INNOVATIVE WATER/ENERGY NEXUS: OPTIMIZING RENEWABLES BY COMBINING SEAWATER PUMPED STORAGE, HYDROPOWER, AND DESALINATION

Size: px
Start display at page:

Download "INNOVATIVE WATER/ENERGY NEXUS: OPTIMIZING RENEWABLES BY COMBINING SEAWATER PUMPED STORAGE, HYDROPOWER, AND DESALINATION"

Transcription

1 INNOVATIVE WATER/ENERGY NEXUS: OPTIMIZING RENEWABLES BY COMBINING SEAWATER PUMPED STORAGE, HYDROPOWER, AND DESALINATION Mark Allen, Oceanus Power & Water, LLC, 900 High St, Palo Alto, CA Ph: Sandra Walker, Oceanus Power & Water, LLC, Palo Alto, CA Neal Aronson, Oceanus Power & Water, LLC, Palo Alto, CA YuJung Chang, AECOM, Inc., Seattle, WA David Prasifka, AECOM, Inc., Los Angeles, CA Abstract: As the global water community is experiencing an intensified deficit in fresh water resources, developing seawater desalination infrastructure has become a necessity for many regions. Over the decades, technology advancements have made seawater desalination a reality, however high energy demand remains an issue, both in terms of operating cost and significant CO2 emissions. Finding an effective way to integrate renewable energy into energy-intensive water treatment processes has become a critical challenge for the development of new water supplies. Oceanus Power & Water (OPW) has partnered with AECOM to develop an innovative concept integrating a seawater reverse osmosis (SWRO) desalination plant with a seawater pumped storage hydropower (SPSH) facility. The system operates by pumping seawater up to a high elevation storage reservoir during periods of low power demand or excess supply. This stored water is later released for hydroelectricity generation during peak hours. OPW s system uses the potential energy of the stored water to continuously produce freshwater from the SWRO system, without the need for additional high pressure booster pumps. The system may also provide low-cost power for other energy-intense water operations, such as finished water conveyance or wastewater reuse. OPW s innovative system reduces the energy cost for advanced treatment processes, while also storing renewable energy. Substantial savings in construction and O&M costs can be realized from the facility co-location approach. This paper will present results from the feasibility design of the seawater intake and outfall structure and the core desalination process, and describes an innovative No-Pump desalination approach

2 I. Introduction 1.1 Project Overview Commercial scale seawater desalination capacity has increased significantly over the past decade, catalyzed by advances in seawater reverse osmosis (SWRO) technology and steady reductions in equipment cost. Today seawater desalination is recognized as a core strategic solution for ensuring water security, particularly in regions where water supplies are vulnerable to urbanization, population growth, and climate-related changes in rainfall patterns. The economics of seawater desalination have also benefitted from extensive research and development into energy efficient processes, with energy intensities now typically falling in the KWhr/m 3 range. Meanwhile global energy prices have stabilized and in some cases dropped over the past decade, with the unsubsidized levelized cost of energy (LCOE) from wind and solar energy now undercutting traditional thermal sources in the U.S. A fundamental limitation of wind and solar energy, however, is that they are not fully dispatchable, making standalone renewable generation unsuitable for powering conventional desalination processes which require a stable, uninterrupted power supply. This implies that if renewable energy sources are to be used to power seawater desalination they would either have to be combined with an energy storage system, or integrated into an extensive electricity grid which meets regional energy demand while achieving aggregate renewable portfolio targets. Oceanus Power and Water, LLC (OPW) is a clean energy and water development business specializing in providing energy storage and resilient sources of fresh water to drought-prone regions. OPW s mission is to develop saltwater facilities for energy storage, while securing emissions-free freshwater supplies. The company s focus is on leveraging proven technology, while employing new concepts in the design and configuration of their facilities. OPW has worked with AECOM, a leading engineering firm, to develop an integrated seawater pumped storage hydro (SPSH) and SWRO process which offers significant economic and environmental advantages that cannot be achieved by standalone SPSH or SWRO facilities. 1.2 Desalination Energy Challenges A typical modern seawater desalination plant requires over 11 MW of energy supply per m 3 /sec of fresh water processing capacity, representing a significant base load on power generation infrastructure. Today s U.S. electricity generation portfolio comprises a combination of thermal energy sources such as natural gas and coal, and emissions-free sources such as nuclear, hydro, wind and solar. With aggregate emissions in the U.S. currently averaging 0.52 Kg of CO2 per KWhr, a 50 MGD (189,000 m 3 /day) desalination facility operating at an efficiency of 3.0 KWhr/m 3 would be responsible for 107,000 tonnes of annual CO2 emissions, equivalent to adding over 900,000 automobiles to U.S. roads. Emissions of this magnitude are typically cited by environmentalists as a major objection to seawater desalination projects, prompting some project developers to mitigate emissions by contracting clean energy from specialized power providers. A desalination solution entirely powered by renewable energy sources would therefore go a long way towards reducing environmental opposition to new projects. In some regions a further energy-related challenge is the capacity of existing transmission and distribution infrastructure to deliver the incremental power required for desalination. For example, in high density urban areas such as Los Angeles or San Diego, existing transmission - 2 -

3 and distribution networks currently approach their capacity limits during peak demand periods, typically in the early morning and evening. The construction of large new desalination facilities near such locations would increase the peak load threshold, potentially requiring high cost combustion turbines or utility scale battery installations to service the peak hours of energy demand if transmission and distribution assets cannot be expanded. By contrast, if a desalination facility had the capability to store energy during off-peak periods and time-shift the stored energy to drive peak-time operations it could potentially avoid costly grid infrastructure upgrades. A final concern is the cost of baseload energy supply to the desalination facility. Typical commercial electricity rates in California currently average $0.10 per KWhr. By contrast, daytime energy can be procured from the California Independent System Operator market for an average of $0.05, and at times significantly less. Established energy storage systems such as pumped hydroelectric facilities take advantage of within-day price swings to exploit short-term differentials between off-peak and peak energy prices by time-shifting energy. If a desalination process could be integrated with energy storage, then the energy costs should be significantly lower than if the energy were continuously purchased from the grid. 1.3 Desalination Brine Disposal Challenges Reverse Osmosis Seawater Desalination facilities must dispose of the high salinity waste brine, which is usually pumped back out to sea. Due to the brine s relatively high density, effluent streams form broad plumes along the sea floor, which can be harmful to marine species. In California, the State Water Resource Control Board (SWRCB) issued an updated Ocean Plan in 2015, stipulating tight restrictions on desalination effluent salinity, requiring that samples taken as close as 100m from the point of discharge must be within 6% of baseline open sea salinity. California developers preferred solution to ensure that effluent salinity complies with SWRCB s new regulations has been to locate desalination facilities alongside once through cooling (OTC) channels. These are high flow rate seawater conduits, constructed at many legacy coastal power stations for the purpose of conveying seawater through the plant for thermal heat dissipation. The 50 MGD Carlsbad desalination plant is one such example, achieving an aggregate discharge salinity within 10% of ambient salinity at the point of discharge by diluting waste brine with the OTC seawater flux averaging over 500 MGD. California s future desalination opportunities will be limited by the SWRCB s 2010 OTC policy however, which mandates a state-wide phase out of all OTC operations by Instead, SWRCB s guidance for desalination developers is to deploy subsurface seawater intake galleries to minimize entrainment and impingement risks, despite such designs incurring significantly higher construction and operating costs. Furthermore, brine discharge salinity limits will require proactive diffusion measures to achieve the 6% salinity threshold, adding further cost and energy penalty. In summary, the prospects for seawater desalination in California are challenged by both strong environmental opposition and stringent regulatory guidelines. OPW s integrated SPSH and desalination design attempts to tackle these barriers to entry by reducing CO2 emissions, achieving low salinity effluent discharge without reliance upon legacy OTC infrastructure, and lowering the unit cost of produced water

4 II. OPW Desalination Solution 2.1 Design Principle Oceanus Power & Water, LLC (OPW) and AECOM have collaborated on the development of an integrated seawater pumped hydro energy storage and desalination facility (Figure 1), which brings economic and environmental benefits through the integration of two similar but independent processes. Figure 1. OPW Integrated SPSH and SWRO system layout OPW s system is designed around a seawater-service reversible, variable speed hydroelectric pump turbine which operates in two duty cycles Pump and Generate. During the pump cycle the hydroelectric motor takes electrical power from the grid to pump seawater via a large diameter conveyance pipeline, or penstock, up to a high elevation reservoir where it is stored. This mode is selected during low energy price periods when grid demand is low, for example at night or during daytime when surplus renewable generation sources may have to be curtailed. The system generate cycle is selected during periods of mid-peak or peak energy demand. During the generate cycle seawater is drained from the storage reservoir via the turbinegenerator, from where it is discharged via the tailrace tunnel and intake/outflow structure back to the ocean. The high value energy generated during this process is returned to the grid. During both pump and generate cycles, the motor-generator provides the grid operator with high value ancillary services to assist with frequency and voltage stabilization. The pumped hydro system is also able to provide fast-ramping standby generation capacity, a critical service for grid operators in case of unanticipated generation interruptions. The system is designed to switch between Pump and Generate mode, and vice versa, within minutes, while offering a round trip energy storage efficiency of up to 80% (energy produced / energy invested). The embedded potential energy in the seawater stored at 300m above sea level is 0.93 KWhr/m 3, representing significant potential to supply an RO desalination process. Modeling studies performed by AECOM demonstrate that the hydraulic head from a 300m elevation reservoir is sufficient to achieve an RO fresh water yield in excess of 40%, assuming that an efficient energy recovery device is installed to recover energy from the high pressure SWRO concentrate discharge

5 The desalination facility is located at the base of the seawater penstock, immediately above the pump-turbine powerhouse. Assuming that the upper reservoir is always kept at least partially full of seawater, this reservoir will provide a reliable source of high pressure feed water. A seawater feed line is therefore flanged to the base of the pumped hydro penstock, from where it is routed to the desalination facility, supplying high pressure seawater at over 430 psi (30 Bar). The arriving seawater undergoes a high pressure filtration pre-treatment process, before being pressure boosted by an energy recovery device to approximately 800 psi (55 Bar). The filtered, high pressure sea water proceeds through a conventional two-stage SWRO process, yielding approximately 40% permeate by volume, with the waste brine simultaneously directed to power the energy recovery device. Once the waste brine exits the energy recovery device it is held in a brine storage tank located adjacent to the desalination facility. The contents of the brine storage tank are periodically transferred to the seawater pumped hydro tailrace during SPSH generation cycles, allowing the saline concentrate to blend with the seawater flow exiting the turbine-generator. Due to the significantly higher flow rate of seawater from the pumped hydro operation (up to 100 m 3 /second) versus the brine discharge rate (up to 10 m 3 /second), an aggregate effluent salinity within 10% of ambient ocean conditions can be achieved. 2.2 Integration Benefits The integration of seawater pumped hydro and desalination offers many significant benefits to the project, which are discussed in further detail below: Lower energy costs The seawater pumped hydro system is designed to acquire and store energy during the lowest price periods, translating this energy into hydraulic head. Some of this stored hydraulic energy is continuously transferred in the form of a high pressure water supply to the desalination process, at a significantly lower cost than electrical energy purchased from the grid. Since energy purchase costs typically represent up to 40% of desalination Opex, OPW s energy storage design provides the potential to materially reduce the desalination unit costs. Environmental Benefits OPW s system is able to deliver desalinated water with lower CO2 emissions than conventional RO processes which are dependent upon continuous grid generation. Due to the dynamically responsive nature of the hydroelectric pump-turbine, which can switch between Pump and Generate modes within minutes, and many times per hour, the system is ideally suited to operating with intermittent power from renewable generation sources, which may otherwise have to be curtailed or stored at comparatively higher cost. OPW s approach to brine effluent dilution, as outlined in Section 2.1, represents a significant system benefit over raw offshore disposal or reliance upon Once Through Cooling to achieve sufficient dilution. Lower Capital Costs The opportunity to shared infrastructure between SPSH and SWRO facilities results in significant capital cost reductions, including: - 5 -

6 Shared seawater intake & discharge structure Shared substation and grid connection Shared common utilities, access and security infrastructure Shared electrical, mechanical and control systems Shared engineering, procurement, construction, project management and permitting costs Reduced Operating Costs The opportunity to shared infrastructure between SPSH and SWRO facilities also results in significant operating cost reductions, including: Minimized energy costs for desalination operations Shared staffing and management resources Optimized maintenance planning III. Project Delivery Having completed a technology feasibility evaluation study, OPW and AECOM are now embarking on the detailed design of a commercial scale demonstration facility, for which a number of sites have been identified with the appropriate combination of market requirements and suitable topography for the world s first integrated SPSH and SWRO system. OPW and AECOM share a long-term vision of constructing multiple SPSH and SWRO systems on suitable sites requiring resilient water supplies, and where energy markets seek to expand their renewable generation portfolio. The objectives of the joint study were to determine whether the integration of SPSH and SWRO would: (1) demonstrate that a combined project could economically provide electricity arbitrage and ancillary services to satisfy a representative Power Purchase Agreement (PPA); and (2) to demonstrate that the project could provide desalinated water at an acceptable cost to fulfil a competitive Water Purchase Agreement (WPA). OPW s integration of energy and water systems offers the opportunity for low energy transfer costs, which may serve as a catalyst for extending the infrastructure footprint beyond seawater desalination. For example, wastewater treatment plants employing energy intensive treatments, such as reverse osmosis (RO) and advanced oxidation processes (AOP) could also benefit from access to cheap energy, particularly in regions developing water reuse programs. 3.1 Water Energy Nexus Climate change is driving the need to secure and deliver more emissions-free renewable energy and resilient water supplies. The integrated SPSH/DS approach is designed to accommodate variable generation resources, such as wind or solar, at the utility scale, providing a strategic level of high reliability dispatchable energy storage at the lowest unit cost and with the longest life. Concurrent with the resurgence of seawater desalination, OPW recognizes that SPSH offers the best economic and technical solution to integrate intermittent renewables. Pumped storage hydro (PSH) is a proven technology which currently provides 97% of the world s energy storage. The construction of significant additional energy storage capacity is vital to achieving the renewable - 6 -

7 portfolio standards (RPS) declared by many nations and states around the world under the United Nations Framework Convention on Climate Change. IV. General Assumptions and Basis of Design The working assumption for the conceptual study is that there is potential for significant savings in the design, construction, operation, and environmental benefits from the integration of SPSH and DS based on the major project elements listed below: 4.1 Seawater Pumped Storage Hydro: 300 MW Reservoir and dams Water Conveyance systems Power Station and Associated Equipment 4.2 Seawater RO Facility and Associated Equipment: 50 MGD Pre-treatment and filtration system RO treatment and energy recovery systems 4.3 Common to Both Plants Finished water conveyance system Intake/Outfall Common Structure Switchyard/Interconnection Access road, buildings, and utilities V. Seawater Intake/Outlet System 5.1 General Description The seawater intake/outlet system controls the seawater that enters and exits the SPSH system and subsequently the desalination system. Each of these systems has different demands for the intake and outlet of seawater. The SPSH system requires much higher flow rates (approximately two orders of magnitude) than the desalination system, and therefore sets the size of the intake/outlet components. The seawater intake/outlet system consists of three primary components: 1. Intake Screens To prevent sea life, trash and other debris from entering system. 2. Outlet Valves To discharge water from the SPSH, which may be at a higher rate than the intake, therefore supplemental exit points are required. 3. Connection Pipeline Connecting the intake screens and outlet valves to the tailrace of the SPSH pump turbine Various Intake/Outlet configurations were considered, including both shore-side and deep water locations. It is assumed the intake system could be built in two types of geological formations: rock or sandy sea floor. Special consideration was given to the seismic performance of various types of intake locations/configurations. Four different variants of offshore intake structures screens were also developed and evaluated

8 VI. Seawater Pumped Storage Hydro Plant A typical pumped storage hydro project consists of an upper and lower reservoir, connected by a water conduit. During off peak periods, water is pumped from the lower reservoir to the upper reservoir. During peak energy demand periods, water flows from the upper reservoir to a powerhouse to generate hydro-electric energy. In a seawater pumped storage hydro project, the ocean replaces the lower reservoir. The evaluation of the seawater pumped storage hydro plant was conducted based on generating capacities of > 100 MW. Each generation capacity was combined with both short tailrace and long tailrace options to reflect variations in coastal topography, resulting in four alternative design concepts. In addition, a design concept eliminating major excavation and locating the powerhouse and pipelines above ground was also evaluated. The seawater pumped storage alternatives are based on the desalination plant located in the vicinity of the upper reservoir. An evaluation of other locations for the desalination plant was included in the original conceptual study. VII. Seawater Desalination Facility Desalination technology has progressed significantly in the past two decades, catalyzed by the advent of affordable and efficient RO membranes. The viability of large-scale reverse osmosis deployment has been demonstrated in a number markets, particularly Israel and Australia which have invested heavily in the technology to mitigate risk of supply shortfall from conventional water sources. Reverse osmosis (RO) technology employs semi-permeable membranes to separate salts from water under high pressure conditions. RO remains energy intensive, however, which typically results in higher costs for desalination water than for conventional supplies. For this reason, desalination plants have predominantly been deployed to date in drought-prone regions where conventional water supplies are insufficient to satisfy demand from the local population. Modern RO plants consume 3-6 KWhr per m 3 of water produced, while yielding high salinity waste brine which must be disposed of. Challenges faced by today s desalination projects include minimizing energy consumption, for example by using renewable energy resources, and dealing with waste brine in an environmentally responsible manner. In this project an SWRO plant is proposed and designed as an integral component of the overall project s seawater hydraulic system, interfacing with the seawater pumped hydro storage architecture described in Section IV. The design basis assumes a 50 MGD desalination facility, which represents a small fraction of the seawater throughput of the 300 MW SPSH facilities. The desalination facility will be designed to operate continuously, unlike the SPSH plant which operates on a cyclical basis to address fluctuating power markets. For this reason, a significant amount of time was spent developing concepts to optimally integrate the desalination plant within the SPSH system, ensuring continuous provision of feed water and power to the facility. A further important design consideration was the method for disposing of the waste brine via the - 8 -

9 seawater outlet structure, achieved by mixing with the far larger seawater volumes from the SPSH system during periods of power generation. 7.1 SWRO Facility Location During the design of the integrated facility selecting suitable locations for the desalination process was one of the most critical tasks. Three different potential locations were considered, including near the seawater upper reservoir; close to the powerhouse above ground, and close to the powerhouse below ground. Factors considered for the SWRO location include the ease of pretreatment configurations; maximizing the embedded value of available hydrostatic head of the seawater, construction cost, ease of continuously disposing RO reject brine without interrupting the RO process, and the conveyance of the finished desalinated water. Each option presents its pro s and con s, which were methodically reviewed and analyzed. The ultimate selection of the SWRO site was to locate it adjacent to the power house above ground, due to the ease of access to raw seawater, ease of brine disposal, overall project cost and system reliability. 7.2 Major SWROF Components Major SWROF components include: Seawater feed transfer pipeline from the source (SPSH penstock) Pre-treatment system (including filtration, buildings and equipment) Seawater desalination system (with chemical system, cartridge filters, RO skids, energy recovery, and control systems) Post-treatment system (including disinfection and corrosion control) Clearwell (to provide adequate virus inactivation disinfection contact time (CT) and storage requirements for onsite operations) A dedicated brine disposal line, either returning to the upper reservoir or flanged onto the tailrace adjacent to the powerhouse Raw Seawater Transfer Line This line is capable of transferring up to 110 MGD of raw seawater from the reservoir or penstock to the SWROF assuming, 50 MGD finished potable water 45% RO recovery Pre-chlorination Chlorine is added at the SWROF intake line to prevent biological growth throughout the entire pretreatment system. This is a typical SWRO practice to avoid the growth of algae and attachment of hard-shelled marine animals (e.g., barnacles and mussels) on the intake, pipeline, pumps, and other equipment. The pre-chlorination system will comprise chlorine storage, feed pumps, and a dose control/monitoring system. A de-chlorination system with sodium bisulfite dosing system prior to RO will also be included. Pretreatment Pretreatment is required to remove particulates through either conventional multimedia filters or MF/UF membranes. Antiscalant and cartridge filters will also be required

10 SWRO System The SWRO skids will include the following components: RO high pressure feed pumps Regular 8 RO elements Energy Recovery Devices Chemical Clean in Place (CIP) o High ph cleaning o Low ph cleaning o Flushing o Chemical waste neutralization Post Treatment The following treatments are assumed for permeate disinfection: Sodium hypochlorite (chlorine gas or onsite hypochlorite generation) Potential need of UV for 0.5 log Giardia and Cryptosporidium disinfection The produced water will also be stabilized and controlled for corrosion prior to entering the existing distribution system Lime (slacked lime or limestone for ph and hardness adjustments) CO2 (for alkalinity adjustment) Sodium Hydroxide (NaOH) for ph adjustment Orthophosphate (for corrosion control) Clearwell The clearwell serves three purposes: Provides adequate disinfection contact time (CT) for virus and residual chlorine Provides potable water to the entire facility Provides adequate water supply for onsite operation and emergency use Waste Disposal (from both filtration and RO) Assume sewer discharge if finished water can be used for backwash, otherwise backwash wastewater might be further treated due to its high salinity. Connection to Existing Distribution System Finished water conveyance was excluded during this desktop study, but it is anticipated that major investment in this conveyance pipeline may be required depending on the location of the SWRO. Buildings for Pretreatment and SWROF The following equipment, buildings and services will be required: Power supply (substation, emergency generators, etc.) Architecture (No actual drawing Electrical system HVAC Plumbing

11 Laboratory Maintenance & Storage Offices; operation/control room, meeting rooms, parking, etc. VIII. Cost Analysis Detail cost analysis was conducted for each of the key components of this project, including intake/outfall, pump/storage/hydropower, seawater desalination, and integrated operations. Results suggest that the integrated SPSH/SWRO approach can achieve substantial overall project Capex and Opex savings compared to a scenario where both facilities are separately designed, constructed, and operated. Due to current project development status, sensitive cost information will be available upon request. IX. Conclusions As a thought leader in green energy and sustainable desalination, Oceanus has created a unique integrated system that combines an innovative concept for renewable energy storage with a novel design for sustainable desalination. This system combines a seawater pump storage hydro (SPSH) facility and a seawater reverse osmosis plant (SWRO) into a single, integrated facility. Results from this feasibility study include both technical and financial assessments which suggest that this synergetic design is technically feasible and commercially attractive. Significant savings can be realized through the integrated design, construction, and operation of both facilities. Subsequent studies and site investigations are currently underway. X. ACKNOWLEDGEMENTS The authors would like to acknowledge significant contributions from the entire project team, including Steve Johnson, Craig Smith, Joseph Ehasz, John Chamberlain, and Martin Hammer. XI. REFERENCES Kenny, J.F., et al Estimated Use of Water in the United States in Reston, VA: U.S. Geological Survey. Neubauer, J., et al Electrical Energy Storage Applications and Technologies (EESAT) Conference. San Diego, CA: National Renewable Energy Laboratory. United Nations Framework Convention on Climate Change, 2016, Lazard, 2015, Lazard s Levelized Cost of Energy Analysis Version 9.0,

SeaSMART* SWRO desalination concept

SeaSMART* SWRO desalination concept Water Technologies & Solutions capability profile SeaSMART* SWRO desalination concept proven experience and sustainable solutions you expect why choose SUEZ water technologies & solutions? With over 50

More information

Proven Solutions for the Most Challenging Wastewaters

Proven Solutions for the Most Challenging Wastewaters Proven Solutions for the Most Challenging Wastewaters Fluid Technology Solutions, Inc. Fluid Technology Solutions (FTS) is a global leader in water treatment technology, providing innovative and proven

More information

WATER-BASED ENHANCED OIL RECOVERY(EOR)

WATER-BASED ENHANCED OIL RECOVERY(EOR) WATER-BASED ENHANCED OIL RECOVERY(EOR) Global Water-Based EOR Potential is Estimated at 750 Billion Barrels - Shell 1 2 REDEFINING WATER TREATMENT FOR THE OIL & GAS INDUSTRY H 2 Ocean Spectrum TM technology

More information

EVALUATING NANOFILTRATION, REVERSE OSMOSIS, AND ION EXCHANGE TO MEET CONSUMPTIVE USE CONSTRAINTS AND FINISHED WATER QUALITY GOALS FOR BROWARD COUNTY

EVALUATING NANOFILTRATION, REVERSE OSMOSIS, AND ION EXCHANGE TO MEET CONSUMPTIVE USE CONSTRAINTS AND FINISHED WATER QUALITY GOALS FOR BROWARD COUNTY EVALUATING NANOFILTRATION, REVERSE OSMOSIS, AND ION EXCHANGE TO MEET CONSUMPTIVE USE CONSTRAINTS AND FINISHED WATER QUALITY GOALS FOR BROWARD COUNTY Frank A. Brinson, P.E., DEE, CDM, Fort Lauderdale, FL

More information

Design Advantages for SWRO using Advanced Membrane Technology

Design Advantages for SWRO using Advanced Membrane Technology Design Advantages for SWRO using Advanced Membrane Technology Presenter Craig Bartels Hydranautics Author 1 Craig R Bartels, PhD Hydranautics Author 2 Rich Franks Hydranautics Author 3 Wayne Bates Hydranautics

More information

Got Desalination. In Your Water Portfolio? Mark Lambert, CEO IDE Americas. Texas Desalination Association, 2016

Got Desalination. In Your Water Portfolio? Mark Lambert, CEO IDE Americas. Texas Desalination Association, 2016 Got Desalination In Your Water Portfolio? Mark Lambert, CEO IDE Americas Texas Desalination Association, 2016 IDE Technologies Industrial Water Treatment Seawater Desalination Wastewater Reuse 2 A Full

More information

Day 1 Design of Coastal Intakes and Brine Outfalls for Seawater Reverse Osmosis (SWRO) Desalination Plants

Day 1 Design of Coastal Intakes and Brine Outfalls for Seawater Reverse Osmosis (SWRO) Desalination Plants IDA-SgWA Desalination Master Class Course Outline Co-organized with the Singapore Water Academy July 7-8, 2016 PUB WaterHub Knowledge 6 Training Room, Level 6 Singapore Day 1 Course Title: Instructor:

More information

WATER RECYCLING PLANT IN WAFRA. Feras Al Salem

WATER RECYCLING PLANT IN WAFRA. Feras Al Salem WATER RECYCLING PLANT IN WAFRA Feras Al Salem Introduction 2 The Joint Operations (JO) was born in 1960 when the two oil companies formed a joint committee to oversee and supervise their operations with

More information

INNOVATIVE APPROACHES FOR SUSTAINABLE ENERGY EFFICIENT SWRO DESALINATION

INNOVATIVE APPROACHES FOR SUSTAINABLE ENERGY EFFICIENT SWRO DESALINATION INNOVATIVE APPROACHES FOR SUSTAINABLE ENERGY EFFICIENT SWRO DESALINATION Prof. Syed Javaid Zaidi QAFAC Chair Professor Center for Advanced Materials Qatar University Introduction Global Needs for Desalination

More information

Key words: Integrated Membrane System, IMS, Seawater Reverse Osmosis, SWRO, SW30HRLE- 400, Ultrafiltration, UF, ZeeWeed 1000

Key words: Integrated Membrane System, IMS, Seawater Reverse Osmosis, SWRO, SW30HRLE- 400, Ultrafiltration, UF, ZeeWeed 1000 Yuhuan Power Plant Seawater Desalination System: Integrated Membrane System Introduction and Operation Performance Analysis Jinsheng Liu a, Shenglin Pang a, Minjia Zhao b, Zhuodan Liao b, Jia Ning b a

More information

EPRI JOURNAL January/February 2018 No The Need for Large-Scale Energy Storage Grows, but the Business Case Remains Uncertain

EPRI JOURNAL January/February 2018 No The Need for Large-Scale Energy Storage Grows, but the Business Case Remains Uncertain EPRI JOURNAL January/February 2018 No. 1 8 Storing in Bulk The Need for Large-Scale Energy Storage Grows, but the Business Case Remains Uncertain By Brent Barker Energy storage on the electricity grid

More information

WATER STORIES WEST BASIN, CA

WATER STORIES WEST BASIN, CA WATER STORIES WEST BASIN, CA CHALLENGES PAGE 5 SOLUTIONS PAGE 7 RESULTS PAGE 9 INNOVATION & TECHNOLOGY PAGE 11 COMMUNITY INVOLVEMENT PAGE 13 THE FUTURE PAGE 15 THE RIGHT MOVE FOR SOUTHERN CALIFORNIA It

More information

index.htm Page 1 Osmotic Energy by Tomas Harrysson, David Lönn and Jesper Svensson * * * * * * * * * * * Summary tis 8 feb

index.htm Page 1 Osmotic Energy by Tomas Harrysson, David Lönn and Jesper Svensson * * * * * * * * * * * Summary tis 8 feb index.htm Page 1 Osmotic Energy by Tomas Harrysson, David Lönn and Jesper Svensson Summary index.htm Page 2 The need of new energy sources has led to a number of alternatives. Some better then others.

More information

ENERGY RECOVERY IN DESALINATION: RETURNING ALTERNATIVE WATER SUPPLIES TO CONSIDERATION. Introduction

ENERGY RECOVERY IN DESALINATION: RETURNING ALTERNATIVE WATER SUPPLIES TO CONSIDERATION. Introduction ENERGY RECOVERY IN DESALINATION: RETURNING ALTERNATIVE WATER SUPPLIES TO CONSIDERATION Lance R. Littrell, P.E., Reiss Engineering, Inc., 1016 Spring Villas Pt., Winter Springs, FL 32708, lrlittrell@reisseng.com,

More information

Reduced Footprint Water Treatment Technology

Reduced Footprint Water Treatment Technology H 2 Oil & Gas An Group Company Reduced Footprint Water Treatment Technology Up to 50% footprint saving compared to conventional technology. www.h2oilandgas.com REDft REDft How it works In the REDft process,

More information

URS Corporation (URS) conducted a

URS Corporation (URS) conducted a A Case Study for Industrial Wastewater Desalination and Concentrate Disposal Barriers in Florida Yu Zhao, J. David Burgstiner, and David A. Wilcox EDITOR S NOTE: The following article received a Top Paper

More information

Technical experience and lessons learned from O&M of a membrane based water plant

Technical experience and lessons learned from O&M of a membrane based water plant Dr. Senthilmurugan, Technology Manager ABB Water Industry Segment Initiative, 17 April - 2012 DSS for SWRO Plant O&M Technical experience and lessons learned from O&M of a membrane based water plant O&M

More information

Experience with Renewable Energy Source and SWRO Desalination in Gran Canaria

Experience with Renewable Energy Source and SWRO Desalination in Gran Canaria Experience with Renewable Energy Source and SWRO Desalination in Gran Canaria Authors: Dr. Stefan Rybar, Mariana Vodnar, Florin Laurentiu Vartolomei, Roberto León Méndez, Juan Blas Lozano Ruano Presenter:

More information

Management of Desalination Plant Concentrate. Nikolay Voutchkov, PE, BCEE

Management of Desalination Plant Concentrate. Nikolay Voutchkov, PE, BCEE Management of Desalination Plant Concentrate by Nikolay Voutchkov, PE, BCEE 1. Introduction Desalination of brackish water and seawater (collectively referred to as saline water) is becoming increasingly

More information

Membrane Systems. Featuring Aqua MultiBore Membranes

Membrane Systems. Featuring Aqua MultiBore Membranes Membrane Systems Featuring Aqua MultiBore Membranes Aqua-Aerobic Membrane Systems Featuring Aqua MultiBore Membranes For nearly 50 years, Aqua-Aerobic Systems has provided thousands of customers with adaptive

More information

Hydropower & Dams Services

Hydropower & Dams Services Hydropower & Dams Services We represent a world-class concentration of hydropower and dam expertise. Since 1920, we have designed hundreds of new hydropower and dams globally, producing clean reliable

More information

EXPERIMENTAL COMPARISON OF THE PERFORMANCE OF TWO RΕVERSE OSMOSIS DESALINATION UNITS EQUIPPED WITH ENERGY RECOVERY DEVICES

EXPERIMENTAL COMPARISON OF THE PERFORMANCE OF TWO RΕVERSE OSMOSIS DESALINATION UNITS EQUIPPED WITH ENERGY RECOVERY DEVICES EXPERIMENTAL COMPARISON OF THE PERFORMANCE OF TWO RΕVERSE OSMOSIS DESALINATION UNITS EQUIPPED WITH ENERGY RECOVERY DEVICES Evangelos Dimitriou, Essam Sh. Mohamed and George Papadakis Department of Natural

More information

The Water:Energy Nexus

The Water:Energy Nexus GE Water & Process Technologies The Water:Energy Nexus Enabling the future with portfolio solutions Desalination Solutions: Drawing on the ocean s virtually limitless water resources, GE s desalination

More information

Reclamation of Sand Filter Backwash Effluent using HYDRAcap LD Capillary UF Membrane Technology

Reclamation of Sand Filter Backwash Effluent using HYDRAcap LD Capillary UF Membrane Technology Reclamation of Sand Filter Backwash Effluent using HYDRAcap LD Capillary UF Membrane Technology By Mark Wilf, Ph. D., Graeme Pearce Ph. D., of Hydranautics, Oceanside, CA, and Julie Allam MSc., Javier

More information

EXPERIMENTAL INVESTIGATION OF THE PERFORMANCE OF A RΕVERSE OSMOSIS DESALINATION UNIT OPERATING UNDER FULL AND PART LOAD CONDITIONS

EXPERIMENTAL INVESTIGATION OF THE PERFORMANCE OF A RΕVERSE OSMOSIS DESALINATION UNIT OPERATING UNDER FULL AND PART LOAD CONDITIONS EXPERIMENTAL INVESTIGATION OF THE PERFORMANCE OF A RΕVERSE OSMOSIS DESALINATION UNIT OPERATING UNDER FULL AND PART LOAD CONDITIONS E. Dimitriou*, E. Sh. Mohamed, G. Kyriakarakos, G. Papadakis Department

More information

Pathogen Removal Mechanisms and Pathogen Credits in MBR-Based Potable Reuse Trains

Pathogen Removal Mechanisms and Pathogen Credits in MBR-Based Potable Reuse Trains Pathogen Removal Mechanisms and Pathogen Credits in MBR-Based Potable Reuse Trains Ufuk G. Erdal, PhD, PE 2017 NWRI Clarke Conference 10/20/2017 1 Outline Background Objectives Comparison of Pathogen Credits

More information

Ultrafiltration Technical Manual

Ultrafiltration Technical Manual Ultrafiltration Technical Manual Copyright by: inge AG Flurstraße 17 86926 Greifenberg (Germany) Tel.: +49 (0) 8192 / 997 700 Fax: +49 (0) 8192 / 997 999 E-Mail: info@inge.ag Internet: www.inge.ag Contents

More information

Sulaibiya world s largest membrane water reuse project

Sulaibiya world s largest membrane water reuse project Water Technologies & Solutions technical paper Sulaibiya world s largest membrane water reuse project background In May 2001, a consortium including Mohammed Abdulmohsin Al-Kharafi and Sons (The Kharafi

More information

Long Point Water Treatment Plant Process Evaluation and Design Upgrades for Performance Enhancement; Dover, DE

Long Point Water Treatment Plant Process Evaluation and Design Upgrades for Performance Enhancement; Dover, DE Long Point Water Treatment Plant Process Evaluation and Design Upgrades for Performance Enhancement; Dover, DE Christopher Walker, PE Christopher Curran, PE Mark Prouty, PE May 12, 2016 Long Point Water

More information

Membrane Filtration Technology: Meeting Today s Water Treatment Challenges

Membrane Filtration Technology: Meeting Today s Water Treatment Challenges Membrane Filtration Technology: Meeting Today s Water Treatment Challenges Growing global demand for clean water and increasing environmental concerns make membrane filtration the technology of choice

More information

Hydropower as Flexibility Provider: Modeling Approaches and Numerical Analysis

Hydropower as Flexibility Provider: Modeling Approaches and Numerical Analysis Hydropower as Flexibility Provider: Modeling Approaches and Numerical Analysis Andrew Hamann, Prof. Gabriela Hug Power Systems Laboratory, ETH Zürich February 8, 2017 Future Electric Power Systems and

More information

Hydro Energy and Geothermal Energy

Hydro Energy and Geothermal Energy Hydro Energy and Geothermal Energy Content Hydro Energy Hydroelectric Energy Run of the river Hydroelectric Pumped storage Hydroelectric Ocean Energy Tidal Energy Marine Current Energy Wave Energy Ocean

More information

Forward Osmosis Applications for the Power Industry

Forward Osmosis Applications for the Power Industry Forward Osmosis Applications for the Power Industry American Filtration Society 2015 Spring Conference Charlotte, North Carolina Bill Harvey Director of Strategy and Business Development Providing world-leading

More information

City of San Diego Pure Water Project October 2014

City of San Diego Pure Water Project October 2014 City of San Diego Pure Water Project October 2014 SDCTA Position: SUPPORT Rationale for Position: Substantial study has demonstrated a potable reuse project within the City of San Diego would be safe,

More information

Desalination: A Viable Answer to Deal with Water Crises?

Desalination: A Viable Answer to Deal with Water Crises? 28 July 2011 Desalination: A Viable Answer to Deal with Water Crises? Alain Nellen FDI Research Intern Global Food and Water Crises Research Programme Key Points There are about 14,500 desalination facilities

More information

CHANGING THE GAME FOR DESAL

CHANGING THE GAME FOR DESAL CHANGING THE GAME FOR DESAL Texas Desal 2016 Extracting Minerals From Waste Water ZERO LIQUID DISCHARGE DESALINATION EWM s clean technology desalinates salty water, producing drinking water and extracting

More information

The Los Angeles Desalination Project

The Los Angeles Desalination Project DRAFT PROPOSAL The Los Angeles Desalination Project Author: Brian Nissen Company: Bella Machines www.bellamachines.com The Los Angeles Desalination Project CALIFORNIA WATER The California water crisis

More information

Status of Palmachim Desalination Project

Status of Palmachim Desalination Project Introduction Status of Palmachim Desalination Project Yigal Hanegbi 1, Yaacov Mansdorf 2 1 Via Maris Desalination, 2 G.E.S Ltd Palmachim desalination project is a seawater RO desalination plant of 30 million

More information

FILMTEC Membranes How FILMTEC Seawater Membranes Can Meet Your Need for High-Pressure Desalination Applications

FILMTEC Membranes How FILMTEC Seawater Membranes Can Meet Your Need for High-Pressure Desalination Applications Tech Fact FILMTEC Membranes How FILMTEC Seawater Membranes Can Meet Your Need for Desalination Higher pressure operation of seawater desalination plants can deliver many benefits, including higher recoveries,

More information

Design and Local Manufacturing of Energy Efficient High Pressure Pumps for Small SWRO Units Amr A. Abdel Fatah

Design and Local Manufacturing of Energy Efficient High Pressure Pumps for Small SWRO Units Amr A. Abdel Fatah Design and Local Manufacturing of Energy Efficient High Pressure Pumps for Small SWRO Units Amr A. Abdel Fatah Amr.abdelkader@bue.edu.eg Dr. Amr.A.Adel Fatah Market Value of Small Modular Reverse Osmosis

More information

Notice of Preparation of an Environmental Impact Report and Scoping Meeting

Notice of Preparation of an Environmental Impact Report and Scoping Meeting Notice of Preparation of an Environmental Impact Report and Scoping Meeting Date: August 15, 2017 To: Project Sponsor and Lead Agency: Staff Contact: Project Title: Location: General Plan Designation:

More information

Tuas Seawater Desalination Plant - Seawater Reverse Osmosis (SWRO), Singapore

Tuas Seawater Desalination Plant - Seawater Reverse Osmosis (SWRO), Singapore Tuas Seawater Desalination Plant - Seawater Reverse Osmosis (SWRO), Singapore Completed some three months ahead of schedule, Singapore's first desalination plant the largest of its kind in Asia ranks among

More information

IRIS Reactor a Suitable Option to Provide Energy and Water Desalination for the Mexican Northwest Region

IRIS Reactor a Suitable Option to Provide Energy and Water Desalination for the Mexican Northwest Region IRIS Reactor a Suitable Option to Provide Energy and Water Desalination for the Mexican Northwest Region Gustavo Alonso, Ramon Ramirez, Carmen Gomez, Jorge Viais Instituto Nacional de Investigaciones Nucleares

More information

Appendix A: Project Characteristics

Appendix A: Project Characteristics Gorgon Fourth Train Expansion Proposal Appendix A: Project Characteristics Appendices Project Characteristics A Key Characteristics table has been prepared to describe the elements of the Foundation Project

More information

LONG-TERM SOLUTIONS FOR NEW YORK S CLEAN ENERGY FUTURE

LONG-TERM SOLUTIONS FOR NEW YORK S CLEAN ENERGY FUTURE Q U É B E C S H Y D R O P O W E R R E S O U R C E S P O W E R I N G T H E E M P I R E S TAT E LONG-TERM SOLUTIONS FOR NEW YORK S CLEAN ENERGY FUTURE Hydro-Québec, New York s energy partner for decades,

More information

Debugging the Plant: Managing Reverse Osmosis Biofouling at a Groundwater Treatment Plant

Debugging the Plant: Managing Reverse Osmosis Biofouling at a Groundwater Treatment Plant E137 Debugging the Plant: Managing Reverse Osmosis Biofouling at a Groundwater Treatment Plant TROY WALKER, 1 MYRIAM CARDENAS, 2 AND GARY RICHINICK 2 1 Hazen and Sawyer, Tempe, Ariz. 2 Water Resources

More information

NPDES COMPLIANCE OF COOLING TOWERS BLOWDOWN AT POWER PLANTS WITH RECLAIMED WATER AS SOURCE WATER

NPDES COMPLIANCE OF COOLING TOWERS BLOWDOWN AT POWER PLANTS WITH RECLAIMED WATER AS SOURCE WATER NPDES COMPLIANCE OF COOLING TOWERS BLOWDOWN AT POWER PLANTS WITH RECLAIMED WATER AS SOURCE WATER Nathan Schmaus, P.E. *, Joseph Viciere, P.E., BCEE, CDM Smith CDM Smith, 1715 North Westshore Boulevard,

More information

Hvor står afsaltning energimæssigt? Chefingeniør Christian Stamer Krüger A/S. DWF temamøde Vand og energi-effektivisering torsdag den 28.

Hvor står afsaltning energimæssigt? Chefingeniør Christian Stamer Krüger A/S. DWF temamøde Vand og energi-effektivisering torsdag den 28. Hvor står afsaltning energimæssigt? Chefingeniør Christian Stamer Krüger A/S DWF temamøde Vand og energi-effektivisering torsdag den 28. april 1 - Energi til afsaltning omfatter i bredere forstand både

More information

Recovery & Concentrate Management

Recovery & Concentrate Management WRRC 2011 Annual Conference, Yuma AZ April 26 th & 27th Recovery & Concentrate Management A Quick Look at Three Local Projects Guy W. Carpenter, PE Vice President, Water Supply & Reuse How do we make use

More information

Reverse Osmosis Desalinators

Reverse Osmosis Desalinators Reverse Osmosis Desalinators H2O Series Framed and Modular Technical Specification Cathelco Seafresh, Marine House,Dunston Rd, Chesterfield, Derbyshire, England, S41 8NY Tel: +44 (0)1246 45790 Fax: +44

More information

Mountainview Generating Station (MVGS)

Mountainview Generating Station (MVGS) Mountainview Generating Station (MVGS) A Southern California Edison Company (SCE) 2492 West San Bernardino Avenue Redlands, CA 92374 Steve Johnson, Technical Manager Wastewater Adjudicated water rights

More information

Desalination: A Global Perspective. Craig R. Bartels, PhD HYDRANAUTICS

Desalination: A Global Perspective. Craig R. Bartels, PhD HYDRANAUTICS Desalination: A Global Perspective Craig R. Bartels, PhD HYDRANAUTICS 1 Desalination Growth: Installed Capacity, 1980 2010 (cumulative) Desal(ng Technology Mul(ple Effect Dis(lla(on Mul(ple Stage Flash

More information

Soquel Creek Water District s Groundwater Recharge Feasibility Study. Lydia Holmes

Soquel Creek Water District s Groundwater Recharge Feasibility Study. Lydia Holmes Soquel Creek Water District s Groundwater Recharge Feasibility Study Lydia Holmes Soquel Creek Water District (SqCWD) Filename.ppt/2 Small beach community east of Santa Cruz 37,000 residents 100% reliant

More information

BEING GOOD STEWARDS: IMPROVING EFFLUENT QUALITY ON A BARRIER ISLAND. 1.0 Executive Summary

BEING GOOD STEWARDS: IMPROVING EFFLUENT QUALITY ON A BARRIER ISLAND. 1.0 Executive Summary BEING GOOD STEWARDS: IMPROVING EFFLUENT QUALITY ON A BARRIER ISLAND Brett T. Messner, PE, Tetra Tech, Inc., 201 E Pine St, Suite 1000, Orlando, FL 32801 Brett.Messner@tetratech.com, Ph: 239-851-1225 Fred

More information

A COMPLICATED PROJECT FOR POWER AND WATER CO- GENERATION: THE RAF SITE

A COMPLICATED PROJECT FOR POWER AND WATER CO- GENERATION: THE RAF SITE A COMPLICATED PROJECT FOR POWER AND WATER CO- GENERATION: THE RAF SITE Authors: Presenter: M. Garzoglio, L. Riccardo M. Garzoglio [Process Senior Eng. Fisia Italimpianti Italy] Abstract The Ras Abu Fontas

More information

Addressing the World s Toughest Water Challenges. Ralph Exton, Chief Marketing Officer Citi Water Conference June 2013

Addressing the World s Toughest Water Challenges. Ralph Exton, Chief Marketing Officer Citi Water Conference June 2013 Addressing the World s Toughest Water Challenges Ralph Exton, Chief Marketing Officer Citi Water Conference June 2013 GE: Technology & Solutions Provider Engineered Systems Chemical & Monitoring Solutions

More information

Brian Villalobos, CHG, CEG GEOSCIENCE Support Services, Inc. American Water Works Association California-Nevada Section Reno, Nevada

Brian Villalobos, CHG, CEG GEOSCIENCE Support Services, Inc. American Water Works Association California-Nevada Section Reno, Nevada Subsea Groundwater for Desalination Feedwater Supply Case Study: Feasibility of Using Subsurface Intake Systems in the Marina/Moss Landing Area of California Brian Villalobos, CHG, CEG GEOSCIENCE Support

More information

PRIMARY GRADE WATER. PURELAB Prima. Primary Grade Water Purification Systems. The Laboratory Water Specialists

PRIMARY GRADE WATER. PURELAB Prima. Primary Grade Water Purification Systems. The Laboratory Water Specialists PRIMARY GRADE WATER PURELAB Prima Primary Grade Water Purification Systems The Laboratory Water Specialists PURELAB Prima The simple and dependable choice for primary grade water The PURELAB Prima range

More information

Operation and Maintenance of Electrochlorination Plant

Operation and Maintenance of Electrochlorination Plant Operation and Maintenance of Electrochlorination Plant Introduction Sodium Hypochlorite is a powerful biocide and oxidizing agent that has been widely used in seawater cooling system to avoid the biofouling

More information

City of Redlands Wastewater Treatment Plant. Redlands, CA LOCATION: Carollo Engineers; CH2M HILL MBR MANUFACTURER: COMMENTS:

City of Redlands Wastewater Treatment Plant. Redlands, CA LOCATION: Carollo Engineers; CH2M HILL MBR MANUFACTURER: COMMENTS: FACILITY: City of Redlands Wastewater Treatment Plant LOCATION: Redlands, CA GEO. AREA: Southern California STATUS 07/14: Operational CONSTRUCTION: ENGINEERING: Carollo Engineers; CH2M HILL MBR MANUFACTURER:

More information

Optimization and Flexibility First: The Clear Case for Energy Storage

Optimization and Flexibility First: The Clear Case for Energy Storage Optimization and Flexibility First: The Clear Case for Energy Storage Ontario s Long-Term Energy Plan (2017) Submission of Energy Storage Canada (ESC) December 16, 2016 1 Executive Summary In the last

More information

CONTENTS TABLE OF PART A GLOBAL ENERGY TRENDS PART B SPECIAL FOCUS ON RENEWABLE ENERGY OECD/IEA, 2016 ANNEXES

CONTENTS TABLE OF PART A GLOBAL ENERGY TRENDS PART B SPECIAL FOCUS ON RENEWABLE ENERGY OECD/IEA, 2016 ANNEXES TABLE OF CONTENTS PART A GLOBAL ENERGY TRENDS PART B SPECIAL FOCUS ON RENEWABLE ENERGY ANNEXES INTRODUCTION AND SCOPE 1 OVERVIEW 2 OIL MARKET OUTLOOK 3 NATURAL GAS MARKET OUTLOOK 4 COAL MARKET OUTLOOK

More information

WATER AND WIND QUÉBEC S CLEAN, RENEWABLE ENERGY RESOURCES

WATER AND WIND QUÉBEC S CLEAN, RENEWABLE ENERGY RESOURCES WATER AND WIND QUÉBEC S CLEAN, RENEWABLE ENERGY RESOURCES QUÉBEC HAS THE CLEAN ENERGY MASSACHUSETTS NEEDS Hydro-Québec is proposing a new source of clean energy to Massachusetts, in the form of firm deliveries

More information

RiOs Essential 5, 8, 16, 24 Water Purification Systems

RiOs Essential 5, 8, 16, 24 Water Purification Systems RiOs Essential 5, 8, 16, 24 Water Purification Systems A reliable, user-friendly pure water solution EMD Millipore is a division of Merck KGaA, Darmstadt, Germany A reliable, user-friendly pure water solution

More information

Joe Geever Surfrider Foundation

Joe Geever Surfrider Foundation Joe Geever Surfrider Foundation Water Programs Manager ( Policy Guy not engineer or marine scientist) Regulating brine and other residual waste streams generated from ocean desalination. Broad brush recommendations

More information

Integrating variable renewables: Implications for energy resilience

Integrating variable renewables: Implications for energy resilience Integrating variable renewables: Implications for energy resilience Peerapat Vithaya, Energy Analyst System Integration of Renewables Enhancing Energy Sector Climate Resilience in Asia Asia Clean Energy

More information

Overview of Desalination Techniques

Overview of Desalination Techniques Overview of Desalination Techniques The objective of this chapter is to present an overview of current and future technologies applied to the desalination of brackish and seawater to produce freshwater

More information

Water Solutions for the Mining Industry

Water Solutions for the Mining Industry Water Solutions for the Mining Industry Resourcing the world WATER TECHNOLOGIES Creating water solutions for the mining industry Veolia Water Technologies can provide specialised water systems thanks to

More information

Galileo Research. Distributed Generation

Galileo Research. Distributed Generation Galileo Research Distributed Generation 2001-2013 Distributed, or small generation units, typically less than 30MWs, strategically located near consumers and load centers can provide benefits to customers

More information

DESCRIPTION OF THE GOURIKWA POWER STATION & TRANSMISSION INTEGRATION PROJECT CHAPTER 3

DESCRIPTION OF THE GOURIKWA POWER STATION & TRANSMISSION INTEGRATION PROJECT CHAPTER 3 DESCRIPTION OF THE GOURIKWA POWER STATION & TRANSMISSION INTEGRATION PROJECT CHAPTER 3 This chapter provides details regarding the scope of the proposed Gourikwa Power Station and Transmission Integration

More information

Raw Water Supply Master Plan Development

Raw Water Supply Master Plan Development Raw Water Supply Master Plan Development Stakeholder Outreach Meeting - II 31 August 2016 Welcome Introductions Master Plan Goals and Objectives Refine our standard approach to long-term plan for securing

More information

PROflex* 60 Hz Reverse Osmosis Machines from 50 to 360 gpm

PROflex* 60 Hz Reverse Osmosis Machines from 50 to 360 gpm Fact Sheet PROflex* 60 Hz Reverse Osmosis Machines from 50 to 60 gpm Flexible Design PROflex has 0 base configurations using 8 to 7 elements that allows user to choose various pumps and membrane element

More information

Desalination of Sea Water

Desalination of Sea Water Desalination of Sea Water A presentation on Desalination: The Quest to Quench India s Thirst for Drinking Water was made at our Chapter by K. K. Mehrotra, Former Chairman-cum-Managing Director, MECON Limited,

More information

PIONEERING PELLET SOFTENING TREATMENT IN PENNSYLVANIA

PIONEERING PELLET SOFTENING TREATMENT IN PENNSYLVANIA PIONEERING PELLET SOFTENING TREATMENT IN PENNSYLVANIA April Winklmann Authority Manager, MTJMA Jared Hutchins Engineering Manager, Black & Veatch AGENDA Project Background and Drivers Process Equipment

More information

Water Solutions for the Mining Industry

Water Solutions for the Mining Industry Water Solutions for the Mining Industry Reliable Mining Expertise EXPERIENCED. From the extreme heat of remote Australia and Africa, to the cold climates of Mongolia and Kazakhstan, MAK Water has delivered

More information

Desalination Plants. IMIA Conference, Gleneagles, 2008 WG 57 (08) Prepared by:

Desalination Plants. IMIA Conference, Gleneagles, 2008 WG 57 (08) Prepared by: IMIA Conference, Gleneagles, 2008 WG 57 (08) Desalination Plants Prepared by: Hans Mahrla, Infrassure (Chairman) Jürg Buff, Partner Re Robert Glynn, Benfield Silvio Fischer, Partner Re Jean-Paul Perrin,

More information

Copies: Mark Hildebrand (NCA) ARCADIS Project No.: April 10, Task A 3100

Copies: Mark Hildebrand (NCA) ARCADIS Project No.: April 10, Task A 3100 MEMO To: Jeff Pelz (West Yost) Kathryn Gies (West Yost) Copies: Mark Hildebrand (NCA) ARCADIS U.S., Inc. 200 Harvard Mills Square Suite 430 Wakefield Massachusetts 01880 Tel 781 224 4488 Fax 781 224 3033

More information

MENA Regional Water Outlook

MENA Regional Water Outlook Study March 2011 MENA Regional Water Outlook Part II Desalination Using Renewable Energy Task 3 Concentrate Management 6543P07/FICHT-7115950-v2 Sarweystraße 3 70191 Stuttgart Germany Phone: + 49 711 8995-0

More information

Solar Power Realities

Solar Power Realities Solar Power Realities Supply-Demand Characteristics, Storage and Capital Costs by Peter Lang Abstract This paper provides a simple analysis of the capital cost of solar power and energy storage sufficient

More information

Saudi Aramco Water Treatment Technology Mapping

Saudi Aramco Water Treatment Technology Mapping Saudi Aramco Water Treatment Technology Mapping Ahmed Saleh Al-Rammah Saudi Aramco February 6, 2013 Outline Introduction to Water Treatment Technology Focus Team Vision, Mission, and Strategies Technology

More information

PRO. Safe, clean drinking water on tap anywhere, anytime with UF-PRO Ultrafiltration Units...

PRO. Safe, clean drinking water on tap anywhere, anytime with UF-PRO Ultrafiltration Units... UF PRO ULTRAFILTRATION UNIT Safe, clean drinking water on tap anywhere, anytime with UF-PRO Ultrafiltration Units... LONG TERM, HIGH PERFORMANCE FILTERS SIMPLIFIED CLEANING PROCESS Low cost, safe potable

More information

Implementing Recycled Water at SFIA with a Long-Term Goal of 100% Reuse

Implementing Recycled Water at SFIA with a Long-Term Goal of 100% Reuse Implementing Recycled Water at SFIA with a Long-Term Goal of 100% Reuse CA-NV AWWA Conference October, 2014 Todd Reynolds, P.E. Dawn Taffler, P.E., LEED AP San Francisco International Airport (SFO) SFO

More information

ANALYZING THREE YEARS OF SWRO PLANT OPERATION AT ELEVATED FEED ph TO SAVE ENERGY AND IMPROVE BORON REJECTION

ANALYZING THREE YEARS OF SWRO PLANT OPERATION AT ELEVATED FEED ph TO SAVE ENERGY AND IMPROVE BORON REJECTION ANALYZING THREE YEARS OF SWRO PLANT OPERATION AT ELEVATED FEED ph TO SAVE ENERGY AND IMPROVE BORON REJECTION Authors: Presenter: Rich Franks, Maria Neculau. Ramon Garrote, Craig Bartels, Ramón Jiménez

More information

FILMTEC Membranes System Design: Introduction

FILMTEC Membranes System Design: Introduction Tech Manual Excerpt FILMTEC Membranes System Design: Introduction Introduction An entire reverse osmosis (RO)/nanofiltration (NF) water treatment system consists of the pretreatment section, the membrane

More information

Improved Membrane Design Addresses Integrity Issues for the City of Yuba City Water Treatment Plant

Improved Membrane Design Addresses Integrity Issues for the City of Yuba City Water Treatment Plant Improved Membrane Design Addresses Integrity Issues for the City of Yuba City Water Treatment Plant Richard Stratton, PE HDR Engineering Acknowledgements City of Yuba City - John Westhouse, Plant Supervisor

More information

Operation of Hydranautics New ESNA Membrane at St. Lucie West, FL Softening Plant

Operation of Hydranautics New ESNA Membrane at St. Lucie West, FL Softening Plant Ilan Wilf & Scott Rappoport, Operation of Hydranautics New ESNA Membrane at St. Lucie West, FL Softening Plant Introduction St. Lucie West, Florida Service Distrcit employed the first large scale reverse

More information

ULTRAFILTRATION A RELIABLE PRE TREATMENT PROCESS FOR REVERSE OSMOSIS DESALINATION

ULTRAFILTRATION A RELIABLE PRE TREATMENT PROCESS FOR REVERSE OSMOSIS DESALINATION ULTRAFILTRATION A RELIABLE PRE TREATMENT PROCESS FOR REVERSE OSMOSIS DESALINATION Rohini Gupta 1, D. Goswami 2 and S. P. Chaurasia 1 1 Chemical Engineering Department, MNIT, Jaipur (India) - 302017 E-mail:

More information

Reverse Osmosis (RO) and RO Energy Recovery Devices. Steve Alt CH2M HILL November 2014

Reverse Osmosis (RO) and RO Energy Recovery Devices. Steve Alt CH2M HILL November 2014 Reverse Osmosis (RO) and RO Energy Recovery Devices Steve Alt CH2M HILL November 2014 Discussion Outline Reverse Osmosis (RO) Basics and energy consumption (SWRO) Introduction to RO Energy Recovery Devices

More information

Dry Flexicycle power plants a closed loop combined cycle with unique operational flexibility

Dry Flexicycle power plants a closed loop combined cycle with unique operational flexibility Power-Gen Middle East 2014 Dry Flexicycle power plants a closed loop combined cycle with unique operational flexibility Mr. Risto Paldanius, Director, Business Development, Wärtsilä Power Plants Mr. Kristian

More information

SB 838: Oregon Renewable Energy Act Establishing an Oregon Renewable Energy Standard

SB 838: Oregon Renewable Energy Act Establishing an Oregon Renewable Energy Standard SB 838: Oregon Renewable Energy Act Establishing an Oregon Renewable Energy Standard Section-by-Section Summary SB 838, C-engrossed version As passed by Oregon House of Representatives, May 23 rd, 2007.

More information

Blue Energy + RED (Reverse Electro Dialysis) = The Green City of Hyperion

Blue Energy + RED (Reverse Electro Dialysis) = The Green City of Hyperion Blue Energy + RED (Reverse Electro Dialysis) = The Green City of Hyperion The Problem in Hyperion Hyperion, located on the Achelous River in Western Greece (population 65,123), revolutionized energy production/transmission

More information

Drinking Water Supply by Reverse Osmosis Plants: Three Years of Experience at El Prat de Llobregat Municipality

Drinking Water Supply by Reverse Osmosis Plants: Three Years of Experience at El Prat de Llobregat Municipality Drinking Water Supply by Reverse Osmosis Plants: Three Years of Experience at El Prat de Llobregat Municipality Joan Sanz*, Aureliano García**, Jordi Miró**, Carlos Miguel*** *Veolia Water Solutions and

More information

Eska Creek Preliminary Feasibility Analysis

Eska Creek Preliminary Feasibility Analysis Introduction Eska Creek Preliminary Feasibility Analysis This report examines the feasibility issues of energy and economics for a 1.8 MW hydroelectric project on Eska Creek (project). The Project is located

More information

Recycling of Food Processing Wastewater to Potable Water Standards

Recycling of Food Processing Wastewater to Potable Water Standards Recycling of Food Processing Wastewater to Potable Water Standards The issues surrounding wastewater recycling in the food and drinks sector are generally well known. Over the past ten years a UK owned

More information

Journal of Membrane Science

Journal of Membrane Science Journal of Membrane Science 344 (2009) 1 5 Contents lists available at ScienceDirect Journal of Membrane Science journal homepage: www.elsevier.com/locate/memsci Rapid communication On RO membrane and

More information

SUSTAINABLE USE OF OCEANS IN THE CONTEXT OF THE GREEN ECONOMY AND THE ERADICATION OF POVERTY, PRINCIPALITY OF MONACO, NOVEMBER, 2011

SUSTAINABLE USE OF OCEANS IN THE CONTEXT OF THE GREEN ECONOMY AND THE ERADICATION OF POVERTY, PRINCIPALITY OF MONACO, NOVEMBER, 2011 SUSTAINABLE USE OF OCEANS IN THE CONTEXT OF THE GREEN ECONOMY AND THE ERADICATION OF POVERTY, PRINCIPALITY OF MONACO, 28 30 NOVEMBER, 2011 Implementation of Offshore Wind Power & Potential of Tidal, Wave

More information

Managing the Impact of Thermal Power & Renewable Power Offerings on Water Resources: Strategies & solutions towards

Managing the Impact of Thermal Power & Renewable Power Offerings on Water Resources: Strategies & solutions towards Managing the Impact of Thermal Power & Renewable Power Offerings on Water Resources: Strategies & solutions towards a more water-constrained future April 2013 THERMAL POWER RENEWABLE POWER ALSTOM 2012.

More information

Pittsburgh Water Treatment Plant Projects. by Jay R. Lucas, P.E. Senior Project Manager

Pittsburgh Water Treatment Plant Projects. by Jay R. Lucas, P.E. Senior Project Manager Pittsburgh Water Treatment Plant Projects by Jay R. Lucas, P.E. Senior Project Manager Who Is American Water We are the largest publicly traded water and wastewater utility in the United States Broad national

More information

Terms of Reference AG 2017/01

Terms of Reference AG 2017/01 Long-term Analysis of the Chilean National Electricity System Considering Variable and Intermittent Energy Resources Terms of Reference AG 2017/01 February 2017 Index 1. Introduction... 2 2. Objectives

More information

Southern California Edison

Southern California Edison Southern An Edison International An Edison Company International Serving Company Customers Serving for over Customers 125 Years for over 125 Years Serves a population Serves a population of more of than

More information