of a Welded Structure in a Random Vibration Environment Fatigue Analysis of a Welded Structure in a Random Vibration Environment ANSYS Users Conference Framingham, MA June 13, 2013 Michael Bak 2013 CAE Associates Outline Problem description: Life assessment

More information

Fatigue strength of knuckle joints - a key parameter in ship design D. Beghin Marine Division, Bureau Veritas, Paris, France

Fatigue strength of knuckle joints - a key parameter in ship design D. Beghin Marine Division, Bureau Veritas, Paris, France Fatigue strength of knuckle joints - a key parameter in ship design D. Beghin Marine Division, Bureau Veritas, Paris, France Abstract Structural integrity of knuckle joints in inner hull for double hull

More information

Development of HighCRest Software for Ship Structure Verifications under CSR-H Requirements

Development of HighCRest Software for Ship Structure Verifications under CSR-H Requirements TEAM 2014, Oct. 13-16, 2014, Istanbul, Turkey Development of HighCRest Software for Ship Structure Verifications under CSR-H Requirements Chi-Fang Lee*, Tin-Jung Chen, Yann Quéméner, Kuan-Chen Chen, Chien-Hua

More information

Design Development of Corrugated Bulkheads

Design Development of Corrugated Bulkheads Design Development of Corrugated Bulkheads TSCF 2010 Shipbuilders Meeting 27 October 2010 Nippon Kaiji Kyokai 1 Topics Purpose of corrugated bulkheads Structural types of corrugated bulkheads Types of

More information

FATIGUE ASSESSMENT OF SHIP STRUCTURES * * *

FATIGUE ASSESSMENT OF SHIP STRUCTURES * * * No.56 No.56 (July 1999) FATIGUE ASSESSMENT OF SHIP STRUCTURES * * * Recom. 56.1 IACS Rec. 1999 FATIGUE ASSESSMENT OF SHIP STRUCTURES ************ TABLE OF CONTENTS 1. GENERAL 2. DETERMINATION OF THE LONG

More information

Chapter 2 The Structural Hot-Spot Stress Approach to Fatigue Analysis

Chapter 2 The Structural Hot-Spot Stress Approach to Fatigue Analysis Chapter 2 The Structural Hot-Spot Stress Approach to Fatigue Analysis 2.1 Field of Application The structural hot-spot stress approach applies to welded joints for which: the fluctuating principal stress

More information

Chapter Outline: Failure

Chapter Outline: Failure Chapter Outline: Failure How do Materials Break? Ductile vs. brittle fracture Principles of fracture mechanics Stress concentration Impact fracture testing Fatigue (cyclic stresses) Cyclic stresses, the

More information

Note 1.1 Introduction to fatigue design

Note 1.1 Introduction to fatigue design April 2009/ John Wægter Note 1.1 Introduction to fatigue design General...2 The S-N curve...2 Fatigue crack propagation...3 Definition of basic S-N curves...6 Tubular joints...9 Influence of the parent

More information

Fatigue of Welded Connections. Rodrigo Gutierrez

Fatigue of Welded Connections. Rodrigo Gutierrez Fatigue of Welded Connections Rodrigo Gutierrez Fatigue Fatigue is a process of accumulative damage produced dby the fluctuation of stress and strains even when both stress and strains are below the static

More information

FATIGUE ASSESSMENT OF BILGE KNUCKLEJOINT OF VLCC ACCORDING TO JTP/JBP RULES

FATIGUE ASSESSMENT OF BILGE KNUCKLEJOINT OF VLCC ACCORDING TO JTP/JBP RULES FATIGUE ASSESSMENT OF BILGE KNUCKLEJOINT OF VLCC ACCORDING TO JTP/JBP RULES 1. DESCRIPTION OF TEST AND EXPERIMENTAL RESULTS The model was a bilge knuckle section for a double hull VLCC in approximately

More information

Fatigue tests of steel sandwich panel

Fatigue tests of steel sandwich panel Fatigue tests of steel sandwich panel J. Kozak Faculty of Ocean Engineering and Ship Technology, Technical University of Gdansk, Poland. Abstract Laser welding techniques start to find their position among

More information

IACS Common Structural Rules for Double Hull Oil Tankers, January Background Document

IACS Common Structural Rules for Double Hull Oil Tankers, January Background Document IACS Common Structural Rules for Double Hull Oil Tankers, January 2006 Background Document SECTION 9/2 DESIGN VERIFICATION STRENGTH ASSESSMENT (FEM) NOTE: - This TB is published to improve the transparency

More information

Introduction. 1. Testing procedure. 1.1 Specimen shape

Introduction. 1. Testing procedure. 1.1 Specimen shape Brittle crack arrest properties in ship construction have become more important as shipbuilding steel plates become thicker and stronger. There have been indications that steel toughness can have the effect

More information

A Proposed S-N Curve for Welded Ship Structures

A Proposed S-N Curve for Welded Ship Structures SUPPLEMENT TO THE, JULY 2003 Sponsored by the American Welding Society and the Welding Research Council A Proposed S-N Curve for Welded Ship Structures A hot-spot stress-based design S-N curve for fillet

More information

Rules for Classification and Construction Analysis Techniques

Rules for Classification and Construction Analysis Techniques V Rules for Classification and Construction Analysis Techniques 1 Hull Structural Design Analyses 4 Guidelines for of Multipurpose Vessels Edition 2013 The following Guidelines come into force on 1 May

More information

FATIGUE FAILURES IN INDUSTRY CASE STUDIES

FATIGUE FAILURES IN INDUSTRY CASE STUDIES INTERNATIONAL DESIGN CONFERENCE - DESIGN 2002 Dubrovnik, May 14 17, 2002 FATIGUE FAILURES IN INDUSTRY CASE STUDIES Ž. Domazet and T. Piršic Keywords: Fatigue cracks and failures, repair welding, FEM 1.

More information

CH 6: Fatigue Failure Resulting from Variable Loading

CH 6: Fatigue Failure Resulting from Variable Loading CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to statics loads and for such elements, statics failure theories are used to predict failure (yielding or fracture).

More information

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture.

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture. 1- Fracture Fracture: Separation of a body into pieces due to stress, at temperatures below the melting point. Steps in fracture: 1-Crack formation 2-Crack propagation There are two modes of fracture depending

More information

Rules for Classification and Construction Analysis Techniques

Rules for Classification and Construction Analysis Techniques V Rules for Classification and Construction Analysis Techniques 1 Hull Structural Design Analyses 1 Guidelines for Global Strength Analysis of Container Ships Edition 2011 The following Guidelines come

More information

Fatigue Analysis and Condition Assessment of FPSO Structures

Fatigue Analysis and Condition Assessment of FPSO Structures TSCF 2007 Shipbuilders Meeting Fatigue Analysis and Condition Assessment of FPSO Structures Edzard Brünner 1), Hubertus von Selle 2), Jochen Künzel 3) and Armin Säbel 4) 1) Germanischer Lloyd, Hamburg,

More information

Introduction to Engineering Materials ENGR2000 Chapter 8: Failure. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 8: Failure. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 8: Failure Dr. Coates Canopy fracture related to corrosion of the Al alloy used as a skin material. 8.2 Fundamentals of Fracture Fracture is the separation

More information

Computational Crack Path Prediction for Ship Structural Details

Computational Crack Path Prediction for Ship Structural Details Computational Crack Path Prediction for Ship Structural Details Y. Sumi Department of Systems Design for Ocean-Space, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

More information

Lecture 10: Fatigue of welds

Lecture 10: Fatigue of welds Kul-49.4350 Fatigue of Structures Lecture 10: Fatigue of welds 12.3.2016 Learning outcomes After the lecture, you understand fatigue phenomena in welded structures know the main influencing factors for

More information

ShipRight Design and Construction

ShipRight Design and Construction ShipRight Design and Construction Additional Design Procedures Assessment of Steel Hatch Covers Using Finite Element Analysis January 2018 Working together for a safer world Document History Document Date:

More information

Electronics materials - Stress and its effect on materials

Electronics materials - Stress and its effect on materials Electronics materials - Stress and its effect on materials Introduction You will have already seen in Mechanical properties of metals that stress on materials results in strain first elastic strain and

More information

Design Development of Corrugated Bulkheads

Design Development of Corrugated Bulkheads Design Development of Corrugated Bulkheads Hayato Suga Tatsuya Hayashi Shinichiro Ishimaru Koki Hirano Tsubasa

More information

Designer engineering specialisation (M4, M5 och M6)

Designer engineering specialisation (M4, M5 och M6) Internationell svetskonstruktör, IWSD - Kursprogram Designer engineering specialisation (M4, M5 och M6) Module 4: DESIGN OF WELDED JOINTS / Utformning av svetsförband 4.1 Categories of welded joints/olika

More information

PRESENT STATUS AND FUTURE DEVELOPMENT FOR THE DESIGN AND CONSTRUCTION OF DOUBLE HULLS TANKERS

PRESENT STATUS AND FUTURE DEVELOPMENT FOR THE DESIGN AND CONSTRUCTION OF DOUBLE HULLS TANKERS PRESENT STATUS AND FUTURE DEVELOPMENT FOR THE DESIGN AND CONSTRUCTION OF DOUBLE HULLS TANKERS PRESENTED BY: MITSUBISHI HEAVY INDUSTRIES, LTD. AT TANKER STRUCTURAL CO-OPERATIVE FORUM 2000 SHIPBUILDERS MEETING

More information

Information Paper on Cargo Tank Corrugated Bulkhead Damages of Double Hull Tankers

Information Paper on Cargo Tank Corrugated Bulkhead Damages of Double Hull Tankers Tanker Structure Co-operative Forum Information Paper on Cargo Tank Corrugated Bulkhead Damages of Double Hull Tankers SUMMARY The paper reviews current corrugated bulkhead design practise and provides

More information

ELASTO-PLASTIC BEHAVIOR OF HORIZONTAL HAUNCHED BEAM-TO- COLUMN CONNECTION

ELASTO-PLASTIC BEHAVIOR OF HORIZONTAL HAUNCHED BEAM-TO- COLUMN CONNECTION ELASTO-PLASTIC BEHAVIOR OF HORIZONTAL HAUNCHED BEAM-TO- COLUMN CONNECTION Naoki TANAKA 1, Yoshikazu SAWAMOTO 2 And Toshio SAEKI 3 SUMMARY In response to the 1995 Hyogoken-Nanbu earthquake, horizontal haunched

More information

ASSESSMENT PROCEDURE WITH TODAY S LATEST CALCULATION TOOLS OF MODERN AND EXISTING DESIGNS OF LARGE LPG TANKERS.

ASSESSMENT PROCEDURE WITH TODAY S LATEST CALCULATION TOOLS OF MODERN AND EXISTING DESIGNS OF LARGE LPG TANKERS. ASSESSMENT PROCEDURE WITH TODA S LATEST CALCULATION TOOLS OF MODERN AND EISTING DESIGNS OF LARGE LPG TANKERS. Bruno Dabouis, Product Manager Tankers Philippe Cambos, Head of Tanker Structure Department,

More information

ULTRASONIC MEASUREMENT OF RESIDUAL STRESSES IN WELDED SPECIMENS AND STRUCTURES

ULTRASONIC MEASUREMENT OF RESIDUAL STRESSES IN WELDED SPECIMENS AND STRUCTURES Proceedings of the ASME 2013 Pressure Vessels and Piping Conference PVP2013 July 14-18, 2013, Paris, France PVP2013-97184 ULTRASONIC MEASUREMENT OF RESIDUAL STRESSES IN WELDED SPECIMENS AND STRUCTURES

More information

THE COMMON STRUCTURAL RULES INITIAL DESIGNS AND FUTURE DEVELOPMENTS

THE COMMON STRUCTURAL RULES INITIAL DESIGNS AND FUTURE DEVELOPMENTS THE COMMON STRUCTURAL RULES INITIAL DESIGNS AND FUTURE DEVELOPMENTS Gary Horn, ABS, USA Dan Cronin, ABS, Singapore Abstract This paper will discuss the design of oil tankers built to the IACS Common Structural

More information

FEM STRESS CONCENTRATION FACTORS FOR FILLET WELDED CHS-PLATE T-JOINT

FEM STRESS CONCENTRATION FACTORS FOR FILLET WELDED CHS-PLATE T-JOINT Engineering Review Vol. 32, Issue 3, 147-155, 2012. 147 FEM STRESS CONCENTRATION FACTORS FOR FILLET WELDED CHS-PLATE T-JOINT S. * G. Turkalj Department of Engineering Mechanics, Faculty of Engineering,

More information

APPLICATION OF HIGHER-STRENGTH HULL STRUCTURAL THICK STEEL PLATES IN CONTAINER CARRIERS

APPLICATION OF HIGHER-STRENGTH HULL STRUCTURAL THICK STEEL PLATES IN CONTAINER CARRIERS Guide for Application of Higher-Strength Hull Structural Thick Steel Plates in Container Carriers GUIDE FOR APPLICATION OF HIGHER-STRENGTH HULL STRUCTURAL THICK STEEL PLATES IN CONTAINER CARRIERS FEBRUARY

More information

Hull damage experience in CSR tankers

Hull damage experience in CSR tankers MARITIME Hull damage experience in CSR tankers TSCF SBM, Busan October 2016 Ivar Håberg Senior Principle Surveyor, DNV GL SAFER, SMARTER, GREENER Using data to identify improvement opportunities for the

More information

EFFECT OF LOCAL PLASTIC STRETCH OM TOTAL FATIGUE LIFE EVALUATION

EFFECT OF LOCAL PLASTIC STRETCH OM TOTAL FATIGUE LIFE EVALUATION EFFECT OF LOCAL PLASTIC STRETCH OM TOTAL FATIGUE LIFE EVALUATION Abstract G. S. Wang Aeronautics Division, The Swedish Defence Research Agency SE-17290 Stockholm, Sweden wgs@foi.se This paper shows that

More information

ENGR 151: Materials of Engineering LECTURE #12-13: DISLOCATIONS AND STRENGTHENING MECHANISMS

ENGR 151: Materials of Engineering LECTURE #12-13: DISLOCATIONS AND STRENGTHENING MECHANISMS ENGR 151: Materials of Engineering LECTURE #12-13: DISLOCATIONS AND STRENGTHENING MECHANISMS RECOVERY, RECRYSTALLIZATION, AND GRAIN GROWTH Plastically deforming metal at low temperatures affects physical

More information

ELASTIC AND ELASTO-PLASTIC BUCKLING ANALYSIS OF PERFORATED STEEL PLATES

ELASTIC AND ELASTO-PLASTIC BUCKLING ANALYSIS OF PERFORATED STEEL PLATES ELASTIC AND ELASTO-PLASTIC BUCKLING ANALYSIS OF PERFORATED STEEL PLATES MAURO DE VASCONCELLOS REAL 1, LIÉRCIO ANDRÉ ISOLDI 2, ALEXANDRA PINTO DAMAS 3, DANIEL HELBIG 4 ABSTRACT Many steel structures such

More information

CHAPTER 5 FINITE ELEMENT MODELING

CHAPTER 5 FINITE ELEMENT MODELING CHAPTER 5 FINITE ELEMENT MODELING 5.1 INTRODUCTION Masonry is a composite material with the building brick units and the mortar as the joining material, which are bonded together. Guinea [2000] 51 reported

More information

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN 1 SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL C O N T E N T 2 1. MACHINE DESIGN 03-21 2. FLEXIBLE MECHANICAL ELEMENTS. 22-34 3. JOURNAL BEARINGS... 35-65 4. CLUTCH AND BRAKES.

More information

CHAPTER 7 ANALYTICAL PROGRAMME USING ABAQUS

CHAPTER 7 ANALYTICAL PROGRAMME USING ABAQUS 87 CHAPTER 7 ANALYTICAL PROGRAMME USING ABAQUS 7.1 GENERAL With the advances in modern computing techniques, finite element analysis has become a practical and powerful tool for engineering analysis and

More information

Crack extension research of FR4 substrate embedded 90 bend optical fiber under the random vibration Wei Li 1,a, Dejian Zhou 1,b

Crack extension research of FR4 substrate embedded 90 bend optical fiber under the random vibration Wei Li 1,a, Dejian Zhou 1,b 4th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2016) Crack extension research of FR4 substrate embedded 90 bend optical fiber under the random vibration Wei Li 1,a,

More information

ME 207 Material Science I

ME 207 Material Science I ME 207 Material Science I Chapter 4 Properties in Bending and Shear Dr. İbrahim H. Yılmaz http://web.adanabtu.edu.tr/iyilmaz Automotive Engineering Adana Science and Technology University Introduction

More information

within Epsilon Twin Cities ANSYS User Meeting August 2012 Weld Analysis

within Epsilon Twin Cities ANSYS User Meeting August 2012 Weld Analysis within Epsilon Twin Cities ANSYS User Meeting August 2012 Weld Analysis within Epsilon within Epsilon Agenda 1. Explicitly Modeled Welds 2. Extracting Stresses for Hand-Calculations Path Operations Stress

More information

Compressive strength of double-bottom under alternate hold loading condition

Compressive strength of double-bottom under alternate hold loading condition Compressive strength of double-bottom under alternate hold loading condition J.M. Gordo CENTEC, IST, University of Lisbon, Portugal ABSTRACT: The alternate bending of the bottom structure of a ship as

More information

Tensile/Tension Test Advanced Topics

Tensile/Tension Test Advanced Topics CIVE.3110 Engineering Materials Laboratory Fall 2017 Tensile/Tension Test Advanced Topics Tzuyang Yu Associate Professor, Ph.D. Structural Engineering Research Group (SERG) Department of Civil and Environmental

More information

Modeling Welded. ANSYS e-learning. June CAE Associates

Modeling Welded. ANSYS e-learning. June CAE Associates Modeling Welded Connections ANSYS e-learning Peter Barrett June 2013 2013 CAE Associates Outline The importance of weld stress prediction. Weld geometry and terminology. Failure due to fatigue. Methods

More information

Finite element modeling of impact strength of laser welds for automotive applications

Finite element modeling of impact strength of laser welds for automotive applications Safety and Security Engineering II 375 Finite element modeling of impact strength of laser welds for automotive applications N. Kuppuswamy 1, R. Schmidt 2, F. Seeger 1 & S. Zhang 1 1 DaimlerChrysler AG

More information

RESEARCH IN PROGRESS: FATIGUE OF CFRP COMPOSITES

RESEARCH IN PROGRESS: FATIGUE OF CFRP COMPOSITES RESEARCH IN PROGRESS: FATIGUE OF CFRP COMPOSITES Cornelia E. Demers, Ph.D. 1, Amir Abdelgadir 2 1 Department of Civil Engineering and Engineering Mechanics, The University of Arizona Tucson, Arizona, 85721,

More information

Structural Design of a Containership Approximately 3100 TEU According to the Concept of General Ship Design B-178

Structural Design of a Containership Approximately 3100 TEU According to the Concept of General Ship Design B-178 Structural Design of a Containership Approximately 3100 TEU According to the Concept of General Ship Design B-178 W.Souadji, Zbigniew Sekulski, B.Hamoudi 1 Abstract The design developed in this work is

More information

Fundamentals of Structural Design Part of Steel Structures

Fundamentals of Structural Design Part of Steel Structures Fundamentals of Structural Design Part of Steel Structures Civil Engineering for Bachelors 133FSTD Teacher: Zdeněk Sokol Office number: B619 1 Syllabus of lectures 1. Introduction, history of steel structures,

More information

Fatigue failure & Fatigue mechanisms. Engineering Materials Chedtha Puncreobutr.

Fatigue failure & Fatigue mechanisms. Engineering Materials Chedtha Puncreobutr. Fatigue failure & Fatigue mechanisms Engineering Materials 2189101 Department of Metallurgical Engineering Chulalongkorn University http://pioneer.netserv.chula.ac.th/~pchedtha/ Fracture Mechanism Ductile

More information

APPLYING MSC/PATRAN AND MSC/NASTRAN TO IMPROVE THE DESIGN PERFORMANCE OF LARGE BULK MATERIALS HANDLING MACHINES

APPLYING MSC/PATRAN AND MSC/NASTRAN TO IMPROVE THE DESIGN PERFORMANCE OF LARGE BULK MATERIALS HANDLING MACHINES APPLYING MSC/PATRAN AND MSC/NASTRAN TO IMPROVE THE DESIGN PERFORMANCE OF LARGE BULK MATERIALS HANDLING MACHINES ABSTRACT R C Morgan BE MEng Sc FIE Aust CP Eng Principal Consultant - Structural, BHP Engineering

More information

Compressive strength of double-bottom under alternate hold loading condition

Compressive strength of double-bottom under alternate hold loading condition Progress in the Analysis and Design of Marine Structures Guedes Soares & Garbatov (Eds) 017 Taylor & Francis Group, London, ISBN 978-1-138-06907-7 Compressive strength of double-bottom under alternate

More information

Chapter Outline: Failure

Chapter Outline: Failure Chapter Outline: Failure How do Materials Break? Ductile vs. brittle fracture Principles of fracture mechanics Stress concentration Impact fracture testing Fatigue (cyclic stresses) Cyclic stresses, the

More information

PROCESS AUTOMATION. for example, SHI recently implemented a computer- neers to quickly simulate and minimize welding-

PROCESS AUTOMATION. for example, SHI recently implemented a computer- neers to quickly simulate and minimize welding- PROCESS AUTOMATION Quality weldments of thick plates (greater than 10 mm) are paramount to fabricating hull structures to withstand the rigors of oceanic shipping. Reprinted with permission from the Winter

More information

Hull Surveys for Liquefied Gas Carriers

Hull Surveys for Liquefied Gas Carriers (May 2007) (Rev.1 Nov 2007) (Rev.2 Mar 2009) (Rev.3 July 2011) Hull Surveys for Liquefied Gas Carriers CONTENTS 1. General 1.1 Application 1.2 Definitions 1.3 Repairs 1.4 Thickness measurements and close-up

More information

Draft Technical Background for Rule Change Proposal 1 to 01 JAN 2018 version

Draft Technical Background for Rule Change Proposal 1 to 01 JAN 2018 version Common Structural Rules for Bulk Carriers and Oil Tankers Draft Technical Background for Rule Change Proposal 1 to 01 JAN 2018 version Notes: (1) These Rule Changes enter into force on 1 st July 2019.

More information

Analysis and experimental studies of building glass facade

Analysis and experimental studies of building glass facade Analysis and experimental studies of building glass facade Ján BUJŇÁK Professor, University of Žilina, Žilina, Slovakia Ján Bujňák, born 1950, received his civil engineering degree from the University

More information

Parameter Controlled Optimization of Grillage Shaped RoRo Deck Structures

Parameter Controlled Optimization of Grillage Shaped RoRo Deck Structures Parameter Controlled Optimization of Grillage Shaped RoRo Deck Structures Nicolas Rox 1 ABSTRACT Achieve an accurate ship design in a short time is only feasible by using powerful ship design tools. But

More information

Contents. 1 Overview of Ship-Shaped Offshore Installations Front-End Engineering Preface Acknowledgments How to Use This Book.

Contents. 1 Overview of Ship-Shaped Offshore Installations Front-End Engineering Preface Acknowledgments How to Use This Book. Table of Preface Acknowledgments How to Use This Book page xv xix xxi 1 Overview of Ship-Shaped Offshore Installations...1 1.1 Historical Overview of Offshore Structure Developments 1 1.1.1 Early History

More information

Contents. Local (Structural) Stress Based Fatigue Design. Nominal Stress Ranges. Fatigue Design. Fatigue stress on a gusset

Contents. Local (Structural) Stress Based Fatigue Design. Nominal Stress Ranges. Fatigue Design. Fatigue stress on a gusset Contents Local (Structural) Stress Based Brief Review of Nominal Stress Based Structural Stress Based -Fatigue Assessment of Welded Joints- Department of Civil Engineering Tokyo Institute of Technology

More information

DYNAMIC CHARACTERISTICS ASSESSMENT OF STEEL BEAM-COLUMN CONNECTIONS WITH FLOOR SLAB

DYNAMIC CHARACTERISTICS ASSESSMENT OF STEEL BEAM-COLUMN CONNECTIONS WITH FLOOR SLAB 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska DYNAMIC CHARACTERISTICS ASSESSMENT OF STEEL BEAM-COLUMN CONNECTIONS

More information

Steel-Fibre-Reinforced Concrete Pavements

Steel-Fibre-Reinforced Concrete Pavements Concrete Communication Conference 1-2 September 2008, University of Liverpool Steel-Fibre-Reinforced Concrete Pavements Naeimeh Jafarifar, Kypros Pilakoutas, Kyriacos Neocleous Department of Civil and

More information

Crack Paths from Weld Details in Three-dimensional Plate Structures

Crack Paths from Weld Details in Three-dimensional Plate Structures Crack Paths from Weld Details in Three-dimensional Plate Structures Y. Sumi and T. Okawa Department of Systems Design for Ocean-Space, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku, Yokohama

More information

Hysteretic Behaviour of Square Tubular T-joint With and Without Collar-Plate Reinforcement under Axial Cyclic Loading

Hysteretic Behaviour of Square Tubular T-joint With and Without Collar-Plate Reinforcement under Axial Cyclic Loading Copyright 2010 Tech Science Press SL, vol.3, no.3, pp.171-189, 2010 Hysteretic Behaviour of Square Tubular T-joint With and Without Collar-Plate Reinforcement under Axial Cyclic Loading Y.B. Shao 1, S.P.

More information

Reduced Ductility due to Local Variation in Material Properties for 3D-printed Components

Reduced Ductility due to Local Variation in Material Properties for 3D-printed Components Reduced Ductility due to Local Variation in Material Properties for 3D-printed Components T. Tryland SINTEF Raufoss Manufacturing, Raufoss, Norway 1 Background It is often useful to have a physical model

More information

Nonlinear Finite Element Modeling & Simulation

Nonlinear Finite Element Modeling & Simulation Full-Scale Structural and Nonstructural Building System Performance during Earthquakes & Post-Earthquake Fire A Joint Venture between Academe, Industry and Government Nonlinear Finite Element Modeling

More information

Ultimate Strength of Steel Panels and Stiffened Plates with Longitudinal Through-thickness Cracks under Compression

Ultimate Strength of Steel Panels and Stiffened Plates with Longitudinal Through-thickness Cracks under Compression 4th International Conference on Sustainable Energy and Environmental Engineering (ICSEEE 215) Ultimate Strength of Steel Panels and Stiffened Plates with Longitudinal Through-thickness Cracks under Compression

More information

ON THE ANALYSIS OF A COLD FORMED STEEL PROFILE ARCH STRUCTURE

ON THE ANALYSIS OF A COLD FORMED STEEL PROFILE ARCH STRUCTURE Proceedings of the Annual Symposium of the Institute of Solid Mechanics and Session of the Commission of Acoustics, SISOM 2015 Bucharest 21-22 May ON THE ANALYSIS OF A COLD FORMED STEEL PROFILE ARCH STRUCTURE

More information

The Assessment of CSR Regulations Implementation on the Midship Strength and Structural Weight of DWT Bulk Carrier

The Assessment of CSR Regulations Implementation on the Midship Strength and Structural Weight of DWT Bulk Carrier The Assessment of CSR Regulations Implementation on the Midship Strength and Structural Weight of 77.500 DWT Bulk Carrier Ahmad Fauzan Zakki Abstract Since April 1 st 2006, all of the ships that built

More information

CHAPTER 7 FINITE ELEMENT ANALYSIS

CHAPTER 7 FINITE ELEMENT ANALYSIS 189 CHAPTER 7 FINITE ELEMENT ANALYSIS 7.1 SCOPE In Engineering applications, the physical response of the structure to the system of external forces is very much important. Understanding the response of

More information

09-05 Mean Stress Assessment in Fatigue Analysis and Design

09-05 Mean Stress Assessment in Fatigue Analysis and Design 09-05 Mean Stress Assessment in Fatigue Analysis and Design Submitted by: Stig Berge, Marine Technology, Norwegian University of Science and Technology (NO 7491 Trondheim, Norway. Fax +47 73595528 E-mail:

More information

Implementing an Advanced Hull Integrity Management System to Reduce Technical Operating Costs and TCO

Implementing an Advanced Hull Integrity Management System to Reduce Technical Operating Costs and TCO INNOVATIVE MARITIME SOFTWARE Implementing an Advanced Hull Integrity Management System to Reduce Technical Operating Costs and TCO Kevin Brunn, Head of Clients & Markets, Maritime Software, DNV GL Tanker

More information

MICROMECHANICAL FEM MODELING OF THERMAL STRESSES IN FUNCTIONALLY GRADED MATERIALS

MICROMECHANICAL FEM MODELING OF THERMAL STRESSES IN FUNCTIONALLY GRADED MATERIALS 26 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES MICROMECHANICAL FEM MODELING OF THERMAL STRESSES IN FUNCTIONALL GRADED MATERIALS S. Akbarpour, H. R. Motamedian, A. Abedian Aerospace Engineering

More information

Design and Operation of Large Fossil-Fueled Steam Turbines in Cyclic Duty

Design and Operation of Large Fossil-Fueled Steam Turbines in Cyclic Duty GE Power Design and Operation of Large Fossil-Fueled Steam Turbines in Cyclic Duty July 2016 Cuong Dinh, Brian Marriner, Randy Tadros, Simon Yoongeu Kim and Thomas Farineau Table of Contents Abstract...2

More information

Why the Gusset Plates of I-35W Bridge Are Undersized? The Potential Risk in Today and A Proposed Bridge Safety Monitoring System *

Why the Gusset Plates of I-35W Bridge Are Undersized? The Potential Risk in Today and A Proposed Bridge Safety Monitoring System * The Second Research Report Submitted To: Dr. M. Myrint Lwin, Director Bridge Technology FHWA Why the Gusset Plates of I-35W Bridge Are Undersized? The Potential Risk in Today and A Proposed Bridge Safety

More information

CHAPTER 5 FINITE ELEMENT ANALYSIS OF GFRP COMPOSITE BRIDGE DECK PANELS

CHAPTER 5 FINITE ELEMENT ANALYSIS OF GFRP COMPOSITE BRIDGE DECK PANELS 80 CHAPTER 5 FINITE ELEMENT ANALYSIS OF GFRP COMPOSITE BRIDGE DECK PANELS 5.1 GENERAL Bridge decks made of FRP have been widely studied and increasingly used in highway bridges, both in new construction

More information

Japanese Joint Research Project on the Thickness Effect to Fatigue

Japanese Joint Research Project on the Thickness Effect to Fatigue Japanese Joint Research Project on the Thickness Effect to Fatigue Strength Tetsuo Okada Japan Marine United Corporation, Tokyo, Japan Norio Yamamoto

More information

Finite element local analysis of wave slamming on offshore structure

Finite element local analysis of wave slamming on offshore structure POLISH MARITIME RESEARCH 1(59) 2009 Vol 16; pp. 8-12 10.2478/v10012-008-0004-x Finite element local analysis of wave slamming on offshore structure Bartłomiej Żyliński, M.Sc. West Pomeranian University

More information

Computing Welding Distortion: Comparison of Different Industrially Applicable Methods

Computing Welding Distortion: Comparison of Different Industrially Applicable Methods Computing Welding Distortion: Comparison of Different Industrially Applicable Methods D. Tikhomirov a, B. Rietman b, K. Kose c and M. Makkink d INPRO GmbH, Hallerstraße 1, 10587 Berlin, Germany a dmitrij.tikhomirov@inpro.de,

More information

NEW DESIGN OF SUEZMAX CLASS TANKER PRESENTED BY : HYUNDAI HEAVY INDUSTRIES CO., LTD.

NEW DESIGN OF SUEZMAX CLASS TANKER PRESENTED BY : HYUNDAI HEAVY INDUSTRIES CO., LTD. NEW DESIGN OF SUEZMAX CLASS TANKER PRESENTED BY : HYUNDAI HEAVY INDUSTRIES CO., LTD. AT TANKER STRUCTURE CO-OPERATIVE FORUM 2000 SHIPBUILDERS MEETING TOKYO, OCTOBER 2000 ABSTRACT NEW DESIGN OF SUEZMAX

More information

Monday, May 05, Chapter 6. Fatigue Failure Resulting from Variable Loading. Dr. Mohammad Suliman Abuhaiba, PE

Monday, May 05, Chapter 6. Fatigue Failure Resulting from Variable Loading. Dr. Mohammad Suliman Abuhaiba, PE Monday, May 05, 2014 Chapter 6 Fatigue Failure Resulting from Variable Loading 1 Chapter Outline Introduction to Fatigue in Metals Approach to Fatigue Failure in Analysis and Design Fatigue-Life Methods

More information

Introduction to Joining Processes

Introduction to Joining Processes 4. TEST METHODS Joints are generally designed to support a load, and must be tested to evaluate their load-supporting capabilities. However, it is also important to evaluate, not the joint, but rather

More information

MSE200 Lecture 9 (CH ) Mechanical Properties II Instructor: Yuntian Zhu

MSE200 Lecture 9 (CH ) Mechanical Properties II Instructor: Yuntian Zhu MSE200 Lecture 9 (CH. 7.1-7.2) Mechanical Properties II Instructor: Yuntian Zhu Objectives/outcomes: You will learn the following: Fracture of metals. Ductile and brittle fracture. Toughness and impact

More information

SAFETY ASSESMENT OF PRESSURE VESSELS

SAFETY ASSESMENT OF PRESSURE VESSELS SAFETY ASSESMENT OF PRESSURE VESSELS Kateřina MACUROVÁ a, Richard TICHÝ b a VŠB TU, CPIT - Structural Integrity and Materials Design, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, The Czech Republic, katerina.macurova@simd.cz

More information

BMT FLEET TECHNOLOGY LIMITED 5383C.FR ABSTRACT This Ship Structure Committee project was developed to demonstrate the fracture susceptibility of a shi

BMT FLEET TECHNOLOGY LIMITED 5383C.FR ABSTRACT This Ship Structure Committee project was developed to demonstrate the fracture susceptibility of a shi ABSTRACT This Ship Structure Committee project was developed to demonstrate the fracture susceptibility of a ship structure. This demonstration was intended to illustrate the application of failure assessment

More information

Fatigue Crack Initiation and Propagation in Thick Multilayer Metallic Laminates

Fatigue Crack Initiation and Propagation in Thick Multilayer Metallic Laminates Key Engineering Materials Online: 2009-10-08 ISSN: 1662-9795, Vols. 417-418, pp 929-932 doi:10.4028/www.scientific.net/kem.417-418.929 2010 Trans Tech Publications, Switzerland Fatigue Crack Initiation

More information

ANALYSIS OF FATIGUE CRACK PROPAGATION IN GUSSET PLATES

ANALYSIS OF FATIGUE CRACK PROPAGATION IN GUSSET PLATES Int. J. Struct. & Civil Engg. Res. 2012 Bhairav K Thakkar, 2012 Research Paper ISSN 2319 6009 www.ijscer.com Vol. 1, No. 1, November 2012 2012 IJSCER. All Rights Reserved ANALYSIS OF FATIGUE CRACK PROPAGATION

More information

BEHAVIOUR OF COLD-FORMED Z-SHAPED STEEL PURLIN IN FIRE

BEHAVIOUR OF COLD-FORMED Z-SHAPED STEEL PURLIN IN FIRE BEHAVIOUR OF COLD-FORMED Z-SHAPED STEEL PURLIN IN FIRE ABSTRACT Wei Lu *, Pentti Mäkeläinen *, Jyri Outinen ** * Department of Civil and Structural Engineering Aalto University, Espoo, Finland Wei.Lu@tkk.fi,

More information

Guidance for Structural Strength Assessment of Pump Tower of LNG Carriers

Guidance for Structural Strength Assessment of Pump Tower of LNG Carriers 2017 Guidance for Structural Strength Assessment of Pump Tower of LNG Carriers GC-20-E KR APPLICATION OF "GUIDANCE FOR STRUCTURAL STRENGTH ASSESSMENT OF PUMP TOWER OF LNG CARRIERS " 1. Unless expressly

More information

University of Huddersfield Repository

University of Huddersfield Repository University of Huddersfield Repository Radhi, H.E. and Barrans, Simon Finite Element Analysis of Effect of Weld Toe Radius and Plate Thickness on Fatigue Life of Butt Welded Joint Original Citation Radhi,

More information

Leelachai M, Benson S, Dow RS. Progressive Collapse of Intact and Damaged Stiffened Panels.

Leelachai M, Benson S, Dow RS. Progressive Collapse of Intact and Damaged Stiffened Panels. Leelachai M, Benson S, Dow RS. Progressive Collapse of Intact and Damaged Stiffened Panels. In: 5th International Conference on Marine Structures (MARSTRUCT). 2015, Southampton, UK: CRC Press. Copyright:

More information

Optimizing the Shape and Size of Cruciform Specimens used for Biaxial Tensile Test

Optimizing the Shape and Size of Cruciform Specimens used for Biaxial Tensile Test Applied Mechanics and Materials Vol. 658 (2014) pp 167-172 Submitted: 06.05.2014 (2014) Trans Tech Publications, Switzerland Revised: 24.05.2014 doi:10.4028/www.scientific.net/amm.658.167 Accepted: 27.05.2014

More information

Fatigue Analysis of Welded Joints

Fatigue Analysis of Welded Joints ISSN 2395-1621 Fatigue Analysis of Welded Joints #1 Tabassum Karajagi, #2 Nitin Ambhore 1 tabskar@gmail.com 2 nitin.ambhore@gmail.com #1 Alard College of Engineering and Management, Pune, India #2 Vishwakarma

More information

Design of offshore structures Dr. S. Nallayarasu Department of Ocean Engineering Indian Institute of Technology, Madras

Design of offshore structures Dr. S. Nallayarasu Department of Ocean Engineering Indian Institute of Technology, Madras Design of offshore structures Dr. S. Nallayarasu Department of Ocean Engineering Indian Institute of Technology, Madras Module - 03 Lecture - 01 Steel tubular member design 1 (Refer Slide Time: 00:12)

More information

EFFECT OF WELDING SEQUENCES ON RESIDUAL STRESS IN SINGLE PASS BUTT WELDING OF SAE 1020 STEEL

EFFECT OF WELDING SEQUENCES ON RESIDUAL STRESS IN SINGLE PASS BUTT WELDING OF SAE 1020 STEEL EFFECT OF WELDING SEQUENCES ON RESIDUAL STRESS IN SINGLE PASS BUTT WELDING OF SAE 1020 STEEL Teke Sumit Sudhakar 1, Prof. P.P.Powar 2, Prof. R.R.Gad 3. 1 ME (CAD/CAM/CAE), 2 Associate Professor, 3 Assistant

More information