Bahrain World Trade Centre

Size: px
Start display at page:

Download "Bahrain World Trade Centre"

Transcription

1 Bahrain World Trade Centre Name Mohamed Alsubaie MMU ID Supervisor Dr. Mahera Musallam Assignment Wind Turbine Design Subject Renewable Power Systems Unit code 64ET3901 Course BEng (Hons) Computer and Communication Engineering

2 Table of Content TABLE OF CONTENT 1 TABLE OF FIGURES 2 TABLE OF TABLES 2 1. INTRODUCTION ABOUT BWTC 3 2. BACKGROUND WINDS IN BAHRAIN 4 3. TOWERS SHAPE 5 4. WIND TURBINE 7 5. BRIDGES 8 6. ECONOMIC ANALYSIS 8 7. CONCLUSION 9 8. REFERENCES 10 1

3 Table of Figures FIGURE-1: BAHRAIN WORLD TRADE CENTRE. 4 FIGURE-2: TOWERS EFFECTS ON CHANGING WIND SPEED AND DIRECTION. 6 FIGURE-3: CFD MODEL SHOWING AIRFLOW PATTERNS NEAR TOWERS. 6 FIGURE-4: WIND TURBINE COMPONENT. 7 FIGURE-5: THE POWER CURVE FOR NORWIN 225KW TURBINES. 7 FIGURE-6: THE V-SHAPE OF THE BRIDGE. 8 FIGURE-7: ANNUAL ENERGY YIELD FOR NORWIN 225KW TURBINES. 8 Table of Tables TABLE-1: WIND SPEED AND POWER DENSITY FOR YEARS IN BAHRAIN AT DIFFERENT HEIGHT. 5 TABLE-2: WIND TURBINE DETAILS (NORWIN 225KW). 7 TABLE-3: ENERGY YIELD. 9 2

4 Bahrain World Trade Centre 1. Introduction Thousands of years ago, human beings learned how to use wind as an energy source. The first usage of the wind power was to sail ships on the ocean. Then, it was been used to grind grains and pump water. In addition, due to the development in the world wind power has been used to generate electricity, because it offers pollution-free solutions, excellent supplement and it is renewable source. Today, large wind-power plants are supplying an economical clean power in many part of the world. Wind turbines are normally located far from people who use it. However, Bahrain World Trade Centre is a modern project aims to benefit from the wind energy and convert it into useful energy to be used in skyscrapers or commercial buildings. This report covers the design aspect of BWTC project. It will describe the details of the building location, physical characteristics, economic and performance of wind power system showing how innovative ideas have come together to create this unique building. 1.1 About BWTC The Bahrain World Trade Centre was completed in 2008 costing about $150 million. It was the master-plan of rejuvenating an existing shopping mall and hotel on Bahrain s capital Al- Manama which is site at the edge of the Arabian Gulf. The concept design of the twin towers was inspired by the traditional Arabian Wind Towers in that very shape of buildings harness the unobstructed prevailing onshore breeze from the gulf, providing a renewable source for this project. Previous research and attempts at integration turbines were not successful because it very expensive. Such endeavours would raise cost of the project up to 30%. However, designers from Atkins Architects and Norwin turbine specialists were able to design an integrated turbine system that will only needs 3% on the project costs. This lowered construction costs and creative design make the BWTC a significant step toward innovated cost effective designs. Moreover, this project has generates a new standard for sustainable development by using the first horizontal axis wind turbines (Killa and Smith, 2008). The twin towers reach a height of 240m (787 ft) and support three 29m diameter large scale horizontal axis wind turbines. The two 50 storey sail shaped office towers provide a new shopping centres, accommodation, restaurants and business centres (Alnaser, 2008). 3

5 The Bahrain World Trade Centre generates a new standard model for innovation in sustainable design as the first skyscraper in the world to insert large scale wind turbines within its structure. This project received many awards in the area of sustainability, 2006 LEAF Award, The Arab Construction World for Sustainable Design Award, a 2008 Best Tall Building Award, and finally an honourable mention in the 2009 NOVA (Wu, 2009). Figure-1: Bahrain World Trade Centre. 2. Background 2.1 Winds in Bahrain Most of the studies show that the average wind speed in Bahrain is between 5 and 6 m/s with north to north west direction. In this case, the wind energy potential is not consider to be an economically viable because the full load hours of wind per year do not exceed 1360 h/y. Moreover, the electricity supply from the wind dose not exceeds 0.1 TWh/year which is very low comparing to all Middle East and North Africa region (Bachellerie, 2012). 4

6 However, another study was continued in investigating the wind power distribution at height of 10m, 30m and 60m. The study found that, the average annul wind speed 4.56 m/s for 10m height, 6.96 m/s for 30m height, and 8.65 m/s for 60m height. While, the average annul wind power density in 10m height is W/m², in 30m height is W/m², and in 60m height is W/m² (Table-1). These results were showing good wind potential and strong winds of long duration which is suitable for wind power production (Jowder, 2009). Table-1: Wind speed and power density for years in Bahrain at different height. 3. Towers Shape An important factor that makes this project successful is the towers physical characteristics. The shape and curves of the twin towers acts as an airfoil and funnels winds coming from the Arabian Gulf between them. Servicing as airfoils, the towers can reroute wind to amplify the wind speed at the wind turbine location of up to 30% (Killa and Smith, 2008). It can be clearly seen in figure-2, that the building is creating a negative pressure zone behind, which accelerate the velocity of wind towards the turbines. Since wind speed change with height, the higher turbine will spin faster and create more power than the lower turbines. The engineers found that the key of making the turbines work is the shape of the towers. Therefore, the building has a tapered shape in order to adjust for these changing wind speeds. The turbines will have approximately stable vertical velocity profile, where the lower, centre and higher turbines are almost equal at 93%, 100% and 109%, respectively, even with higher wind speeds at higher altitudes. The towers shape allows any wind coming with in 45º angle to either side of the central axis will generate a wind stream perpendicular to the propellers, considerably increasing the turbines ability to harness wind streams (Wu, 2009). 5

7 Figure-2: Towers effects on changing wind speed and direction. An extensive wind tunnel modelling has been validated using CFD modelling showing that the incoming is in effect deflected by the towers forming an S-shape streamline which passes between the towers, as it illustrated in figure-3. Engineers predict that the turbine will be able to work with wind directions between 270 and 360. However, caution has been applied by increasing the limits of the range of the operating turbine predictions and initial operating regimes between 285 and 345. The turbine will automatically adopt a standstill mode for all wind direction outside of this range (Killa and Smith, 2008). Figure-3: CFD model showing airflow patterns near towers. 6

8 4. Wind Turbine The towers are linked by three sky bridges with each holding a 29m diameter horizontal-axis wind turbine. They have been mounted at 60m, 120m and 180m high between the two towers. The three wind turbines, which have a 20-year life, were lifted into place in March 2007 and they turned together for the first time in April Each turbine has the capacity to generate 225kW power production of energy totally 674kW (Killa and Smith, 2008). A summary of the turbine details can be found on table-2 below. Table-2: Wind turbine details (Norwin 225kW). The turbine has rotor blades, nacelle, bridge, control, monitoring and safety systems and electrical building interface. The nacelle is the cowling containing break, gearbox, shafts, generator, cooling system and associated control systems. The generators are of a four-pole 400V asynchronous induction type, which require little maintenance and can be controlled by centres established in the towers (Wu,2009). The stall control is responsible for cuttingout wind speed of 20 m/s. With limiting the power of the turbine at high speed wind, turbulence on the leeward side of the blades prevents lift and stabilizes output to maximum. According the plot on figure-5, the turbine full power of 225kW is achieved at wind speed between 15 to 20 m/s, depending on air density (Alnaser, 2008). Figure-4: Wind turbine component. Figure-5: The power curve for Norwin 225kW turbines. 7

9 5. Bridges The structures of the bridges have been design to be strong enough to hold the 11 tonnes wind turbines. The bridges of 31.7m length are having curved shapes for aerodynamic purposes in order to absorb the vibration of wind and vibrations from operating and standstill of the turbine (Alnaser, 2008). Moreover, the bridge is having a V-shape, in order to deal with the blade deflection during extreme operating conditions and to have enough clearance and thus avoid blade strike. It can be clearly seen in figure-6, that blade clearance to the bridge of 1.12m is achieved with V- shape of 173 º angle. Even in worst scenario with extending the blades tips, the safety margin required will be 1.35m, and with this condition the clearance is still achieved (Killa and Smith, 2008). Figure-6: The V-shape of the bridge. 6. Economic Analysis The total cost of Bahrain World Trade Centre building is $150 million. Only 3% of the total cost is the price for the wind turbine system. The three wind turbines operate about 50% of the time. The planned energy yield from the turbines taking into account wind and availability data is summarised in table-3 below. Therefore, the total annual amount is Figure-7: Annual energy yield for Norwin 225kW turbines. 8

10 between 1,100 and 1,300 MWh per year. This is approximately 11% - 15% of the entire structures total power consumption, which is also enough to power up to 300 home. In carbon emission terms this equates to an average of 55,000 kgc. Since turbines are being placed over 60m above ground and between towers, the yield might even be higher (Killa and Smith, 2008). Table-3: Energy yield. Turbine # 1 Turbine # 2 Turbine # to 400 MWh/year 360 to 430 MWh/year 400 to 470 MWh/year 7. Conclusion Categorizing the entirety of the BWTC as a true green initiative and project simply is not true. According to the European and other world-wide standard, this building is not intended to be a low carbon emission solution and only reduced the carbon emission comparing to other buildings. However, the design and construction of the building and the integration of large scale wind turbines into it has involved extensive research and development by probably some of the most capable specialists available. In addition, it should be appreciate and understand this project as a pioneering step toward sustainability design through the potentials of modern engineering and architecture. 9

11 8. References Alnaser, N.W., Towards Sustainable Buildings in Bahrain, Kuwait and United Arab Emirates. [pdf] Available at: < [Accessed 10 January 2013]. Bachellerie, I. J., Renewable Energy in the GCC Countries Resources, Potential, and Prospects. [pdf] Available at: < [Accessed 10 January 2013]. Jowder, F. A. L., 2009.Wind power analysis and site matching of wind turbine generators in Kingdom of Bahrain. [pdf] Available at: < [Accessed 10 January 2013]. Killa, S. and Smith, R. S., Harnessing Energy in Tall Buildings: Bahrain World Trade Center and Beyond. [pdf] Available at: < guage=en-gb> [Accessed 10 January 2013]. Wu, K., Bahrain World Trade Center. [pdf] Available at: < [Accessed 10 January 2013]. 10

Bahrain World Trade Center Integrated Wind Turbines

Bahrain World Trade Center Integrated Wind Turbines Bahrain World Trade Center Integrated Wind Turbines Richard F Smith Technical Director Middle East 1. Bahrain World Trade Center 2. Integrating design to produce sustainable solutions 1. Bahrain World

More information

CTBUH Technical Paper

CTBUH Technical Paper CTBUH Technical Paper http://technicalpapers.ctbuh.org Subject: Paper Title: Author(s): Affiliation(s): Building Case Study Sustainability/Green/Energy Wind Engineering Harnessing Energy in Tall Buildings:

More information

ember 6 Septe in the Middle East we can do them. ence :: Confere FIDIC

ember 6 Septe in the Middle East we can do them. ence :: Confere FIDIC Carbon Critical Developments in the Middle East we can do them. Richard Smith FIDIC 2009 London Confere ence :: 13 1 6 Septe ember sustainability the last two decadesd Bruntland BEA AMs world of consultancy

More information

The Feasibility of Utilizing Wind Energy in Commercial Buildings With Special Reference to the Kingdom of Bahrain

The Feasibility of Utilizing Wind Energy in Commercial Buildings With Special Reference to the Kingdom of Bahrain The Feasibility of Utilizing Wind Energy in Commercial Buildings With Special Reference to the Kingdom of Bahrain Abstract Saeed Abdulrahim Saeed* Department of Architecture and Interior Design College

More information

TEAMS Competition 2015

TEAMS Competition 2015 TEAMS Competition 2015 Generating Power from Wind Introduction W ind can be defined as a natural movement of air at any velocity. Along the earth s surface, wind typically occurs blowing horizontally across

More information

Performance of a Building Integrated Wind Farm

Performance of a Building Integrated Wind Farm September 24 Page 1 of 1 Performance of a Building Integrated Wind Farm Conn Yuen, Marc Zanchetta and Guy Battle 1 1 Battle McCarthy Consulting Engineers & Landscape Architects, London, United Kingdom

More information

Numerical Analysis of the Integration of Wind Turbines into the Design of the Built Environment

Numerical Analysis of the Integration of Wind Turbines into the Design of the Built Environment Original Research Paper American Journal of Engineering and Applied Sciences Numerical Analysis of the Integration of Wind Turbines into the Design of the Built Environment 1 Hassam Nasarullah Chaudhry,

More information

This is a repository copy of The influence of structural morphology on the efficiency of building integrated wind turbines (BIWT).

This is a repository copy of The influence of structural morphology on the efficiency of building integrated wind turbines (BIWT). This is a repository copy of The influence of structural morphology on the efficiency of building integrated wind turbines (BIWT). White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80252/

More information

An overview of Wind Power development in the Midwest

An overview of Wind Power development in the Midwest An overview of Wind Power development in the Midwest Douglas J. Reinemann, Ph.D. Professor of Biological Systems Engineering University of Wisconsin Madison Wind is one of the fastest growing Renewable

More information

Turbine subsystems include: What is wind energy? What is a wind turbine and how does it work?

Turbine subsystems include: What is wind energy? What is a wind turbine and how does it work? What is wind energy? In reality, wind energy is a converted form of solar energy. The sun's radiation heats different parts of the earth at different rates-most notably during the day and night, but also

More information

Focus: This lesson will provide a basic overview of wind energy and wind turbines. Grade Level: 9 th Grade to 12 th Grade Time: 50 minutes

Focus: This lesson will provide a basic overview of wind energy and wind turbines. Grade Level: 9 th Grade to 12 th Grade Time: 50 minutes Wind Energy 101 Focus: This lesson will provide a basic overview of wind energy and wind turbines. Grade Level: 9 th Grade to 12 th Grade Time: 50 minutes 1. Have students brainstorm a list of ways we

More information

Windpods Technology. Able to operate vertically, horizontally or any angle in-between.

Windpods Technology. Able to operate vertically, horizontally or any angle in-between. Windpods Technology Windpods are patented micro wind turbines for on-site power generation in urban environments. Developed in Fremantle, Western Australia, Windpods feature a modular design approach similar

More information

Energy Harnessing By Various Non-Conventional Wind-Turbine Designs And Augmentation Of Its Aerodynamic Efficiency.

Energy Harnessing By Various Non-Conventional Wind-Turbine Designs And Augmentation Of Its Aerodynamic Efficiency. Vol. 1 Issue 10, ISSN: December- 2278-0181 2012 Energy Harnessing By Various Non-Conventional Wind-Turbine Designs And Augmentation Of Its Aerodynamic Efficiency. Prof. D. K. Chavan 1 Professor,Mechanical

More information

FLATE Hillsborough Community College - Brandon (813)

FLATE Hillsborough Community College - Brandon (813) The Florida Advanced Technological Education (FLATE) Center wishes to make available, for educational and noncommercial purposes only, materials relevant to the EST1830 Introduction to Alternative/Renewable

More information

Modern Wind Turbine Technologies and its application in KSA. Prof. Dr. Ali M. Eltamaly SET Center, King Saud University

Modern Wind Turbine Technologies and its application in KSA. Prof. Dr. Ali M. Eltamaly SET Center, King Saud University Modern Wind Turbine Technologies and its application in KSA Prof. Dr. Ali M. Eltamaly SET Center, King Saud University Wind Energy Systems Overview 1.1 Historical Development Wind power in sailboats was

More information

SWIFT W I N D T U R B I N E. Harness the power of the wind

SWIFT W I N D T U R B I N E. Harness the power of the wind SWIFT W I N D T U R B I N E Harness the power of the wind Generate your own clean energy. SWIFT Highlights Quiet, innovative design suitable for urban and suburban areas Flexible mounting options - rooftop,

More information

Content. 0 Questionnaire 87 from Max Frisch

Content. 0 Questionnaire 87 from Max Frisch Content 0 Questionnaire 87 from Max Frisch 1 Introduction to Wind Energy... 1 1.1 Wind Energy in the year 2010... 1 1.2 The Demand for Electricity... 4 1.3 Energy Policy and Governmental Instruments...

More information

Question # 1: Write true or false with correcting the wrong statement

Question # 1: Write true or false with correcting the wrong statement Answer all the following questions. Number of questions: 4 Illustrate your answers with sketches when necessary. The exam consists of three pages. Total mark: 210 marks Question # 1: Write true or false

More information

Architecturally Mounted Wind Turbine Student Laboratory

Architecturally Mounted Wind Turbine Student Laboratory Architecturally Mounted Wind Turbine Student Laboratory Goals, Objectives and Potential Dr. David Benson Assistant Professor of Mechanical Engineering Kettering University SAE Mid-Michigan Fall 2010 Meeting

More information

AC : WIND TURBINE FOR AUTOMOBILES

AC : WIND TURBINE FOR AUTOMOBILES AC 2011-2461: WIND TURBINE FOR AUTOMOBILES Sham Tickoo, Purdue University, Calumet (Tech) Sham Tickoo is a professor in the Department of Mechanical Engineering Technology at Purdue University Calumet,

More information

GE Renewable Energy CAPACITY FACTOR LEADERSHIP IN HIGH WIND REGIMES. GE s

GE Renewable Energy CAPACITY FACTOR LEADERSHIP IN HIGH WIND REGIMES. GE s GE Renewable Energy CAPACITY FACTOR LEADERSHIP IN HIGH WIND REGIMES GE s 1.85-82.5 www.ge.com/wind GE S 1.85-82.5 PITCH Since entering the wind industry in 2002, GE Renewable Energy has invested more than

More information

Renewable and Alternative Energies

Renewable and Alternative Energies Department of Electrical and Energy Engineering This work is published under a license: Creative Commons BY-NC-SA 4.0 Contents. Topic 2. Solar energy. Topic 3. Ocean energy. Topic 4. Hydropower. Topic

More information

CHAPTER 4 WIND TURBINE MODELING AND SRG BASED WIND ENERGY CONVERSION SYSTEM

CHAPTER 4 WIND TURBINE MODELING AND SRG BASED WIND ENERGY CONVERSION SYSTEM 85 CHAPTER 4 WIND TURBINE MODELING AND SRG BASED WIND ENERGY CONVERSION SYSTEM 4.1 INTRODUCTION Wind energy is one of the fastest growing renewable energies in the world. The generation of wind power is

More information

RETScreen. International CLEAN ENERGY PROJECT ANALYSIS: WIND ENERGY PROJECT ANALYSIS CHAPTER RETSCREEN ENGINEERING & CASES TEXTBOOK

RETScreen. International CLEAN ENERGY PROJECT ANALYSIS: WIND ENERGY PROJECT ANALYSIS CHAPTER RETSCREEN ENGINEERING & CASES TEXTBOOK RETScreen International Clean Energy Decision Support Centre www.retscreen.net CLEAN ENERGY PROJECT ANALYSIS: RETSCREEN ENGINEERING & CASES TEXTBOOK WIND ENERGY PROJECT ANALYSIS CHAPTER Disclaimer This

More information

Wind Energy. ME922/927 Wind energy 1

Wind Energy. ME922/927 Wind energy 1 Wind Energy 1 Wind source Winds in western Europe tend to be driven by Atlantic weather systems. In some parts of the world, the wind is largely due to thermal effects: it is then fairly predictable. Power

More information

DESIGN OF EXPERIMENTAL SETUP OF 1KW WIND TURBINE BLADE TESTING

DESIGN OF EXPERIMENTAL SETUP OF 1KW WIND TURBINE BLADE TESTING DESIGN OF EXPERIMENTAL SETUP OF 1KW WIND TURBINE BLADE TESTING Chanchal Narkhede 1, Nilesh Nikale 2, Sushant Howal 3 Raviraj Mulaje 4, Prof.S.R.Sandanshiv 5 1,2,3 Mech, G.S.Moze College of Engineering,

More information

Feasibility of Wind Power Technology Schemes in St. Martin s Island of Bangladesh

Feasibility of Wind Power Technology Schemes in St. Martin s Island of Bangladesh Paper ID: ET-P19 Feasibility of Wind Power Technology Schemes in St. Martin s Island of Bangladesh Rasedul Hasan 1, Md. Abu Saaklayen 2, Farjana Nasim 3, Md. Tajul Islam 4, Md. Abu Shahab Mollah 5 1,2,3

More information

HEAD TANK (FOREBAY TANK)

HEAD TANK (FOREBAY TANK) HEAD TANK (FOREBAY TANK) Head-tank - Pond at the top of a penstock or pipeline; serves as final settling basin, maintains the required water level of penstock inlet and prevents foreign debris entering

More information

Energy Resources and Policy Handout: Wind power

Energy Resources and Policy Handout: Wind power Energy Resources and Policy Handout: Wind power 1. The Resource Wind energy is very widespread, with mean wind speeds in excess of 5 m/s being quite common. It is not in general a predictable or dependable

More information

Introducing GE s

Introducing GE s GE Energy Renewable Energy Introducing GE s 1.6-100 Best-in-class capacity factor Introducing GE s 1.6-100 Product evolution. It s one of the things GE does best. Especially when it comes to the next generation

More information

Core Technologies for Developing Wind Power Generation Systems

Core Technologies for Developing Wind Power Generation Systems Hitachi Review Vol. 63 (2014), No. 7 422 Featured Articles Core Technologies for Developing Wind Power Generation Systems Shigehisa Funabashi Kohei Tanaka, Dr. Eng. Mamoru Kimura, Dr. Eng. Masatoshi Watanabe,

More information

Sylvia Broneske Hayes McKenzie Partnership Ltd Machynlleth & Salisbury. Overview

Sylvia Broneske Hayes McKenzie Partnership Ltd Machynlleth & Salisbury. Overview Wind Turbine Noise The mechanisms of noise generation and ways of mitigation Sylvia Broneske Hayes McKenzie Partnership Ltd Machynlleth & Salisbury www.hayesmckenzie.co.uk 1 Overview Main sources of noise

More information

Charles Weems, Chairperson, Residential Wind Power Subcommittee. Response to Council Referral in the Viability of Residential Wind Power in Berkeley

Charles Weems, Chairperson, Residential Wind Power Subcommittee. Response to Council Referral in the Viability of Residential Wind Power in Berkeley Energy Commission To: Energy Commission From: Submitted by: Charles Weems, Chairperson, Residential Wind Power Subcommittee Subject: Response to Council Referral in the Viability of Residential Wind Power

More information

v mw One turbine for one world vestas.com

v mw One turbine for one world vestas.com v112-3.0 mw One turbine for one world vestas.com We deliver on the promise of wind power one hard-working, reliable turbine for one World Hard-working and reliable The V112-3.0 MW is a hard-working,

More information

GE Power & Water Renewable Energy. Introducing GE s 2.85 MW Wind Turbines Increased customer value through product evolution

GE Power & Water Renewable Energy. Introducing GE s 2.85 MW Wind Turbines Increased customer value through product evolution GE Power & Water Renewable Energy Introducing GE s 2.85 MW Wind Turbines 2.85-100 2.85-103 Increased customer value through product evolution Introducing GE s 2.85-100 and 2.85-103 Product evolution. It

More information

Aerodynamic Analysis of Horizontal Axis Wind Turbine Using Blade Element Momentum Theory for Low Wind Speed Conditions

Aerodynamic Analysis of Horizontal Axis Wind Turbine Using Blade Element Momentum Theory for Low Wind Speed Conditions Aerodynamic Analysis of Horizontal Axis Wind Turbine Using Blade Element Momentum Theory for Low Wind Speed Conditions Esam Abubaker Efkirn, a,b,* Tholudin Mat Lazim, a W. Z. Wan Omar, a N. A. R. Nik Mohd,

More information

ENSC 283 Project. Assigned date: Feb. 23, 2011 Due date: April 8, 2011

ENSC 283 Project. Assigned date: Feb. 23, 2011 Due date: April 8, 2011 ENSC 283 Project Assigned date: Feb. 23, 2011 Due date: April 8, 2011 The project should be done individually. The report should be typed and be accompanied with a CD including your code and plots. It

More information

Individual Wind Turbines

Individual Wind Turbines Individual Wind Turbines Tim Kay AECOM Delivered by: Energy, power and carbon Energy kwh, MWh, GWh (plus kj, MJ, GJ, cal, BTU, therm, etc ) Power kw, MW, GW Carbon kg, tonnes, Mt (Depends on fuel type

More information

Study of data of a wind farm

Study of data of a wind farm Study of data of a wind farm Joan Montoya Moyá Energy Systems Degree Project Department of Management and Engineering LIU-IEI-TEK-A--09/00634--SE 2 Acknowledgements I would like to thank my home university,

More information

Modelling of a Wind Power Turbine

Modelling of a Wind Power Turbine Modelling of a Wind Power Turbine Fabian Christ Division of Applied Science, Computing and Engineering, Glyndwr University, Mold Road, LL11 2AW, Wrexham, United Kingdom Email: f-christ@gmx.de Chamil Abeykoon

More information

POWER GENERATION IN VERTICAL AXIS WIND MILL

POWER GENERATION IN VERTICAL AXIS WIND MILL POWER GENERATION IN VERTICAL AXIS WIND MILL P.Vijayamohan*,R.Chinnasamy 1,M.Gobi 2,M.Hariprasth 3. * Assistant professor of Gnanamani College Of Technology, Namakkal, Tamil nadu, India, Asia Abstract It

More information

Analysis Performance of DC Motor as Generator in The Horizontal Axis Wind Turbine

Analysis Performance of DC Motor as Generator in The Horizontal Axis Wind Turbine Analysis Performance of DC Motor as Generator in The Horizontal Axis Wind Turbine Suhardi, a, Faisal Mahmuddin, b Andi Husni Sitepu, c and Muhammad Uswah Pawara, d,* a) Naval Architecture Department, Faculty

More information

Enhancement of the Efficiency of Windmill Using Helical Designed Savonius Turbine

Enhancement of the Efficiency of Windmill Using Helical Designed Savonius Turbine Enhancement of the Efficiency of Windmill Using Helical Designed Savonius Turbine M. Ganesh Karthikeyan 1, Shanmugasundaram K 2, Shree Bubesh Kumaar S 3, Siddhath K 4, Srinath B 5 Assistant Professor,

More information

Analytical Analysis for Enhancement of Performance and Efficiency for Different Blade of HAWT by Computer Program

Analytical Analysis for Enhancement of Performance and Efficiency for Different Blade of HAWT by Computer Program Analytical Analysis for Enhancement of Performance and Efficiency for Different Blade of HAWT by Computer Program 1 Hemant Rav Patel, 2 Dr. V.N. Bartaria, 3 Dr. A.S. Rathore 1 Department of Mechanical

More information

V MW. One turbine for one world. vestas.com

V MW. One turbine for one world. vestas.com V112-3.0 MW One turbine for one world vestas.com We deliver on the promise of wind power ONE HARD-WORKING, RELIABLE TURBINE FOR ONE WORLD Hard-working and reliable The V112-3.0 MW is a hard-working,

More information

Wind Energy: Overview

Wind Energy: Overview Wind Energy: Overview Learning objectives: 1)To understand the pattern of usage of wind energy internationally 2)To understand the pattern of usage of wind energy in India 3)To become aware of geographical

More information

Problem Statement. Design and construct a small wind turbine to produce as much power as possible while

Problem Statement. Design and construct a small wind turbine to produce as much power as possible while Problem Statement Design and construct a small wind turbine to produce as much power as possible while still maintaining efficiency. One must be able to measure the output of the turbine, the design must

More information

James T okishi CEE491 5/5/2009

James T okishi CEE491 5/5/2009 James Tokishi CEE491 5/5/2009 General term for any use of the wind to generate usable power Sailing ships (>5500 years) Windmills (>1300 years) Electricity generation (~100 years) Wind causes turbine blade

More information

GE Power & Water Renewable Energy. Introducing GE s 2.75 MW Wind Turbines Increased customer value through product evolution

GE Power & Water Renewable Energy. Introducing GE s 2.75 MW Wind Turbines Increased customer value through product evolution GE Power & Water Renewable Energy Introducing GE s 2.75 MW Wind Turbines 2.75-100 2.75-103 Increased customer value through product evolution Introducing GE s 2.75-100 and 2.75-103 Product evolution. It

More information

WIND ENERGY ECOSUSTAINABILITY ENGINEERING SOLUTION

WIND ENERGY ECOSUSTAINABILITY ENGINEERING SOLUTION WIND ENERGY ECOSUSTAINABILITY ENGINEERING SOLUTION Lecturer PhD Roxana Gabriela POPA Associate Professor Maria CALINOIU University,,Constantin Brancusi,, of Tg- Jiu, roxanna_popa@yahoo.com Abstract: Renewables

More information

A COMPARETIVE ANALYSIS OF AERODYNAMIC CHARECTERISTICS OF A VERTICAL AXIS VANE TYPE WIND TURBINE OVER EVEN AND ODD NUMBER OF BLADES

A COMPARETIVE ANALYSIS OF AERODYNAMIC CHARECTERISTICS OF A VERTICAL AXIS VANE TYPE WIND TURBINE OVER EVEN AND ODD NUMBER OF BLADES A comparetive analysis of aerodynamic charecteristics of a vertical axis vane type wind turbine 14 A COMPARETIVE ANALYSIS OF AERODYNAMIC CHARECTERISTICS OF A VERTICAL AXIS VANE TYPE WIND TURBINE OVER EVEN

More information

Design and Fabrication of Darrieus Wind Turbine with Static Stress Analysis of Rotor & its Structures

Design and Fabrication of Darrieus Wind Turbine with Static Stress Analysis of Rotor & its Structures Design and Fabrication of Darrieus Wind Turbine with Static Stress Analysis of Rotor & its Structures Sanjaya K. Mohapatra Department of Mechanical Engineering Jadavpur University D. K. Mondal Department

More information

V MW. One turbine for one world. vestas.com

V MW. One turbine for one world. vestas.com V112-3.0 MW One turbine for one world vestas.com No. 1 in Modern Energy The world needs ever-greater supplies of clean, sustainable energy. Modern energy that promotes sustainable development and greater

More information

THE BUSINESS CASE FOR WIND TURBINES

THE BUSINESS CASE FOR WIND TURBINES 20 THE BUSINESS CASE FOR WIND TURBINES TECHNOLOGY OVERVIEW Wind turbines convert the kinetic energy generated by the wind into rotational mechanical energy to generate electricity. The power available

More information

COMPUTATIONAL AND EXPERIMENTAL STUDY OF OPTIMAL DESIGN ON HYBRID VERTICAL AXIS WIND TURBINE

COMPUTATIONAL AND EXPERIMENTAL STUDY OF OPTIMAL DESIGN ON HYBRID VERTICAL AXIS WIND TURBINE COMPUTATIONAL AND EXPERIMENTAL STUDY OF OPTIMAL DESIGN ON HYBRID VERTICAL AXIS WIND TURBINE Bambang Arip Dwiyantoro Department of Mechanical Engineering, Institute of Technology Sepuluh Nopember, Surabaya,

More information

Year 7 - ISE Foundation Big Question 9 Why are buildings important? Trinity Reading Sample Test

Year 7 - ISE Foundation Big Question 9 Why are buildings important? Trinity Reading Sample Test Task 1 - Long Reading: Green Skyscrapers Year 7 - ISE Foundation Big Question 9 Why are buildings important? Trinity Reading Sample Test Paragraph 1 Today, the cities of the world have many skyscrapers.

More information

GE Renewable Energy. GE s 2 MW Platform PROVEN, RELIABLE WIND ENERGY SOLUTIONS YESTERDAY, TODAY, AND TOMORROW.

GE Renewable Energy. GE s 2 MW Platform PROVEN, RELIABLE WIND ENERGY SOLUTIONS YESTERDAY, TODAY, AND TOMORROW. GE Renewable Energy GE s 2 MW Platform PROVEN, RELIABLE WIND ENERGY SOLUTIONS YESTERDAY, TODAY, AND TOMORROW. www.gerenewableenergy.com GE S 2 MW PLATFORM PITCH Since entering the wind industry in 2002,

More information

University of Tennessee EF 152 A 2. The Wind O Nator. Team A 2 7. Richard Ammons, Rachel Dunlap, Kayla Hughes, and Uchung Whang 12/2/2009

University of Tennessee EF 152 A 2. The Wind O Nator. Team A 2 7. Richard Ammons, Rachel Dunlap, Kayla Hughes, and Uchung Whang 12/2/2009 1 University of Tennessee EF 152 A 2 The Wind O Nator Team A 2 7 Richard Ammons, Rachel Dunlap, Kayla Hughes, and Uchung Whang 12/2/2009 2 Abstract The main objective was to create a generator that was

More information

A Study on Design of A High Efficiency Vertical Axis Wind Turbine Blade Using Composite Materials

A Study on Design of A High Efficiency Vertical Axis Wind Turbine Blade Using Composite Materials Copyright 2013 Tech Science Press SL, vol.7, no.1, pp.59-65, 2013 A Study on Design of A High Efficiency Vertical Axis Wind Turbine Blade Using Composite Materials H. Park 1, H. Lee 2 and G. Park 2 Abstract:

More information

"Coal, gas and oil will not be the three kings of the energy world for ever. It is no longer folly to look up to the sun and wind, down into the

Coal, gas and oil will not be the three kings of the energy world for ever. It is no longer folly to look up to the sun and wind, down into the It Blows You Away "Coal, gas and oil will not be the three kings of the energy world for ever. It is no longer folly to look up to the sun and wind, down into the sea's waves" Introduction Energy is a

More information

Energy and the Environment. CHEN HONG Phone:

Energy and the Environment. CHEN HONG   Phone: Energy and the Environment CHEN HONG E-mail: chong@fudan.edu.cn Phone: 021-65642526 Direct uses of solar radiation Indirect/Less direct uses of solar radiation Hydroelectricity Wind energy Biomass Ocean

More information

Wind and Architecture: Design to the flow

Wind and Architecture: Design to the flow Wind and Architecture: Design to the flow Ar. Vikas Kumar Nirmal Assistant Professor, Amity School of Architecture & Planning, Amity University Haryana, Haryana, India ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

Separation between Wind Turbines and Overhead Lines Principles of Good Practice

Separation between Wind Turbines and Overhead Lines Principles of Good Practice PRODUCED BY THE OPERATIONS DIRECTORATE OF ENERGY NETWORKS ASSOCIATION Engineering Recommendation L44 Separation between Wind Turbines and Overhead Lines Principles of Good Practice www.energynetworks.org

More information

Aerodynamic Design of 2.5 MW Horizontal Wind Turbine Blade in Combination with CFD Analysis

Aerodynamic Design of 2.5 MW Horizontal Wind Turbine Blade in Combination with CFD Analysis Aerodynamic Design of 2.5 MW Horizontal Wind Turbine Blade in Combination with CFD Analysis Seul-Ki Yeom *, Tae-Jin Kang *, Warn-Gyu Park 1) School of Mechanical Engineering, Pusan National University,

More information

INVESTIGATIONS ON PERFORMANCE OF A SAVONIUS HYDROKINETIC TURBINE

INVESTIGATIONS ON PERFORMANCE OF A SAVONIUS HYDROKINETIC TURBINE INVESTIGATIONS ON PERFORMANCE OF A SAVONIUS HYDROKINETIC TURBINE Ph.D. THESIS by ANUJ KUMAR ALTERNATE HYDRO ENERGY CENTRE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE-247667 (INDIA) AUGUST, 2017 INVESTIGATIONS

More information

Wind Turbine Doubly-Fed Asynchronous Machine Diagnosis Defects State of the Art

Wind Turbine Doubly-Fed Asynchronous Machine Diagnosis Defects State of the Art 2017 2nd International Conference on New Energy and Renewable Resources (ICNERR 2017) ISBN: 978-1-60595-470-7 Wind Turbine Doubly-Fed Asynchronous Machine Diagnosis Defects State of the Art Fatima El Hammouchi,

More information

Off-Shore Wind Blue Ribbon Panel Energy and Wind Systems 101 The Basics

Off-Shore Wind Blue Ribbon Panel Energy and Wind Systems 101 The Basics Off-Shore Wind Blue Ribbon Panel Energy and Wind Systems 101 The Basics 1 This Report is a summary of the general energy generation information and general information on wind energy systems. For more

More information

State-of-the-art in development of diffuser augmented wind turbines (DAWT) for sustainable buildings Agha, Arouge; Chaudhry, Hassam Nasarullah

State-of-the-art in development of diffuser augmented wind turbines (DAWT) for sustainable buildings Agha, Arouge; Chaudhry, Hassam Nasarullah Heriot-Watt University Heriot-Watt University Research Gateway State-of-the-art in development of diffuser augmented wind turbines (DAWT) for sustainable buildings Agha, Arouge; Chaudhry, Hassam Nasarullah

More information

Published by and copyright 2009: Siemens AG Energy Sector Freyeslebenstrasse Erlangen, Germany

Published by and copyright 2009: Siemens AG Energy Sector Freyeslebenstrasse Erlangen, Germany Published by and copyright 2009: Siemens AG Energy Sector Freyeslebenstrasse 1 91058 Erlangen, Germany Siemens Wind Power A/S Borupvej 16 7330 Brande, Denmark www.siemens.com/wind For more information,

More information

AE 495 Wind Energy and Wind Turbine Technology Fall 2012 Mondays 13:40-16:30 AE-126

AE 495 Wind Energy and Wind Turbine Technology Fall 2012 Mondays 13:40-16:30 AE-126 AE 495 Wind Energy and Wind Turbine Technology Fall 2012 Mondays 13:40-16:30 AE-126 Oğuz Uzol Director METU Center for Wind Energy Associate Professor Department of Aerospace Engineering Middle East Technical

More information

The Aerodynamic Performance Study on Small Wind Turbine with 500W Class through Wind Tunnel Experiments

The Aerodynamic Performance Study on Small Wind Turbine with 500W Class through Wind Tunnel Experiments The Aerodynamic Performance Study on Small Wind Turbine with 500W Class through Wind Tunnel Experiments Ho Seong JI 1, Joon Ho BAEK 2, Rinus MIEREMET 2, Kyung Chun KIM 3 1 MEMS Technology Center, Pusan

More information

A Study of Twin Co- and Counter-Rotating Vertical Axis Wind Turbines with Computational Fluid Dynamics

A Study of Twin Co- and Counter-Rotating Vertical Axis Wind Turbines with Computational Fluid Dynamics The 16th World Wind Energy Conference, Malmö, Sweden. June 12-15, 217. A Study of Twin Co- and Counter-Rotating Vertical Axis Wind Turbines with Computational Fluid Dynamics PENG, Hua Yi* and LAM, Heung

More information

Renewable Energy. Visible light. Cool air. Warm air. Condensation. Precipitation. Evaporation

Renewable Energy. Visible light. Cool air. Warm air. Condensation. Precipitation. Evaporation Renewable Energy All renewable energy sources derive from the Sun. The Sun provides the energy that drives our weather systems and water cycle. It is the prime source of all energy on Earth and it is essential

More information

WIND POWER TECHONOLOGY

WIND POWER TECHONOLOGY WIND POWER TECHONOLOGY Department of Electrical & Electronics Engineering PACE Institute of Technology and Sciences, NH-5,ONGOLE, Prakasam(Dt Batch Members 13KQ1A0201 13KQ1A0206 13KQ1A0214 13KQ1A0217 13KQ1A0219

More information

Wind Farm - Project Plan

Wind Farm - Project Plan Wind Farm - Project Plan IPRO 344 - FALL 2006 Sponsor: Michael Polsky, Invenergy LLC Team Members: Luke Cho Euddum Choi Sushma Dantapalli Sandhya Duggirala Bahram Kayvani Azim Lotfjou Sung Song Dan Taulbee

More information

Performance of a Vertical Axis Wind Turbine under Accelerating and Decelerating Flows

Performance of a Vertical Axis Wind Turbine under Accelerating and Decelerating Flows Performance of a Vertical Axis Wind Turbine under Accelerating and Decelerating Flows Atif Shahzad, Taimoor Asim*, Rakesh Mishra, Achilleos Paris School of Computing & Engineering, University of Huddersfield,

More information

Three-Dimensional Numerical Simulation of a Model Wind Turbine

Three-Dimensional Numerical Simulation of a Model Wind Turbine Three-Dimensional Numerical Simulation of a Model Wind Turbine N. Tabatabaei 1, M.J. Cervantes 1,2, C. Trivedi 2, J-O Aidanpää 1 1 Luleå University of Technology, Sweden 2 Norwegian University of Science

More information

This document is a preview generated by EVS

This document is a preview generated by EVS INTERNATIONAL STANDARD ISO 10816-21 First edition 2015-05-01 Mechanical vibration Evaluation of machine vibration by measurements on non-rotating parts Part 21: Horizontal axis wind turbines with gearbox

More information

AERODYNAMIC AND STRUCTURAL DESIGN OF A HIGH EFFICIENCY SMALL SCALE COMPOSITE VERTICAL AXIS WIND TURBINE BLADE

AERODYNAMIC AND STRUCTURAL DESIGN OF A HIGH EFFICIENCY SMALL SCALE COMPOSITE VERTICAL AXIS WIND TURBINE BLADE AERODYNAMIC AND STRUCTURAL DESIGN OF A HIGH EFFICIENCY SMALL SCALE COMPOSITE VERTICAL AXIS WIND TURBINE BLADE Changduk Kong 1 *, Haseung Lee 1, Minwoong Kim 1 1 Department of Aerospace Engineering, Chosun

More information

Load & Optimization. Written and published by Wind Power Monthly 2014 Sponsored by Mita-Teknik. Great at Control

Load & Optimization. Written and published by Wind Power Monthly 2014 Sponsored by Mita-Teknik. Great at Control Load & Optimization The latest products and technical advances that are helping the wind industry to improve cost of energy by managing turbine loads during operation. 2015 Mita-Teknik. All rights reserved.

More information

Aerodynamic Performance Sensitivity Analysis of Blade Design for a 100 kw HAWT

Aerodynamic Performance Sensitivity Analysis of Blade Design for a 100 kw HAWT Aerodynamic Performance Sensitivity Analysis of Blade Design for a 100 kw HAWT Hassan Dogan 1 and Mahmut Faruk Aksit 2 1 PhD Candidate, 2 Associate Professor Mechatronics Program, Faculty of Engineering

More information

International Journal of Modern Trends in Engineering and Research Literature Review on Blade Design of Hydro-Microturbines

International Journal of Modern Trends in Engineering and Research   Literature Review on Blade Design of Hydro-Microturbines Scientific Journal Impact Factor (SJIF): 1.711 e-issn: 2349-9745 p-issn: 2393-8161 International Journal of Modern Trends in Engineering and Research www.ijmter.com Literature Review on Blade Design of

More information

Wind Energy Utilization of Modern Urban Buildings

Wind Energy Utilization of Modern Urban Buildings 2017 2nd International Conference on Industrial Aerodynamics (ICIA 2017) ISBN: 978-1-60595-481-3 Wind Energy Utilization of Modern Urban Buildings Fei Yang, Xiuxiu Chen and Zhanjie Wen ABSTRACT Wind energy

More information

Wind Energy: Overview

Wind Energy: Overview Wind Energy: Overview Learning objectives: 1)To understand the pattern of usage of wind energy internationally 2)To understand the pattern of usage of wind energy in India 3)To become aware of geographical

More information

Wind to Hydrogen Earth Sci. Lab

Wind to Hydrogen Earth Sci. Lab Wind to Hydrogen Earth Sci. Lab Name: Class: Date: Earth Sciences Middle School 8 hours Objective To explore wind and hydrogen fuel cell power sources and try to improve the power output of both. Materials

More information

Mathematical Modelling of Wind Turbine in a Wind Energy Conversion System: Power Coefficient Analysis

Mathematical Modelling of Wind Turbine in a Wind Energy Conversion System: Power Coefficient Analysis Applied Mathematical Sciences, Vol. 6, 01, no. 91, 457-4536 Mathematical Modelling of Wind Turbine in a Wind Energy Conversion System: Power Coefficient Analysis A. W. Manyonge 1, R. M. Ochieng 1, F. N.

More information

Spherical Turbine with Skewed Axis of Rotation. Design Team

Spherical Turbine with Skewed Axis of Rotation. Design Team Spherical Turbine with Skewed Axis of Rotation Design Team John Jantz, John Leo, Tahni Pierzga, Rachael Tompa, Stephen Uram Design Advisor Prof. Mohammad Taslim Sponsor Prof. Alexander Gorlov Abstract

More information

Electricity generation by using high velocity wind produced due to motion of vehicle.

Electricity generation by using high velocity wind produced due to motion of vehicle. Electricity generation by using high velocity wind produced due to motion of vehicle. Vaibhav Rangrao Kumbhar 1, Pushkar Rajendra Bahirat 2, Atharva Chandrashekhar Kale 3, Sagar Vitthal Garad 4 1,2,4Scholar,

More information

Towards a knowledge base for a wind electric pumping system design

Towards a knowledge base for a wind electric pumping system design Université Moulay Ismaïl Ecole Nationale Supérieure d Arts et Métiers International Renewable and Sustainable Energy Conference March 7 9 2013, Ouarzazate, Morocco Towards a knowledge base for a wind electric

More information

Wind Energy Chapter 13 Resources and Technologies. Energy Systems Engineering

Wind Energy Chapter 13 Resources and Technologies. Energy Systems Engineering Wind Energy Chapter 13 Resources and Technologies Energy Systems Engineering Further Readings David Spera, Ed., Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engineering, ASME Press, New

More information

Fundamentals of Wind Energy

Fundamentals of Wind Energy Fundamentals of Wind Energy Charles Newcomb Wind & Water Deployment Section Manager SEET Technology Workshop June 17, 2011 NREL is a national laboratory of the U.S. Department of Energy Office of Energy

More information

APPENDIX B: Example Lab Preparation Guide and Manual. The University of Texas at Austin. Mechanical Engineering Department

APPENDIX B: Example Lab Preparation Guide and Manual. The University of Texas at Austin. Mechanical Engineering Department APPENDIX B: Example Lab Preparation Guide and Manual ME 130L 17905 17990 The University of Texas at Austin Mechanical Engineering Department Spring 12 Dr. Hidrovo Lab #4 Preparation Guide - Dimensional

More information

Urban Wind Turbines: A Feasibility Study

Urban Wind Turbines: A Feasibility Study Urban Wind Turbines: A Feasibility Study Ben Dymock And Stephen Dance Urbines Urbines: The Issues Urban Wind Turbines Urbines Rooftop installation for energy generation Uncertainty of wind flow and knock

More information

Publishable summary. 2 nd Periodic Report. Date: November, 2016 Prepared by: CIRCE

Publishable summary. 2 nd Periodic Report.   Date: November, 2016 Prepared by: CIRCE 2 nd Periodic Report Publishable summary Date: November, 2016 Prepared by: CIRCE SWIP New innovative solutions, components and tools for the integration of wind energy in urban and peri-urban areas Grant

More information

CITY OF DELANO COUNTY OF WRIGHT STATE OF MINNESOTA ORDINANCE NO.

CITY OF DELANO COUNTY OF WRIGHT STATE OF MINNESOTA ORDINANCE NO. CITY OF DELANO COUNTY OF WRIGHT STATE OF MINNESOTA ORDINANCE NO. AN ORDINANCE AMENDING SECTION 51.01 (DEFINITIONS) AND ADDING SUBDIVISION O TO SECTION 51.03 (GENERAL PROVISIONS) OF THE ZONING ORDINANCE

More information

Horizontal Axis Wind Turbine with Electrolyzer for Hydrogen Energy Storage

Horizontal Axis Wind Turbine with Electrolyzer for Hydrogen Energy Storage Horizontal Axis Wind Turbine with Electrolyzer for Hydrogen Energy Storage by Michael Rybalko WIND POWER SYSTEMS NPRE 475 SPRING 2010 Prof. M. Ragheb My contribution to the class project was with the Horizontal

More information

STRUCTURAL ANALYSIS OF COMPOSITE WIND TURBINE BLADE USING FINITE ELEMENT MODEL

STRUCTURAL ANALYSIS OF COMPOSITE WIND TURBINE BLADE USING FINITE ELEMENT MODEL STRUCTURAL ANALYSIS OF COMPOSITE WIND TURBINE BLADE USING FINITE ELEMENT MODEL 1 D.Muniraj, 2 K.Prabhakaran, 3 C.Karthi, 4 V.BalaMurugan 5 R.Pradeep 1 Professor, Department of Aeronautical Engineering,

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW 40 CHAPTER 2 LITERATURE REVIEW The literature review presented in the thesis are classified into three major domains namely Wind turbine airfoil aerodynamics, Design and performance of wind turbine, Optimization

More information

Renewable Energy Sources for Isolated Self-sufficient Microgrids: Comparison of Solar and Wind Energy for UAE

Renewable Energy Sources for Isolated Self-sufficient Microgrids: Comparison of Solar and Wind Energy for UAE Available online at www.sciencedirect.com ScienceDirect Energy Procedia 103 (2016 ) 413 418 Applied Energy Symposium and Forum, REM2016: Renewable Energy Integration with Mini/Microgrid, 19-21 April 2016,

More information

Roadmap for Small Wind Turbines

Roadmap for Small Wind Turbines Roadmap for Small Wind Turbines Deepak Valagam, Technical Director, Vaata Infra Limited, Chennai Introduction With depletion of fossil fuel and ever growing electricity demand, the focus has shifted to

More information