HYBRID APPROACH FOR DESIGNING SUSTAINABLE POWER GENERATION SYSTEM IN OFF-GRID ISLAND AREA

Size: px
Start display at page:

Download "HYBRID APPROACH FOR DESIGNING SUSTAINABLE POWER GENERATION SYSTEM IN OFF-GRID ISLAND AREA"

Transcription

1 HYBRID APPROACH FOR DESIGNING SUSTAINABLE POWER GENERATION SYSTEM IN OFF-GRID ISLAND AREA Saiful ISLAM 1, Johan DRIESEN, Ronnie BELMANS Katholieke Universiteit Leuven, Belgium ABSTRACT For power generation in off-grid island area, hybrid approach with micro-grids is a good solution. Using a combination of photovoltaic modules, micro-hydro, solar thermal, diesel generator, storage devices and power conditioning systems can develop hybrid power system. The work as a whole is included resource assessment techniques, load analysis for an assumed load curve and optimisation of the different components by computer simulation/modelling. As peak load can and often does coincide with poor solar radiation, optimisation of the system involves load management and/or sizing of the energy storage. However, the choice of the components is determined by technical performance point of view as well as economic consideration. I. INTRODUCTION AND BACKGROUND For power generation in off-grid island area, hybrid approach with micro-grids is a good solution. Using a combination of photovoltaic modules, solar thermal, micro-hydro, diesel generator, storage devices and power conditioning systems can develop hybrid power system. Hybrid systems generally offer operational ease and lower life cycle costs, while maintaining optimal loading of the generators by storing energy in batteries. They are independent of a large centralized electricity grid, incorporate more than one type of power source, and are useful for remote and island areas. To maximize the use of the renewable resource, the size and operation of the hybrid system components need to be matched to the load and the available renewable resource. The research work as a whole is included resource assessment techniques, load analysis for an assumed load curve and optimization of the different components by computer simulation/modelling. INSEL simulation programme [1] has been used for the simulation. A sensitivity analysis is conducted for various up-to-date types of components with regard to different economic boundary conditions including BOS cost. As peak load can and often does coincide with poor solar radiation, optimization of the system involves load management and/or sizing of the energy storage. In this work, hybrid system has been developed for a two-storeyed guesthouse building, which will be used as a resting place for the visitors. The objective of the project is to make the building an energy island. The project site is assumed to situate in an area of high altitude with extreme climatic condition. By matching analysis between supply and demand, it is found that the RETs options for the site are needed mainly for electricity and thermal load from several renewable resources. Solar and micro-hydro resources are potentially available in the site. It could be a standalone or hybrid system. In order to provide permanent and sustainable energy generation, the usage of hybrid systems could be encouraged in the chosen site. Hybrid system will run with a diesel generator (genset) as back-up system. II. RESOURCE ASSESSMENT 1 Katholieke Universiteit Leuven, ESAT-ELECTA, Kasteelpark Arenberg 1, B-31 Leuven, Belgium, Phone: , Fax: , sislam@esat.kuleuven.ac.be

2 General procedures of resource assessment have been followed to estimate the energy potential from different renewable energy sources. The results of the investigations are shown below: II.1 Solar Resource Solar radiation is required in modelling the performance of PV systems and Solar Thermal. Hourly average monthly irradiation and ambient temperature shown in fig.1 have been used for the designing, sizing, simulation and analysis of the solar thermal and solar electric systems. This radiation data is extracted from MTM database (as given in the MTM block of the simulation program used INSEL)[1]. Latitude and Longitude of the site have been chosen as 47,6 North and 11,68 East respectively. For solar resources assessment, shadowing effect has Radiation and Tamb Jan Mar May Solar Radiation W/m2 Jul Months Sep Nov Tamb (deg C)*2 Fig.1: Hourly averaged monthly irradiation and ambient temperature data over time (yearly mean value: 159W/m2 and -2.5 deg C) been taken into account. Simulation programme SunOrb (version 1.2) [2] has been used to find out the elevation of the sun viewed from the South axis (East =-9 ; West =9 ) and then shadow map has been obtained by superimposing elevation map to sun path diagram. Finally diffuse radiation has been taken as global radiation for the shadowing period of the year. Assumed obstacles and corresponding shadow map have been shown in fig.2 and fig.3 respectfully. Angle South Fig.2: Elevation Angle versus azimuth Angle Fig. 3: Shadow map obtained by superimposing elevation map to sun path diagram II.2 Hydropower Resource Some parameters need to be known for hydropower resource assessment. Hence, available head, depths of the river, effective cross-sectional area and the water speed throughout the year have been assumed. For the calculations, static head is assumed as 1m and flow speed (centre) and height over the year are presented in the fig.4. Calculated monthly net power and available energy have been shown in fig.5. Water height(cm) and speed(dm/s) Jan Feb Mar Apr May Jun Jul Aug Sep Months of Year Oct Nov Dec Power(kW) and Energy(kWh/day)/ Jan Feb Mar Apr May Jun Jul Aug Sep Months of year Oct Nov Dec Water Heights in cm Flow Speed (center) in dm/s Fig.4: Monthly flow speeds and heights of the river Pgross (kw) Pnet (kw) Energy [kwh /day]/1 Fig.5: Monthly net power and energy available

3 Gross power and net power potential have been calculated from the formulas given below. Overall efficiency is taken as.5[3]. Formulas used for the calculations: Flow rate, Q = V*A, V-flow speed at the center of the river [m/s], A- Cross sectional area Gross power, P gross = Q*H*ρ*g, Q- Flow rate [m 3 /s], H- Head [m], ρ- Water density [Kg/m 3 ], g- Acceleration due to gravity [9.8m/s 2 ] Net power, P net = P gross *.5, overall efficiency=.5 III. DEMAND ANALYSIS Load estimation is done by assuming that 3 to 35 people will be available during the early summer and 6 to 7 people will be available during the summer and there will be no visitors during winter in the guesthouse. Light, entertainment, communication facility, fire alarm, comfortable indoors climate all will be available. Wastewater treatment plant will be an added interest. Electrical loads for daily usage are calculated both for the month of March and September. It is found that total electrical load is kwh/day in March and 24.9 kwh/day in September and shown in fig.6. Electrical (kw) and Thermal [(kw)/1] Load Hours of Day Electrical Load March (kw) Thermal Load March (kw)/1 Electrical Load Sept (kw) Thermal Load Sept (kw)/1 Fig.6: Electrical and thermal load profile in the month of March and September Thermal load required for heating the building is calculated by finding out the heat transfer to the environment from the building and balancing internal heat gains as human releases thermal power. The main modes of heat transfer are conduction across the walls and heat carried out by air leakage from the building. Heat losses are calculated for each room separately and are then added together to get the total heat transfer from the building. For calculating the heat transfer across the walls by conduction, air temperatures on all the walls are used. This has been calculated using the solar irradiation values on each of the different walls. Theses values are obtained as a result of the simulation using INSEL. Two air changes per hour are assumed. Average thermal conductivity for the building walls is taken as.2 W/m²/K[6]. The solar gain of the windows is calculated. In addition to this it is assumed that each person produces heat of 1 W and the total heat gain from this is calculated assuming the number of person-hours present in the building. Also the thermal loads generated by other equipment including electrical devices are included in the calculations. All the calculations are done for the month of March and September. The results are presented in the fig.6. Heat Loss as a result of air exchange as well as through walls and windows and heat gain is due to stove use, human presence, solar gain and electrical energy dissipation from equipments. The difference between loss and gain is presented as heat load in the same figure. In demand analysis, energy required for purifing supply water and waste water treatment are also included. IV. COMPONENTS SIZING AND PERFORMANCE SIMULATIONS IV.1 Micro Hydro Power System After obtaining the daily load pattern for the designing months (March and September) it is compared with the net power and found that MHP is able to cover the electrical load in all the months when the guesthouse is open except in March.The assumption is to expect a demand of kwh/day in March, April, May and October (the guesthouse is open just for the weekends) and 24.9 kwh/day in June, July, August and September (the guesthouse is open seven days a week).

4 FLow-Durarion Curve FLow (m3/s) Energy Potential and Extra Energy, kwh/day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Months Percent Time Equalled or Exceeded (%) Series1 Series2 Fig.7: Flow-duration curve Fig.8: Available energy after covering demand Fig.8 shows that 7.8 kwh/day has to be met for twelve days in March which is supported by flowduration curve (fig.7)(as the guesthouse will remain open three days at the weekend in march). To achieve this, batteries can be used. Batteries will need to supply kwh for the weekend. Assuming a 24-volt system and a loss factor of 1.2, a battery bank of 1Ah is needed, which is available in the market and would be a good solution. After deciding on the batteries to cover the required energy demand in March, the turbine could be selected. Based on the head of 1m and the flow rate of the river (min..69m 3 /sec, max..754m 3 /sec) a Pelton turbine can be selected from the fig C/work turb bat ld pipe generator Inv/reg/cables.5 Fig.9: Turbine selection based on head and flow rate. [3] Fig.1: System efficiencies Pelton turbine must cover the September demand after taking into account all the efficiencies. Overall efficiency is taken as.5, and breakdown of the overall efficiency is shown in fig.1. Fig.11: Pelton turbine efficiency [3] In order to cover the load in September, the turbine needs to deliver a rated power of 1.5 kw, as the efficiency from the turbine output to the load is.73. The turbine will run 24 hours at Q max in September. Flow rate in March is 3% of the flow rate in September, hence the reduction of the efficiency for this month is obvious. Fig.11 shows a relative efficiency of.95 when the flow rate is 3% of the Qmax, which leads to a drop in turbine efficiency from.8 to.76 and a drop in the system efficiency from.5 to.48. With this new value for the overall efficiency in March, battery must cover 22 kwh instead of kwh.

5 IV.2 Photovoltaic System Photovoltaic system is designed to meet the whole electrical load for the worst case (September), which is assumed as 24.9 kwh/day and the subsequent solar radiation (3.87 kwh/m²/day) has been taken into account. For the sizing of the photovoltaic panel and battery bank, the following formulas and assumptions have been taken into account and the results are shown in Table1. PV sizing: DC Energy = AC Energy / Inverter Efficiency Area PV = DC Total Energy [kwh/day] / Radiation [kwh/m²/day] / System Efficiency Number of modules = Area PV / Area PV module N module in series = Nominal system voltage / module voltage at mpp N module in parallel = Total n modules / N modules in series Current in array [A] = N module in parallel x module current at mpp [A] li Cable size, S = 2 where S = cross-section of the cable, l = cable length, I = current of Vρ the PV-panel, V = voltage drop in the cable and ρ = specific resistance of the cable. Battery Sizing: Total Ah per day = [Total Energy DC / System Nominal Voltage] x System Loss Battery Capacity [Ah] = Total daily Ah per day x storage days / max depth of discharge N of Cell in series = Nominal System Voltage / Nominal Cell Voltage Table 1 Sizing of PV and Battery bank. PV Battery System Nominal Voltage 2 V Total daily Ah requirement 162 Area PV 14 m 2 Storage Days 3 Module Voltage 18V Max depth of Discharge 6% Nos. Of module in series 11 Required Battery Capacity 81 Ah Nos. Of module in Parallel 26 Capacity of selected battery 8 Ah Length of the Cable 2 m Nominal system Voltage 2 V Section Area of the Cable 16 mm 2 Nominal cell Voltage 2 V Operating Current per Module 4 A Nos. Of cell in series 1 Current in Array 14 A Voltage loss in Cables 5 V Percent Loss in the Cables 2% For the PV sizing calculations, inverter efficiency and overall PV system efficiency have been taken as 92% and 5% respectively. It is also assumed that the area of a PV module (5Wp) is.5 m². And for battery sizing 2% system loss has been taken into account for safety reasons. IV.3 Biomass Heating System Due to very harsh climate in the project site, the source of biomass (vegetation) energy is scarce. So calculations have been carried out considering only human and kitchen waste and energy output from these sources is negligible in compared to the energy demand. Hence biomass heating, which will use wooden pellets as fuel is considered as a viable option. In this project, worst case thermal load is 45 kwh/day in March. To fulfil the load demand, maximum 1 kg fuel is needed considering energy content of the fuel is 5 kwh/kg [4] and volume is 65 kg/m 3 with an overall efficiency of 9%. For this, an oversized system of 4kW has been chosen because it will perform well to match of the future energy demand and the fluctuation of daily energy supply by other sources. IV.4 Solar Thermal Collector System The performance of the solar collector is determined by the Hottel-Whillier (HW) model [5]. Rearranging the model parameters the characteristic equation can be written as:

6 ' ' Tf Ta η = F (τα) F U L G Where, F`: absorber efficiency, τ: transmitivity of glass cover, α: absorbtivity of plate, U L : overall heat loss coefficient (W/m 2. K), Tf: fluid temperature, Ta: ambient temperature, G: radiation level (W/m 2 ). For a typical vacuum tube solar collector (1.5x.9m, 6 tubes), F`: 86%, τα:,8 and U L : 3W/m 2. K [6]. Tf Ta Hence, η = G Based on this characteristic, calculations have been carried out to find the hot water volume that 1 m 2 solar collector can generate at the required output temperature of 15 C, 35 C and 65 C under the radiation and ambient temperature level corresponding to the geographic location. The thermal output of 35 deg C for one square meter collector for a typical day in September and March is shown in fig.12.,3,25,2 kwh,15,1, Hours Fig.12: Simulation of collector (1m 2 ) output at a typical day in March and September Sept March Fig.13: Monthly energy output of 8m² of a vacuum tube collector at 5 C in winter term and 35 C in summer term So if the entire thermal load is supplied by solar collector the amount of solar collector would become a big number which is unacceptable due to space and economic reason. The next step therefore should be to maximize the output generated by this 8m² solar collector. The shortage will be supplied by a pellet heating system. Whatever the output is generated during winter all will be used for space heating to keep the house at some degrees above the ambient temperature. While in the summer output will be used for space heating at a comfortable level. Therefore the output temperature of the solar collector should be organized in a way that March to October output will be in 35 deg C and rest of the time 5 deg C. Fig. 13 shows the output variations of 8 m 2 collector following the above mentioned strategy. In total the 8m² of collector will be able to deliver 4164 kwh to the guesthouse. Output, kwh Months of year V. LOAD MATCHING PROPOSAL FOR HYBRID SYSTEM Load fluctuates mainly in three seasons: winter, beginning of summer (March) and summer. Hence three scenarios are proposed to meet the typical loads. During winter, no electrical load is required but thermal load exists as the equipment and furniture inside the guesthouse need to be kept in a proper environment. For this, combinations of PV and solar collector have been considered. As 1 m 2 of solar collector needs 1Wp installed capacity of pump [6], 8 m 2 out of 9 available roof area (assumed) are reserved for solar collector, the remaining 1 m 2 is for PV (1 kwp) to supply electricity for the pump and will ensure that whenever heat is generated from the solar collector, electricity will be available to pump that heat away. In contrast to winter, the guesthouse is opened from March. Hence both electrical and thermal load are required in this period. Therefore special

7 design is needed. An investigation from the previous chapter shows that a combined solar collector and biomass heating system will together guarantee that heat demand. Investigation from previous chapters shows that micro-hydro and a supplementary supply from other source is needed to meet electrical demand. A 2 kw genset has been chosen accordingly. To reduce the cost of power mixing, big loads like washing machine, dishwasher are recommended to connect separately to the genset. In addition to these two power supplies, the electricity production is also supplemented by the redundant power from PV through the inverter. In summer, basically the supply configuration is unchanged. However, genset now is operated in emergency situations only, as the power from hydro can meet the full demand. PV is needed only to keep the pump of solar thermal system active through out the year. Otherwise, thermal system may fail due to temperature difference specifically during winter. Although solar thermal pump will get enough power to be run during summer, but in winter all other power sources will remain turn off, hence PV system is essential thus increases costs. At any case, PV will empower the grid. As micro hydro, supplying AC power, is the main source of power generation, hence it is intended to construct AC grid. Hence a 9 Wp inverter (as PV is 1kWp, and 9% undersized)[7] is needed which will be protected by switching devices. VI. ECONOMIC SITUATION For economic evaluation, the levelised cost per kwh of electric and thermal energy from the proposed hybrid system has been calculated by the software Investment Evaluator (version 1.3). Component prices, life expectancies, operation and maintenance costs are included for these calculations but it excludes any subsidy that could be asked to the energy renewable policy in some countries. Cost breakdown of electrical and thermal systems are shown separately in fig.14 and fig.15 respectively. The total electric load required of 387 kwh/year and the total thermal load required of 67,996 kwh/year has been used for this calculation. Assuming 8% for the interest rate and following the net present value calculations for the analysis, two levelised costs for implementing a hybrid system have been found: the electrical energy is equivalent to.75 Euro/ kwh and the other one, thermal energy is equivalent to.16 Euro/ kwh. 16% 21% 11% 73% 79% PV Diesel Micro hydro Solar Thermal Biomass Heating Fig. 14: Cost breakdown of electrical system Fig.15: Cost breakdown of thermal system VII. CONCLUSION The preferred option for electrification in urban areas is connection to the main grid. However, the costs of grid extension are prohibitively expensive for remote area. That s why investigation has been carried out for different stand-alone renewable energy technologies, such as PV, solar thermal, biomass heating and micro-hydro as well as non-renewable source like diesel generator. However, more convenient system may be hybrid one with a mini-grid. This is a small electricity grid system,

8 which connects at the users end to the loads, and which is powered by mainly micro-hydro as well as PV and in special cases a diesel generator. Solar thermal and biomass heating will meet the total thermal load. For this purpose a mini- thermal grid can be installed. A solar thermal collector and a biomass heating system will power this grid. Fig.16 shows the whole grid together (see annex.1). VIII. REFERENCES 1. Integrated Simulation Environment and a graphical programming Language developed by the University of Oldenburg, Germany. 2. SunOrb, NES (Department for Nuclear and New Energy Systems), Ruhr-Universitat Bochum, Germany. 3. A Harvey and A Brown, Micro-hydro Design Manual, ITDG Publishing, David Pimentel, Handbook of Energy Utilization in Agriculture, CRC Press, Inc. 198, Page Hottel H.C. and Woertz B. B., (1942), The performance of flat-plate solar heat collectors. Trans. of ASME 64(Feb.), Duffie, J.A. and Beckman, W.A., In: Solar Engineering of Thermal Processes (2nd ed.), Wiley Interscience, New York 7. Saiful Islam, Achim Woyte, Ronnie Belmans and Johan Nijs, UNDERSIZING INVERTERS FOR GRID CONNECTION WHAT IS THE OPTIMUM?, PV in Europe Conference and Exhibition, Rome, Italy, October 7-11, 22 ACKNOWLEDGEMENT Writter is thankful to PPRE-batch 2-21, University of Oldenburg, Germeny as valuable information has been received from them to complete the work. ANNEX.1: Fig. 16: Proposed mini-grids of the hybrid system. Electric (left) and thermal (right)

Design and optimization of solar water heating system for a five star hotel in Varanasi

Design and optimization of solar water heating system for a five star hotel in Varanasi Design and optimization of solar water heating system for a five star hotel in Varanasi Mahesh Vipradas & Amit Kumar Tata Energy Research Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi

More information

Journal of Asian Scientific Research

Journal of Asian Scientific Research Journal of Asian Scientific Research journal homepage: http://aessweb.com/journal-detail.php?id=5003 DESIGN OF A PV/DIESEL STAND ALONE HYBRID SYSTEM FOR A REMOTE COMMUNITY IN PALESTINE M.S. Ismail 1 M.

More information

EVALUATION OF A MICRO PV-WIND HYBRID SYSTEM IN NORDIC CLIMATE CONDITIONS

EVALUATION OF A MICRO PV-WIND HYBRID SYSTEM IN NORDIC CLIMATE CONDITIONS EVALUATION OF A MICRO PV-WIND HYBRID SYSTEM IN NORDIC CLIMATE CONDITIONS Frank Fiedler, Angel Antonio Zapata López Solar Energy Research Center SERC, Högskolan Dalarna, S-78188 Borlänge, Phone: +46 (0)

More information

SOLAR ENERGY ASSESSMENT REPORT. For 80.5 kwp. Meteorological Data Source NASA-SSE. Date 18 October, Name of Place Uttar Pradesh.

SOLAR ENERGY ASSESSMENT REPORT. For 80.5 kwp. Meteorological Data Source NASA-SSE. Date 18 October, Name of Place Uttar Pradesh. SOLAR ENERGY ASSESSMENT REPORT For 80.5 kwp Name of Place Uttar Pradesh Client abc Capacity 80 kw Meteorological Data Source NASA-SSE Email ezysolare@gmail.com Order No. #1410180006 Date 18 October, 2014

More information

POTENTIAL OF APPLICATION OF PV SYSTEM FOR BWRO DESALINATION IN GAZA

POTENTIAL OF APPLICATION OF PV SYSTEM FOR BWRO DESALINATION IN GAZA Tenth International Water Technology Conference, IWTC10 2006, Alexandria, Egypt 205 POTENTIAL OF APPLICATION OF PV SYSTEM FOR BWRO DESALINATION IN GAZA Mohammed Rabia Ahmed Director of Water Control Department,

More information

A study for an optimization of a hybrid renewable energy system as a part of decentralized power supply

A study for an optimization of a hybrid renewable energy system as a part of decentralized power supply International Journal of Smart Grid and Clean Energy A study for an optimization of a hybrid renewable energy system as a part of decentralized power supply Y. Stefanov, K. Ivanov, P. Petrov Technical

More information

Performance evaluation of hybrid solar parabolic trough concentrator systems in Hong Kong

Performance evaluation of hybrid solar parabolic trough concentrator systems in Hong Kong Performance evaluation of hybrid solar parabolic trough concentrator systems in Hong Kong Huey Pang* 1, Edward W.C. Lo 1, TS Chung 1 and Josie Close 2 * 1 Department of Electrical Engineering, The Hong

More information

Design and Performance Analysis of a Grid Connected Solar Photovoltaic System

Design and Performance Analysis of a Grid Connected Solar Photovoltaic System IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 08, Issue 8 (August. 2018), V (VI) PP 06-10 www.iosrjen.org Design and Performance Analysis of a Grid Connected Solar

More information

A New Type of Hybrid Groundwater Energy System

A New Type of Hybrid Groundwater Energy System This case-history is about: A New Type of Hybrid Groundwater Energy System by Todd Giddings, Ph.D., P.G. My 10,000 square foot office building Located in State College, PA (5,600 hdd s) Constructed in

More information

Feasibilty of Wind-Solar Hybrid System for Cleveland, Ohio, USA

Feasibilty of Wind-Solar Hybrid System for Cleveland, Ohio, USA Smart Grid and Renewable Energy, 2011, 2, 37-44 doi:10.4236/sgre.2011.21005 Published Online February 2011 (http://www.scirp.org/journal/sgre) 37 Feasibilty of Wind-Solar Hybrid System for Cleveland, Ohio,

More information

Hot water persons. Map section

Hot water persons. Map section Project Hot water 4-160 persons Location of the system Rapperswil SG Longitude: 8.82 Latitude: 47.23 Elevation: 417 m Map section "Current report item is not supported in this report format." This report

More information

TECHO-ECONOMIC SIMULATION AND OPTIMIZATION OF 4.5KW WIND/SOLAR MICRO-GENERATION SYSTEM FOR VICTORIAN CLIMATE

TECHO-ECONOMIC SIMULATION AND OPTIMIZATION OF 4.5KW WIND/SOLAR MICRO-GENERATION SYSTEM FOR VICTORIAN CLIMATE TECHO-ECONOMIC SIMULATION AND OPTIMIZATION OF 4.5KW WIND/SOLAR MICRO-GENERATION SYSTEM FOR VICTORIAN CLIMATE Kannan Jegathala Krishnan #1 Velumani Rajan *2 Balasubramani Mohan *3 Akhtar Kalam *4 Aladin

More information

Reference: Photovoltaic Systems, p. 229

Reference: Photovoltaic Systems, p. 229 Sizing is the basis for PV system designs, and determines the ratings for the PV array and other major components needed to produce and deliver a certain amount of energy. Different principles apply to

More information

Optimum Design of Biomass Gasifier Integrated Hybrid Energy Systems

Optimum Design of Biomass Gasifier Integrated Hybrid Energy Systems Optimum Design of Biomass Gasifier Integrated Hybrid Energy Systems Arun P* * Department of Mechanical Engineering, National institute of Technology Calicut, NIT Campus (PO), Kozhikode, Kerala, India 673601.

More information

13-PV System Design. ECEGR 452 Renewable Energy Systems

13-PV System Design. ECEGR 452 Renewable Energy Systems 13-PV System Design ECEGR 452 Renewable Energy Systems Design Example Overview Other PV Considerations Dr. Louie 2 Stand Alone PV System Design Consider a simple design approach Part art, part science

More information

Solar energy house with brine-water heat pump and PV. Map section

Solar energy house with brine-water heat pump and PV. Map section Project Solar energy house with brine-water heat pump and PV Location of the system Rapperswil SG Longitude: 8.82 Latitude: 47.23 Elevation: 417 m Map section "Current report item is not supported in this

More information

COST ANALYSIS OF RENEWABLE ENERGY FOR POWER SUPPLY FOR REMOTE AREA IN YEMEN : A CASE STUDY FOR SOCOTRA ISLAND

COST ANALYSIS OF RENEWABLE ENERGY FOR POWER SUPPLY FOR REMOTE AREA IN YEMEN : A CASE STUDY FOR SOCOTRA ISLAND COST ANALYSIS OF RENEWABLE ENERGY FOR POWER SUPPLY FOR REMOTE AREA IN YEMEN : A CASE STUDY FOR SOCOTRA ISLAND Saqqaf A. Alkaf, Mohammed A. Muqbel and Salem M. Bin Qadhi + Mechanical Engineering Department,

More information

Might the large-scale PV power generation be reached in China? A grid parity combined with techno-economic analysis

Might the large-scale PV power generation be reached in China? A grid parity combined with techno-economic analysis Might the large-scale PV power generation be reached in China? A grid parity combined with techno-economic analysis Hongyang Zou, Huibin Du*, Marilyn A. Brown College of Management and Economics, Tianjin

More information

ANNUAL ENERGY PERFORMANCE OF SOLAR THERMAL SYSTEMS IN BRAŞOV, ROMANIA

ANNUAL ENERGY PERFORMANCE OF SOLAR THERMAL SYSTEMS IN BRAŞOV, ROMANIA Bulletin of the Transilvania University of Braşov Series I: Engineering Sciences Vol. 5 (54) No. 2-212 ANNUAL ENERGY PERFORMANCE OF SOLAR THERMAL SYSTEMS IN BRAŞOV, ROMANIA C. ŞERBAN 1 E. EFTIMIE 1 Abstract:

More information

Study and Modelling of Green Energy based Micro-Grid for Rural Area

Study and Modelling of Green Energy based Micro-Grid for Rural Area Indian Journal of Science and Technology, Vol 9(21), DOI: 10.17485/ijst/2016/v9i21/91568, June 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Study and Modelling of Green Energy based Micro-Grid

More information

Performance Analysis of PV Solar Power System

Performance Analysis of PV Solar Power System IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 13, Issue 2 Ver. I (Mar. Apr. 2018), PP 35-41 www.iosrjournals.org Performance Analysis of

More information

Microturbine CHP for Microgrids Microgrid2017

Microturbine CHP for Microgrids Microgrid2017 Microturbine CHP for Microgrids Microgrid2017 Why Microturbines for Microgrids? Proven: Over 3,000 sites operating in Stand Alone and Dual Mode One Moving Part; Air Bearings Invertor Based Power Electronics

More information

Solar System Analysis

Solar System Analysis Preliminary Analysis of an Industrial Photovoltaic System and Comparison of Its Performance with a Wind Energy System and a Fuel Cell Power System Amal Kabalan, LEED A.P. Consulting Engineer The purpose

More information

Micro-Hydrokinetic for Remote Rural Electrification

Micro-Hydrokinetic for Remote Rural Electrification Micro-Hydrokinetic for Remote Rural Electrification S. P. Koko, K. Kusakana, H. J. Vermaak Abstract Standalone micro-hydrokinetic river (MHR) system is one of the promising technologies to be used for

More information

Viability of Micro Wind Turbines in the Urban Environment

Viability of Micro Wind Turbines in the Urban Environment Viability of Micro Wind Turbines in the Urban Environment World Renewable Energy Forum WREF/WREN May 13-17, 2012, Denver, Colorado Ghanim Putrus Reader in Electrical Power Engineering Power and Wind Energy

More information

FEASIBILITY STUDY OF THE COST EFFECTIVE HYBRID POWER SYSTEM FOR CUET IN BANGLADESH

FEASIBILITY STUDY OF THE COST EFFECTIVE HYBRID POWER SYSTEM FOR CUET IN BANGLADESH Proceedings of the International Conference on Mechanical Engineering and Renewable Energy 2015 (ICMERE2015) 26 29 November, 2015, Chittagong, Bangladesh ICMERE2015-PI-057 FEASIBILITY STUDY OF THE COST

More information

Performance Evaluation of Solar Parabolic Trough for Cloths Laundry application

Performance Evaluation of Solar Parabolic Trough for Cloths Laundry application Performance Evaluation of Solar Parabolic Trough for Cloths Laundry application Shubham Gupta*, Prof. R. S. Mishra Department of Mechanical Engineering Delhi Technological University, Delhi-110042. guptashubham@outlook.in,

More information

STUDY ON TESTING FEASIBILITY OF SOLAR ENERGY IN THE PALESTINIAN TERRITORIES

STUDY ON TESTING FEASIBILITY OF SOLAR ENERGY IN THE PALESTINIAN TERRITORIES STUDY ON TESTING FEASIBILITY OF SOLAR ENERGY IN THE PALESTINIAN TERRITORIES FALLING WITHIN THE FRAMEWORK OF THE EXTRAORDINARY FINANCIAL ASSISTANCE OF THE CZECH REPUBLIC TO THE PALESTINIAN TERRITORIES FOLLOWING

More information

Sustainable Building Façade and Advanced Fenestration Systems

Sustainable Building Façade and Advanced Fenestration Systems Workshop on Potential Technological Developments for Zero Carbon Buildings 16-17 Oct 2013 Sustainable Building Façade and Advanced Fenestration Systems Tin-Tai Chow Building Energy & Environmental Technology

More information

OPTIMIZATION AND COMPARATIVE ANALYSIS OF NON- RENEWABLE AND RENEWABLE SYSTEM

OPTIMIZATION AND COMPARATIVE ANALYSIS OF NON- RENEWABLE AND RENEWABLE SYSTEM OPTIMIZATION AND COMPARATIVE ANALYSIS OF NON- RENEWABLE AND RENEWABLE SYSTEM Swati Negi 1 and Lini Mathew 2 1 ME student, Department of E.E.E, Engineering, NITTTR, Chandigarh, India 2 Associate Professor,

More information

Evaluation of Solar PV and Wind Alternatives for Self Renewable Energy Supply: Case Study of Shrimp Cultivation

Evaluation of Solar PV and Wind Alternatives for Self Renewable Energy Supply: Case Study of Shrimp Cultivation Available online at www.sciencedirect.com ScienceDirect Energy Procedia 88 (2016 ) 462 469 CUE2015-Applied Energy Symposium and Summit 2015: Low carbon cities and urban energy systems Evaluation of Solar

More information

GRID-CONNECTED PV SYSTEMS (No Battery Storage) SYSTEM DESIGN GUIDELINES

GRID-CONNECTED PV SYSTEMS (No Battery Storage) SYSTEM DESIGN GUIDELINES GRID-CONNECTED PV SYSTEMS (No Battery Storage) SYSTEM DESIGN GUIDELINES GRID-CONNECTED PV SYSTEMS (No Battery Storage) SYSTEM DESIGN GUIDELINES These guidelines have been developed by the Sustainable

More information

Verified net Zero Energy Building with air source heat pumps for SME

Verified net Zero Energy Building with air source heat pumps for SME Verified net Zero Energy Building with air source heat pumps for SME Field measurements were conducted on a net zero energy building designed for small to medium enterprises (SMEs). Energy flow and comfort

More information

Optimal Sizing of Photovoltaic Based Rural Electrification System under the Influence of Various Seasonal Conditions

Optimal Sizing of Photovoltaic Based Rural Electrification System under the Influence of Various Seasonal Conditions Optimal Sizing of Photovoltaic Based Rural Electrification System under the Influence of Various Seasonal Conditions Wunna Swe Professor and Head, Department of Electrical Power Engineering, Mandalay Technological

More information

THE SIMULATION OF PHOTOVOLTAIC POWER GENERATION AND WIND POWER GENERATION ON THE HYDRID ELECTRICITY SUPPLY SYSTEM OF A BUILDING

THE SIMULATION OF PHOTOVOLTAIC POWER GENERATION AND WIND POWER GENERATION ON THE HYDRID ELECTRICITY SUPPLY SYSTEM OF A BUILDING THE SIMULATION OF PHOTOVOLTAIC POWER GENERATION AND WIND POWER GENERATION ON THE HYDRID ELECTRICITY SUPPLY SYSTEM OF A BUILDING Masafumi Terawaki and Isamu Suzuki Sanki Engineering Co.,Ltd. 1742-7,Simoturuma,Yamato-City,Kanagawa,242-1,Japan

More information

SolarCity Partnership. Toronto Fire Station # kwt Solar Water Heating Installation. Technology. Monitoring. Best Practices

SolarCity Partnership. Toronto Fire Station # kwt Solar Water Heating Installation. Technology. Monitoring. Best Practices Toronto Fire Station #212 12.5 kwt Solar Water Heating Installation Final Report January 2012 Technology Monitoring Best Practices SolarCity Partnership PROJECT SNAPSHOT Address: 8500 Sheppard Avenue East,

More information

Solar cooling design: a case study

Solar cooling design: a case study Eco-Architecture IV 399 Solar cooling design: a case study S. Grignaffini & M. Romagna Department of Astronautic, Electric and Energetic Engineering, Sapienza, University of Rome, Italy Abstract Throughout

More information

Understanding Solar Energy Teacher Page

Understanding Solar Energy Teacher Page Understanding Solar Energy Teacher Page Good Day Sunshine! Student Objective The student: will explain the relationship between the available sunlight and the power produced by a photovoltaic device will

More information

Performance Evaluation of an Integrated Hybrid Photovoltaic/Thermal (PV/T) Greenhouse

Performance Evaluation of an Integrated Hybrid Photovoltaic/Thermal (PV/T) Greenhouse 12 EAAS & ARF. All rights reserved Performance Evaluation of an Integrated Hybrid Photovoltaic/Thermal (PV/T) Greenhouse Shahana Parveen 1, Dr. Qamar Parvez Rana 2 Jamia Hamdard, India Shahanaparveen_amu@gmail.com

More information

ENERGY SELF SUFFICIENCY WITH RENEWABLE SOURCES BIOMASS AND WIND IN THE REHABILITATION PROJECTOF AN OLD RURAL BUILDING COMPLEX IN SICILY (ITALY)

ENERGY SELF SUFFICIENCY WITH RENEWABLE SOURCES BIOMASS AND WIND IN THE REHABILITATION PROJECTOF AN OLD RURAL BUILDING COMPLEX IN SICILY (ITALY) ENERGY SELF SUFFICIENCY WITH RENEWABLE SOURCES BIOMASS AND WIND IN THE REHABILITATION PROJECTOF AN OLD RURAL BUILDING COMPLEX IN SICILY (ITALY) Paola Caputo paola.caputo@polimi.it Politecnico di Milano,

More information

Renewable Energy Working Paper Series No Residential Solar PV Policy FEED-IN TARIFF vs NET METERING Options for Brunei DRAFT

Renewable Energy Working Paper Series No Residential Solar PV Policy FEED-IN TARIFF vs NET METERING Options for Brunei DRAFT Renewable Energy Working Paper Series No. 001 Residential Solar PV Policy FEED-IN TARIFF vs NET METERING Options for Brunei DRAFT Dr Romeo Pacudan Chief Researcher Brunei National Energy Research Institute

More information

Introduction to Solar Energy Technology

Introduction to Solar Energy Technology Introduction to Solar Energy Technology Ilya Chernyakhovskiy, NREL July, 2018 Global Solar Energy Growth 2 Global Solar Energy Growth 3 Technology costs continue to decline Module costs are coming down

More information

Configuration of a renewable micro-power system for a remote village in Mongolia

Configuration of a renewable micro-power system for a remote village in Mongolia Configuration of a renewable micro-power system for a remote village in Mongolia Jeongwoon Ahn *, Yongtaek Oh *, Charles Kim **, and Chul-Woon Park*** Abstract Electricity generation by renewable energy

More information

A technique for accurate energy yields prediction of photovoltaic system

A technique for accurate energy yields prediction of photovoltaic system International Journal of Smart Grid and Clean Energy A technique for accurate energy yields prediction of photovoltaic system Chiou-Jye Huang a*, Chao-Yang Huang a,b, Po-Chun Huang a, Shun-Hung Tsai c

More information

Treatment in SAP Appendix Q of a close-coupled store in a FGHRS with an electric immersion heater powered by photovoltaic modules

Treatment in SAP Appendix Q of a close-coupled store in a FGHRS with an electric immersion heater powered by photovoltaic modules Page 1 of 7 Treatment in SAP Appendix Q of a close-coupled store in a FGHRS with an electric immersion heater powered by photovoltaic modules By John Hayton 05 Feb 2009 1 Introduction Flue gas heat recovery

More information

AR No. # - Solar Thermal

AR No. # - Solar Thermal AR No. # - Solar Thermal Recommendation We recommend installing a solar thermal array on the building roof. This will provide an alternative source for 10% of the facilities energy consumption and reduce

More information

HOLISTIC DESIGN APPROACH FOR A SMALL SCALE DOMESTIC SAPS ON THE CENTRAL WHEAT BELT OF WESTERN AUSTRALIA

HOLISTIC DESIGN APPROACH FOR A SMALL SCALE DOMESTIC SAPS ON THE CENTRAL WHEAT BELT OF WESTERN AUSTRALIA PEC624 Master of Science in Renewable Energy Dissertation HOLISTIC DESIGN APPROACH FOR A SMALL SCALE DOMESTIC SAPS ON THE CENTRAL WHEAT BELT OF WESTERN AUSTRALIA Presented by Karl William Tunnicliffe BE

More information

GRID-CONNECTED PV SYSTEMS (No Battery Storage) SYSTEM DESIGN GUIDELINES FOR THE PACIFIC ISLANDS

GRID-CONNECTED PV SYSTEMS (No Battery Storage) SYSTEM DESIGN GUIDELINES FOR THE PACIFIC ISLANDS GRID-CONNECTED PV SYSTEMS (No Battery Storage) SYSTEM DESIGN GUIDELINES FOR THE PACIFIC ISLANDS GRID-CONNECTED PV SYSTEMS (No Battery Storage) SYSTEM DESIGN GUIDELINES FOR THE PACIFIC ISLANDS These guidelines

More information

Performance of a Solar Heating System with Photovoltaic Thermal Hybrid Collectors and Heat Pump

Performance of a Solar Heating System with Photovoltaic Thermal Hybrid Collectors and Heat Pump Performance of a Solar Heating System with Photovoltaic Thermal Hybrid Collectors and Heat Pump Mark Dannemand, Technical University of Denmark, Department of Civil Engineering, Denmark Simon Furbo, Technical

More information

Solar Air-Conditioning Systems in small - medium scale applications

Solar Air-Conditioning Systems in small - medium scale applications Systems in small - medium scale applications Santzaklis Ioannis MSc Mechanical engineering MBA Techno-economic systems Centre for Renewable Energy Sources Dissemination and Promotion dept. Christodoulaki

More information

A CASE STUDY OF A RESIDENTIAL PHOTOVOLTAIC SYSTEM WITH MICROINVERTERS

A CASE STUDY OF A RESIDENTIAL PHOTOVOLTAIC SYSTEM WITH MICROINVERTERS A CASE STUDY OF A RESIDENTIAL PHOTOVOLTAIC SYSTEM WITH MICROINVERTERS Clifford K. Ho Sandia National Laboratories P.O. Box 5800 Albuquerque, NM 87185 E-mail: ckho@sandia.gov ABSTRACT This paper presents

More information

Project PolarSol koti 41\193\- Map section

Project PolarSol koti 41\193\- Map section Project PolarSol koti 41\193\- Location of the system Map section Profil Longitude: 24.109 Latitude: 65.841 Elevation: 11 m This report has been created by: Anton Serbin +358447887888 Dealer: www.profil.fi

More information

Prospects and Viability of Solar Energy in Khyber Pakhtunkhwa Pakistan

Prospects and Viability of Solar Energy in Khyber Pakhtunkhwa Pakistan Prospects and Viability of Solar Energy in Khyber Pakhtunkhwa Pakistan Muhammad Riaz 1, Amjad Ullah 2, Khadim Ullah Jan 3 1,2 Department of Electrical Engineering, University of Engineering and Technology

More information

Allstream Centre Energy Performance Report

Allstream Centre Energy Performance Report Allstream Centre Energy Performance Report 2012 2014 TABLE OF CONTENTS INTRODUCTION... 1 ELECTRICAL CONSUMPTION... 2 ELECTRICAL ENERGY DISTRIBUTION... 3 BUILDING POWER AND SYSTEMS... 4 FACTORS CONTRIBUTING

More information

AN EFFECTIVE STUDY ON PERFORMANCE ANALYSIS OF GRID CONNECTED PV SYSTEM

AN EFFECTIVE STUDY ON PERFORMANCE ANALYSIS OF GRID CONNECTED PV SYSTEM AN EFFECTIVE STUDY ON PERFORMANCE ANALYSIS OF GRID CONNECTED PV SYSTEM Jignesh L. Rohit 1, Prof. K.D. Panchal 2 1 P.G. Student, M. E. (Energy Engineering), Government Engineering College, Valsad, Gujarat

More information

Strategies for energy efficiency improvement in residential and office buildings: their role at building and country scale

Strategies for energy efficiency improvement in residential and office buildings: their role at building and country scale The Future Role of Energy Storage in South Eastern Europe Enlargement and Integration Action Workshop Strategies for energy efficiency improvement in residential and office buildings: their role at building

More information

MODELING AND SIMULATION OF WIND-SOLAR HYBRID ENERGY SYSTEM FOR POWER SUPPLY TO FACULTY OF ENGINEERING TEACHING WORKSHOP IN UNIVERSITY OF MAIDUGURI

MODELING AND SIMULATION OF WIND-SOLAR HYBRID ENERGY SYSTEM FOR POWER SUPPLY TO FACULTY OF ENGINEERING TEACHING WORKSHOP IN UNIVERSITY OF MAIDUGURI MODELING AND SIMULATION OF WIND-SOLAR HYBRID ENERGY SYSTEM FOR POWER SUPPLY TO FACULTY OF ENGINEERING TEACHING WORKSHOP IN UNIVERSITY OF MAIDUGURI A.B. Muhammad 1*, G. M. Ngala 2, S. Shodiya 3, M. Shuwa

More information

A Feasibility Study of Electrification of a Base Transceiver System (BTS) using Renewable Energy Generators

A Feasibility Study of Electrification of a Base Transceiver System (BTS) using Renewable Energy Generators A Feasibility Study of Electrification of a Base Transceiver System (BTS) using Renewable Energy Generators Md. Jabed Hossain, Shahid Jaman, Master Students, EMMC STEPS Abstract The focus of this report

More information

INTEGRATED ELECTRIFICATION SOLUTION FOR REMOTE ISLANDS BASED ON WIND-PV HYBRID SYSTEM

INTEGRATED ELECTRIFICATION SOLUTION FOR REMOTE ISLANDS BASED ON WIND-PV HYBRID SYSTEM INTEGRATED ELECTRIFICATION SOLUTION FOR REMOTE ISLANDS BASED ON WIND-PV HYBRID SYSTEM Kaldellis J.K., Kavadias K.A., Zafirakis D Soft Energy Applications & Environmental Protection Lab, TEI of Piraeus

More information

Solar Powered Integrated Farming System: Irrigation, Rice Husking and Fishing

Solar Powered Integrated Farming System: Irrigation, Rice Husking and Fishing Solar Powered Integrated Farming System: Irrigation, Rice Husking and Fishing Mohammad Rejwan Uddin Research Assistant, Department of EEE, IUB SESSION 20 PARALLEL: RENEWABLE ENERGY DAY 3, TUESDAY, 10 JANUARY

More information

Dimensioning a small-sized PTC solar field for heating and cooling of a hotel in Almería (Spain)

Dimensioning a small-sized PTC solar field for heating and cooling of a hotel in Almería (Spain) Available online at www.sciencedirect.com Energy Procedia 30 (2012 ) 967 973 SHC 2012 Dimensioning a small-sized PTC solar field for heating and cooling of a hotel in Almería (Spain) Manuel Quirante a,

More information

Technical Talk on HK s Largest Solar Power System at Lamma Power Station

Technical Talk on HK s Largest Solar Power System at Lamma Power Station 15 June 2011 Technical Talk on HK s Largest Solar Power System at Lamma Power Station for HKIE EV Division by C.K. Lau Agenda Fundamentals of PV Project Background Feasibility Study and Site Selection

More information

Utilization of f-chart Method for Designing Solar Thermal Heating System

Utilization of f-chart Method for Designing Solar Thermal Heating System IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684, p-issn : 232 334X PP 23-28 www.iosrjournals.org Utilization of f-chart Method for Designing Solar Thermal Heating System

More information

Solar chilled drinking water sourced from thin air: modelling and simulation of a solar powered atmospheric water generator

Solar chilled drinking water sourced from thin air: modelling and simulation of a solar powered atmospheric water generator Solar chilled drinking water sourced from thin air: modelling and simulation of a solar powered atmospheric water generator Lu Aye, Biju George and Dan Wu Renewable Energy and Energy Efficiency Group,

More information

Sizing of a Photovoltaic System for a House in Qassim, Saudi Arabia

Sizing of a Photovoltaic System for a House in Qassim, Saudi Arabia Journal of Engineering Science and Military Technologies ISSN: 2357-0954 Volume (1) - Issue (2) - 2017 DOI: 10.21608/ejmtc.2017.743.1034 Sizing of a Photovoltaic System for a House in Qassim, Saudi Arabia

More information

Micro-power System Modeling using HOMER - Tutorial 1

Micro-power System Modeling using HOMER - Tutorial 1 Micro-power System Modeling using HOMER - Tutorial 1 Charles Kim Howard University www.mwftr.com 1 HOMER Homer (Hybrid Optimization Model for Electric Renewables) 2 Homer a tool A tool for designing micropower

More information

Solar Power Realities

Solar Power Realities Solar Power Realities Supply-Demand Characteristics, Storage and Capital Costs by Peter Lang Abstract This paper provides a simple analysis of the capital cost of solar power and energy storage sufficient

More information

Design of a Photovoltaic-Wind Hybrid Power Generation System for Ethiopian Remote Area

Design of a Photovoltaic-Wind Hybrid Power Generation System for Ethiopian Remote Area Available online at www.sciencedirect.com Energy Procedia 14 (2012) 1760 1765 Design of a Photovoltaic-Wind Hybrid Power Generation System for Ethiopian Remote Area Getachew Bekele a, Gelma Boneya a* a

More information

2 kw. ak.com. www. Energy report

2 kw. ak.com. www. Energy report 2 kw Thermal System Example of SolarPeak residential installation Energy report Find your closest agent www w.solarpea ak.com SolarPeak Head Office ops@ @SolarPeak.com (3) 547 58 19 Nelson 1 What is this

More information

ANALYZING THE IMPACT OF SHADING ON PHOTOVOLTAIC ARRAYS TO OPTIMIZE SYSTEM EFFECTIVENESS

ANALYZING THE IMPACT OF SHADING ON PHOTOVOLTAIC ARRAYS TO OPTIMIZE SYSTEM EFFECTIVENESS ANALYZING THE IMPACT OF SHADING ON PHOTOVOLTAIC ARRAYS TO OPTIMIZE SYSTEM EFFECTIVENESS Jin Ho Jo, Dave Kennell, and Steve Richey Illinois State University 215K Turner Hall Campus Box 5100, Normal, IL

More information

Journal of American Science 2014;10(8) Software Design of Photovoltaic Grid-Connected Power Plants

Journal of American Science 2014;10(8)   Software Design of Photovoltaic Grid-Connected Power Plants Software Design of Photovoltaic Grid-Connected Power Plants A. H. Almasoud & Hatim M. Gandayh Electrical and Computer Engineering Department King Abdulaziz University, Jeddah, Saudi Arabia Email: amasoud@kau.edu.sa

More information

Passive Strategies and Low-Carbon Technologies: Evaluating the Energy Performance and Thermal Comfort of a Passive House Design

Passive Strategies and Low-Carbon Technologies: Evaluating the Energy Performance and Thermal Comfort of a Passive House Design Proceedings of the 2 nd ICAUD International Conference in Architecture and Urban Design Epoka University, Tirana, Albania, 8- May 14 Paper No. 128 Passive Strategies and Low-Carbon Technologies: Evaluating

More information

Solar PV, Wind, and Storage System Design. Ilya Chernyakhovskiy, NREL April 26, 2018 Dushanbe, Tajikistan

Solar PV, Wind, and Storage System Design. Ilya Chernyakhovskiy, NREL April 26, 2018 Dushanbe, Tajikistan Solar PV, Wind, and Storage System Design Ilya Chernyakhovskiy, NREL April 26, 2018 Dushanbe, Tajikistan Design Consideration 1: Technology Generation 1 Megawatt installed PV capacity powers ~160 homes

More information

Renewable Energy in Albania

Renewable Energy in Albania Renewable Energy in Albania National Agency of Natural Resources Artan Leskoviku,Head of RES Workshop: Renewable Energy UNDA project conclusions and way forward 13-14 December 2017, Lancaster Plaza Hotel,

More information

ASSESSMENT AND DESIGN OF ROOFTOP SOLAR PV SYSTEM. Click to begin

ASSESSMENT AND DESIGN OF ROOFTOP SOLAR PV SYSTEM. Click to begin ASSESSMENT AND DESIGN OF ROOFTOP SOLAR PV SYSTEM Click to begin TOPICS Solar Energy Systems Types of solar energy systems Solar Energy Terminologies Solar PV system Types of Solar PV systems Solar PV System

More information

Validation of Methods Used in the APVI Solar Potential Tool

Validation of Methods Used in the APVI Solar Potential Tool Validation of Methods Used in the APVI Solar Potential Tool J. K. Copper 1, A. G. Bruce 1 1 School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, Australia E-mail:

More information

Colorado Energy Masters: Solar Energy. Kurt M. Jones County Extension Director Chaffee County

Colorado Energy Masters: Solar Energy. Kurt M. Jones County Extension Director Chaffee County Colorado Energy Masters: Solar Energy Kurt M. Jones County Extension Director Chaffee County Learning Objectives Evaluating the Solar Resource Technical feasibility, permitting & zoning considerations

More information

Australian Solar Cooling Interest Group (ausscig) Conference Financial analysis of solar cooling systems in Australia

Australian Solar Cooling Interest Group (ausscig) Conference Financial analysis of solar cooling systems in Australia Financial analysis of solar cooling systems in Australia Dan Wu, Lu Aye, Priyan Mendis & Tuan Ngo Presenter: Dan Wu Renewable Energy and Energy Efficiency Group Melbourne School of Engineering, The University

More information

EVALUATION OF THE SOLAR INCOME FOR BRAŞOV URBAN AREA

EVALUATION OF THE SOLAR INCOME FOR BRAŞOV URBAN AREA Bulletin of the Transilvania University of Braşov Vol. (5) - Series I: Engineering Sciences EVALUATION OF THE SOLAR INCOME FOR BRAŞOV URBAN AREA C. ŞERBAN E. EFTIMIE Abstract: Energy is an essential factor

More information

Appendix T Renewable Energy Applications on the Green Deck

Appendix T Renewable Energy Applications on the Green Deck Appendix T Renewable Energy Applications on the Green Deck (Final Report) By Prof. Yang Hong-xing Co-investigators: Dr Ma Tao, Dr Lu Lin & Dr Qi Ronghui Renewable Energy Research Group Department of Building

More information

Zero Energy House in Japan: Actual results and future target. Isamu Ohta Misawa Homes Institute of Research & Development CO., LTD.

Zero Energy House in Japan: Actual results and future target. Isamu Ohta Misawa Homes Institute of Research & Development CO., LTD. Zero Energy House in Japan: Actual results and future target Isamu Ohta Misawa Homes Institute of Research & Development CO., LTD. Energy consumption of Japanese houses Japanese government has announced

More information

Estimate the size of the solar and hydro power resources in kw. [5 Marks]

Estimate the size of the solar and hydro power resources in kw. [5 Marks] Question The use of low grade heat in Renewable Energy applications is widespread. For example, in a domestic installation which consists of a small CHP wood-chip unit, the electric power output is used

More information

Fact sheet. Photovoltaic systems. Why consider photovoltaics?

Fact sheet. Photovoltaic systems. Why consider photovoltaics? Fact sheet Photovoltaic systems In this Fact sheet: What is a photovoltaic system? Choosing the right system Choosing solar modules Orientation and pitch Maintenance Why consider photovoltaics? Photovoltaic

More information

TREES Training for Renovated Energy Efficient Social housing. Section 1 Techniques 1.5 Photovoltaic systems

TREES Training for Renovated Energy Efficient Social housing. Section 1 Techniques 1.5 Photovoltaic systems TREES Training for Renovated Energy Efficient Social housing Intelligent Energy -Europe programme, contract n EIE/05/110/SI2.420021 Section 1 Techniques 1.5 Photovoltaic systems Annemie WYCKMANS Sintef

More information

TVA Melton Hill Dam Sustainable Recreation Area

TVA Melton Hill Dam Sustainable Recreation Area TVA Melton Hill Dam Sustainable Recreation Area Analysis of 3.75 Years of Field Data (Jan 2012 Sep 2015) Chris Trueblood David Freestate October 23, 2015 TVA Melton Hill Dam Sustainable Recreation Area

More information

Make the best of the sun meeting thermal and electrical energy demands

Make the best of the sun meeting thermal and electrical energy demands Make the best of the sun meeting thermal and electrical energy demands Dr. Benedikt Hanke 10.04.2014, Hannover, HMI 2014 Hall 27, Stand D 55 Overview Energy Research in Oldenburg Energy Systems of Buildings

More information

Solar Energy Technologies

Solar Energy Technologies 1 Solar Energy Technologies ME 430 Queen s University The Solar Energy Resource Varies over day and year, (i.e., intermittent) Generally non-dispatchable Ottawa average for year ~4 kwh/m 2 per day e.g.,

More information

Running on Renewables (Lesson Plan) (Utilizing HOMER: Modeling Software for Hybrid Electric Power Systems)

Running on Renewables (Lesson Plan) (Utilizing HOMER: Modeling Software for Hybrid Electric Power Systems) Running on Renewables (Lesson Plan) (Utilizing HOMER: Modeling Software for Hybrid Electric Power Systems) Suggested Grade Level 9-12 Overview Students utilize software developed by the National Renewable

More information

Research on integrated solar and geothermal energy engineering design in hot summer and cold winter area

Research on integrated solar and geothermal energy engineering design in hot summer and cold winter area Available online at www.sciencedirect.com Procedia Engineering 21 (2011) 648 655 2011 International Conference on Green Buildings and Sustainable Cities Research on integrated solar and geothermal energy

More information

COMPANY PROFILE. Energy Srl Piazza Manifattura, Rovereto TN Italy

COMPANY PROFILE. Energy Srl Piazza Manifattura, Rovereto TN Italy COMPANY PROFILE Energy Srl Piazza Manifattura, 1 38068 -Rovereto TN Italy Energy Srl is an Italian company founded in 2013 with the vision of providing sustainable solutions to achieve 100% renewable energy.

More information

Design Rules for Autonomous Hybrid Energy Supply Systems for Various Types of Buildings in Central Europe

Design Rules for Autonomous Hybrid Energy Supply Systems for Various Types of Buildings in Central Europe RUHR-UNIVERSITY BOCHUM 1 Design Rules for Autonomous Hybrid Energy Supply Systems for Various Types of Buildings in Central Europe Dipl.-Ing. Alexander Broy, M.Sc. Izabella Vasileva, Prof. Dr.-Ing. Constantinos

More information

Concentrating solar power in sustainable tourism

Concentrating solar power in sustainable tourism Management of Natural Resources, Sustainable Development and Ecological Hazards II 283 Concentrating solar power in sustainable tourism M. Georgei 1, J. Krueger 1 & B. Henning 2 1 Solarlite GmbH, Germany

More information

Tasks of the planner

Tasks of the planner Players in the planning process of a solar system Architect Subsidy donor Consultation, supervision User Client Planner Information, orders Consultation, planning, supervision Installer Offer, installation,

More information

Repetition. Universität Karlsruhe (TH)

Repetition. Universität Karlsruhe (TH) Repetition 1 Repetition 2 Repetition 3 Repetition 4 Typical Ru complex sensitziers developed by Grätzel s group Course schedule 5 Preliminary schedule 1. Introduction, The Sun 2. Semiconductor fundamentals

More information

Optimization of solar fraction in a PV/T system applied to a liquid desiccant-assisted evaporative cooling system Eun-Ji Lee 1, Seung-Yeon Ko 1, Jae-W

Optimization of solar fraction in a PV/T system applied to a liquid desiccant-assisted evaporative cooling system Eun-Ji Lee 1, Seung-Yeon Ko 1, Jae-W Optimization of solar fraction in a PV/ system applied to a liquid desiccant-assisted evaporative cooling system Eun-Ji Lee 1, Seung-Yeon Ko 1, Jae-Weon Jeong 1,*1 1 Division of Architectural Engineering,

More information

Techno-economic feasibility study of solar and wind based Irrigation Systems in Northern Colombia

Techno-economic feasibility study of solar and wind based Irrigation Systems in Northern Colombia Techno-economic feasibility study of solar and wind based Irrigation Systems in Northern Colombia by Javier Cuellar September 2014 1 Table of Content Introduction Background The case study area Methods

More information

EVALUATING THE SENSITIVITY OF GRID INTEGRATION LEVEL FOR A MULTI ENERGY HUBS

EVALUATING THE SENSITIVITY OF GRID INTEGRATION LEVEL FOR A MULTI ENERGY HUBS EVALUATING THE SENSITIVITY OF GRID INTEGRATION LEVEL FOR A MULTI ENERGY HUBS A.T.D. Perera 1, V.M. Nik 2, D. Mauree 1, J.L. Scartezzini 1 1:Solar Energy and Building Physics Laboratory (LESO-PB), EPFL,

More information

Performance Evaluation of a Hybrid Photovoltaic-Wind- Fuel Cell System

Performance Evaluation of a Hybrid Photovoltaic-Wind- Fuel Cell System Proceedings of the 2nd IASME / WSEAS International Conference on Energy & Environment (EE'07), Portoroz, Slovenia, May 15-17, 2007 203 Performance Evaluation of a Hybrid Photovoltaic-Wind- Fuel Cell System

More information

Project Report: SunMaxx Commercial Case Studies

Project Report: SunMaxx Commercial Case Studies Project Report: 7 x ThermoPower-VHP30 Total Gross Surface Area: 369.25 sq.ft Azimuth: 10 Incl.: 37 1200 gal/day 120 F Gas Boiler - 9 150 kbtu/hr StorMaxx NP Vol:1500 gal Existing Hot Water Heater Vol:600

More information

Optimisation and Cost Analysis of a Lithium Bromide Absorption Solar Cooling System

Optimisation and Cost Analysis of a Lithium Bromide Absorption Solar Cooling System Optimisation and Cost Analysis of a Lithium Bromide Absorption Solar Cooling System Georgios A. Florides and Soteris A. Kalogirou Mechanical Engineering Department, Higher Technical Institute, Nicosia,

More information