An experimental study of kit fuel cell car to supply power

Size: px
Start display at page:

Download "An experimental study of kit fuel cell car to supply power"

Transcription

1 An experimental study of kit fuel cell car to supply power Mustafa I. Fadhel Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450, Melaka, Malaysia. Abstract Fuel cell is one of energy source that has potential to replace petroleum in the future especially in transportation sector. In this paper the experimental of kit fuel cell car has been conducted in order to study the performance of hydrogen fuel cell car to supply power under Malaysian conditions. The photovoltaic panel (PV) was used to supply current to electrolyzer in order to break the water molecule into hydrogen and oxygen gas, and then, the hydrogen and oxygen gas remix in the fuel cell to generate electricity and also water as product. The efficiency of (PV, electrolyzer, and fuel cell) has been determined were found (17%, 95%, and 47%, respectively), while the total efficiency of the fuel cell car was 8%. The polarization curves for (PV, electrolyzer, and fuel cell) have been studied which have been shown the same pattern as the standard polarization curves of them. Even though the total efficiency of laboratory fuel cell car is very low, it shows the potentiality and reliability of using fuel cell as the power supply especially in the car. However there are still a lot of works for improvement and more effort should be contributed in this area. Keywords Photovoltaic, electrolyzer, fuel cell, fuel cell car efficiency I. INTRODUCTION Petroleum and fossil fuel are the main energy in this world nowadays. Whether for the domestic purposes or the transportation, we depend too much on them. However, petroleum and fossil fuel are not the renewable energy. It means, once is being used, we never get them back. According to Hubert peak oil theory, the oil reservation will at peak at [1]. Renewable energy like solar, wind, hydro and etc seems like the solution to encounter the problem. However, not all of them are suitable to use in both transportation and domestic purposes like petroleum and fossil fuel except fuel cell. It has been grown rapidly after the successful practical application in space program by NASA in After that, more researches have been done to make it practical to use in transportation and also to supply energy for domestic purposes and portable application. This because fuel cell has several advantages compare to fossil fuel and other alternative source; environmental friendly, renewable energy, and high efficiency. The first fuel cell vehicle called electrovan was built in 1967 by General Motor (GM) [2]. After that invention, the rapid development fuel cell car was show by participant of other car company like DaimlerChrysler, Ford, Mazda, BMW, Mercedes and etcetera. U.S Department of Energy (DOE) estimated that state of the initial validation of fuel cell is in year 2009 and will reach stability in customer acceptance in 2015[3]. TABLE I ESTIMATION OF FUEL CELL BY DEPARTMENT OF ENERGY (DOE) [3] Performance Measure Fuel Cell Durability Vehicle Range Untaxed Fueling Cost At Station ,000 hours 5,000 hours 402km (250 miles) $3/gallon gasoline equivalent 483 km (300 miles) $2-3/gallongasoline equivalent The number development of fuel cell in transportation sector has shown larger increase in Many car manufacturers have already begun their research in fuel cell to power their vehicle. This is because fuel cell has proved that they can replace ICE s car in the future. However, until now, there is no fuel cell car has been commercialize in the market. This because there are several problems like the price are too expensive and also the durability still unknown makes the car manufacture think twice before make it in the mass production. Some estimate that the fuel cell vehicle only can meet customer acceptance in only at [3-4]. The first fuel cell is invented by Sir William Grove in 1839 [5]. By using electrolysis principle, he invented the gas battery which can generate about 1 volt by experimenting with current flow during the electrolysis experiment. After that, Grove invents the gas chain by combining the series of gas battery in years later, the term of fuel cell was used. Ludwig Mond and Carl Langer have developed a new kind of gas battery that is a prototype of fuel cell [5-6]. Their research has encountered the problem about the flooding electrode due to the liquid electrolyte. It also used platinum black as the catalyst in their experiment. The results, it generates 0.97V fuel cell. After that, there is significant of the fuel cell development. One of the achievements is the research by Francis T. Tom Bacon. Inspired by the Grove s work, he successfully developed an alkaline fuel cell that can generate 6-kW [7]. There are many types of fuel cell. All of it have there are own advantages and disadvantages, in this study PEM (Proton ISBN:

2 Exchange Membrane also known as Polymer Electrolyte Membrane) fuel cell was used due to compact and lightweight of the cell and it can operate at very low temperature about 80 o C that make it suitable for the transportation industry [4]. Other types like Alkaline Fuel Cell (AFC) and Solid Oxide Fuel Cell (SOFC) have their own uniqueness that has been used in different purposes. The aim of this paper to determine the performance of the hydrogen fuel cell car under Malaysian conditions, and to verify the relation of current and voltage in the fuel cell car (The polarization curves have to be plotted in order to see the relationship between the current and voltage in the fuel cell, electrolyzer and also solar panel). II. METHODOLOGY A. Kit Fuel Cell Car Description The kit fuel cell car consists of three main components (photovoltaic panel (PV), electrolyzer and fuel cell). The car experiments set up shown in Figure 1. The photovoltaic panel (PV) was used to supply current to electrolyzer in order to break the water molecule into hydrogen and oxygen gas, and then, the hydrogen and oxygen gas remix in the fuel cell to generate electricity and also water as product. Later, water that has been produced can be use back to electrolyzer. The process can go on as long as the water produce is enough for the reaction. This process is called reversible process. of water with the help of catalyst in anode will separate the molecule into hydrogen proton (H + ), oxygen gas and electron. Hydrogen proton (H + ) will go through the PEM because PEM only allows the positive charge to go through it. At the cathode side this hydrogen proton (H + ) will combine with electron with the help of catalyst and produce hydrogen gas. The gasses will be store for the fuel cell process later. However, this process needs electricity for the reaction in anode and cathode. So, PV panel is use to supply the electricity for the electrolyzer. The reactions in PEM electrolyzer are: Anode reaction: 2 H 2 O(l) O 2 (g) + 4 H + (aq) + 4e (1) Cathode reaction: 4 H + (aq) + 4e 2H 2 (g) (2) Overall reaction: 2H 2 O 2H 2 (g) + O 2 (g) (3) The hydrogen and oxygen gasses will be used in order to generate electricity in fuel cell process. Hydrogen gasses will be supply to anode that later will be transform into hydrogen ion (H + ) and electron with the help of catalyst. The hydrogen ion (H + ) will cross the PEM to go to cathode side while, the electron have to cross the wire to go to cathode side. Once reaching the cathode, the ions are reunited with the electrons and the two react with oxygen, to create water and generate the energy. The reactions in PEM fuel cell are: Anode equation: 2H 2 4H + + 4e - (4) Cathode equation: O 2 + 4e - + 4H + 2H 2 O (5) Overall equation: 2H 2 + O 2 2H 2 O (6) B. Photovoltaic (PV) Efficiency The PV efficiency calculated by: (7) η PV PV efficiency Pm Maximum Power (voltage*current) E Light irradiance (1000 W/m 2 at STP) Ac Surface area of PV Fig.1 Kit fuel cell car experimental set up In the electrolyzer, water has been used to produce hydrogen and oxygen gasses. Water will be supply in anode. The reaction ISBN:

3 C. Electrolyzer Efficiency The electrolyzer efficiency could be: (8) η E Electrolyzer efficiency V cell Cell potential (V) i Input current density (A/cm 2 ) i loss Internal current density (A/cm 2 ) η DC The efficiency of voltage regulator ξ The ratio between parasitic power and fuel cell gross power output D. Fuel Cell Efficiency The fuel cell efficiency can be computed as: (9) η E Electrolyzer efficiency V cell Cell potential (V) i Input current density (A/cm 2 ) i loss Internal current density (A/cm 2 ) η DC The efficiency of voltage regulator ξ The ratio between parasitic power and fuel cell gross power output E. Fuel Cell Car Efficiency The total efficiency of fuel cell car is: III. RESULTS AND DISCUSSION The Table 2 shows the results between voltage and current of PV at different times of the day. TABLE 2 VOLTAGE AND CURRENT RESULTS OF PV Time 10.00am am am am pm pm pm pm pm pm pm pm An important design consideration in electrolyzer is the match between the current-voltage (I-U) characteristics of the PV array and the electrolyzer. If the electroyzer is connected directly to the array, it must operate near the maximum power point of the array or power will be lost. However, it is important that the electrolyzer voltage not be much larger than the Maximum Power Point (MPP) voltage or array output will drop precipitously. The relationship between voltage and current (I-U) of PV is shown in Figure 2. The maximum power of a PV depends on solar radiation and cell temperature, for fix cell temperature if the solar radiation increase the PV power increase. The relationship between voltage and current of electrolyzer is shown in Figure 3. As seen from the Figure 3 that high voltage produced which is necessary to split water as the 1.23 V enough to split the water. The amount of power (energy per time) that goes into the splitting of water is the product of the voltage and current. (10) ISBN:

4 potential power output at different load conditions. Many polarization curve-fitting strategies are available [8-9]. Figure 4 shows the relation of voltage against the current for the Fuel cell. A typical cell voltage versus current illustrates the performance of a fuel cell that operates at low temperature. As seen from the figure there are variations in the cell voltage due to an increasing current. The output power from the fuel cell is independent on the fluctuations in the solar insulation Fig. 2 voltage and current relationship of PV panel Fig. 3 voltage and current relationship of electrolyzer One typical feature in fuel cell is the cell current voltage relation referred to as the polarization curve. Such polarization curve is a plot of the measured cell voltage as function of the average current/current density, and therefore shows the Fig. 4 voltage and current relationship of fuel cell The photovoltaic efficiency calculated by equation (7), which is equal 17%. The PV panel efficiency is very small. However, compare with other PV panel efficiency, the efficiency is acceptable. The electrolyzer and fuel cell efficiency determined using equations (8) and (9), respectively. These efficiencies equations is based on the higher heating value (HHV), the efficiency of voltage regulator is fixed (η DC = 0.95), no internal current loss (i loss = 0) and no parasitic losses. The magnitude of the electrolyzer efficiency in this study was high which is equal 95%, however the value is still acceptable comparing with others. The fuel cell efficiency is 47%. The value of the efficiency of fuel cell is acceptable when it compare to other fuel cell. The total car fuel cell efficiency calculated by equation (10) which is equal 8%. Even though the total efficiency of laboratory fuel cell car is very low, it shows the potentiality and reliability of using fuel cell as the power supply especially in the car. ISBN:

5 IV. CONCLUSION The experiments of kit fuel cell car (Laboratory fuel cell car) have been conducted to show the reliability of using fuel cell car in Malaysia. The polarization curves for (PV, electrolyzer, and fuel cell) have been studied which have been shown the same pattern as the standard polarization curves of them. The efficiency of (PV, electrolyzer, and fuel cell) has been determined were found (17%, 95%, and 47%, respectively), while the total efficiency of the fuel cell car was 8%. Even though the total efficiency of laboratory fuel cell car is very low, it shows the potentiality and reliability of using fuel cell as the power supply especially in the car. However there are still a lot of works for improvement and more effort should be contributed in this area. REFERENCES 1. Wikipedia. Hubbert Peak Theory. [Online]. [2009, April 27] 2. Hoogers G. Introduction. Fuel Cell Technology Handbook. CRC Press, National Renewable Energy Laboratory (NREL), Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology, October Crawley, G., 2006, Opening doors to fuel cell commercialisation: Proton Exchange Membrane Fuel Cells (PEMFC). Fuel Cell Today, March G. Hoogers (eds.), Fuel Cell Technology Handbook. ISBN , CRC Press, Nice K., Strickland J. How Fuel Cell Works? [Online]. [2009, April 2] 7. Cook B. Introduction To Fuel Cells and Hydrogen Technology. Engineering Science and Education Journal, 11(6); 2002: Amphlett JC, Baumert RM, Mann RF, Peppley BA, Roberge PR, Rodrigues A. Parametric modeling of the performance of a 5-kW proton-exchange membrane fuel cell stack. Journal of Power Sources 1994; 49: Larminie J, Dicks A. Fuel Cell Systems Explained. England: John Wiley and Sons; ISBN:

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES Hydrogen is the simplest and lightest element. Storage is one of the greatest problems for hydrogen. It leaks very easily from

More information

FUEL CELLS: Types. Electrolysis setup

FUEL CELLS: Types. Electrolysis setup FUEL CELLS: Types History of the technology The fuel cell concept was first demonstrated by William R. Grove, a British physicist, in 1839. The cell he demonstrated was very simple, probably resembling

More information

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes)

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes) General Lesson Notes Electrochemistry is defined as the branch of chemistry that deals with oxidationreduction reactions that transfer electrons to form electrical energy rather than heat energy. An electrode

More information

A FUEL CELL AS A PETROL SUBSTITUTE; A FEASABILITY STUDY

A FUEL CELL AS A PETROL SUBSTITUTE; A FEASABILITY STUDY A FUEL CELL AS A PETROL SUBSTITUTE; A FEASABILITY STUDY SALAH I. AL-MOUSLY, member, IEEE, and ZIAD K. ALHAMDANI, member, ASA Faculty of Electronic Engineering, P.O. Box 38645, Libya ABSTRACT In the end

More information

Fuel Cell Technology

Fuel Cell Technology Fuel Cell Technology 1. Technology overview 2. Fuel cell performance 3. Fuel cell systems 4. Sample calculations 5. Experiment using PEM cell Goal: To provide a better understanding of the fuel cell technology,

More information

Wet Cells, Dry Cells, Fuel Cells

Wet Cells, Dry Cells, Fuel Cells page 2 page 3 Teacher's Notes Wet Cells, Dry Cells, Fuel Cells How the various electrochemical cells work Grades: 7-12 Duration: 33 mins Program Summary This video is an introductory program outlining

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

A Comparison of Two Engines. Benefits of an Electric Motor

A Comparison of Two Engines. Benefits of an Electric Motor Fuel Cells (http://www.stanford.edu/group/fuelcell/images/fuel%0cell%0components.jpg) Lecture prepared with the able assistance of Ritchie King, TA 1 A Comparison of Two Engines Internal-combustion engine

More information

Fuel Cells Futuristic Battery

Fuel Cells Futuristic Battery Understanding Solar Energy Teacher Page Fuel Cells Futuristic Battery Student Objectives The student: will be able to explain the chemical reaction in the electrolysis procedure will be able to explain

More information

Recent Advances in PEM Electrolysis and their Implications for Hydrogen Energy Markets

Recent Advances in PEM Electrolysis and their Implications for Hydrogen Energy Markets Recent Advances in PEM Electrolysis and their Implications for Hydrogen Energy Markets By Everett Anderson Symposium on Water Electrolysis and Hydrogen as Part of the Future Renewable Energy System 10-11

More information

Energy From Electron Transfer. Chemistry in Context

Energy From Electron Transfer. Chemistry in Context Energy From Electron Transfer Chemistry in Context Energy Types Batteries Hybrid Cars (Electrical) H 2 (and Other) Fuel Cells Solar Fuel Cell Car Demo H 2 Fuel Cell Reactions Step 1: H 2 (g) 2H + (aq)

More information

Hydrogen Fuel Cell Vehicle

Hydrogen Fuel Cell Vehicle Hydrogen Fuel Cell Vehicle The newly invented hydrogen car is a vehicle that uses hydrogen as its main source of fuel. These cars convert the chemical energy of hydrogen to mechanical energy either by

More information

A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY

A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY Scott B. Phelps and J. Kelly Kissock Department of Mechanical Engineering University of Dayton Dayton, Ohio ABSTRACT Up until now, most of the

More information

PEFC Technology Development

PEFC Technology Development PEFC Technology Development Göran Lindbergh, Björn Eriksson, Annika Carlson, Rakel Wreland Lindström, Carina Lagergren, KTH Fuel Cell 2015 Arlanda, December 3, 2015 Layout of presentation Introduction

More information

Zn(s) Zn 2+ (aq) + 2 e - Oxidation Anode Cu 2+ (aq) + 2 e - Cu (s) Reduction Cathode

Zn(s) Zn 2+ (aq) + 2 e - Oxidation Anode Cu 2+ (aq) + 2 e - Cu (s) Reduction Cathode Zn(s) Zn 2+ (aq) + 2 e - Oxidation Anode Cu 2+ (aq) + 2 e - Cu (s) Reduction Cathode Anode: H 2 (g) 2 H + (aq) + 2 e - Cathode: ½ O 2 (g) + 2 H + (aq) + 2 e - H 2 O (l) Net: ½ O 2 (g) + H 2 (g) H 2 O (l)

More information

MODELING OF PHOTOVOLTAIC CELL- FUEL CELL HYBRID SYSTEM: FOR UNINTERRUPTED POWER MANAGEMENT

MODELING OF PHOTOVOLTAIC CELL- FUEL CELL HYBRID SYSTEM: FOR UNINTERRUPTED POWER MANAGEMENT MODELING OF PHOTOVOLTAIC CELL- FUEL CELL HYBRID SYSTEM: FOR UNINTERRUPTED POWER MANAGEMENT Gaurav Kumar 1, Dr R. Vijaya Santhi 2, 1 MTech scholar, Dept. of Electrical Engineering, Andhra University, Andhra

More information

Report On Adsorption/Desorption Studies of CO on PEM Electrodes Using Cyclic Voltammetry. Sethuraman, Vijay Anand

Report On Adsorption/Desorption Studies of CO on PEM Electrodes Using Cyclic Voltammetry. Sethuraman, Vijay Anand Report On Adsorption/Desorption Studies of CO on PEM Electrodes Using Cyclic Voltammetry Sethuraman, Vijay Anand I. AIM: The aim of this study is to calculate the adsorption and desorption rate constants

More information

APPLICATIONS FOR HYDROGEN FUEL CELL TECHNOLOGY IN HIGH SCHOOL SCIENCE AND MATHEMATICS. EugeneWinkler Pullman High School Pullman, WA

APPLICATIONS FOR HYDROGEN FUEL CELL TECHNOLOGY IN HIGH SCHOOL SCIENCE AND MATHEMATICS. EugeneWinkler Pullman High School Pullman, WA APPLICATIONS FOR HYDROGEN FUEL CELL TECHNOLOGY IN HIGH SCHOOL SCIENCE AND MATHEMATICS. EugeneWinkler Pullman High School Pullman, WA Marcus McAleer Pullman High School Pullman, WA Jason Bledsoe Pullman

More information

THE ROLE OF THE HYDROGEN FUEL CELL IN PROVIDING CLEAN ENERGY OF THE FUTURE

THE ROLE OF THE HYDROGEN FUEL CELL IN PROVIDING CLEAN ENERGY OF THE FUTURE THE ROLE OF THE HYDROGEN FUEL CELL IN PROVIDING CLEAN ENERGY OF THE FUTURE ENVIRONMENTAL SUSTAINABILITY 1983 Brundtland Commission- Our Common Future 1987 Sustainable Development Development that meets

More information

FMI ENERGY CONFERENCE. Orlando September 2008

FMI ENERGY CONFERENCE. Orlando September 2008 FMI ENERGY CONFERENCE Orlando September 2008 FUEL CELL ORIGINS Sir William Grove invented the fuel cell in 1839 Demonstrated that reaction was reversible Fuel cell term introduced by Ludwig Mond and Charles

More information

PEM Water Electrolysis - Present Status of Research and Development

PEM Water Electrolysis - Present Status of Research and Development PEM Water Electrolysis - Present Status of Research and Development Review Lecture Session HP.3d Tom Smolinka Fraunhofer-Institut für Solare Energiesysteme ISE 18 th World Hydrogen Energy Conference 2010

More information

Workshop on Fuel Cells for Automotive Applications

Workshop on Fuel Cells for Automotive Applications Workshop on Fuel Cells for Automotive Applications A.M. Kannan (amk@asu.edu) Arizona State University Chulalongkorn University December 8, 2016 Thermal Electricity Electrocatalysis for Water Electrolyzer,

More information

New Energy Conservation Technologies

New Energy Conservation Technologies Queensland University of Technology & University of Queensland Jan 2004 New Energy Conservation Technologies By Julian Dinsdale Executive Chairman, Ceramic Fuel Cells Limited ABSTRACT During the next one

More information

Evaluation and simulation of a commercial 100 W Polymer Electrolyte Membrane Fuel Cell (PEMFC) Stack

Evaluation and simulation of a commercial 100 W Polymer Electrolyte Membrane Fuel Cell (PEMFC) Stack Evaluation and simulation of a commercial 100 W Polymer Electrolyte Membrane Fuel Cell (PEMFC) Stack GREGORIS PANAYIOTOU, PETROS AXAOPOULOS, IOANNIS FYRIPPIS Energy Technology Department Technological

More information

Effect of Mass Flow Rate and Temperature on the Performance of PEM Fuel Cell: An Experimental Study

Effect of Mass Flow Rate and Temperature on the Performance of PEM Fuel Cell: An Experimental Study Research Article International Journal of Engineering and Technology ISSN 2277-4106 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Effect of Mass Flow Rate and Temperature

More information

A Parametric Study of Stack Performance for a 4.8kW PEM Fuel Cell Stack. A thesis presented to. the faculty of

A Parametric Study of Stack Performance for a 4.8kW PEM Fuel Cell Stack. A thesis presented to. the faculty of A Parametric Study of Stack Performance for a 4.8kW PEM Fuel Cell Stack A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of

More information

Optimization Strategies of PEM Electrolyser as Part of Solar PV System

Optimization Strategies of PEM Electrolyser as Part of Solar PV System Optimization Strategies of PEM Electrolyser as Part of Solar PV System Antti Kosonen Joonas Koponen, Kimmo Huoman, Jero Ahola, Vesa Ruuskanen, Tero Ahonen (LUT) Thomas Graf (IRD) 7.9.16 Introduction: Why

More information

for Renewable Power Presented by: Stephen Szymanski Business Development Manager, Proton OnSite August 14, 2012

for Renewable Power Presented by: Stephen Szymanski Business Development Manager, Proton OnSite August 14, 2012 ydrogen Energy Storage for Renewable Power Presented by: Stephen Szymanski Business Development Manager, Proton nsite sszymanski@protononsite.com 203.678.2338 2338 August 14, 2012 Proton Energy Systems

More information

Neural network based control for PEM fuel cells

Neural network based control for PEM fuel cells IOSR Journal of Electronics & Communication Engineering (IOSR-JECE) ISSN(e) : 2278-1684 ISSN(p) : 2320-334X, PP 47-52 www.iosrjournals.org Neural network based control for PEM fuel cells Vinu.R 1, Dr.Varghese

More information

Status and Trends for Stationary Fuel Cell Power Systems

Status and Trends for Stationary Fuel Cell Power Systems Status and Trends for Stationary Fuel Cell Power Systems Dan Rastler Technical Leader, Distributed Energy Resources Program drastler@epri.com 650-855-2521 Discussion Topics Review Technical and R&D Status

More information

DEVELOPMENT OF A HIGH PRESSURE PEM ELECTROLYZER: ENABLING SEASONAL STORAGE OF RENEWABLE ENERGY

DEVELOPMENT OF A HIGH PRESSURE PEM ELECTROLYZER: ENABLING SEASONAL STORAGE OF RENEWABLE ENERGY 15 th Annual U.S. Hydrogen Conference, Los Angeles, CA, April 26-30, 2004 DEVELOPMENT OF A HIGH PRESSURE PEM ELECTROLYZER: ENABLING SEASONAL STORAGE OF RENEWABLE ENERGY R.A. Engel 1, G.S. Chapman 1, C.E.

More information

A spirit of innovation is in the air! Storing renewable energy using hydrogen

A spirit of innovation is in the air! Storing renewable energy using hydrogen A spirit of innovation is in the air! Storing renewable energy using hydrogen Unique research plant Can a car be refueled with wind energy? Can renewable energies help us to become more independent from

More information

Hydrogen Electrolyser An Approach to Increase Fuel Efficiency in Spark Ignition Engines

Hydrogen Electrolyser An Approach to Increase Fuel Efficiency in Spark Ignition Engines IJIRST National Conference on Recent Advancements in Mechanical Engineering (RAME 17) March 2017 Hydrogen Electrolyser An Approach to Increase Fuel Efficiency in Spark Ignition Engines R.Maheshkumar 1

More information

Teaching About Hydrogen Fuel Cells

Teaching About Hydrogen Fuel Cells Teaching About Hydrogen Fuel Cells NSTA - March 12, 2011 Chris Keller Curriculum Developer SEPUP The Lawrence Hall of Science UC Berkeley 2011 The Regents of the University of California 1 For More Information

More information

Chapter 2 Fuel Cells Operating and Structural Features of MCFCs and SOFCs

Chapter 2 Fuel Cells Operating and Structural Features of MCFCs and SOFCs Chapter 2 Fuel Cells Operating and Structural Features of MCFCs and SOFCs 2.1 Introduction The current movement toward environmentally friendlier and more efficient power production has caused an increased

More information

System Level modelling of fuel cell driven electric vehicles. Master s thesis in Electric Engineering ALBERT CERDÁN CODINA

System Level modelling of fuel cell driven electric vehicles. Master s thesis in Electric Engineering ALBERT CERDÁN CODINA System Level modelling of fuel cell driven electric vehicles Master s thesis in Electric Engineering ALBERT CERDÁN CODINA Elteknik Power Electronics Department CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg,

More information

Hydrocar Earth Sci. Lab

Hydrocar Earth Sci. Lab Hydrocar Earth Sci. Lab Name: Class: Date: Earth Sciences High School 6 hours Objective Build and modify a hydrogen fuel cell car to explore the concepts of renewable energy and human effects on global

More information

Abstract Process Economics Program Report 32B SMALL-SCALE HYDROGEN PLANTS (July 2003)

Abstract Process Economics Program Report 32B SMALL-SCALE HYDROGEN PLANTS (July 2003) Abstract Process Economics Program Report 32B SMALL-SCALE HYDROGEN PLANTS (July 2003) A great deal of enthusiasm is currently noticeable for so-called environmentally clean and alternate fuels. These fuels

More information

HYDROGEN FUEL CELL POWERTRAIN LEVELIZED COST OF ELECTRICITY

HYDROGEN FUEL CELL POWERTRAIN LEVELIZED COST OF ELECTRICITY HYDROGEN FUEL CELL POWERTRAIN LEVELIZED COST OF ELECTRICITY Mario Valentino Romeri Independent Consultant, Italy, Valentino.Romeri@Alice.it Overnight Costs and Levelized Costs of Generating Electricity

More information

Récupération et Stockage d énergie Energétique 5A

Récupération et Stockage d énergie Energétique 5A Récupération et Stockage d énergie Energétique 5A TP Evaluation théorique d un système pile à combustible Daniela CHRENKO 1. Introduction A fuel cell uses hydrogen and oxygen to create electricity by an

More information

Energy Storage Alternatives for Household and Utility-scale Applications

Energy Storage Alternatives for Household and Utility-scale Applications Energy Storage Alternatives for Household and Utility-scale Applications Marc Secanell Energy Systems Design Laboratory, http://www.esdlab.mece.ualberta.ca Department of Mechanical Engineering, University

More information

Energy, Environment, Hydrogen: A Case For Fuel Cells

Energy, Environment, Hydrogen: A Case For Fuel Cells Energy, Environment, Hydrogen: A Case For Fuel Cells Why Do We Need Energy? Heating/Cooking Transportation Manufacturing What Energy Sources Have We Used Over Time? Why Do We Care About Finding New Sources

More information

Modeling and analysis of electrochemical hydrogen compression

Modeling and analysis of electrochemical hydrogen compression Modeling and analysis of electrochemical hydrogen compression N.V. Dale 1,*, M. D. Mann 1, H. Salehfar 2, A. M. Dhirde 2, T. Han 2 Abstract One of the challenges to realizing the hydrogen economy is hydrogen

More information

Historical review and recent trends in nonconventional

Historical review and recent trends in nonconventional Historical review and recent trends in nonconventional energy source: Fuel Cell M.D.Mehare Department of Applied Physics Priyadarshini Indira Gandhi College of Engineering Nagpur,Maharastra,India Md.Zain

More information

Hydrogen production via catalytic water splitting. Prospects of reducing greenhouse emission by hydrogen powered energy technologies

Hydrogen production via catalytic water splitting. Prospects of reducing greenhouse emission by hydrogen powered energy technologies Hydrogen production via catalytic water splitting Prospects of reducing greenhouse emission by hydrogen powered energy technologies Increasing molecular weight Mass energy densities for various fuels Fuel

More information

Fuel of the future. HafenCity hydrogen station

Fuel of the future. HafenCity hydrogen station Fuel of the future HafenCity hydrogen station Energy future becomes a reality Electromobility with hydrogen At the entrance to Hamburg s HafenCity you can find a piece of the future: one of the biggest

More information

FUEL CELLS ALEJANDRO AVENDAO

FUEL CELLS ALEJANDRO AVENDAO FUEL CELLS ALEJANDRO AVENDAO 1 1) INTRODUCTION 3 2) BACKGROUND 3 Fuel Cell Basics 3 Fuel Cell types 4 A. Proton Exchange Membrane Fuel Cells (PEMFC) 4 B. Direct Methanol Fuel Cells (DMFC) 5 C. Phosphoric

More information

Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it?

Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it? Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it? D.P. Wilkinson 1,3, W. Merida 2,3 1 st Workshop : Durability and Degradation Issues in PEM Electrolysis Cells and its Components Fraunhofer

More information

ANSWERS TO END-OF-CHAPTER QUESTIONS

ANSWERS TO END-OF-CHAPTER QUESTIONS ANSWERS TO END-OF-CHAPTER QUESTIONS CHAPTER 8: ENERGY FROM ELECTRON TRANSFER Emphasizing Essentials 1. a. Define the terms oxidation and reduction. b. Why must these processes take place together? a. Oxidation

More information

Feature Article BULLETIN BULLETIN. Self-recharging onsite fuel cells Acta s fast track to hydrogen adoption for reliable telecoms

Feature Article BULLETIN BULLETIN. Self-recharging onsite fuel cells Acta s fast track to hydrogen adoption for reliable telecoms fuelcells BULLETIN BULLETIN ISSN 1464-2859 February October 2014 2010 www.fuelcellsbulletin.com Feature Article Self-recharging onsite fuel cells Acta s fast track to hydrogen adoption for reliable telecoms

More information

To Hydrogen or not to Hydrogen. Potential as a Ship Fuel. Dr. John Emmanuel Kokarakis. Emmanuel John Kokarakis University of Crete

To Hydrogen or not to Hydrogen. Potential as a Ship Fuel. Dr. John Emmanuel Kokarakis. Emmanuel John Kokarakis University of Crete To Hydrogen or not to Hydrogen. Potential as a Ship Fuel Dr. John Emmanuel Kokarakis Emmanuel John Kokarakis University of Crete THE VISION "I believe that water will one day be employed as fuel, that

More information

La Rance tidal power plant in La Rance, France. Tidal and Wave Energy

La Rance tidal power plant in La Rance, France. Tidal and Wave Energy La Rance tidal power plant in La Rance, France Tidal and Wave Energy Tides Tides are caused by the pull of the moon. Tides involve the rise and fall of sea levels. Around the coast of Ireland, the sea

More information

Methanol Steam Reformer High Temperature PEM Fuel Cell System Analysis

Methanol Steam Reformer High Temperature PEM Fuel Cell System Analysis Annex 3 to EDA Comm N 12/027 Methanol Steam Reformer High Temperature PEM Fuel Cell System Analysis Andrej LOTRIČ (Mebius d.o.o., Na jami 3, SI-1000 Ljubljana, Slovenia) and Stanko HOČEVAR (Mebius d.o.o.,

More information

APPLICATIONS OF ELECTROCHEMISTRY

APPLICATIONS OF ELECTROCHEMISTRY APPLICATIONS OF ELECTROCHEMISTRY SPONTANEOUS REDOX REACTIONS APPLICATIONS OF ELECTROCHEMICAL CELLS BATTERIES A galvanic cell, or series of combined galvanic cells, that can be used as a source of direct

More information

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis)

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Carl Stoots Idaho National Laboratory www.inl.gov Sustainable Fuels from CO 2, H 2 O, and Carbon-Free Energy

More information

Reference: Photovoltaic Systems, p. 229

Reference: Photovoltaic Systems, p. 229 Sizing is the basis for PV system designs, and determines the ratings for the PV array and other major components needed to produce and deliver a certain amount of energy. Different principles apply to

More information

CO 2 -Neutral Fuels. Adelbert Goede. Waldo Bongers, Martijn Graswinckel, Erik Langereis and Richard van de Sanden

CO 2 -Neutral Fuels. Adelbert Goede. Waldo Bongers, Martijn Graswinckel, Erik Langereis and Richard van de Sanden CO 2 -Neutral Fuels Adelbert Goede Waldo Bongers, Martijn Graswinckel, Erik Langereis and Richard van de Sanden i-sup 2016, 16-19 October Antwerp, Belgium DIFFER is part of and CO 2 Neutral fuels: What

More information

NONPOLLUTING energy generation and other environmental

NONPOLLUTING energy generation and other environmental IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 51, NO. 5, OCTOBER 2004 1103 An Electrochemical-Based Fuel-Cell Model Suitable for Electrical Engineering Automation Approach Jeferson M. Corrêa, Student

More information

Fuel cells hold promise for Forest

Fuel cells hold promise for Forest Engineering United States Department of Agriculture Forest Service Technology & Development Program April 2003 7100 0371-2307 MTDC Fuel Cells Are Coming Kathleen Snodgrass, Project Leader, and Longchaw

More information

Solar and wind hydrogen energy systems for standalone power supply

Solar and wind hydrogen energy systems for standalone power supply Solar and wind hydrogen energy systems for standalone power supply Project leader: Associate Professor John Andrews Presented by: Dr Bahman Shabani School of Aerospace, Mechanical and Manufacturing Engineering

More information

Solid State Ammonia Synthesis NHThree LLC

Solid State Ammonia Synthesis NHThree LLC Solid State Ammonia Synthesis NHThree LLC Jason C. Ganley John H. Holbrook Doug E. McKinley Ammonia - A Sustainable, Emission-Free Fuel October 15, 2007 1 Inside the Black Box: Steam Reforming + Haber-Bosch

More information

SILYZER 200 (PEM electrolysis system)

SILYZER 200 (PEM electrolysis system) 2016-09-27 SEV Conference 100/2030 Siemens AG - PD LD HY erik.wolf@siemens.com SILYZER 200 (PEM electrolysis system) Germany is by far the largest EU exporter of energy Energy Charts 2011 56TWh exp. 13TWh

More information

Hydrogen and fuel cells: towards a sustainable energy future

Hydrogen and fuel cells: towards a sustainable energy future Hydrogen and fuel cells: towards a sustainable energy future Professor Peter P. Edwards Head of Inorganic Chemistry University of Oxford Co-ordinator UK Sustainable Hydrogen Energy Consortium UK representative

More information

High Efficiency Large PEM Electrolyzers

High Efficiency Large PEM Electrolyzers High Efficiency Large PEM Electrolyzers Monjid Hamdan Director of Engineering Giner, Inc. 89 Rumford Ave, Newton, Ma. 02466 Outline Giner, Inc. Overview Advancements in Efficiency New Membranes Coming

More information

Hydrogen and Bioenergy Processes and Materials HYDROGEN THE FUTURE ENERGY CARRIER

Hydrogen and Bioenergy Processes and Materials HYDROGEN THE FUTURE ENERGY CARRIER Hydrogen and Bioenergy Processes and Materials HYDROGEN THE FUTURE ENERGY CARRIER CONTENTS 1) Energy requirements 2) Sources of Energy 3) Energy Carrier and Storage 4) Hydrides 5) Beyond Hydrogen 6) Summary

More information

Hydrogen: Bridging Electrical & Natural Gas Systems

Hydrogen: Bridging Electrical & Natural Gas Systems Hydrogen: Bridging Electrical & Natural Gas Systems Daryl Wilson President & CEO Hydrogenics October 13 th, 2011 NY-BEST Advanced Energy Conference Buffalo Dispatchability vs. Sustainability DISPATCHABILITY

More information

Hydrogen-based electric power unit for domestic applications

Hydrogen-based electric power unit for domestic applications Hydrogen-based electric power unit for domestic applications Arnaud Deschamps 1, Guillaume Doucet 1, Claude Etiévant 1, Pierre Millet 2, Christophe Puyenchet 1 1. Compagnie Européenne des Technologies

More information

Green usage of fossil fuels with solid oxide fuel cell

Green usage of fossil fuels with solid oxide fuel cell 211 2nd International Conference on Environmental Science and Development IPCBEE vol.4 (211) (211) IACSIT Press, Singapore Green usage of fossil fuels with solid oxide fuel cell H.Kazemi Esfeh Faculty

More information

Alkaline Electrolysers Wind and Photovoltaic Power Sources. Hannover Messe 2013 Hydrogen and Fuel cell

Alkaline Electrolysers Wind and Photovoltaic Power Sources. Hannover Messe 2013 Hydrogen and Fuel cell Alkaline Electrolysers Wind and Photovoltaic Power Sources Hannover Messe 2013 Hydrogen and Fuel cell Committed to excellence and innovation since its creation, H2Nitidor offers high efficiency Pressurized

More information

1.2 Description of the work performed and main results of the MEGASTACK projects

1.2 Description of the work performed and main results of the MEGASTACK projects 1 PUBLISHABLE SUMMARY 1.1 Project overview The main objective of MEGASTACK is to develop a cost efficient stack design for MW sized PEM electrolysers and to construct and demonstrate a prototype of this

More information

Numerical Studies of PEM Fuel Cell with Serpentine Flow-Field for Sustainable Energy Use

Numerical Studies of PEM Fuel Cell with Serpentine Flow-Field for Sustainable Energy Use Numerical Studies of PEM Fuel Cell with Serpentine Flow-Field for Sustainable Energy Use Sang-Hoon Jang 1, GiSoo Shin 1, Hana Hwang 1, Kap-Seung Choi 1, Hyung-Man Kim 1,* 1 Department of Mechanical Engineering

More information

SOLAR ENERGY FOR HYDROGEN PRODUCTION: EXPERIENCE AND APPLICATION IN SOUTH AFRICA

SOLAR ENERGY FOR HYDROGEN PRODUCTION: EXPERIENCE AND APPLICATION IN SOUTH AFRICA SASEC2015 Third Southern African Solar Energy Conference 11 13 May 2015 Kruger National Park, South Africa SOLAR ENERGY FOR HYDROGEN PRODUCTION: EXPERIENCE AND APPLICATION IN SOUTH AFRICA Bessarabov D

More information

Hydrogen, Methanol and Ethanol PEM Fuel Cell Development at IRTT

Hydrogen, Methanol and Ethanol PEM Fuel Cell Development at IRTT Hydrogen, Methanol and Ethanol PEM Fuel Cell Development at IRTT Hazem Tawfik, Ph.D., P.E., C.Mfg.E. SUNY Distinguished Service Professor Director of the Institute for Research and Technology Transfer

More information

Batteries and fuel cell research

Batteries and fuel cell research Batteries and fuel cell research Sri Narayan worked for 20 years at NASA s Jet Propulsion Laboratory (JPL) where he led the fuel cell research activities for over 15 years and also headed the Electrochemical

More information

Water Transport through a Proton-Exchange Membrane (PEM) Fuel Cell Operating near Ambient Conditions: Experimental and Modeling Studies

Water Transport through a Proton-Exchange Membrane (PEM) Fuel Cell Operating near Ambient Conditions: Experimental and Modeling Studies Energy & Fuels 2009, 23, 397 402 397 Water Transport through a Proton-Exchange Membrane (PEM) Fuel Cell Operating near Ambient Conditions: Experimental and Modeling Studies D. S. Falcão, C. M. Rangel,

More information

The Wind-to-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration

The Wind-to-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration The Wind-to-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration Technical Report NREL/TP-550-44082 March 2009 K.W. Harrison, G.D. Martin, T.G. Ramsden, and W.E. Kramer

More information

Linde warehouse technology with fuel cells

Linde warehouse technology with fuel cells Linde warehouse technology with fuel cells Hannes Schöbel LMH Int. Press Days 21./22. May 2012 Outlook to 2030 Development of drive systems Fuel cell Alternative fuels Hybrid and Lithium-ion technology

More information

Transient Stability Analysis of Renewable Energy System with Grid Interfacing at PCC

Transient Stability Analysis of Renewable Energy System with Grid Interfacing at PCC Transient Stability Analysis of Renewable Energy System with Grid Interfacing at PCC Vikas Jain Department of Electrical Engineering Pacific University, Udaipur, Rajasthan, India Ravi Prakash Department

More information

Teaching Chemistry with Hydrogen and Fuel Cells. Maia Willcox. SEPUP Lawrence Hall of Science UC Berkeley. WSST Madison Friday, March 9, 2012

Teaching Chemistry with Hydrogen and Fuel Cells. Maia Willcox. SEPUP Lawrence Hall of Science UC Berkeley. WSST Madison Friday, March 9, 2012 Teaching Chemistry with Hydrogen and Fuel Cells Maia Willcox SEPUP Lawrence Hall of Science UC Berkeley WSST Madison Friday, March 9, 2012 SCHATZ ENERGY RESEARCH CENTER Please fill out the blue contact

More information

Simulation And Optimization Of Waste Gas Fuel Cell System For Power Generation

Simulation And Optimization Of Waste Gas Fuel Cell System For Power Generation AUSTRALIAN JOURNAL OF BASIC AND APPLIED SCIENCES ISSN:1991-8178 EISSN: 239-8414 Journal home page: www.ajbasweb.com Simulation And Optimization Of Waste Gas Fuel Cell System For Power Generation 1,2 Ahmad

More information

Chapter 18 Renewable Energy

Chapter 18 Renewable Energy Chapter 18 Renewable Energy MULTIPLE CHOICE 1. Habitat loss, soil erosion, and air pollution are disadvantages of which renewable energy source? a. solar c. biomass fuel b. wind d. moving water C DIF:

More information

The Hydrogen Society A National Feasibility Study

The Hydrogen Society A National Feasibility Study The Hydrogen Society A National Feasibility Study [Hydrogensamfunnet en nasjonal mulighetsstudie] May 2000 A report prepared by SINTEF Energy Research, Trondheim Institute for Energy Technology, Kjeller

More information

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Electrolyzers

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Electrolyzers Laurea in Scienza dei Materiali Materiali Inorganici Funzionali Electrolyzers Prof. Dr. Antonella Glisenti -- Dip. Scienze Chimiche -- Università degli Studi di di Padova H 2 by Electrolysis High purity

More information

A Novel Concept for Modular High Pressure Water Electrolyser Systems

A Novel Concept for Modular High Pressure Water Electrolyser Systems A Novel Concept for Modular High Pressure Water Electrolyser Systems for Generation of Hydrogen from Excess Energy by Renewables U. Rost, J. Roth, M. Brodmann Westphalian Energy Institute Department: Hydrogen

More information

Economic, Environmental and Financial Analyses of Small-Scale Distributed Hydrogen Generation Alternatives

Economic, Environmental and Financial Analyses of Small-Scale Distributed Hydrogen Generation Alternatives Economic, Environmental and Financial Analyses of Small-Scale Distributed Hydrogen Generation Alternatives Laura E. Verduzco Environmental and Energy Management Program The George Washington University

More information

Fuelling a greener economy

Fuelling a greener economy Materials Foresight Making the future work for you Fuelling a greener economy The importance of materials for fuel cells and related technologies Foresight Fuel Cells Taskforce Members of the Foresight

More information

STAYERS FCH-JU Stationary PEM fuel cells with lifetimes beyond five years. Jorg Coolegem Nedstack fuel cell technology

STAYERS FCH-JU Stationary PEM fuel cells with lifetimes beyond five years. Jorg Coolegem Nedstack fuel cell technology STAYERS Stationary PEM fuel cells with lifetimes beyond five years FCH-JU 256721 Programme Review Day 2011 Brussels, 28 November Jorg Coolegem Nedstack fuel cell technology 0. Project description Stationary

More information

HYDROGEN GENERATION FOR THE ENHANCED INTEGRATION OF RENEWABLE ENERGY. Dr.ir. Jan Vaes Technology Director Hydrogenics Europe NV Oevel

HYDROGEN GENERATION FOR THE ENHANCED INTEGRATION OF RENEWABLE ENERGY. Dr.ir. Jan Vaes Technology Director Hydrogenics Europe NV Oevel HYDROGEN GENERATION FOR THE ENHANCED INTEGRATION OF RENEWABLE ENERGY Dr.ir. Jan Vaes Technology Director Hydrogenics Europe NV Oevel BMG Lustrum 19 September, Mechelen 1 Hydrogenics in Brief 3 production

More information

PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL PARAMETRIC STUDY VIA MATHEMATICAL MODELING AND NUMERICAL SIMULATION

PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL PARAMETRIC STUDY VIA MATHEMATICAL MODELING AND NUMERICAL SIMULATION PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL PARAMETRIC STUDY VIA MATHEMATICAL MODELING AND NUMERICAL SIMULATION By Rihab Jaralla B.Eng., University of Technology, Baghdad, Iraq, 1993 MASc., Ryerson University,

More information

Power to Gas. Bedeutung und Wirtschaftlichkeit verschiedener Power to Gas Umwandlungsketten , DGMK, Hannover

Power to Gas. Bedeutung und Wirtschaftlichkeit verschiedener Power to Gas Umwandlungsketten , DGMK, Hannover Power to Gas Bedeutung und Wirtschaftlichkeit verschiedener Power to Gas Umwandlungsketten 18.9.12, DGMK, Hannover Dr. Rainer Saliger Siemens Energy Sector, Erlangen Paradigm shift in power grids: The

More information

Experimental Investigation of Solar Hydrogen Production Unit in Taif, Saudi Arabia

Experimental Investigation of Solar Hydrogen Production Unit in Taif, Saudi Arabia Experimental Investigation of Solar Hydrogen Production Unit in Taif, Saudi Arabia Ali S. Alosaimy 1, Ahmed M. Hamed 1,2, Ashraf Balabel 1,3, and AbdelFattah Mahrous 1,3 1 Mechanical Engineering Dept.,

More information

CHEM 521 Analytical Electrochemistry TOPIC 4 Nov 28, Electrochemical energy storage and conversion

CHEM 521 Analytical Electrochemistry TOPIC 4 Nov 28, Electrochemical energy storage and conversion CHEM 521 Analytical Electrochemistry TOPIC 4 Nov 28, 2016 Electrochemical energy storage and conversion Batteries and Electrochemical Capacitors Daniel A. Scherson and Attila Palencsár The Electrochemical

More information

Design of Experiment. Jill Williams and Adam Krinke. Fuel Cell Project

Design of Experiment. Jill Williams and Adam Krinke. Fuel Cell Project Design of Experiment Jill Williams and Adam Krinke Fuel Cell Project Spring 2005 Introduction The Proton Exchange Membrane (PEM) fuel cell requires a relatively stringent environment for operation. The

More information

Modeling using HOMER Practice & Grid-Connected System. Course Contents. On SWERA

Modeling using HOMER Practice & Grid-Connected System. Course Contents. On SWERA 20161013 Modeling using HOMER Practice & GridConnected System AGH University of Science & Technology Faculty of Energy and Fuels (WEiP) Course Contents Modeling Grid Data Details GridConnected System Design

More information

IV.H Electrolysis. DOE Technology Development Manager: Matt Kauffman Phone: (202) ; Fax: (202) ;

IV.H Electrolysis. DOE Technology Development Manager: Matt Kauffman Phone: (202) ; Fax: (202) ; IV.H Electrolysis IV.H.1 Low-Cost, High-Pressure Hydrogen Generator Cecelia Cropley (Primary Contact), Tim Norman Giner Electrochemical Systems, LLC 89 Rumford Ave. Newton, MA 02466 Phone: (781) 529-0506;

More information

Hydrogen & Renewable Energy

Hydrogen & Renewable Energy HELION HELION HYDROGEN POWER Hydrogen & Renewable Energy DERBI 2009 Conference, Perpignan, June 11th 2009 Jean-Christophe HOGUET HELION HELION Subsidiary of AREVA R, renewable energy Business Unit Wind

More information

Basic Thermodynamics and System Analysis for Fuel Cells

Basic Thermodynamics and System Analysis for Fuel Cells 2 nd Joint European Summer School on Fuel Cell and Hydrogen Technology Crete, 17 th 28 th Sept. 2012 Basic Thermodynamics and System Analysis for Fuel Cells Prof. Dr. Robert Steinberger-Wilckens Centre

More information

Biomass Based Fuel Cells - Application to Manned Space Exploration

Biomass Based Fuel Cells - Application to Manned Space Exploration Biomass Based Fuel Cells - Application to Manned Space Exploration Aarne Halme Dept. of Automation and Systems Technology Helsinki University of Technology aarne.halme@tkk.fi ABSTRACT Long-term energy-demanding

More information

Fuel cell: from principle to application to the electric vehicle. Yann BULTEL, GINP Marian Chatenet, GINP Laurent Antoni, CEA Jean-Paul Yonnet, CNRS

Fuel cell: from principle to application to the electric vehicle. Yann BULTEL, GINP Marian Chatenet, GINP Laurent Antoni, CEA Jean-Paul Yonnet, CNRS Fuel cell: from principle to application to the electric vehicle Yann BULTEL, GINP Marian Chatenet, GINP Laurent Antoni, CEA Jean-Paul Yonnet, CNRS PLAN 1. Fuel Cell Introduction 2. Fuel Cell Principle

More information

Optimal Photovoltaic System Sizing of a Hybrid Diesel/PV System

Optimal Photovoltaic System Sizing of a Hybrid Diesel/PV System Ahmed Belhamadia 1*, Muhamad Bin Mansor 2, Mahmoud A Younis 3 J. Electrical Systems 13-1 (2017): 86-94 Regular paper Optimal Photovoltaic System Sizing of a Hybrid Diesel/PV System JES Journal of Electrical

More information