A practical guide to energy management and electricity auditing

Size: px
Start display at page:

Download "A practical guide to energy management and electricity auditing"

Transcription

1 A practical guide to energy management and electricity auditing Activities for energy audits for home and school Energy conservation ideas Demand Side Management written by Avril Wilkinson, WESSA design & layout by Michelle Preen,

2 CONTENTS Introduction: Background reading material on energy related issues...2 DSM [Demand Side Management]...3 Sub-organiser for this module...4 How to plan an electricity project [Teacher s notes for the project]...5 Electricity audit [The preliminary audit]...8 Electricity audit Part Electricity audit [Introducing kwh]...22 Electricity audit [The electricity meter]...24 Electricity audit Part Electricity audit [Let s take action 1]...30 Electricity audit [Let s take action 2]...33 Energy conservation ideas [Working with natural processes]...37 Energy conservation ideas [Landscaping for energy efficiency]...40 Energy conservation ideas [Everyday energy-saving ideas] 44 Extended teaching strategies This publication was made possible with funding from the DSM section of ESKOM

3 Introduction The objective of this education resource is for learners to develop an awareness of how electricity is used at home and at school. We use electricity every day of our lives, but rarely do we stop to consider how much we use. To decide if we are using our electricity wisely or not, we must understand where we use it and how much we actually use. Electricity is measured and sold just like any other product. You pay for what you use. Once the learners have reached an understanding of electrical auditing, the booklet then focuses on providing learners with an understanding on the greenhouse effect. Global warming is a term which many learners have heard, but most likely do not understand. This is not surprising, given that there is a great deal of uncertainty among scientists about global warming. Some scientists are very worried by a recent increase in average annual temperatures around the world. They are afraid that this warming trend will severely alter climates here on the planet Earth. These scientists believe that this warming trend is largely the result of human activities. Other scientists believe that the evidence is weak for a variety of reasons. The temperature on Earth has greatly fluctuated for millions of years. The observed increase in temperature may just be part of this natural fluctuation and have little tie to human activities. This would mean there would be very little, if anything, that could be done to stop the temperature changes. This uncertainty among the scientific community forces each person to make their own judgments about what may be happening to our environment. Learners need to ask themselves: Is it better to continue emitting large amounts of CO 2 and other harmful gases into the environment, hoping that global warming will not really occur, or, would it be safer to take steps to reduce the production of harmful gases, hoping that the temperature changes can be curbed? Lastly, the booklet addresses some ways of reducing our consumption of electricity by becoming good environmental stewards. It looks at energy management from a perspective of using the natural climatic processes to our best advantage. Using the auditing process in the first chapters of the book, will enable learners to make informed decisions about how they will react to the global warming crisis. 2

4 DSM [DEMAND SIDE MANAGEMENT] Electricity demand is the amount of electricity required by all electric equipment operating at one time in a building, an area, or a city. It is more expensive, and difficult, for an electricity service provider, to provide a large amount of electricity for a short time. Providing constant, smaller amounts of electricity at off-peak times is called demand side management. One way to obtain this is to manage electricity use so that all equipment is never operating at the same time and at the peak demand times. If we manage our electrical consumption in this way, we make the demand more consistent, and consequently, electricity suppliers are more able to meet the requirements of all its consumers. At the same time, we benefit because our use of electricity is managed, resulting from significant savings in electricity together with the associated cost. 3

5 SUB-ORGANIZER FOR THIS MODULE Prescribed Learning Outcomes It is expected that learners will: relate energy systems to corresponding natural resources in their home and school environment. identify the environmental and societal impacts of a specific source of energy. describe the interactions between society, technology, and use of electricity. identify strategies for saving electricity as a result of society's concern for dwindling non-renewable energy resources. identify the organizations (and their roles) for supplying electricity in South Africa. identify alternative energy sources in South Africa and the potential impact of their use. Suggested Assessment Strategies Assess learner s electricity audit charts for accuracy, and thoroughness. Assess learner s strategies for electricity reduction for realistic goals, planning details, means of tracking success, and outcomes. Assess learner s activities for technological detail (accuracy, materials, function, creative design, durability). Assess learner s audits using a predetermined rating scale (grammar, organization, citations, accuracy, number of details, etc.). 4

6 HOW TO PLAN AN ELECTRICITY PROJECT [TEACHER S NOTES FOR THE PROJECT] Doing a good project with your learners will involve many elements to your teaching, and the following information will assist you in preparing the project in order to include all the necessary elements. Step I State the Problem Step 2 - Research, and Hypothesize or Predict Step 3 - Plan Exercise and Gather Data Step 4 - Analyze the Data and Make a Conclusion Step 5 - Take Action Step 6 - Assessment More information about Step 1 Begin by stating the project problem: How does human energy consumption affect the environment, and how can we cut down the amount of energy we use? Ask learners what they think the answers to these questions are before they begin research. You may want to record and post their answers in the classroom so that they can see how their knowledge base changes by the end of the project. Develop a survey Since this project involves either the local school area or their homes, learners should begin by finding out how much the people within this community know already. This information will be useful to consider when learners design their energy-saving tips in step 5. Learner groups should begin by conducting an energy opinion survey of their peers, school staff, and parents or guardians. The following questions are perhaps some that might be asked: Do learners/school staff/parents/guardians think they use a lot of energy? Do they feel that using energy hurts the environment? What environmentally-friendly energy resources do they know of? Would they change their behavior to conserve energy? As an alternative, learners can develop their own survey questions using the following process: determine what, exactly, learners want to find out; design questions that will 5

7 get appropriate results; administer a test survey to a small sampling of people; analyze the results to see if the questions were on target; revise the questions if necessary; then conduct the survey on a wider scale. More information about Step 2 Research Now learners should begin to find the answers to the following questions by asking questions, or by going to the library to look up information. You may want to divide groups up so that they investigate these questions for a different kind of energy. Talk to representatives from the local electrical service provider (usually a municipality or Eskom) to find out as many ways as you can to save energy in your home and/or school. Energy type research questions What are the different kinds of energy used in South Africa? How are they used? What impact do the various kinds of energy have on the environment when used? Energy usage and environmental impact research questions How much pollution is caused by South African energy use? Why do we consume so much energy? What is the history of energy consumption in South Africa how has it grown, and why? How much energy do typical households and schools use? How can you find out how much energy you use? How can you reduce the amount of energy that you use? What are the costs involved with reducing energy use? Why hasn t it been reduced in the past? What are the economic or political factors that may impact energy conservation? In the end the class can share their findings, and compile their data into an energy usage matrix on a chart for the classroom. Forming the hypothesis Using the research findings, have the class predict which elements are the biggest energy wasters in the school/home, suggest what changes should be made within the school/home, and predict how much energy and money these changes would save within the school/home itself. Finally, ask learners to hypothesize how much this would impact their local environment. Have learners record their predictions, on another chart labeled "Predictions". At the end of the project, after learners have conducted their energy audits and encouraged their school community to make energy-saving measures, they will record their results in a column labeled "Results" in the same chart. 6

8 More information about Step 3 Conduct an energy audit following the directions from this booklet on pages As you conduct your audit, different groups of learners can be responsible for looking into energy usage in various areas. Observations should be made daily and recorded in a lab book in order to keep the data organized. You should review how each group should record the different kinds of data before the audit begins. More information about Step 4 Analyze the results of your energy audit. What were the most common areas of energy waste? Do your results show trends that might be important for other schools and homes in your area? If all the schools and homes in your area reduced their energy waste, how might this impact your local environment? Have each group of students write a report explaining the causes they found for energy waste, and what can be done to solve the problems. Learners need to consider the financial and behavioral aspects in coming up with solutions. You may want to ask an expert from the electrical service provider/eskom for feedback on your findings. More information on Step 5 When you finish your energy audit, put as many of your energy efficiency ideas into practice as you can. Many of these ideas are suggested from page 30 of this booklet. Keep a record of how much energy you save! Work as a class to write a tip sheet with your top 15 tips for easy and low-cost ways to save energy at home. Make sure learners use the information they gathered in the survey in step 1 about how much their intended audience knows about the topic, and what their attitudes are. They should gear their tip writing accordingly. Publish the tip sheet in your school magazine, and invite community members to visit the school for an open day by creating and passing out flyers to your community. Once action has been taken, have learner groups monitor how much energy was saved as a result of their actions. Record their findings in the "Results" column of their charts created in step 2. More information on Step 6 Have learners write an article documenting the steps they took in this project. They should add a section reflecting on why energy saving strategies they devised were effective or ineffective. They should note what strategies worked, or where they went wrong, and how they would correct these ineffective strategies if they repeated the exercise. The article should include information from the chart and log books, and any feedback they got from experts in the field. Also, learners should include their reflections on what it was like to undertake this project. Once completed and edited, notify your local newspaper to raise awareness about the project in your community by sending them your reports. 7

9 ELECTRICITY AUDIT [THE PRELIMINARY AUDIT] Learning outcomes How did your learners benefit from this exercise? Knowledge: Skills: Attitudes: i Information We spend most of our time in buildings homes, schools, offices and stores. But most people seldom notice details about the buildings, such as how they are designed, how they are built, and how well they are maintained. These details are important because they contribute to our comfort and well being and affect the cost of operating them. An "energy efficient" building is more comfortable than an energy wasteful building. It needs less fuel or electricity for heating or cooling. A building that is badly designed and poorly maintained wastes money. Why? Because it is trying to heat or air-condition the outdoors as well as the indoors. The following activity allows one to become an instant energy auditor. Activity Photocopy the following questionnaire and ask your learners to fill it in at home together with their parents. Place a tick next to the correct answer under HOME. Leave the CLASS boxes blank for you to do with your learners after they have completed the home survey. 8

10 IS MY HOME AND SCHOOL ENERGY EFFICIENT? Name of person doing audit: Address: Number of occupants in the house: List rooms in house: Bedrooms Passage Lounges Porch/verandah Dining Kitchen Bathrooms Pantry Garage Other Number of rooms where there is electricity: 1 Which of the following would best describe the outside area immediately surrounding your home? My Home My School ( _ ) protected by buildings on sides ( _ ) protected by buildings on sides ( _ ) protected from wind ( _ ) protected from wind ( _ ) faces north ( _ ) faces north Recommendation: 9

11 2 Which of the following would best describe the type of insulation in the ceiling or attic in your home? My Home My School ( ) type of insulation ( ) type of insulation ( _ ) none ( _ ) none Recommendation: 3 What type of floor covering is in your home? My Home My School Carpets Tiles Wood Other Carpets Tiles Wood Other Recommendation: 4 Does your home have cover at the doors and windows against cold (nor large gaps under doors or broken windows etc.), and/or curtains at windows against heat? My Home My School Against cold? Against heat? Against cold? Against heat? Recommendation: 10

12 5 What is the average temperature in your home? My Home My School ( degrees Centigrade) day - summer ( degrees Centigrade) day - winter ( degrees Centigrade) day - summer ( degrees Centigrade) day - winter Recommendation: 6 Does your home have fluorescent lighting or CFLs? My Home My School ( _ ) yes % ( _ ) yes % If yes, where? If yes, where? ( _ ) no ( _ ) no Recommendation: 7 Does your home have windows facing north and south? Count all the windows, and then work out your percentage. Remember to take the size of the windows in relation to the wall into account. My Home Count your windows: N ( ) S ( ) E ( ) W ( ) N % S % My School Count your windows: N ( ) S ( ) E ( ) W ( ) N % S % Recommendation: 11

13 8 Does your home have ceiling fans? If you do, how many? My Home My School ( _ ) yes, how many? ( _ ) yes, how many? ( _ ) no ( _ ) no Recommendation: 9 Do you turn the lights off when you leave your room? My Home My School ( _ ) yes ( _ ) yes ( _ ) no ( _ ) no ( _ ) sometimes ( _ ) sometimes Recommendation: 10 What is the temperature setting on the hot water tank? To estimate this, ask yourself if the water from your geyser is scalding hot, or whether it requires an even mix of hot and cold water to take a bath, or whether you need only a little cold water for your bath. My Home My School ( _ ) C low ( _ ) C med ( _ ) C low ( _ ) C med ( _ ) C high ( _ ) C high Recommendation: 12

14 Once the audit is complete, return the audit form to your teacher so that the class may compare results. You may want to draw up a graph showing your results. Discuss the findings and make recommendations for each question. The audit should be returned to your parents, and you should explain recommendations. Together with your teacher and the whole class, now do the audit at your school. Prepare a talk to your principal and governing body on your recommendations for better energy management. 13

15 To be completed only by the teacher or group leader when all the results of the survey have been completed. The following matrix is designed to assist you to evaluate your survey and to highlight troublesome areas in your group of homes as well as to make recommendations for each participating home. Home 1 Home 2 Home 3 Home 4 Home 5, 6, 7, etc. (As many columns as there are homes) Occupants in house? No. of rooms in house? 1. Outside area 2. Insulation 3. Floor covering 4. Protection from heat 4. Protection from cold 5. Ave temp - summer 5. Ave temp - winter 6. Fluorescent lights 7. % N facing windows 7. % S facing windows 8. Ceiling fans 9. turn off lights? 10. hot water setting Circle all the high results with red. What have you discovered? Are our homes and school energy efficient? 14

16 ELECTRICITY AUDIT PART 1 Learning outcomes How did your learners benefit from this exercise? Knowledge: Skills: Attitudes: i Information We use electricity every day, and an energy audit will tell us how much we use. This activity will also help identify what items in your learner s homes use electricity, how often they are used, and how much electricity they consume. Part 1 is designed to be used in three sections, or mini assignments, and learners are requested to take charts to fill out at home. Based on the information that is returned, your learners will be able to begin to very accurately audit their electrical consumption. Activity Section 1. On the first chart, make a list of electric appliances found in your home. Place a tick in the rooms where you use the items (items may be found in more than one room). 15

17 HOME OF: ADDRESS: Do you have it? Where is the appliance situated? Appliance Yes No Kit. Bed. Bath. Lounge Dining Other If no, what do you use instead? Stove Kettle Fridge Freezer Geyser Microwave Hifi Radio TV Video Foodwarmer Heater Iron Other Other Other Other Other Other Lightbulbs how many light fittings and lamps? kitchen beds baths lounges dining outside passage garage store other Once the chart has been completed, prepare a time of group discussion based on the information that your learners have collected. 16

18 You may want to ask the following questions: In the home, what area uses the most electricity? Why? Answer: Kitchen. The kitchen contains many large electric appliances - fridge (on all the time) and stove (not on all the time but generates heat which results in high consumption). The kitchen also contains many other electric appliances - toaster, microwave, blender, food processor, electric fry pan, etc. In the home, what areas use the least electricity? Why? Answer: Home entertainment equipment does not need a lot of electricity to operate. Also, these appliances are not on all the time. Section 2. The following chart can be completed by your learners as a second homework assignment. We have already found out that the kitchen uses the most electricity, but we now will discover how much time we use an electrical appliance for. To do this, you will have to decide on a special audit day. This will give your group a very accurate assessment of electrical consumption in their homes. In order to get maximum benefit from the exercise, you may want to involve parents as well. Audit Preparation for your audit day The following section is the most important part of all the audits that you will be doing and will need much preparation. This will greatly assist in the smooth running of your audit day, and will also make your results very accurate. 1. Refer to your list that you completed in section 1. You will have to make a small chart for EVERY electrical appliance, and EVERY light fitting that you have in your home, and you will have to stick each chart next to each appliance. It is also a good idea to get a number of pencils and cut them up into smaller pieces so that you have enough for each chart. Alternatively, you could suggest that each family member wear a pen necklace around their necks for the entire day. This way, there will always be a pen handy when they use an electrical appliance. 2. Some of the appliances will need advance preparation to make your audit day easier, and more accurate. 17

19 Kettle: before audit day, boil a half-full kettle and time how long it takes. If it takes 2 minutes and 50 seconds, then we can work in units instead of time. The chart for the kettle will therefore look like this: KETTLE: (half full = 2min 50 sec) Quarter-full: Half-full: Three-quarter full: Full: Total time used: Each time that the kettle is used, tick the appropriate line, and at the end of the day you will easily work out how much time the kettle was used. Lights: Go through all the light bulbs in the house and find out what their watt rating is. You will need this information later, and it is best to get it now. On each chart for the lights write this watt rating down, and stick your light charts next to the light switch. Remember to place a chart next to the table lamps as well. Your light/lamp chart will therefore look like this: Light bulbs (60watt/ 100 watt/ fluorescent bulb/ fluorescent light 1 bar/ fluorescent light 2 bar/ other). Circle which one it is. Time on: Time off: Time on: Time off: Time on: Time off: Total time for this light: Your charts for the video, foodwarmer, heater, iron and fans can also look like this, but omit the watt rating section. 18

20 The Stove chart will look like this: Stove: Small back plate: time taken: Large back plate: time taken Small front plate: time taken: Large front plate: time taken: Oven: time taken: Warming drawer: time taken: Lastly, some of your charts like the microwave, washing machine, and any appliance which has its own timer will look like this: Microwave/ Washing machine/ other On: (write how long you have set it for) On: On: On: Total time taken: Geyser: record at the end of the day how many baths and showers were taken, and how many times the sink was filled for dishwashing. Fridge and freezer: Consult your owner s manual to find out what the on/off cycle is, and the watt rating is for your model. Often a phone call to the manufacturer will give you this information. Lastly, place a general chart in a visible spot for all the appliances that you would use only for a brief time, and then store away, such as a vacuum cleaner. 3. Very important: KEEP ALL YOUR CHARTS. You will need them later. 4. Good luck on audit day try to keep the exercise fun!!! even though it can be very involved. And remember to discuss the audit requirements with the whole family so that all members of your household understand what is required. 19

21 Activity - Audit Day Over the weekend (Saturday or the Sunday) record the length of time that electrical appliances are used in your home during a 24-hour period, using the method that was explained in the preceeding pages. After audit day, tally up your times and complete the following table. Staple all your small charts to the back of this form for safe keeping. Electrical Appliance Stove Kettle Fridge Freezer Geyser Microwave Hifi Radio TV Video Foodwarmer Heater Iron Other Other Other Other Other Other Light bulbs 60W each Light bulbs 100W each Light bulbs 120W Light bulbs 40W Time used in 1 day (24 hours). This amount will be worked out from all the paper slips collected from audit day. 20

22 Some questions that could be asked now are: According to your chart, which appliances are used the least amount of time? Why? Answer: Learner s answers will vary, but some of the answers will be the toaster, the kettle, the iron. We use these appliances only for part of the time Which appliances do you think use the most electricity? Why? Answer: Fridge. Freezer and oven. The fridge and freezer are appliances that stay on all the time. The oven is an appliance that uses lots of electricity because it must generate heat. TIME 50 60% Activity Section 3. Processing the information into graph form. Let us see if these answers show in a graph. With the information that your learners have collected, we can now draw up a graph that shows us the percentage of electricity each day (horizontal axis) is used in each area of our homes (vertical axis). In order to compile this graph, you will need to do some mathematical work to get the percentages % 30 40% 20 30% 10 20% 0 10% APPLIANCE Home entertainment Laundry Bedroom and Bathrooms Heating and Cooling Lighting Kitchen Appliances You are well on the way to becoming excellent Enegy Auditors! Let us learn further about kilowatt hours so that we can do an even more accurate audit! 21

23 ELECTRICITY AUDIT [INTRODUCING kwh] Learning outcomes How did your learners benefit from this exercise? Knowledge: Skills: Attitudes: i Information In the previous energy audit, your learners were able to get some basic idea of the electrical consumption in their homes, and in which areas of the home the electricity was most used. It introduced the concept that each electrical appliance used varying amounts of electricity, and in the next audit, your learners will be able to very accurately determine the electrical consumption in their homes by the introduction of the watt rating of each appliance, and using this in their calculations in order to obtain the kilowatthour (kwh) consumption of each appliance. We have already collected half of the information required to do this in the previous exercise that is, the time that each appliance is used. By now adding the watt rating, your learners will be able to calculate their electrical consumption very accurately. Let us discover how! 22

24 What is a watt (W)? Answer: A watt is a unit of power and each appliance is marked with its watt rating. For instance, if you look carefully at a light bulb you will see 60W or 100W printed on the bulb. This is its watt rating. Look at other appliances to find the watt rating. What is a Kilowatt (kw)? Answer: A kilowatt is a thousand watts. To calculate kw from W, divide the W rating by 1000 : kw = W What is a KilowattHour (kwh)? Answer: kwh is the term used to calculate electrical use. One kwh is one unit of electricity. Electric companies charge for the number of units that each household uses. How do I calculate kwh? Answer: Multiply the number of kilowatts by the time that the appliance was used. For example: If a 100 watt light bulb is left on for 10 hours, one kilowatt hour (kwh) of electricity is used ( x 10) Suppose a 100-watt bulb, serving as an outside night light, is left on for eight hours a night, 365 days a year. This bulb consumes 292 kwh of electricity a year ((365 x 8 x 100) 1,000 = 292 kwh). Activity The formula for calculating kwh is therefore the watt rating divided by 1000 (to get the kw), then multiplied by the time. Can your learners complete the following table? Appliance Watt rating Hours per day Hours per month No. of kwh in one month Kettle 2000W 2 60 (2x30) 120kWh ( x 60) 2 bar heater 1300W 5 Iron 1000W 1 Fridge 550W 6 23

25 ELECTRICITY AUDIT [THE ELECTRICITY METER] Learning outcomes How did your learners benefit from this exercise? Knowledge: Skills: Attitudes: i Information Every home is equipped with an electricity meter. The meter measures the amount of electricity consumed in a house in units called kilowatthours (kwh). We are then charged according to the amount of electricity we have used. Reading our own meter keeps us informed of how much electricity we are using. If we are trying to reduce energy consumption and costs, we want to keep track of those kilowatthours! Activity Ask your learners to find their electricity box at home. The electricity meter box may look different in many South African homes, depending on the age of the house. Some boxes are locked, and can usually be opened with a special allan key, or even a pair of long-nosed pliars. If the box cannot be opened in this way, then they should not force it open, and must not complete the activities in this chapter. 24

26 What have you discovered about your electricity meter? Answer: Generally, the meter will have a 6-digit number 5 numbers in black, with a red number after as a decimal of the number. For instance, 54100,6 (6 is in red). Under the digital reading, they will see a horizontally spinning disc which is recording the electricity consumption. Activity Reading our meter for a week. Your learners will need five days at home to complete this activity. They will be taking the actual reading of their own electricity meter. It may be best to use a full, Monday to Friday week for the activity. It is important for the learners to get into the habit of reading their meters. When all the electrical audits have been completed, and electrical measures have been taken, then this is the way that learners can check up on themselves to see if the sav ing measures are working. Remind the learners that they need to take the reading at the same time each day. Day of the week Reading for the day kwh used Sunday Sunday s reading is Do not fill in here Monday Monday s reading is Monday s reading minus Sunday s reading = Tuesday Tuesday s reading is Tuesday s reading minus Monday s reading = Wednesday Wednesday s reading is Wednesday s reading minus Tuesday s reading = Thursday Thursday s reading is Thursday s reading minus Wednesday s reading = Friday Friday s reading is Fridays reading minus Thursday s reading = 25

27 From the results of your readings: Work out your average daily kwh. (Add 5 readings and divide by 5) Record the amount here Work out your average monthly kwh. (Daily average multiplied by 30) Record the amount here Activity Activities for the school s electricity meter. Ask the caretaker if the learners can read the school s electricity meter for five days in a row. After you have completed the activity for the consumption of electricity at school, the learners can compare the amount of electricity the school uses to the amount they use at home. Have the learners read the school s electricity meter at the end of each month and make a graph for each month. Which months does the school use the most electricity? The least? Why? Have the learners collect old electricity accounts for their homes. They can compare their monthly estimate to the actual amount on the account. Is their amount about the same as what is listed on the account? In which months do they use the most electricity? The least? Why? 26

28 ELECTRICITY AUDIT PART 2 Learning outcomes How did your learners benefit from this exercise? Knowledge: Skills: Attitudes: i Information Your learners have now reached the stage where they are able to conduct a full electricity audit. They have learned much over the past lessons and activities. The full audit will show your learners the energy consumption in exact amounts, as well as when, and where, the electricity is used. They have recorded the appliances in their homes, and the time that the appliances are used, and they have also learned how to calculate the kwh consumption for each appliance. All that now remains to be done is to complete the full audit table to ascertain how much electricity each of the appliances uses. Once this is done, they are asked to refer to the electricity meter reading activity to compare that reading with the reading that they have determined from the table in this activity. The two readings should be very similar. Activity It is time to conduct the full electrical audit. In the following table, the first column was completed in part 1 of the electricity audit. The other columns were also exercises and activities in the previous chapters. Some of the watt ratings have been added to the list, and some you will have to find out by looking it up on the appliance or in the appliance handbook. You can also make inquiry at your local Eskom office or at the appliance service center. Also, for convenience, we have added some in the table at the end of this activity. 27

29 1. Electrical Appliance 2. Time (in minutes) used in 1 day (24 hours) Use the information from activity 2 of audit part 1 3. Time (in hours, expressed as a decimal). To do this, divide the time (in minutes) in column 2 by Time used in 1 month. Multiply the time in column 3 by Watt rating. This is to be found on the appliance, or in the appliance handbook. 6. Kilowatt rating. Divide the watt rating by kw = W kwh Multiply the k W rating in colum n 6 by the month time in column 4. kw rating x tim e Stove front large plate 2000W Stove front small plate 1500W Stove back large plate 1500W Stove back small plate 1000W Stove oven 2000W Light bulbs 60W each 60W Light bulbs 100W each 100W Light bulbs 40W each 40W Fluorescent Light bulbs 120W 120W combined Light bulbs Another wattage Kettle 2000W Fridge 12hr 300W Freezer 12hr 600W Geyser Microwave Hifi Radio TV Video Heater 2 bar Iron 3000W 1300W 100W 80W 300W 80W 1300W 1500W Washing machine - unheated 800W Food processor Fans Sewing machine Other 400W 55W each 85W Other Other 28

30 Now add up all the numbers in the last column (your kwh for 1 month) To verify your results, go back to the chapter on reading the electricity meter. Your monthly figure should be similar. Some other watt ratings that you might need are: Dishwasher heater 2000W Washing machine - heated Dishwasher motor only 700W Heater (fan type) Frying pan 1500W Heater (ceramic type) Toaster 1100W Vacuum cleaner Electric beater 200W Electric blanket Tumble Dryer 300W 2800W 2000W 1500W 600W 100W YOUR AUDIT IS COMPLETE! CONGRATULATIONS! The Ladysmith High School did the audit and some of their totals were as follows: Home 1 Home (audit total) (audit total) 1164 (meter reading total) 609 (meter reading total) Home (audit total) 998 (meter reading total) Home (audit total) 876 (meter reading total) Activity Converting the data into cost per unit. Remember, each unit of electricity is one kwh of electricity. Find out what the cost per unit is of the electricity in your area. To do so, you will have to phone your electricity service provider either your municipality or Eskom. You can also get this information from your lights and water account. In order to get a basic figure, divide your charge by your consumption, and this should be in the region of 30c per unit. Which are the most expensive appliances to run? Answer: From your audit results, answers will differ, but they are the appliances with the highest kwh. For energy saving ideas, learners should concentrate on these appliances. From the results of the audit, each learner will now be able to make informed recommendations on electrical saving in their homes. The results of the audit should be taken home and discussed with parents. This audit can also be done for your school! Recently a school in East London, Stirling Primary, conducted an electricity audit at their school. To interpret their data, they compiled a speadsheet of electrical consumption showing how much money each appliance cost to run. They also used the data to draw a bar graph using the appliances on the horizontal axis and the amount in rands on the vertical axis. Their findings showed that ceiling fans and lights were the schools highest expenditure for electricity. Why is this different to an audit at home? 29

31 ELECTRICITY AUDIT [LET S TAKE ACTION - 1] Learning outcomes How did your learners benefit from this exercise? Knowledge: Skills: Attitudes: i Information Conducting an energy audit is a good method of showing your learners how electricity is used in their homes. However, the focus of the teaching strategy should ultimately be good environmental stewardship. If we can use less electricity, we will generate less carbon dioxide, and in doing so we will be contributing to a sustainable environment. In this activity, learners become familiar with the concept that one of the major sources of carbon dioxide is the production of electricity. They identify ways in which they might decrease their contribution to the carbon dioxide in our atmosphere by decreasing their use of electricity. Most people believe that air pollution is a problem caused by factories and cars. This is so, but our excess use of electricity is also a contributing factor. The largest contributor to excess carbon dioxide in the atmosphere is from the burning of fossil fuels. We burn fossil fuels directly in our cars, but the excess carbon dioxide in the atmosphere is also from electricity. The electricity we use here in South Africa is generated primarily by burning coal. Every time we use electricity, we are contributing to the greenhouse gases. 30

32 Activity How much CO 2 do we put into the atmosphere each day by our use of electricity? Your learners have already made a very accurate assessment of the amount of electricity (in kwh) that they have used, by conducting the electricity audits in the previous chapters. Now they can calculate the approximate corresponding amount of carbon dioxide added to the atmosphere for the amount of electricity that was used in their home. For every 1 kwh of electricity that we use, approximately 1.1 kg of carbon dioxide is released to the atmosphere. We have already calculated our consumption of electricity for a month in kwh. All we need to do now is multiply this amount by 1.1 to calculate how much CO 2 we put into the atmosphere. (kwh x 1.1 = amount in kilograms of CO 2. ) Activity After our calculations in the previous activity, we may be in some shock! Let us go on an energy diet! If you had to choose 3 appliances to "go without" for 2 weeks in order to help reduce CO 2 emissions, which appliances would you choose? Explain why you choose these appliances. How much CO 2 do you think that you will save over the 2 week period? Ask each student to draw up an Energy Diet Plan for their home. Get each member of your family to commit to making at least one change aimed at saving electricity. Be sure to let them decide what they would like to go without. 9 kilograms of CO 2 are emitted into the atmosphere for approximately every 4 litres of gasoline burned in your family car. Calculate your CO 2 contribution to the atmosphere from driving or being driven for a typical day. Can you find ways to also go on a petrol diet? Perhaps share with a neighbour or walk to school.. 31

33 Energy experts say that the carbon dioxide released per family during the production of the things we buy and the services we use, is about equal to the amount of carbon dioxide produced by our direct use of energy. Can we also go on a spending diet? Do we really need that extra T-shirt or that ice-cream.. If your family's car was more efficient, a large amount of carbon dioxide would be prevented from going into the atmosphere. Can we also go on an car efficiency diet? Ask your learners to discuss this with their parents to find ways to get better fuel consumption (per km driven) from our cars. Make a list of other actions that your family could take to reduce carbon dioxide emissions. If your work on this project is to be written up and presented, it might be a good idea for you to verify your savings by taking your electrical consumption reading each month from the electricity meter, and/ or proving that your electrical saving ideas are working by the reduction of electricity from your monthly account. We are well on the way to becoming good environmental stewards. In this activity we explored ways to help reduce the carbon dioxide emissions to the atmosphere. In the following chapter, we look at ways in which we can actively take a role in making our environment a better place for us all. 32

34 ELECTRICITY AUDIT [LET S TAKE ACTION - 2] Learning outcomes How did your learners benefit from this exercise? Knowledge: Skills: Attitudes: Information Deciduous trees reduce cooling costs in the summer, but don't block out the sun's warming rays in the winter. They also absorb carbon dioxide and prevent it from going to the atmosphere. The process of absorbing CO 2 and releasing oxygen is part of photosynthesis. Activity Calculating how much CO 2 is absorbed by trees during photosynthesis. Depending on its size, approximately 10 to 23 kilograms of CO 2 per year is absorbed by a tree. With this information, we can begin to collect data which will give us the necessary information in order to take action. The 10 to 23 kilogram range stated for the amount of CO 2 absorbed by a tree presents an interesting challenge for learners. Educators may choose simply to use the average of this range, in which case each tree is counted in the designated area, and the average of 15.5 kg per tree per year is used. ( = 15.5) However, it might be more beneficial for learners to set up their own criteria for how to use the numbers. For example, learners may want 33

35 to measure the circumference of the tree trunk one meter above the ground as their standard. They could take a trip around their home garden and/ or school ground to see the variation that exists and then set up a scale by which they assign a number from 10 to 23 for different circumferences. Learners may wish to estimate the height of the trees. For example, if the tree is one story or less in height, they might want to assign a number close to 10 for its CO 2 absorbing ability. This makes for interesting discussion on the learners part, while requiring them to think about scale. It is important, however, that a class consensus be reached. If each learner uses a different scale, it will not be possible to compare and pool results. As learners are deciding on which areas to assess, you may want to list several small parks, the school grounds, and other key areas in your community. Most learners, however, will want to assess their own garden, as this makes the idea of carbon debt more personal. However, there will be some learners who do not have gardens, or are unable to assess their gardens. Ask these learners to volunteer to survey the other areas. This would insure a broad sampling of a variety of areas. The following table is a sample data table for the activity, if you choose to use your own set of criteria for calculating CO 2 absorption of trees. If you are using the average of 15.5Kg, then the following table is unnecessary. Location No. of trees Circumference of tree Kg of CO 2 assigned for circumference Kg of CO 2 absorbed by trees Thandi s garden 3 > 2 meters x 3 = 69 kg 2 < 2 meters x 2 = 30 kg 4 <1 meter x 4 = 40 kg Total for Thandi s garden Jane s garden 139 kg CO 2 per yr 5 > 2 meters x 5 = 115 kg 6 < 1 meter x 6 = 60 kg Total for Jane s garden 175 kg CO 2 per yr Review this with your learners before they begin collecting data so that it is understood. Once all the data has been collected and the calculations completed, ask each person to display their findings on a class poster or on the blackboard. This will allow learners to determine total CO 2 absorption by all the trees surveyed by their classmates. Once a grand total has been achieved, learners will really get the idea that the trees in their community do make a difference on helping reduce greenhouse gases. 34

36 Activity Balancing the carbon dioxide debt. In the previous activity, your learners were able to assess how much carbon dioxide is absorbed in a specific area. Most of the learners will have chosen their home gardens in which to do this assessment. This activity deals with planting trees to balance the carbon dioxide generated by our personal and/ or family use of electricity. We have already established how much electricity we use in one month. We also know that for every I kwh of electricity that we use, approximately 1.1 kg of carbon dioxide is released to the atmosphere, therefore we have established how much carbon dioxide each of our homes places into the atmosphere by our use of electricity. Remember also to calculate the yearly amount by multiplying the monthly figure by 12. We also know that each tree absorbs an average of 15.5 kg per year of carbon dioxide. Can your learners work out how many trees they would have to plant to balance their carbon dioxide debt? At the end of this activity, it would be interesting to produce a table showing all the results of all your audits. At Ladysmith High school, the results were tabulated as follows: Name of home Audit result Electrical Ave of the CO 2 No. of trees No. of No. of trees meter 2 monthly output required for trees in needed to reading readings CO 2 balance garden plant month month month year Avril 871kWh 876kWh 874kWh 961kg 11,532kg Are you shocked! The group at Ladysmith were! Because the number of trees required to balance our carbon debt is so high it is important not to become discouraged. The following activity is designed to move your project from a very local focus, into the broader community in order to involve a greater number of people. In this way, we are becoming good environmental stewards by encouraging others about environmental responsibility, and at the same time, planting a greater number of trees than what our gardens can accommodate. 35

37 Activity Plant-a-Tree campaign. By now, your learners will have got the idea that planting trees will help our environment. They might even have made promises to plant trees in their gardens and/ or school grounds to balance their carbon dioxide debt. It is now time to take this even further! Challenge the class to draw a street plan of a specific area in their community where trees could be planted for the benefit of the whole community. On the map, mark the places where trees are currently growing, as well as other structural objects. Draw up a plan designed to increase the number of trees in the area. As part of the plan, include information on the CO 2 absorbing ability of the proposed trees. Mark the locations of the new trees on your map. Be sure to consider the importance of shade on buildings in deciding where to place the trees. (Shade helps reduce the cooling costs of buildings.) Design an advertising campaign aimed at getting people to plant more trees. Present your campaign in the form of a poster, brochure, newspaper, or other creative form. Emphasize and communicate the CO 2 -absorbing abilities of trees. Design colorful graphs, charts, and other graphics to help illustrate the CO 2 absorbing abilities of trees. Be creative! You should also read through the chapter on Landscaping for energy efficiency further on in this book. This will give you some ideas about how to do this activity. 36

38 ENERGY CONSERVATION IDEAS [WORKING WITH NATURAL PROCESSES] Many energy conservation ideas can be put in place merely by understanding nature, the environment and climatic processes in South Africa. For instance, we know that hot air rises, and cool air sinks. By using this concept, and many other elements of the natural environment, we can reduce the temperature of our homes significantly in Summer, and raise the temperature in Winter. This is called passive heating and cooling. In Summer, open all you windows in the evening to allow free passage of cooling air during the night. In the morning, as soon as the temperature begins to rise, close up the windows and draw your curtains against the heat. This will keep the temperature of the house cooler for longer. As the temperature begins to rise later in the day, open the top windows to allow the hot air to escape. In the evening, open all your windows again as before. In Winter, reverse the process to keep the house warm. Listed below are some natural processes that you can use in passive heating and cooling. Radiation : This is the passage of energy through open space, like sunlight. In the winter, during the daytime a building absorbs solar radiation, but after the sun goes down, it starts to re-radiate heat to the cold outside air unless something is done to block the radiation. In the summer, efforts have to be made to block solar radiated heat from entering the house. Conduction : This is the passage of heat through a material. Some materials, like glass and metal, conduct heat (and lose it) easily. Insulation helps to block conduction of heat. If ceilings and walls are poorly insulated, they conduct heat from the house to the outside. Installing a blanket of material (like pink aerolite) in your ceiling will keep your house cool in Summer and warm in Winter without the exorbitant electricity costs associated with air conditioners! Convection: This is the transfer of heat by movement of air. In the winter, as heated air contacts cold surfaces such as windows, it loses heat. The cooled air is denser than warm air, so it tends to settle, pushing warm air toward the ceiling. These temperature changes and air movements form a pattern. Warm, light air from the ceiling area is chilled along the windows, becomes heavier and drops to the floor. It moves across the floor, is reheated, moves up the opposite wall (away from the window), across the ceiling and down past the window again. During each cycle the air loses heat. Heat must be supplied from a sunny window, a furnace, stove, or other heater to maintain a comfortable temperature. 37

39 Air Infiltration: This is the air seepage due to wind. Air pressure pushes hot air (cold air in the winter) through tiny openings on the windy side and draws cooled air in on the opposite side of the house. Infiltration occurs through wall cracks, gaps around paneling (top, bottom, sides), cutouts for pipes and wiring, poor seals for window sashes, doors with poor weatherstripping, and loose moldings. Hot Water Waste : Most people waste hot water by following some of the these bad habits:(1) letting the hot water flow while shaving, (2) using excessive hot water in taking a bath or shower, (3) using hot water for all loads when washing clothes, (4) setting the hot water geyser too high, (5) not insulating all the hot water lines and hot water cylinder, and (6) letting the hot water run while rinsing dishes. Here are some ways that you can save hot water waste: 1) Turn the hot water control off when not in use, do not let it run for chores like rinsing dishes, shaving or washing your face. 2) Repair all water leaks. 3) Install a flow control valve on all shower heads. 4) Heat your hot water with gas if available. 5) Install a hot water timer on your water cylinder. 6) Insulate your hot water tank and pipes. 7) Turn water heater off if you leave for more than two days. 55 C - 60 C: The average family can save ten to twenty percent (10-20%) of their electricity account by setting the thermostat at 55 C in the summer and 60 C in the winter. Fluorescent Lights: Up to thirty percent (30%) of lighting costs (80% if CFLs are used) can be eliminated by using fluorescent instead of incandescent lights. It is now possible to replace most incandescent light bulbs with fluorescent bulbs. Windbreak: A dense row of trees, or a fence or other barrier that interrupts and changes the local path of the wind can also help to keep temperatures stable. Windbreaks located on the predominately windy side of a building can save heat by reducing wind chill and air infiltration. House Orientation: Most energy conservation practices will be made much easier if the home is properly oriented. A North orientation will make it possible to use natural light and natural heating and cooling. During Autumn and Spring, it may be possible to use only natural heating and cooling with windows and doors only on the long axis of the house (the South and North). It is possible to draw the South and North breezes for cooling purposes. The sun coming in from the North windows is beneficial for winter heating. 38

40 Summary The most effective low cost energy savers include: 1) Plant trees, grass and shrubs in the desired location. 2) Adjust your thermostat to 55 C in the summer and 60 C in the winter. 3) Change all bulbs to fluorescent or CFLs. 4) Turn all lights off when you leave a room. 5) Install ceiling fans. 6) Lower the thermostat to 120 F on your water heater. 39

41 ENERGY CONSERVATION IDEAS [LANDSCAPING FOR ENERGY EFFICIENCY] This chapter will give you some landscaping tips that will help you save energy and money year-round, and includes climate and site considerations, design and planning, and tree and shrub selection. Are you looking for cost-effective yet eye-pleasing ways to lower your electricity costs? Planting trees, shrubs, vines, grasses, and hedges could be the answer. In fact, landscaping may be your best long-term investment for reducing heating and cooling costs, while also bringing other improvements to your community. A well-designed landscape will: Cut your summer and winter electricity costs dramatically. Protect your home/school from winter wind and summer sun. Reduce consumption of water, pesticides, and fuel for landscaping and lawn maintenance. Help control noise and air pollution. Summer You may have noticed the coolness of parks and wooded areas compared to the temperature of nearby city streets. Shading and evapotranspiration (the process by which a plant actively moves and releases water vapor) from trees can reduce surrounding air temperatures as much as 9 degrees F (5 degrees C). Because cool air settles near the ground, air temperatures directly under trees can be as much as 25 degrees F (14 degrees C) cooler than air temperatures above nearby black rooftops. Winter You may be familiar with wind chill. If the outside temperature is 10 degrees F (-12 degrees C) and the wind speed is 32 kilometers per hour, the wind chill is -24 degrees F (-31 degrees C). Trees, fences, or geographical features can be used as windbreaks to shield your house from the wind. Houses with windbreaks placed only on the windward side (the side from which the wind is coming) can significantly reduce their energy consumption compared to similar but unprotected homes. If you live in a windy climate, your well-planned landscape can reduce your winter heating costs. Landscaping for a Cleaner Environment Widespread tree planting and indigenous planting offer substantial environmental benefits. Trees and vegetation control erosion, protect water supplies, provide food, create habitat for wildlife, and clean the air by absorbing carbon dioxide and releasing oxygen. 40

Energy Audit. 4. Presentation (optional) Present the information found through steps 2 and 3.

Energy Audit. 4. Presentation (optional) Present the information found through steps 2 and 3. Energy Audit Why do an Energy Audit? Have you ever wondered how energy efficient your school is? An energy audit can help you find out where your energy is going and how you can improve your school s efficiency

More information

Q1. The diagrams show what happens to each 100 joules of energy from burning coal on an open fire and in a stove.

Q1. The diagrams show what happens to each 100 joules of energy from burning coal on an open fire and in a stove. Q1. The diagrams show what happens to each 100 joules of energy from burning coal on an open fire and in a stove. (a) (b) Add the missing figures to the diagrams. Which is more efficient, the open fire

More information

16.3 Electric generators and transformers

16.3 Electric generators and transformers ElEctromagnEts and InductIon Chapter 16 16.3 Electric generators and transformers Motors transform electrical energy into mechanical energy. Electric generators do the opposite. They transform mechanical

More information

Keep your home. FREE from DAMP, CONDENSATION and MOULD

Keep your home. FREE from DAMP, CONDENSATION and MOULD Keep your home FREE from DAMP, CONDENSATION and MOULD 1 2 This booklet gives some basic information about the different types of dampness that may affect your home. Condensation is probably the biggest

More information

Reading Utility Meters

Reading Utility Meters Reading Utility Meters Summary: Students observe and interpret daily and weekly patterns of energy consumption by reading utility meters. Objectives Students will be able to read and interpret information

More information

Energy Merit Badge Workbook

Energy Merit Badge Workbook Merit Badge Workbook This workbook can help you but you still need to read the merit badge pamphlet. This Workbook can help you organize your thoughts as you prepare to meet with your merit badge counselor.

More information

The history electricity and electrical appliances Spot the dangers Fossil fuels Renewable energy Amy s family and why should save energy Peter s

The history electricity and electrical appliances Spot the dangers Fossil fuels Renewable energy Amy s family and why should save energy Peter s WHAT YOU WILL LEARN IN GREEN STUFF.... the different ways that our homes and schools are powered, HOW YOU CAN BE SAFER AT HOME, how to identify fossil fuels, HOW TO IDENTIFY RENEWABLE ENERGY SOURCES, how

More information

4.1 Where does your electricity come from? (Word Processor, internet)

4.1 Where does your electricity come from? (Word Processor, internet) 4.1 Where does your electricity come from? (Word Processor, internet) 10 points Name Due Date 1. Where do you live? (City, Zip code) 2. Who is your electricity supplier? o o o o o Go to http://www.cted.wa.gov/

More information

Energy Efficiency & Renewable Energy Resources

Energy Efficiency & Renewable Energy Resources Energy Efficiency & Renewable Energy Resources Discuss with your table partner: What is the difference between energy conservation and energy efficiency? Give an example of each. Improving the percentage

More information

Passive Solar Design for Homes

Passive Solar Design for Homes TEACHER OVERVIEWUNIT OF STUDY NO. No. 13 Passive Solar Design for Homes For Grades 6, 7 and 8 OVERVIEW In this unit students will learn about using the right type of materials in a home that conserves

More information

Plastic cap. Silvered surfaces. Vacuum

Plastic cap. Silvered surfaces. Vacuum Unit P1, P1.1 The transfer of energy by heating processes 1. A vacuum flask is designed to reduce the rate of heat transfer. Plastic cap Silvered surfaces Vacuum (a) (i) Complete the table to show which

More information

Energy Education. Intermediate Phase (Grade 4-6) (CAPS) Educator Guide Natural Science and Technology

Energy Education. Intermediate Phase (Grade 4-6) (CAPS) Educator Guide Natural Science and Technology Energy Education Intermediate Phase (Grade 4-6) (CAPS) Educator Guide Natural Science and Technology 1 Energy Education Energy Education The demand for electricity is growing. An alternative to building

More information

Measuring Electricity Class Activity

Measuring Electricity Class Activity Measuring Electricity Class Activity Materials Needed: 1. 6 Kill A Watt devices (note: these can be obtained from a variety of sources, i.e., local hardware stores, internet [average cost is $19.99; available

More information

Power Mate Lite Instructions

Power Mate Lite Instructions Power Mate Lite Instructions What is it? The Power Mate Lite is a simple device for measuring how much electricity appliances use, the amount of greenhouse gas emissions they produce from the electricity

More information

Chapter 18 Renewable Energy

Chapter 18 Renewable Energy Chapter 18 Renewable Energy MULTIPLE CHOICE 1. Habitat loss, soil erosion, and air pollution are disadvantages of which renewable energy source? a. solar c. biomass fuel b. wind d. moving water C DIF:

More information

The Numerous Benefits of Energy Efficient Practices

The Numerous Benefits of Energy Efficient Practices The Numerous Benefits of Energy Efficient Practices 01 What is energy efficiency? In order to best utilize available power sources, we must study concrete methods to reduce energy use while maintaining

More information

Reading Utility Bills

Reading Utility Bills Reading Utility Bills Summary: Students recognize and interpret electricity and natural gas use patterns for one year by reading a set of utility bills. Objectives Students will be able to read and interpret

More information

4 Responding to Climate Change Guiding Question: How can we respond to climate change?

4 Responding to Climate Change Guiding Question: How can we respond to climate change? LESSON 4 Responding to Climate Change Guiding Question: How can we respond to climate change? List ways to reduce greenhouse gases related to the use and generation of electricity. Describe some of the

More information

Your Family s Carbon Footprint

Your Family s Carbon Footprint Your Family s Carbon Footprint Key Concepts: Greenhouse Gas Carbon footprint Carbon dioxide Greenhouse gas Greenhouse effect Methane Nitrous oxide WHAT YOU WILL LEARN 1. You will calculate how much carbon

More information

Customer guide. Residential Dual Energy

Customer guide. Residential Dual Energy Customer guide Residential Dual Energy Table of Contents Residential dual energy 1 What a dual energy heating system is 2 How to set the mode selection switch 3 To make the most of rate DT 4 Dual-register

More information

My Electric Footprint

My Electric Footprint AK Target grades: 3-5 AK ELAM Standards: Mathematics 5.NBT.4 AK Science GLEs: [3] SE1.1 [3] SE2.1 [3] SE3.1 NGSS See page 5. Set up time: 15 minutes Class time: One to two class periods Overview: Students

More information

Lesson 7: Watt s in a Name(plate)?

Lesson 7: Watt s in a Name(plate)? Lesson 7: Watt s in a Name(plate)? Overview In this lesson, students determine how much electricity a particular device uses by reading electric nameplates and using Kill A Watt meters that monitor electrical

More information

Save energy. Save money!

Save energy. Save money! Save energy. Save money! Home Assistance Program Helping those in need with no-cost energy upgrades Lower your energy use Make your home more comfortable Manage your energy costs Get energy-efficient upgrades

More information

Lesson Plan One Energy Matters

Lesson Plan One Energy Matters Lesson Plan One Energy Matters Y5 Maths Learning Objectives Y5 Science Key aspects of other learning Learning Objective Number Fractions Recognise the per cent symbol and understand that per cent relates

More information

THE CASE OF THE MYSTERIOUS RENTERS

THE CASE OF THE MYSTERIOUS RENTERS THE CASE OF THE MYSTERIOUS RENTERS Objectives: The student will be able to: Identify ways in which water is used Determine how much water families use each day Recognize the importance of conserving water

More information

Energy Fun Pack! Look inside for... Energy Fun Facts. Energy Saving Tips

Energy Fun Pack! Look inside for... Energy Fun Facts. Energy Saving Tips Energy Fun Facts A 1.5 Megawatt wind turbine located in Wisconsin can generate enough power for over 250 average- sized homes. Once an aluminum can is recycled it can be made into a car in six weeks. To

More information

Generators supply electrical energy.

Generators supply electrical energy. Page of 5 KY CONCPT Generators supply electrical energy. BFOR, you learned Magnetism is a force exerted by magnets A moving magnetic field can generate an electric current in a conductor Generators use

More information

Low Income Baseload Programs: Design & Implementation Lighting

Low Income Baseload Programs: Design & Implementation Lighting ELEC 6 STERNER Low Income Baseload Programs: Design & Implementation Lighting ELEC 6 Thursday, May 25, 2006 3:30 pm 5:10 pm A. Tamasin Sterner Pure Energy Energy Use Breakdown What does my energy bill

More information

Total floor area: 41 m 2 Main type of heating and fuel: Room heaters, electric

Total floor area: 41 m 2 Main type of heating and fuel: Room heaters, electric Energy Performance Certificate Address of dwelling and other details 1/2 67 CHURCH STREET DUNDEE DD3 7HP This dwelling's performance ratings Dwelling type: Mid-floor flat Name of approved organisation:

More information

Identifying Strong ROI Opportunities for Green Upgrades and Engaging your Entire Portfolio on Incremental Change

Identifying Strong ROI Opportunities for Green Upgrades and Engaging your Entire Portfolio on Incremental Change Identifying Strong ROI Opportunities for Green Upgrades and Engaging your Entire Portfolio on Incremental Change Presented by: Ryan Delliacono, AGPM, LLD DeeAnne McClenahan, Greystar Kelly Thompson, HD

More information

A Homeowner s Guide to Energy Efficiency

A Homeowner s Guide to Energy Efficiency A Homeowner s Guide to Energy Efficiency This publication is produced in collaboration with Natural Resources Canada. *R-2000 and EnerGuide are official marks of Natural Resources Canada. The ENERGY STAR

More information

CHAPTER 1: OVERVIEW OF ENERGY EFFICIENT CONSTRUCTION

CHAPTER 1: OVERVIEW OF ENERGY EFFICIENT CONSTRUCTION Chapter 1: Overview of Energy Efficient Construction 1 CHAPTER 1: OVERVIEW OF ENERGY EFFICIENT CONSTRUCTION Chapter 1 is a quick reference guide that discusses the key components and features of energy

More information

Sci-Tech. Connections. The Heat's On. Hot Potatoes Grade 7 Sampler

Sci-Tech. Connections. The Heat's On. Hot Potatoes Grade 7 Sampler Sci-Tech Connections The Heat's On Hot Potatoes Grade 7 Sampler HOT POTATOES EXPECTATIONS work cooperatively, respect each other, work safely, and keep a clean work space use the terms heat and cooling

More information

Making a Difference One Watt at a Time

Making a Difference One Watt at a Time Making a Difference One Watt at a Time Introduction Is the world getting warmer? If so, are the actions of mankind to blame for earth s temperature increases? What can/should be done about these issues?

More information

WESTERN MICHIGAN UNIVERSITY !!!!!!!! Energy Usage Awareness. Prepared for: Dr. Harold Glasser Prepared by: Angela Wehner Spring 2014

WESTERN MICHIGAN UNIVERSITY !!!!!!!! Energy Usage Awareness. Prepared for: Dr. Harold Glasser Prepared by: Angela Wehner Spring 2014 Energy Usage Awareness Prepared for: Dr. Harold Glasser Prepared by: Angela Wehner Spring 2014 1 II. TABLE OF CONTENTS I. Title Page Page 1 II. Table of Contents Page 2 III. Executive Summary Page 3 IV.

More information

SAVING ENERGY. Teacher Guide

SAVING ENERGY. Teacher Guide SAVING ENERGY Teacher Guide MESSAGE TO THE TEACHER Dear Educator: On behalf of ComEd, the National Energy Education Development Project (NEED) is pleased to provide Saving Energy curriculum materials for

More information

Climate impact calculator for individuals

Climate impact calculator for individuals Climate impact calculator for individuals This calculator helps you to estimate the climate impact of your own life. It is divided into seven categories: transport; energy; food; waste; house building;

More information

Q1. (a) The student is using a microphone connected to a cathode ray oscilloscope (CRO).

Q1. (a) The student is using a microphone connected to a cathode ray oscilloscope (CRO). Q. (a) The student is using a microphone connected to a cathode ray oscilloscope (CRO). The CRO displays the sound waves as waves on its screen. What does the microphone do? (b) The amplitude, the frequency

More information

Measuring School Electronics Energy at Work 1

Measuring School Electronics Energy at Work 1 1 GRADE LEVEL 6-12 TIME NEEDED FOR COMPLETION 2 class periods or 1.5-2 hours STANDARDS LA GLEs and NGSS alignments are found in the Appendix starting on page A-1 MATERIALS 6 energy monitoring devices.

More information

THE ILLIANA HOME INSULATION GUIDE

THE ILLIANA HOME INSULATION GUIDE THE ILLIANA HOME INSULATION GUIDE Retrofitting existing homes with foam insulation Your home is one of your biggest investments and where you spend a majority of your life. From the color of your walls

More information

Reading Your Electric Meter

Reading Your Electric Meter AK Reading Your Electric Meter Target grades: 3-5 AK GLEs: Science Math [3/4/5] SA1.1 [3] E&C-4 [3/4/5] SA1.2 [4/5] E&C-3 [3/4] SA2.1 [3/4/5] S&P-2 Reading [3/4/5] 1.6.1 [3] 1.6.2 Set up time: 15 minutes

More information

Heating Earth Surfaces

Heating Earth Surfaces Heating Earth Surfaces 55 40- to 2-3 50-minute sessions ACTIVITY OVERVIEW L A B O R ATO R Y Students design an experiment to measure how the Sun s energy heats land and water as well as how quickly both

More information

Energy Performance Certificate

Energy Performance Certificate Energy Performance Certificate Northern Ireland 19, Letterloan Road, Macosquin, COLERAINE, BT51 4PP Date of assessment: Date of certificate: Reference number: Accreditation scheme: Assessor s name: Assessor

More information

Domestic Workshop on Energy Conservation

Domestic Workshop on Energy Conservation Domestic Workshop on Energy Conservation PCRA An Integrated Energy Solution Provider 1 Outline of the presentation PCRA An Integrated Energy Solution Provider 2 Emergence of PCRA 1973 : Oil Crisis World

More information

Cooking with the Sun

Cooking with the Sun Name: Class: Date: Grade 11F Science Related Reading/Physics Cooking with the Sun Physical Gr11F PRE READING ACTIVITY Answer the following questions 1.What happens when a car sits in the sun on a hot summer

More information

A student investigated the efficiency of a motor using the equipment in Figure 1. Figure 1

A student investigated the efficiency of a motor using the equipment in Figure 1. Figure 1 A student investigated the efficiency of a motor using the equipment in Figure. Figure He used the motor to lift a weight of.5 N a height of.0 m. He measured the speed at which the weight was lifted and

More information

touching lives, making a difference

touching lives, making a difference Save Trees Save Environment Save Earth A TIL -CSR Initiative Celebrating World Environment Day (WED) is about channeling individual actions that collectively become an exponential force for positive change.

More information

Energy and Waves, 3days

Energy and Waves, 3days This course links most of the content from Physics Unit 1: Energy, Radiation and the Universe into a progressive and practical course in the outdoors. Students will undertake practical and out-of-classroom

More information

Chapter Two: Page 35

Chapter Two: Page 35 Chapter Two: Page 35 Chapter Two: Page 36 Resources are things that we get from the living and nonliving environment to meet the needs and wants of a population. Some resources are basic materials, such

More information

Electricity is All Around You

Electricity is All Around You LESSON : Electricity is All Around You There aren t a lot of places that you can see electricity. The most common form of electricity you may know is lightning. Lightning is a big spark that occurs when

More information

What you need to know about 6 Star. 6 Star. for new homes, home renovations, alterations, additions and relocations

What you need to know about 6 Star. 6 Star. for new homes, home renovations, alterations, additions and relocations What you need to know about 6 Star 6 Star for new homes, home renovations, alterations, additions and relocations Introduction From 1 May 2011, all new homes, home renovations, additions, alterations and

More information

Green Remodeling Illustrations GREEN REMODELING ILLUSTRATIONS GREEN BUILDING GUIDELINES FOR HOME REMODELING

Green Remodeling Illustrations GREEN REMODELING ILLUSTRATIONS GREEN BUILDING GUIDELINES FOR HOME REMODELING Green Remodeling Illustrations GREEN REMODELING ILLUSTRATIONS GREEN BUILDING GUIDELINES FOR HOME REMODELING WWW.STOPWASTE.ORG New Addition Consider the following green remodeling options in a new addition.

More information

FIGURE L22.1 A long line at a gas station in Maryland as a result of the 1979 oil crisis

FIGURE L22.1 A long line at a gas station in Maryland as a result of the 1979 oil crisis Conservation of Energy and Wind Turbines How Can We Maximize the Amount of Electrical Energy That Will Be Generated by a Wind Turbine Based on the Design of Its Blades? Lab Handout Lab 22. Conservation

More information

A student investigated the efficiency of a motor using the equipment in Figure 1. Figure 1

A student investigated the efficiency of a motor using the equipment in Figure 1. Figure 1 A student investigated the efficiency of a motor using the equipment in Figure. Figure He used the motor to lift a weight of 2.5 N a height of 2.0 m. He measured the speed at which the weight was lifted

More information

ELECTRICITY: THE POWER OF NATURAL RESOURCES 60 Minute Physical Science Lesson Science-to-Go! Program Grades: 3-7

ELECTRICITY: THE POWER OF NATURAL RESOURCES 60 Minute Physical Science Lesson Science-to-Go! Program Grades: 3-7 TEACHER GUIDE ELECTRICITY: THE POWER OF NATURAL RESOURCES 60 Minute Physical Science Lesson Science-to-Go! Program Grades: 3-7 Electricity: The Power of Natural Resources Description Energize your classroom

More information

ENERGY INVESTIGATION. Energy Investigation Organization

ENERGY INVESTIGATION. Energy Investigation Organization Energy Investigation Organization A. Building Information, Energy Costs, and Energy Sources This section includes general questions about the school building, as well as questions about energy costs and

More information

Energy Performance Certificate

Energy Performance Certificate Energy Performance Certificate Northern Ireland 1085, Crumlin Road, BELFAST, BT14 8RX Energy Efficiency Rating Date of assessment: Date of certificate: Reference number: Accreditation scheme: Assessor

More information

Energy Performance Certificate

Energy Performance Certificate Energy Performance Certificate The Cartshed, Primrose Farm, Upper Littleton, Winford, BRISTOL, BS40 8HF Dwelling type: Detached house Date of assessment: 20 July 2009 Date of certificate: Reference number:

More information

Top actions you can take to save money and make your home more efficient

Top actions you can take to save money and make your home more efficient You can use this document to: Energy Performance Certificate (EPC) Dwellings Scotland 6 PIPERSQUOY TERRACE, KIRKWALL, KW15 1EL Dwelling type: Mid-terrace bungalow Date of assessment: 21 November 2017 Date

More information

Convection Conduction

Convection Conduction L 18 Thermodynamics [3] Review Heat transfer processes convection conduction Greenhouse effect Climate change Ozone layer Review The temperature of a system is a measure of the average kinetic energy of

More information

Designing with Energy-Efficient Lighting

Designing with Energy-Efficient Lighting Designing with Energy-Efficient Lighting Why Care? Why Care? Reducing energy use helps decelerate climate change by preventing greenhouse gas emissions As energy prices continue to rise, the importance

More information

Ask students to create a flyer that includes the community map of bag recycling locations and explains to readers why recycling is important.

Ask students to create a flyer that includes the community map of bag recycling locations and explains to readers why recycling is important. Bag It! When you go to the grocery, chances are you ll be offered some plastic bags. This activity explores where they come from, how much they cost and how they can be re-used. GRADES K-4 Replicate student

More information

Related party disclosure: Technical Information Benchmark. 82 m² 249 kwh/m² per year 53 kg/m² per year

Related party disclosure: Technical Information Benchmark. 82 m² 249 kwh/m² per year 53 kg/m² per year Energy Performance Certificate Northern Ireland 13 Oaktree Drive ANTRIM BT41 1DA Date of assessment: Date of certificate: Reference number: Accreditation scheme: Assessor's name: Assessor's accreditation

More information

Name: Period: Greenhouse Packet

Name: Period: Greenhouse Packet Greenhouse Packet Component 8.2.3 Guiding Questions (questions you should be able to answer by the end of this packet before taking the test!) 1. What are the three main waves that hit earth from the sun

More information

Write the words from the article into the definitions. The paragraph numbers are given to help you.

Write the words from the article into the definitions. The paragraph numbers are given to help you. environment: [noun] the natural world, including the land, water, air, plants and animals environmentally conscious: [adjective] being aware of the environment and our effect on it 1 QUIZ - HOW ENVIRONMENTALLY

More information

Heat and Thermal Energy

Heat and Thermal Energy Next Generation Science Standards NGSS Science and Engineering Practices: Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting

More information

Accommodation Guidelines. For Students. LILA* New Barratt House, 47 North John Street, Liverpool Merseyside England L2 6SG

Accommodation Guidelines. For Students. LILA* New Barratt House, 47 North John Street, Liverpool Merseyside England L2 6SG Accommodation Guidelines For Students LILA* New Barratt House, 47 North John Street, Liverpool Merseyside England L2 6SG Tel: (+44)151 707 0909 Email: accommodation@lilalovetolearn.com Accommodation Guidelines

More information

Miami Science Barge Field Trip Request Form

Miami Science Barge Field Trip Request Form Miami Science Barge Field Trip Request Form Teacher name: Email address: Date of request: Phone number: Preferred method of contact: Email Phone Name of School: Grade Level: Class size: students Number

More information

Dark Skies Outreach to Sub-Sharan Africa Program Outdoor Lighting Audit Teacher Guide

Dark Skies Outreach to Sub-Sharan Africa Program Outdoor Lighting Audit Teacher Guide Grades: 6-12 Overview: Students will be auditing the types of outdoor lights on one building at their school to determine how much energy those lights are using. Students will ultimately be making recommendations

More information

Energy Performance Certificate

Energy Performance Certificate Energy Performance Certificate 48, Sandbeds Road Dwelling type: Mid-terrace house HALIFAX Date of assessment: 4 May 010 HX 0QL Date of certificate: 4 May 010 Reference number: 8950-65-760-9664-996 Type

More information

ENERGY AUDIT. 123 Main Street Mississauga, Ontario. January 1, Report To: Mr. John Smith Smith Printing Company.

ENERGY AUDIT. 123 Main Street Mississauga, Ontario. January 1, Report To: Mr. John Smith Smith Printing Company. Report To: Mr. John Smith Smith Printing Company ENERGY AUDIT 123 Main Street Mississauga, Ontario January 1, 2009 120 Carlton Street, Suite 212 Toronto, Ontario M5A 4K2 Tel 416-964-3246 Toll Free 1-866-964-3246

More information

AP* Environmental Science Mastering the Math

AP* Environmental Science Mastering the Math AP* Environmental Science Mastering the Math Part I: Dimensional Analysis (aka Factor-Label or Unit Cancellation Method) Sample Problem 1 A large, coal-fired electric power plant produces 12 million kilowatt-hours

More information

Related party disclosure: Technical Information Benchmark. 58 m² 440 kwh/m² per year 66 kg/m² per year

Related party disclosure: Technical Information Benchmark. 58 m² 440 kwh/m² per year 66 kg/m² per year Energy Performance Certificate Northern Ireland Apartment 19 48 Rossmore Drive Ormeau BELFAST BT7 3LA Date of assessment: Date of certificate: Reference number: Accreditation scheme: Assessor's name: Assessor's

More information

MIT Carbon Sequestration Initiative

MIT Carbon Sequestration Initiative Question 1: Consider the following issues. What are the three most important issues facing the US today? [Note the graph does not include issues with less than five percent support.] Economy Health care

More information

Convection. L 18 Thermodynamics [3] Conduction. heat conduction. radiation

Convection. L 18 Thermodynamics [3] Conduction. heat conduction. radiation L 18 Thermodynamics [3] Heat transfer processes convection conduction Thermodynamics of the atmosphere Greenhouse effect and climate change Effect of the ozone layer Convection heat is transferred from

More information

Energy Performance Certificate

Energy Performance Certificate Energy Performance Certificate 129, North Road St. Andrews BRISTOL BS6 5AH Dwelling type: Mid-terrace house Date of assessment: 7 January 2009 Date of certificate: 7 January 2009 Reference number: 8281-6129-5770-1683-9006

More information

CB04. Outback House. Case Study. Creative Spaces Australia. by Casey Brown Architecture

CB04. Outback House. Case Study. Creative Spaces Australia. by Casey Brown Architecture CB04 Case Study Outback House by Casey Brown Architecture Creative Spaces Australia E : info@creativespacesaustralia.com.au www.creativespacesaustralia.com.au Introduction Inspired by the big sheds of

More information

Nevada Department of Education Standards

Nevada Department of Education Standards Energy Chains Students will act out a skit to demonstrate how energy makes its way from the sun to us, allowing us to run, play and even do homework. Students will understand that energy doesn t get used-up

More information

Energy Efficiency Rating

Energy Efficiency Rating Energy Performance Certificate Northern Ireland Flat 2 221, Belmont Road BELFAST BT4 2AH Date of assessment: 31 October 2011 Date of certificate: 01 November 2011 Reference number: 7799-7944-0250-6759-9984

More information

The National Optical Astronomy Observatory s IYL2015 QLT Kit Energy Calculation Worksheet SAMPLE Bulb Data Sheet

The National Optical Astronomy Observatory s IYL2015 QLT Kit Energy Calculation Worksheet SAMPLE Bulb Data Sheet Bulb Type #1: The National Optical Astronomy Observatory s IYL2015 QLT Kit Bulb Wattage: Bulb Data Sheet Bulb Lumens: Hours Bulb on in One Year: Number of Bulbs: Additional Notes: Bulb Type #2: Bulb Data

More information

3/6/2017 Past president & currently on the board of directors for the Wisconsin Geothermal Association

3/6/2017 Past president & currently on the board of directors for the Wisconsin Geothermal Association Saving energy and money with Geothermal technology Presented By Mark Flock President Flock s Heating & Air Conditioning WaterFurnace GeoPro Master Dealer Nate Certified Ground Source Loop Installer Member

More information

EC The Effective Detective : Finding Energy Savings at Home

EC The Effective Detective : Finding Energy Savings at Home University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Historical Materials from University of Nebraska- Lincoln Extension Extension 1978 EC78-2051 The Effective Detective : Finding

More information

Top actions you can take to save money and make your home more efficient

Top actions you can take to save money and make your home more efficient You can use this document to: Energy Performance Certificate (EPC) Dwellings Scotland KLONDYKE, ST OLA, KIRKWALL, KW15 1SX Dwelling type: Detached house Date of assessment: 19 January 2018 Date of certificate:

More information

GCSE BITESIZE Examinations

GCSE BITESIZE Examinations GCSE BITESIZE Examinations General Certificate of Secondary Education AQA SCIENCE A Unit Physics P1a AQA Chemistry Unit Physics P1a PHY1A (Energy and Electricity) (Energy and Electricity) FOUNDATION TIER

More information

MEDIA LITERACY STUDENT GUIDE. Copyright 2014 USA WEEKEND Magazine. All rights reserved. USA WEEKEND is a Gannett Co., Inc. property.

MEDIA LITERACY STUDENT GUIDE. Copyright 2014 USA WEEKEND Magazine. All rights reserved. USA WEEKEND is a Gannett Co., Inc. property. MEDIA STUDENT GUIDE Copyright 2014 USA WEEKEND Magazine. All rights reserved. USA WEEKEND is a Gannett Co., Inc. property. Information is everywhere. We take it in whether we want to or not. Some of the

More information

Energy Performance Certificate

Energy Performance Certificate Energy Performance Certificate Little Barn Marley Heights HASLEMERE GU27 3LU Dwelling type: Detached house Date of assessment: 9 March 2009 Date of certificate: 10 March 2009 Reference number: 8591-6927-5100-0861-1006

More information

Energy Performance Certificate

Energy Performance Certificate Energy Performance Certificate Apartment 32 Britannic Park 15 Yew Tree Road Moseley BIRMINGHAM B13 Dwelling type: Mid-floor flat Date of assessment: 28 March 2012 Date of certificate: 28 March 2012 Reference

More information

Exploring Energy. Middle School. Energy TEKS. Vocabulary

Exploring Energy. Middle School. Energy TEKS. Vocabulary Exploring Energy Middle School Energy TEKS Sixth Grade: 6.7A, 6.7B, 6.8A, 6.9A, 6.9B, 6.9C Seventh Grade: 7.5A, 7.7B Eighth Grade: 8.10A (Earth Science) Vocabulary biomass, chemical energy, coal, conduction,

More information

Teacher Resource. Power: How much does my school use? Power

Teacher Resource. Power: How much does my school use? Power Teacher Resource Power: How much does my school use? Power Terrific Scientific Campaign Investigation 8 Power At Terrific Scientific, we think it is vital to develop science learning in primary schools

More information

Top actions you can take to save money and make your home more efficient

Top actions you can take to save money and make your home more efficient You can use this document to: Energy Performance Certificate (EPC) Dwellings Scotland 2 COURTHILL FARM COTTAGES, KELSO, TD5 7RU Dwelling type: Semi-detached house Date of assessment: 02 March 2017 Date

More information

Energy Efficiency World Teacher s Guide

Energy Efficiency World Teacher s Guide Energy Efficiency World Teacher s Guide Site Overview Along with parents, teachers can play a key role in helping kids learn to use energy wisely. This section contains the resources you need to put this

More information

Attached Solar Greenhouse Plans for a solar heated greenhouse attached to your home

Attached Solar Greenhouse Plans for a solar heated greenhouse attached to your home Attached Solar Greenhouse Plans for a solar heated greenhouse attached to your home Designed and built by New Mexico landscape architect John Mosely for his own Santa Fe home. The solar greenhouse shown

More information

Renewable Energy. Visible light. Cool air. Warm air. Condensation. Precipitation. Evaporation

Renewable Energy. Visible light. Cool air. Warm air. Condensation. Precipitation. Evaporation Renewable Energy All renewable energy sources derive from the Sun. The Sun provides the energy that drives our weather systems and water cycle. It is the prime source of all energy on Earth and it is essential

More information

Grade 10 Academic Science Climate Change Unit Test

Grade 10 Academic Science Climate Change Unit Test Grade 10 Academic Science Climate Change Unit Test Part A - Multiple Choice: Circle the most correct answer. 1. What is the difference between weather and climate? a. Weather deals with wind and precipitation;

More information

PhET Greenhouse Effect

PhET Greenhouse Effect PhET Greenhouse Effect Objective: Describe how the greenhouse effect affects temperature on the earth and to use evidence to support whether the greenhouse effect is good or bad for the earth. Introduction:

More information

(92 plus) (81-91) (69-80) (55-68) (39-54) (21-38) (1-20) Estimated energy use, carbon dioxide (CO 2) emissions and fuel costs of this home

(92 plus) (81-91) (69-80) (55-68) (39-54) (21-38) (1-20) Estimated energy use, carbon dioxide (CO 2) emissions and fuel costs of this home Energy Performance Certificate 15, Hornchurch Road Bowerhill MELKSHAM SN12 6AH England & Wales EU Directive 2002/91/EC Dwelling type: Mid-terrace bungalow Date of assessment: 16 March 2010 Date of certificate:

More information

Second Edition. Climate- Being a. Friendly Kiwi. At home and at the office

Second Edition. Climate- Being a. Friendly Kiwi. At home and at the office Second Edition Climate- Being a Friendly Kiwi At home and at the office EASY GUIDE TO BEING A CLIMATE-FRIENDLY KIWI At home and at the office This free guide offers the tools you need to reduce your contribution

More information

The Greenhouse Effect. Greenhouse Gases. Greenhouse Gases. Greenhouse Gases

The Greenhouse Effect. Greenhouse Gases. Greenhouse Gases. Greenhouse Gases Global Warming Helen Cox, PhD Geography Department California State University, Northridge The Greenhouse Effect Science of global warming Greenhouse gases Other contributors Observed changes Temperature

More information

How to do a walk-through energy assessment: methodology and checklist

How to do a walk-through energy assessment: methodology and checklist How to do a walk-through energy assessment: methodology and checklist Eskom Energy Management Information Pack: Brochure 3 Index How to do a walk-through energy assessment: methodology and checklist 1

More information

Top actions you can take to save money and make your home more efficient

Top actions you can take to save money and make your home more efficient You can use this document to: Energy Performance Certificate (EPC) Dwellings Scotland 1F1, 41 MARCHMONT CRESCENT, EDINBURGH, EH9 1HF Dwelling type: Mid-floor flat Date of assessment: 26 June 2015 Date

More information