Infiltration Guidelines

Size: px
Start display at page:

Download "Infiltration Guidelines"

Transcription

1 Appendix E Infiltration Guidelines As a stormwater management method, infiltration means retaining or detaining water within soils to reduce runoff. Infiltration can be a cost-effective method to manage stormwater if the conditions on your site allow. These infiltration guidelines identify categories of stormwater infiltration methods, and describe factors that affect the feasibility of their use. E.1 Stormwater Controls that Promote Infiltration A wide-range of site-design measures and stormwater treatment measures allow stormwater infiltration and can be categorized as described below and illustrated in Figure E-1. A. Site design measures -- such as clustering development or otherwise laying out the site to reduce impervious area, routing drainage from building roofs to landscaped areas, and using pervious pavement. B. Indirect infiltration methods, which allow stormwater runoff to percolate into surface soils. The infiltrated water may either percolate down into subsurface soils and eventually reach groundwater, or it may be underdrained into subsurface pipes. Examples of indirect infiltration methods include bioretention areas and vegetated buffer strips. C. Direct infiltration methods, which are designed to bypass surface soils and transmit runoff directly to subsurface soils and eventually groundwater. These types of devices must be located and designed to limit the potential for groundwater contamination. Examples of direct infiltration methods include infiltration trenches, infiltration basins, and dry wells. APPENDIX E PAGE E-1

2 SAN MATEO COUNTYWIDE WATER POLLUTION PREVENTION PROGRAM Figure E-1: Stormwater Infiltration Methods (Source: Contra Costa County Clean Water Program, 2005) Table E-1 describes common stormwater controls and groups them according to whether they meet the above definitions of categories A, B and C. References to the applicable section of Chapter 4 or 6 are given for stormwater controls that have specific technical guidance included in this handbook. Table E-1 Infiltration Methods in Commonly-Used Stormwater Controls Stormwater Control Description Category A: Site Design Measures Guidance in Section Disconnected Downspouts Green Roofs Pervious Pavements Site Grading Instead of connecting directly to storm drains, roof runoff is directed away from the building to nearby landscaped areas. May be extensive with a 3-7 inch lightweight substrate and a few types of low-profile plants; or may be intensive with a thicker substrate, more varied plantings, and a more garden-like appearance. Special mixes of concrete and asphalt. Require a base course of crushed aggregate and installation by experienced crews. Using gentler slopes and concave areas to reduce runoff and encourage infiltration PAGE E-2 APPENDIX E

3 C.3 STORMWATER TECHNICAL GUIDANCE Stormwater Control Site Layout Practices Turf Block Table E-1 Infiltration Methods in Commonly-Used Stormwater Controls Description Category A: Site Design Measures (continued) Examples: Use compact, multi-story buildings to reduce building footprint, cluster buildings to reduce street length and protect sensitive areas, design narrow streets, use sidewalks on one side of street. A load-bearing, durable surface of impermeable blocks separated by spaces and joints in which soil is planted with turf. Guidance in Section Unit Pavers Traditional bricks or other pavers on sand or fine crushed aggregate. 6.7 Bioretention Area Vegetated Buffer Strip Pervious Pavements Turf Block Category B: Indirect Infiltration ( Infiltration Measures ) Briefly ponds stormwater on the surface of a shallow depression and allows it to percolate through permeable soil. Underdrain is typically required, but is elevated to maximize infiltration to underlying soils, where conditions allow. Sloped area with low-growing vegetation that treats runoff by slowing the velocity so sediment and associated pollutants can settle, along with some infiltration. Special mixes of concrete and asphalt. Require a base course of crushed aggregate and installation by experienced crews. A load-bearing, durable surface of impermeable blocks separated by spaces and joints in which soil is planted with turf. Unit Pavers Traditional bricks or other pavers on sand or fine crushed aggregate. 6.7 Cisterns Infiltration Trench Infiltration Basin Dry Well Storage vessels, sometimes with a manually operated valve, provide infiltration if runoff is stored for post-storm discharge to landscaping. Category C: Direct Infiltration ( Infiltration Devices ) A trench with no outlet, filled with rock or open graded aggregate. 6.4 An excavation that exposes relatively permeable soils and impounds water for rapid infiltration. Small, deep hole filled with open graded aggregate. Sides may be lined with filter fabric or may be structural (i.e., an open bottom box sunk below grade). Typically receives roof runoff. Sources: Contra Costa Clean Water Program, 2005; CASQA, 2003; ACCWP, E.2 Factors Affecting Feasibility of Infiltration The Harvest and Use, Infiltration and Evapotranspiration Feasibility/Infeasibility Criteria Report (Feasibility Report) submitted to the Regional Water Board by BASMAA on April 29, 2011, identified the factors listed below that affect the feasibility of infiltration. These factors are grouped according to whether they apply to both indirect and direct infiltration, or whether they apply only to direct infiltration. As indicated in Table E-1, infiltration measures are stormwater treatment measures that provide indirect infiltration. Examples of infiltration measures include bioretention areas, vegetated buffer strips, and pervious pavement APPENDIX E PAGE E-3

4 SAN MATEO COUNTYWIDE WATER POLLUTION PREVENTION PROGRAM Infiltration devices are stormwater treatment measures that provide direct infiltration. The MRP defines infiltration device as any structure that is deeper than wide and designed to infiltrate stormwater into the subsurface and, as designed, bypass the natural groundwater protection afforded by surface soil. The MRP lists the following as examples of infiltration devices: dry wells, injection wells, infiltration trenches, and French drains. Infiltration measures and infiltration devices are referred to collectively as infiltration facilities. E.2.1 Factors Affecting Feasibility of Both Indirect and Direct Infiltration The following factors are used to determine the feasibility of any infiltration facility, whether it provides indirect infiltration (infiltration measures) or direct infiltration (infiltration devices): The permeability of the underlying soil; Development sites where pollutant mobilization in the soil or groundwater is a documented concern; Locations with potential geotechnical hazards; Conflicts with the location of existing or proposed underground utilities or easements. E.2.2 Factors Affecting Feasibility of Direct Infiltration Factors that specifically preclude the use of direct infiltration (infiltration devices) include the following: Locations where policies of local water districts or other applicable agencies preclude infiltration. Locations within 100 feet of a groundwater well used for drinking water; Appropriate pollution prevention and source control measures, including a minimum of two feet of suitable soil to achieve a maximum of 5 inches/hour infiltration rate; Adequate maintenance is provided to maximize pollutant removal capabilities; Vertical distance from the base of any infiltration device to the seasonal high groundwater mark is at least 10 feet (or greater if the site has highly porous soils or there are other concerns for groundwater protection); Unless stormwater is first treated by a method other than infiltration, infiltration devices are not approved as a treatment measure for stormwater runoff from areas of industrial areas, areas of high vehicular traffic or land uses that pose a high threat to water quality; Infiltration devices are not placed in the vicinity of known contaminated sites; and Infiltration devices are located a minimum of 100 feet horizontally away from any known water supply wells, septic systems, and underground storage tanks (or greater if the site has highly porous soils or there are other concerns for groundwater protection). PAGE E-4 APPENDIX E

5 C.3 STORMWATER TECHNICAL GUIDANCE E.3 Dealing with Common Site Constraints The following tips are intended to help manage constraints to infiltration that are common in San Mateo County. Where infiltration of the C.3.d amount of runoff is infeasible, bioinfiltration or bioretention areas may be used if drainage is sufficient or underdrains are provided. The design should maximize infiltration to the underlying soil, as shown in Section 6.1. Some indirect infiltration to groundwater will occur and will enhance the effectiveness of these treatment measures. Site design measures such as disconnected downspouts and pervious paving may be used if soils are amended and positively drained. Infiltration is generally infeasible on steep or unstable slopes. Site design measures that limit impervious area may be appropriate if approved by a geotechnical engineer. Consider detaining runoff in green roofs and cisterns, or using stormwater treatment measures that do not infiltrate water into the natural ground, such as flow-through planters or tree well filters. Green roofs, cisterns, flow-through planters, tree well filters, and other stormwater controls that are isolated from underlying soils are also appropriate for areas with high ground water and/or groundwater contamination. A variety of site design measures can often be used even on sites with the constraints described above, including (but not limited to) amended soils, structural soils, grading landscaping to a concave form, designing taller buildings with smaller footprints, and concentrating development on less sensitive portions of the site. E.4 Infiltration Devices and Class V Injection Well Requirements In order to protect underground sources of drinking water, the USEPA regulates some infiltration devices as Class V wells under its Underground Injection Control (UIC) Program. A Class V injection well is defined as any bored, drilled, or driven shaft, or dug hole that is deeper than its widest surface dimension, or an improved sinkhole, or a subsurface fluid distribution system. 1 Infiltration trenches are typically not considered Class V injection wells because they are longer than they are wide. The USEPA s regulations state that stormwater drainage wells are authorized by rule (40 CFR 144), which means they do not require a permit if they do not endanger underground sources of drinking water, and they comply with federal UIC requirements. For more information, see the USEPA s fact sheet, When Are Storm Water Discharges Regulated as Class V Wells? is included at the end of this appendix. If your project includes one or more infiltration devices that are regulated as Class V injection wells, you will need to submit basic inventory information about the device(s) to 1 USEPA Office of Ground Water and Drinking Water, When Are Storm Water Discharges Regulated as Class V Wells?, June APPENDIX E PAGE E-5

6 SAN MATEO COUNTYWIDE WATER POLLUTION PREVENTION PROGRAM the regional office of the USEPA. Instructions for submitting this information are available on the USEPA Region 9 website at Project sponsors are responsible for constructing, operating and closing the drainage well in a manner that does not risk contaminating underground sources of drinking water. The USEPA may place additional requirements on the infiltration device. Project sponsors should contact the appropriate USEPA staff, identified on the Internet link provided above, to learn what inventory information should be submitted, and when the submittal should be made. PAGE E-6 APPENDIX E

Class V Well Definition

Class V Well Definition UIC and Green Infrastructure What is Green Infrastructure (GI)? GI is the interconnected network of open spaces and natural areas, such as greenways, wetlands, parks, forest preserves and native plant

More information

SUPPORTING DOCUMENT STORMWATER BEST MANAGEMENT PRACTICE (BMP) INFEASIBILITY WORKSHEET FOR ON-SITE STORMWATER MANAGEMENT

SUPPORTING DOCUMENT STORMWATER BEST MANAGEMENT PRACTICE (BMP) INFEASIBILITY WORKSHEET FOR ON-SITE STORMWATER MANAGEMENT SUPPORTING DOCUMENT STORMWATER BEST MANAGEMENT PRACTICE (BMP) INFEASIBILITY WORKSHEET FOR ON-SITE STORMWATER MANAGEMENT All Best Management Practices (BMPs) are considered feasible until demonstrated otherwise.

More information

3.2 INFILTRATION TRENCH

3.2 INFILTRATION TRENCH 3.2 INFILTRATION TRENCH Type of BMP Priority Level Treatment Mechanisms Infiltration Rate Range Maximum Drainage Area LID Infiltration Priority 1 Full Retention Infiltration, Evapotranspiration (when vegetated),

More information

CENTRALIZED BMPS TYPICALLY PUBLICLY OWNED & MAINTAINED BMPS, TREATING A LARGE (>20 ACRES) URBAN DRAINAGE WITH MULTIPLE LAND

CENTRALIZED BMPS TYPICALLY PUBLICLY OWNED & MAINTAINED BMPS, TREATING A LARGE (>20 ACRES) URBAN DRAINAGE WITH MULTIPLE LAND BMP RAM BMP Type Definitions 1 CENTRALIZED BMPS TYPICALLY PUBLICLY OWNED & MAINTAINED BMPS, TREATING A LARGE (>20 ACRES) URBAN DRAINAGE WITH MULTIPLE LAND USES AND OWNERSHIP STRUCTURAL BMP TYPE OTHER NAMES

More information

Permeable Pavement Facilities and Surfaces

Permeable Pavement Facilities and Surfaces Permeable Pavement Facilities and Surfaces This checklist is intended to highlight items critical to the performance of permeable pavement facilities and surfaces that need to be addressed in the design

More information

Intended users: City and County public works Young engineers Developers Public officials and other non-engineers

Intended users: City and County public works Young engineers Developers Public officials and other non-engineers 1 2 3 4 Intended users: City and County public works Young engineers Developers Public officials and other non-engineers The Decision Tree distills information from many manuals and sources into one spot,

More information

Evaluating the Feasibility of Infiltration and Rainwater Harvesting and Use

Evaluating the Feasibility of Infiltration and Rainwater Harvesting and Use Evaluating the Feasibility of Infiltration and Rainwater Harvesting and Use Presented by Laura Prickett, EOA, Inc. Prepared by Jill Bicknell, EOA, Inc. Santa Clara Valley Urban Runoff Pollution Prevention

More information

Determining the Feasibility/Infeasibility of Infiltration, Evapotranspiration and Rainwater Harvest and Use

Determining the Feasibility/Infeasibility of Infiltration, Evapotranspiration and Rainwater Harvest and Use Determining the Feasibility/Infeasibility of Infiltration, Evapotranspiration and Rainwater Harvest and Use Jill C. Bicknell, P.E., EOA, Inc. Assistant Program Manager Santa Clara Valley Urban Runoff Pollution

More information

NON-PRIORITY PROJECT WATER QUALITY PLAN (NPP)

NON-PRIORITY PROJECT WATER QUALITY PLAN (NPP) NON-PRIORITY PROJECT WATER QUALITY PLAN (NPP) For: (Insert Project Name) (Site Address or Tract/Lot Number) Prepared for: (Insert Owner/Developer Name) (Insert Address) (Insert City, State, ZIP) (Insert

More information

Sizing Calculations and Design Considerations for LID Treatment Measures

Sizing Calculations and Design Considerations for LID Treatment Measures SCVURPPP C.3 Workshop December 18, 2012 Sizing Calculations and Design Considerations for LID Treatment Measures Jill Bicknell, P.E., EOA, Inc. Santa Clara Valley Urban Runoff Pollution Prevention Program

More information

Stormwater Treatment Measure Sizing and Design Considerations SMCWPPP C.3 Workshop June 21, 2017

Stormwater Treatment Measure Sizing and Design Considerations SMCWPPP C.3 Workshop June 21, 2017 Stormwater Treatment Measure Sizing and Design Considerations SMCWPPP C.3 Workshop June 21, 2017 Jill Bicknell, P.E., EOA, Inc. Presentation Overview Sizing/Design of Self Treating and Self Retaining Areas

More information

Technical Guidance for Specific Treatment Measures

Technical Guidance for Specific Treatment Measures Chapter 6 Technical Guidance for Specific Treatment Measures Technical guidance is provided for stormwater treatment measures commonly used in Alameda County. Technical guidance is provided for the stormwater

More information

County of Los Angeles - Department of Public Works

County of Los Angeles - Department of Public Works GENERAL PROJECT INFORMATION County of Los Angeles - Department of Public Works Building and Safety/Land Development Division LOW IMPACT DEVELOPMENT REVIEW SHEET (2017 Los Angeles County Building Code,

More information

Suggested Stormwater Management Practices For Individual House Lots

Suggested Stormwater Management Practices For Individual House Lots Suggested Stormwater Management Practices For Individual House Lots These practices are necessary to satisfy the water quantity and water quality criteria of the Rappahannock Stormwater Ordinance. These

More information

Chapter 3 Dispersion BMPs

Chapter 3 Dispersion BMPs Chapter 3 Dispersion BMPs 3.1 BMP L611 Concentrated Flow Dispersion 3.1.1 Purpose and Definition Dispersion of concentrated flows from driveways or other pavement through a vegetated pervious area attenuates

More information

4.8. Subsurface Infiltration

4.8. Subsurface Infiltration 4.8. Subsurface Infiltration Subsurface infiltration systems are designed to provide temporary below grade storage infiltration of storm water as it infiltrates into the ground. Dry wells, infiltration

More information

Design Handbook. Low Impact Development Best Management Practices

Design Handbook. Low Impact Development Best Management Practices Design Handbook for Low Impact Development Best Management Practices Prepared by: 9/2011 Riverside County Flood Control and Water Conservation District 1995 Market Street Riverside, CA 92501 TABLE OF CONTENTS

More information

4.8. Subsurface Infiltration

4.8. Subsurface Infiltration 4.8. Subsurface Infiltration Subsurface infiltration systems are designed to provide temporary below grade storage infiltration of stormwater as it infiltrates into the ground. Dry wells, infiltration

More information

Tips for Preparing/Reviewing Storm Water Control Plans (SWCP)

Tips for Preparing/Reviewing Storm Water Control Plans (SWCP) Tips for Preparing/Reviewing Storm Water Control Plans (SWCP) Kristin Kerr, P.E. EOA, Inc. San Mateo Countywide Water Pollution Prevention Program June 21, 2017 Presentation Outline Important Resources

More information

Municipal Regional Stormwater Permit Provision C.3 Model Conditions of Approval

Municipal Regional Stormwater Permit Provision C.3 Model Conditions of Approval County Government Center P 650.599.1514 555 County Center, 5 th Floor F 650.363.7882 Redwood City, CA 94063 flowstobay.com ATTACHMENT 1 Municipal Regional Stormwater Permit Provision C.3 Model Conditions

More information

Site Design Measures A-3

Site Design Measures A-3 A P P E N D I X 3 Site Design Measures A-3 Tree Planting and Preservation Trees intercept rain water on their leaves and branches, allowing water to evaporate or run down the branches and trunk where it

More information

Infiltration Trench Factsheet

Infiltration Trench Factsheet Infiltration Trench Factsheet Infiltration Trench is a practice that provides temporary storage of runoff using the void spaces within the soil/sand/gravel mixture that is used to backfill the trench for

More information

Permeable Pavement. Pavements constructed with these units create joints that are filled with permeable

Permeable Pavement. Pavements constructed with these units create joints that are filled with permeable Permeable Permeable pavement is a paving system which allows rainfall to percolate through the surface into the underlying soil or an aggregate bed, where stormwater is stored and infiltrated to underlying

More information

Shelbyville, Kentucky Stormwater Best Management Practices (BMPs) Stormwater Pollution Treatment Practices (Structural) DRAFT

Shelbyville, Kentucky Stormwater Best Management Practices (BMPs) Stormwater Pollution Treatment Practices (Structural) DRAFT Shelbyville, Kentucky Stormwater Best Management Practices (BMPs) Stormwater Pollution Treatment Practices (Structural) Activity: Infiltration Systems PLANNING CONSIDERATIONS: Design Life: Short IS Acreage

More information

Practices that capture and temporarily store the WQ v before allowing it to infiltrate into the soil.

Practices that capture and temporarily store the WQ v before allowing it to infiltrate into the soil. Chapter 5: Acceptable Stormwater Management Practices (SMPs) This section presents a list of practices that are acceptable for water quality treatment. The practices on this list are selected based on

More information

At least 2 feet above the seasonal high water table Overflow path or structure provided

At least 2 feet above the seasonal high water table Overflow path or structure provided General Conditions Map of proposed subwatershed to each subbasin, including total area and CN Design Flow or Design Volume to each STF, as appropriate Operation and Maintenance instructions for each STF

More information

MODEL STORMWATER MANAGEMENT GUIDELINES FOR INFRASTRUCTURE NEW DEVELOPMENT AND REDEVELOPMENT

MODEL STORMWATER MANAGEMENT GUIDELINES FOR INFRASTRUCTURE NEW DEVELOPMENT AND REDEVELOPMENT SALMON-SAFE INC. MODEL STORMWATER MANAGEMENT GUIDELINES FOR INFRASTRUCTURE NEW DEVELOPMENT AND REDEVELOPMENT MAY 2018 Introduction Polluted stormwater is the largest threat to the health of the Pacific

More information

PRIORITY WATER QUALITY MANAGEMENT PLAN (WQMP)

PRIORITY WATER QUALITY MANAGEMENT PLAN (WQMP) PRIORITY WATER QUALITY MANAGEMENT PLAN (WQMP) For: () (Site address or tract/lot number) Prepared for: (Insert Owner/Developer Name) (Insert Address) (Insert City, State, ZIP) (Insert Telephone) Prepared

More information

PERVIOUS PAVEMENT. Alternative Names: Permeable Pavement, Porous Concrete, Porous Pavers

PERVIOUS PAVEMENT. Alternative Names: Permeable Pavement, Porous Concrete, Porous Pavers 4.1-a PERVIOUS PAVEMENT Alternative Names: Permeable Pavement, Porous Concrete, Porous Pavers DESCRIPTION Pervious pavement is any system comprised of a load bearing surface that allows for movement of

More information

Stormwater Quality Review Checklist - General

Stormwater Quality Review Checklist - General Stormwater Quality Review Checklist - General General 1) Map of proposed subwatershed to each subbasin provided, including total area and CN 2) Drainage areas match topography 3) Drainage area estimates

More information

GCG ASSOCIATES, INC. CIVIL ENGINEERING AND LAND SURVEYING 84 Main Street Wilmington, Massachusetts 01887

GCG ASSOCIATES, INC. CIVIL ENGINEERING AND LAND SURVEYING 84 Main Street Wilmington, Massachusetts 01887 GCG ASSOCIATES, INC. CIVIL ENGINEERING AND LAND SURVEYING 84 Main Street Wilmington, Massachusetts 01887 Phone: (978) 657-9714 Fax: (978) 657-7915 November 17, 2017 Ms. Sheila Page, Town Planner 101 Main

More information

c h a p t e r 4 d e s i g n e x a m p l e s f o r s a n m a t e o c o u n t y A typical residential street intersection

c h a p t e r 4 d e s i g n e x a m p l e s f o r s a n m a t e o c o u n t y A typical residential street intersection LOW-DENSITY RESIDENTIAL STREETS: Stormwater Curb Extensions A typical residential street intersection This residential street example illustrates how stormwater curb extensions can be easily retrofitted

More information

Appendix E. Coordinating Erosion and Sediment Control With Low-Impact Development Planning

Appendix E. Coordinating Erosion and Sediment Control With Low-Impact Development Planning Appendix E Appendix E. Coordinating Erosion and Sediment Control With Low-Impact Development Planning E.1 Introduction It is essential to coordinate post-construction stormwater planning with the design

More information

TABLE B.3 - STORMWATER BMP POLLUTANT REMOVAL EFFICIENCIES

TABLE B.3 - STORMWATER BMP POLLUTANT REMOVAL EFFICIENCIES BMPS DESCRIPTION p p p p TSS TP Sol P TN Stormwater Ponds**, 8 Stormwater Wetland** and extended detention, and some elements of a shallow marsh equivalent capable of treating the full water quality volume.

More information

CENTRAL COAST POST-CONSTRUCTION REQUIREMENTS IMPLEMENTATION GUIDANCE SERIES 1

CENTRAL COAST POST-CONSTRUCTION REQUIREMENTS IMPLEMENTATION GUIDANCE SERIES 1 CENTRAL COAST POST-CONSTRUCTION REQUIREMENTS IMPLEMENTATION GUIDANCE SERIES 1 SERIES ISSUE #2: DECENTRALIZED STORMWATER MANAGEMENT TO COMPLY WITH RUNOFF RETENTION POST-CONSTRUCTION STORMWATER CONTROL REQUIREMENTS

More information

Background / Regulatory Requirements

Background / Regulatory Requirements Chapter 2 Background / Regulatory Requirements This Chapter summarizes the impacts of development on stormwater quality and quantity and explains the postconstruction stormwater control requirements for

More information

2011 Guidance Manual for Development Stormwater Quality Control Measures

2011 Guidance Manual for Development Stormwater Quality Control Measures CITY OF MODESTO STORMWATER MANAGEMENT PROGRAM 2011 Guidance Manual for Development Stormwater Quality Control Measures Prepared for NPDES Permit No. CAS083526; Order R5-2008-0092 This page intentionally

More information

Permeable Pavement: A New Chapter

Permeable Pavement: A New Chapter Permeable Pavement: A New Chapter Annette Lucas, PE (919) 807-6381 annette.lucas@ncdenr.gov NC Division of Water Quality Wetlands & Stormwater Branch Final Chapter Released: October 16, 2012 We Bring Engineering

More information

Infiltration Guidelines

Infiltration Guidelines Appendix A Infiltration Guidelines As a stormwater management method, infiltration means retaining or detaining water within soils to reduce runoff. Infiltration can be a cost-effective method to manage

More information

MODEL STORMWATER MANAGEMENT GUIDELINES FOR ULTRA-URBAN REDEVELOPMENT

MODEL STORMWATER MANAGEMENT GUIDELINES FOR ULTRA-URBAN REDEVELOPMENT SALMON-SAFE INC. MODEL STORMWATER MANAGEMENT GUIDELINES FOR ULTRA-URBAN REDEVELOPMENT MAY 2018 Introduction Polluted stormwater is the largest threat to the health of the Pacific Northwest s urban watersheds.

More information

15A NCAC 02H.1005 STORMWATER REQUIREMENTS: COASTAL COUNTIES

15A NCAC 02H.1005 STORMWATER REQUIREMENTS: COASTAL COUNTIES 1 1 1 1 1 1 1 1 0 1 0 1 1A NCAC 0H.0 STORMWATER REQUIREMENTS: COASTAL COUNTIES (a) The following definitions are applicable to this rule: (1) Built upon area as defined in Session Law 00- means that portion

More information

10/16/2013. The Big Picture of LID and Green Infrastructure. Learning Objectives

10/16/2013. The Big Picture of LID and Green Infrastructure. Learning Objectives Low impact development (LID) the basic idea behind LID is to manage stormwater in a way that imitates the natural hydrology of a site. Details Matter Selection, Design, and Implementation of Low Impact

More information

Native Soil Assessment for Small Infiltration- Based Stormwater Control Measures

Native Soil Assessment for Small Infiltration- Based Stormwater Control Measures Native Soil Assessment for Small Infiltration- Based Stormwater Control Measures Prepared for the Central Coast Low Impact Development Initiative by Dennis Shallenberger, PE, GE, and Robert Down, PE of

More information

Site Design Checklist and LID Calculations Worksheet. Draft Revision December 2004

Site Design Checklist and LID Calculations Worksheet. Draft Revision December 2004 Site Design Checklist and LID Calculations Worksheet Draft Revision December 2004 Introduction Conventional stormwater management seeks to attenuate flood peaks and treat for stormwater pollutants such

More information

3.7 Guidance for Large Bioretention/Biofiltration BMP Facilities

3.7 Guidance for Large Bioretention/Biofiltration BMP Facilities 3.7 Guidance for Large Bioretention/Biofiltration BMP Facilities Applicability LID BMPs Large sites, multi-parcel sites, BMPs treating greater than 5 acres This fact sheet is intended to be used in combination

More information

City of Beverly Hills Low Impact Development (LID) Fact Sheet

City of Beverly Hills Low Impact Development (LID) Fact Sheet On May 18, 2015, the City of Beverly Hills amended its Stormwater and Urban Runoff Pollution Control Ordinance (Article 5 Chapter 4 Title 9 of the Beverly Hills Municipal Code) to include Low Impact Development

More information

UC SANTA CRUZ NATIVE SOIL ASSESSMENT FOR SMALL INFILTRATION BASED STORMWATER CONTROL MEASURES

UC SANTA CRUZ NATIVE SOIL ASSESSMENT FOR SMALL INFILTRATION BASED STORMWATER CONTROL MEASURES CAMPUS STANDARDS APPENDIX F UC SANTA CRUZ NATIVE SOIL ASSESSMENT FOR SMALL INFILTRATION BASED STORMWATER CONTROL MEASURES December 2013 Native Soil Assessment for Small Infiltration- Based Stormwater Control

More information

Concurrent Session B: LID Design Specifications (Chapter 4 in Draft Manual)

Concurrent Session B: LID Design Specifications (Chapter 4 in Draft Manual) Concurrent Session B: LID Design Specifications (Chapter 4 in Draft Manual) Should vs. Must In Chapter 4, should means should, and must means must. Poorly Drained Soils Well-Drained Soils Flat Terrain

More information

C-1. Infiltration System

C-1. Infiltration System C-1. Infiltration System Design Objective An infiltration system captures surface stormwater runoff and allows it to infiltrate into the soil. This SCM is typically the work horse of a runoff volume match

More information

EAGLE DRAINAGE DESIGN STANDARDS

EAGLE DRAINAGE DESIGN STANDARDS EAGLE DRAINAGE DESIGN STANDARDS November 17, 2015 City of Eagle Planning & Zoning Department P.O. Box 1520 Eagle, ID 83616 EAGLE DRAINAGE DESIGN STANDARDS A. PURPOSE 1. These standards amend the Design

More information

WQ-06 SAND FILTER. 1.0 Sand Filter. Greenville County Technical Specification for: 1.1 Description

WQ-06 SAND FILTER. 1.0 Sand Filter. Greenville County Technical Specification for: 1.1 Description Greenville County Technical Specification for: WQ-06 SAND FILTER 1.0 Sand Filter 1.1 Description Sand Filters remove pollutants through sedimentation and filtration within the sand. The primary components

More information

PERMEABLE INTERLOCKING PAVERS

PERMEABLE INTERLOCKING PAVERS PERMEABLE INTERLOCKING PAVERS PART 1 - GENERAL 1.01 SECTION INCLUDES A. Subgrade Preparation B. Placement of Storage Aggregate C. Placement of Filter Aggregate D. Placement of Bedding Course E. Placement

More information

Stormwater Control Plan for Post Construction Requirements Exhibit 4

Stormwater Control Plan for Post Construction Requirements Exhibit 4 Stormwater Control Plan for Post Construction Requirements Exhibit 4 Application Submittal Where directions state Done that means no additional information or forms below that point needs to be filled

More information

Stormwater Bio-Infiltration Pilot Project Concept Proposal Submitted by

Stormwater Bio-Infiltration Pilot Project Concept Proposal Submitted by Concept Proposal Submitted by Public Works Department 1947 Center Street, Fourth Floor Berkeley, CA 94704 December 17, 2009 Executive Summary The s Public Works Department submits this concept proposal

More information

Permeable Pavement Fact Sheet

Permeable Pavement Fact Sheet DEPARTMENT OF THE ENVIRONMENT Rushern L. Baker, III County Executive Permeable Pavement Fact Sheet What is permeable pavement? When rainwater falls on conventional pavement, such as concrete, it accumulates

More information

Determination of Design Infiltration Rates for the Sizing of Infiltration based Green Infrastructure Facilities

Determination of Design Infiltration Rates for the Sizing of Infiltration based Green Infrastructure Facilities Determination of Design Infiltration Rates for the Sizing of Infiltration based Green Infrastructure Facilities 1 Introduction This document, developed by the San Francisco Public Utilities Commission

More information

Boise City Public Works General Drainage Plan Review Requirements Checklist

Boise City Public Works General Drainage Plan Review Requirements Checklist Boise City Public Works General Drainage Plan Review Requirements Checklist Development Name Bldg. Permit # Drainage Reviewer Site Address Initial Review Date ODI Number Designer Company Name Treated Acres

More information

Town of Friday Harbor PO Box 219 / Friday Harbor / WA / (360) / fax (360) /

Town of Friday Harbor PO Box 219 / Friday Harbor / WA / (360) / fax (360) / Town of Friday Harbor PO Box 219 / Friday Harbor / WA / 98250 (360) 378-2810 / fax (360) 378-5339 / www.fridayharbor.org LAND CLEARING, GRADING, OR FILLING PERMIT APPLICATION APPLICATION DATE GRD No. APPLICANT/FRANCHISE

More information

Appendix A Stormwater Site Plan Report Short Form

Appendix A Stormwater Site Plan Report Short Form Appendix A Stormwater Site Plan Report Short Form The Stormwater Site Plan Report Short Form may be used for projects that trigger only Minimum Requirements #1-#5. These projects typically fall within

More information

Storm Water Permitting Requirements for Construction Activities. John Mathews Storm Water Program Manager Division of Surface Water

Storm Water Permitting Requirements for Construction Activities. John Mathews Storm Water Program Manager Division of Surface Water Storm Water Permitting Requirements for Construction Activities John Mathews Storm Water Program Manager Division of Surface Water Why Permit Storm Water? Impacts During Construction Not an issue until

More information

Modular Porous Paver Systems

Modular Porous Paver Systems 4.3.11 Modular Porous Paver Systems General Application Water Quality BMP Description: A pavement surface composed of structural units with void areas that are filled with pervious materials such as sand

More information

A detailed guide and sizing manual for the application of Silva Cells to meet the requirements of bioretention under paving.

A detailed guide and sizing manual for the application of Silva Cells to meet the requirements of bioretention under paving. A detailed guide and sizing manual for the application of Silva Cells to meet the requirements of bioretention under paving. Materials specifications provided are based on general recommendations and can

More information

Appendix J: The Project Stormwater Control Plan by Lea & Braze Engineering, Inc.

Appendix J: The Project Stormwater Control Plan by Lea & Braze Engineering, Inc. Appendix J: The Project Stormwater Control Plan by Lea & Braze Engineering, Inc. STORMWATER CONTROL PLAN 23 LOT SUBDIVISION ON PROCTOR ROAD CASTRO VALLEY, CALIFORNIA Owner/Developer: Hue Tran 4584 Ewing

More information

EBL&S Development Station Park Green Preliminary Stormwater Quality Management Strategy REV 1

EBL&S Development Station Park Green Preliminary Stormwater Quality Management Strategy REV 1 Development Preliminary Stormwater Quality Management Strategy REV 1 Preliminary Stormwater Quality Management Strategy February 2009 This report takes into account the particular instructions and requirements

More information

Porous Pavement Flow Paths

Porous Pavement Flow Paths POROUS PAVEMENT MODELING Clear Creek Solutions, Inc., 2010 Porous pavement includes porous asphalt or concrete and grid/lattice systems (nonconcrete) and paving blocks. The use of any of these types of

More information

Modeling Green Infrastructure Compared with Large-Scale Monitoring at Kansas City, MO

Modeling Green Infrastructure Compared with Large-Scale Monitoring at Kansas City, MO X Modeling Green Infrastructure Compared with Large-Scale Monitoring at Kansas City, MO Robert Pitt and Leila Talebi The US EPA s Green Infrastructure Demonstration project in Kansas City, MO, is likely

More information

MINNEHAHA CREEK WATERSHED DISTRICT BOARD OF MANAGERS REVISIONS PURSUANT TO MINNESOTA STATUTES 103D.341. Adopted April 24, 2014 Effective June 6, 2014

MINNEHAHA CREEK WATERSHED DISTRICT BOARD OF MANAGERS REVISIONS PURSUANT TO MINNESOTA STATUTES 103D.341. Adopted April 24, 2014 Effective June 6, 2014 MINNEHAHA CREEK WATERSHED DISTRICT BOARD OF MANAGERS REVISIONS PURSUANT TO MINNESOTA STATUTES 103D.341 Adopted April 24, 2014 Effective June 6, 2014 EROSION CONTROL RULE 1. POLICY. It is the policy of

More information

Stormwater Design for Karst Terrain

Stormwater Design for Karst Terrain Stormwater Design for Karst Terrain Key Challenges Guiding Design Philosophy Site Investigations Stormwater Hotspots Sinkholes and UIC Permits CSN Technical Bulletin No. 1 available at www.chesapeakestormwater.net

More information

CHAPTER 9 STORMWATER MANAGEMENT PLAN REQUIREMENTS

CHAPTER 9 STORMWATER MANAGEMENT PLAN REQUIREMENTS CHAPTER 9 9.1 INTRODUCTION The Virginia Stormwater Management Program (VSMP) Act and Regulations require that Henrico County adopt a local program to administer the requirements. The requirements are addressed

More information

Philadelphia Water Department. Stormwater Regulations Update. BIA & Fox Rothschild LLP

Philadelphia Water Department. Stormwater Regulations Update. BIA & Fox Rothschild LLP Philadelphia Water Department Stormwater Regulations Update BIA & Fox Rothschild LLP May 13, 2015 1 Overview Upcoming Regulatory Changes Procedural Improvement Stormwater Management Guidance Manual v3.0

More information

Water Resources Management Plan

Water Resources Management Plan B u r n s v i l l e M i n n e s o t a Water Resources Management Plan - Volume Control / Infiltration Worksheet This Appendix contains a worksheet and related information that can be used for evaluating

More information

APPENDIX C. STORMWATER STRUCTURAL BMP DESCRIPTIONS

APPENDIX C. STORMWATER STRUCTURAL BMP DESCRIPTIONS APPENDIX C. STORMWATER STRUCTURAL BMP DESCRIPTIONS DETENTION PONDS Historically, detention ponds were designed for stormwater quantity control only. Extended detention of stormwater, with slow release

More information

E. STORMWATER MANAGEMENT

E. STORMWATER MANAGEMENT E. STORMWATER MANAGEMENT 1. Existing Conditions The Project Site is located within the Lower Hudson Watershed. According to the New York State Department of Environmental Conservation (NYSDEC), Lower Hudson

More information

Conservation Design Approach for New Development

Conservation Design Approach for New Development Effective Best Management Practices in Urban Areas Chad Christian City of Tuscaloosa, AL Robert Pitt University of Alabama Tuscaloosa, AL Energy Independence and Security Act of 2007 signed into Law on

More information

Best Management Practices for Stormwater Quality Treatment in Urban Settings. Lower Mississippi River WMO September 2017

Best Management Practices for Stormwater Quality Treatment in Urban Settings. Lower Mississippi River WMO September 2017 Best Management Practices for Stormwater Quality Treatment in Urban Settings Lower Mississippi River WMO September 2017 Stormwater 101 Impervious surfaces (pavement, parking lots, etc.): quickly produce

More information

4.4.5 Grassed Swale (also known as Enhanced Swale or Biofiltration Swale)

4.4.5 Grassed Swale (also known as Enhanced Swale or Biofiltration Swale) Signs of trespass or unauthorized traffic Sediment buildup Additionally, a program of regular monitoring of the aquatic environment for a permanent wet detention basin should be established to allow for

More information

SUDS for Roads. Design Tools in new guidance targeted at roads engineers. Chris Jefferies, Taye Akinrelere & Frank Guz University of Abertay Dundee

SUDS for Roads. Design Tools in new guidance targeted at roads engineers. Chris Jefferies, Taye Akinrelere & Frank Guz University of Abertay Dundee SUDS for Roads Design Tools in new guidance targeted at roads engineers Chris Jefferies, Taye Akinrelere & Frank Guz University of Abertay Dundee What s in my talk? The context behind SUDS for Roads Overview

More information

ENGINEERED SOLUTIONS. low impact development application guide

ENGINEERED SOLUTIONS. low impact development application guide ENGINEERED SOLUTIONS low impact development application guide Lower Your Impact with Contech. Our flexible, customizable systems can be easily integrated onto your site to meet Low Impact Development (LID)

More information

6.5 Extended Detention Basin

6.5 Extended Detention Basin 6.5 Extended Detention Basin Figure 6-22: Extended Detention Basin. Photograph courtesy of Bill Southard (DES Architects and Engineers) Best uses Detain low flows Can be expanded to detain peak flows Sedimentation

More information

Special Projects. Appendix. Table of Contents. J.1 Introduction

Special Projects. Appendix. Table of Contents. J.1 Introduction Appendix J Special Projects Table of Contents J.1: Introduction J.2: Category A: Small Infill Projects J.3: Category B: High Density Projects J.4: Category C: Transit-Oriented Development J.5: Calculating

More information

June 2017 C.3 Workshop Sizing Example. Section II.B Sizing Volume-Based Treatment Measures based on the Adapted CASQA Stormwater BMP Handbook Approach

June 2017 C.3 Workshop Sizing Example. Section II.B Sizing Volume-Based Treatment Measures based on the Adapted CASQA Stormwater BMP Handbook Approach SANTA CLARA VALLEY URBAN RUNOFF POLLUTION PREVENTION PROGRAM June 2017 C.3 Workshop Sizing Example Section II. Sizing for Volume-Based Treatment Measures Section II.B Sizing Volume-Based Treatment Measures

More information

Hydromodification Management Measures

Hydromodification Management Measures Chapter 7 Hydromodification Management Measures This Chapter summarizes the requirements for controlling erosive flows from development projects. 7.1 Why Require Hydromodification Management? Changes in

More information

Hydromodification Management Measures

Hydromodification Management Measures Chapter 7 Hydromodification Management Measures This Chapter summarizes the requirements for controlling erosive flows from development projects. 7.1 Why Require Hydromodification Management? Changes in

More information

Decatur, Georgia Stormwater Management Policy Guidelines. DRAFT November 5, 2014

Decatur, Georgia Stormwater Management Policy Guidelines. DRAFT November 5, 2014 Decatur, Georgia Stormwater Management Policy Guidelines Stormwater Management Policy Guidelines Decatur, Georgia STORMWATER MANAGEMENT POLICY GUIDELINES 1.0 Introduction... 3 2.0 Determining Predevelopment

More information

What Does It All Mean? CWA? Sara Esposito, P.E. DNREC Division of Watershed Stewardship

What Does It All Mean? CWA? Sara Esposito, P.E. DNREC Division of Watershed Stewardship What Does It All Mean? CWA? Sara Esposito, P.E. DNREC Division of Watershed Stewardship sara.esposito@state.de.us Why are we here? Just like pavement has helped move cars faster; it has also helped water

More information

Example 1: Pond Design in a residential development (Water Quantity calculations for a Wet Pond and Wet Extended Detention Pond)

Example 1: Pond Design in a residential development (Water Quantity calculations for a Wet Pond and Wet Extended Detention Pond) Chapter 10 Design Examples Example 1: Pond Design in a residential development (Water Quantity calculations for a Wet Pond and Wet Extended Detention Pond) Example 2: Filter Design in a commercial development

More information

Scientific overview: Water quality functions of coastal buffers

Scientific overview: Water quality functions of coastal buffers Scientific overview: Water quality functions of coastal buffers Caitlin Chaffee, Coastal Policy Analyst RI Coastal Resources Management Council November 21, 2013 Buffer Zone Setback = Minimum Distance

More information

ONSITE STORMWATER BMP GUIDANCE

ONSITE STORMWATER BMP GUIDANCE ONSITE STORMWATER BMP GUIDANCE Table of Contents BMP T5.13 Post Construction Soil Quality & Depth... 2 BMP T5.30 Full Dispersion... 4 BMP T5.10A Downspout Full Infiltration... 5 BMP T5.14A Rain Gardens...

More information

PUBLIC NOTICE PROFESSIONAL ENGINEERING SERIVCES: DESIGN OF TURF FIELD

PUBLIC NOTICE PROFESSIONAL ENGINEERING SERIVCES: DESIGN OF TURF FIELD PUBLIC NOTICE The Township of Union has adopted the Fair and Open Process of the Pay-to-Play Law (N.J.S.A. 19:44A-20a, et seq.) in its request for proposals and awarding goods and services contracts with

More information

Chapter 3: Post Construction Water Quality Best Management Practices

Chapter 3: Post Construction Water Quality Best Management Practices Chapter 3: Post Construction Water Quality Best Management Practices 3.1 Introduction to Stormwater Quality Under the regulations governing the NPDES Stormwater Phase II program, Montgomery County is required

More information

POST-CONSTRUCTION STORMWATER MANAGEMENT FOR EROSION CONTROL PROFESSIONALS

POST-CONSTRUCTION STORMWATER MANAGEMENT FOR EROSION CONTROL PROFESSIONALS POST-CONSTRUCTION STORMWATER MANAGEMENT FOR EROSION CONTROL PROFESSIONALS Shannon Tillack, P.E., CPESC Wright Water Engineers, Inc. Why do we care about stormwater quality? Board 1 Recreational Uses Slide

More information

If you have any questions during the review of the enclosed materials, please call me at (207) or me at

If you have any questions during the review of the enclosed materials, please call me at (207) or  me at October 21, 2016 Ms. Amanda Lessard Town Planner Town of Windham 8 School Road 04062 RE: Response to Comments - Minor Site Plan Application Dear Ms. Lessard: St.Germain Collins has prepared responses to

More information

Chatham Park Stormwater Manual

Chatham Park Stormwater Manual Chatham Park Stormwater Manual Table of Contents A. Introduction... 2 B. Calculation Methods... 2 C. BMP Design Standards... 3 D. Compliance Points... 3 E. Critical Environmental Resources... 3 F. Submittal

More information

Paraprofessional Training Session 1

Paraprofessional Training Session 1 Paraprofessional Training Session 1 Part 2: Stormwater Basics November 26, 2012 Rutgers University, Cook Campus Christopher C. Obropta, Ph.D., P.E. Extension Specialist in Water Resources Associate Professor

More information

Infiltration Basin Description Applicability

Infiltration Basin Description Applicability Infiltration Basin Description An infiltration basin is a shallow impoundment which is designed to infiltrate storm water into the ground water. This practice is believed to have a high pollutant removal

More information

Design Example Residential Subdivision

Design Example Residential Subdivision Design Example Residential Subdivision Rhode Island Stormwater Design and Installation Standards Manual December 2010 Public Training March 22, 2010 Richard Claytor, P.E. 508-833-6600 Appendix D: Site

More information

Water Quality Management Plan (WQMP)

Water Quality Management Plan (WQMP) Water Quality Management Plan (WQMP) Project Name: Prepared for: Insert Owner/Developer Name-then TAB. Insert Address 1 then press ENTER to insert Address 2 or TAB to next field. Insert City, State, ZIP-then

More information

low impact development demonstration project

low impact development demonstration project NORTH HUMBER EXTENSION NEIGHBOURHOOD - KLEINBURG TMIG TRIECA Conference 2012 March 27 and 28 The International Centre Mississauga 8800 Dufferin Street Suite 200 Vaughan ON CA L4K 0C5 905 738 5700 www.tmig.ca

More information

Operation & Maintenance Document Templates

Operation & Maintenance Document Templates Appendix G Operation & Maintenance Document Templates The following templates are provided to assist project applicants in preparing stormwater treatment measure maintenance plans, which municipalities

More information

CITY OF ASTORIA PUBLIC WORKS ENGINEERING DIVISION ENGINEERING DESIGN STANDARDS FOR IN-FILL DEVELOPMENT

CITY OF ASTORIA PUBLIC WORKS ENGINEERING DIVISION ENGINEERING DESIGN STANDARDS FOR IN-FILL DEVELOPMENT CITY OF ASTORIA PUBLIC WORKS ENGINEERING DIVISION ENGINEERING DESIGN STANDARDS FOR IN-FILL DEVELOPMENT Adopted by City Council: May 21, 2007 X:\General Eng\DESIGN STANDARDS\Engineering Design Standards

More information