Renewable Energy Sources Class Slides Energy and Power Group 1

Size: px
Start display at page:

Download "Renewable Energy Sources Class Slides Energy and Power Group 1"

Transcription

1 School of Electrical Engineering and Computer Science Renewable Energy Sources Class Slides Energy and Power Group 1 Prepared by Luis G. Pérez Important Preliminary Note The material presented here is not to be used for profit purposes. The document is for the sole use in the undergraduate class Renewable Energy at the School of Electrical Engineering and Computer Science of Washington State University. This course is being partially sponsored by Puget Sound Energy, Inc. The material was prepared using, among other sources, figures and data tables which can be found in public sites in the INTERNET. However, the slides as a set are not public documents, they are intended for the exclusive use of the students registered in this class. Some of the slides were originally created by the instructor, and some have been copyrighted by Schweitzer Engineering Laboratories, Inc. Those slides are used here with permission. In general, the document should not be copied, reproduced or used for any purpose without citing the original sources. It is strongly recommended that the students consult the original sources of the figures and schemes using INTERNET search engines and the list of references shown at the end of this document. Luis G. Pérez Instructor 1

2 Objectives Define energy and power under a practical point view Identify the usable sources of energy Define efficiency and losses Identify existing commercial energy sources Identify where the energy is consumed Identify renewable energy sources Justify the need for electrical energy Explain the difference and application of energy and power Recognize the price of energy Explain home energy consumption and cost The Energy Concept Energy (Physics): A quantity that describes the capacity to do work; commonly divided into three major classifications: Kinetic (dynamic) Potential (static) Radiant (electromagnetic) A Human Need: To Control, Manipulate, Use Natural Energy 2

3 Human Traction Animal Traction 3

4 Animal Traction Device (Mill) Animal Traction Device (Mill) 4

5 The Windmill A wind wheel is a mechanical Energy transformer Modern Wind Wheels 5

6 Forms of Energy POTENTIAL Chemical Nuclear Stored Mechanical Energy Gravitational KINETIC Thermal (heat) Motion Sound Electrical Radiant (?) Energy (U) Formulae Energy (work) in joules: U = f d [J] Potential energy: U = m g h [J] Kinetic energy: U = 1 2 m v 2 [J] Units: 1 J = 1 N m = 1 W s 1 BTU = J 1 kcal = 4184 J 6

7 Energy Conservation: Efficiency. Input Energy PROCESS Output Energy Energy output is always less than energy input Efficiency=[(Output Energy) (Input Energy)] x 100 Efficiency is always less than 100 % Engineers try to design machines with efficiency close to 100% Energy Conservation Losses Heat produced by friction and other effects Input Energy PROCESS Output Energy In many processes, loss is an amount of energy which is transformed to a useless type of energy 7

8 Efficiency Formula Output Energy Efficiency = x100 Input Energy Input Energy = Output Energy + Losses Output Energy Efficiency = x100 Ouput Energy + Losses Energy Transportation or Transmission?? 8

9 Energy Transportation or Transmission?? To Transport? Pipelines? Trucks? Train? 9

10 Another Idea A 10-mile-long Pulley? How Do We Transport this Energy in a Secure and Economical Way? Converter Distribution Mechanical Energy Transformer Electrical Energy: Special type of energy efficient for transmission along great distances Converter Motion Converter Light Heater Heat 10

11 Electrical Energy A special form of energy Its main purpose is to transmit the useful energy from one place to another in a simple, versatile, efficient and clean way It is natural; however, we obtain it with the proper energy conversion process Energy Conversion Energy converters produce a form of energy different from the input energy Examples: Mechanical to Electrical Electrical to mechanical Chemical to Mechanical Chemical to Electrical Radiant to Electrical 11

12 Electromechanical Energy Conversion from Mechanical to Electrical Energy: The Electric Generator Mechanical Energy GENERATOR Electrical Energy Generator 12

13 Your Bike Dynamo is a Generator Your Car s Alternator is a Generator 13

14 Energy Converters with Electrical Energy as Input Light bulb: Electrical to Radiant Electric Motor: Electrical to Mechanical Heater: Electrical to Thermal Efficiency Input Energy Energy Converter Output Energy U η = U output input 100 (Efficiency is always less than 100%) 14

15 Efficiency of Some Energy Converters Device Input energy form Ouput Energy form Approximate Efficiency (%) Electric Heater Electrical Thermal 99 Hair drier Electrical Thermal 99 Electric Generator Mechanical Electrical 95 Large Electric motor Electrical Mechanical 90 Battery (dry cell) Chemical Electrical 90 Steam boiler (power plant) Chemical Thermal 85 Home gas furnace Chemical Thermal 85 Home oil furnace Chemical Thermal 65 Small Electric motor Electrical Mechanical 65 Home coal furnace Chemical Thermal 55 Steam turbine (power plant) Thermal Mechanical 45 Gas turbine (aicraft) Chemical Mechanical 35 Gas turbine (industrial) Chemical Mechanical 30 Automobile engine Chemical Mechanical 25 Fluorescent lamp Electrical Light 20 Silicon solar cell Light Electrical 15 Steam locomotive Chemical Mechanical 10 Incandescent lamp Electrical Light 5 Energy Needs (Scales) Small scale (home scale) Medium scale (factory, communities) Large scale (utility production, cities, states, countries) 15

16 Major Natural Energy Sources Petroleum Coal Natural Gas Considered non renewable sources Nuclear Hydro Wind Biomass Solar Considered renewable sources Other Non-renewable Natural Resource Units Demand Peak production Production Time (years) 16

17 Major Natural Energy Sources Where is Energy Used? Petroleum Coal Natural Gas L Electrical Sector L L=Losses L Nuclear Hydro Wind Residential/ Commercial L Biomass Solar Industrial L Other Transportation Energy Flow 17

18 Energy Sources for the Electric Sector (2006) Recommended Web Site U. S. Department of Energy Energy Information Administration (EIA) Official Statistics from the U. S. Government 18

19 Enerfy Electric Sector Energy Sources Considered Renewable and/or Green Hydroelectric power Wind turbine generation systems Solar thermal and photovoltaic energy Fuel cells Geothermal energy Tidal energy 19

20 Traditional Electrical Power System The Big Picture 20

21 The Difference Between Energy and Power Power is the rate at which energy is consumed (or produced): Power [Watts] = (Energy) (Time) Power is in watts Energy is in joules Time is in seconds Energy = (Power) x (Time) joules = watts x seconds 1 Calorie ~ 4.2 Joules Units of Power 1 Large Bulb 1 watt = 1 W 100 watts = 100 W 1000 watts = 1 kilo watt 1000 W = 1 kw Small Residential Zone 1 million watts = = 1000 kilo-watts = = 1 mega-watt = = 1 MW 21

22 Common Units of Energy and Power (1) Power This area is equal to 1 Joule 1 kw Power This area is equal to 1 kwh 1 Watt 1 second time Energy = (Power) x (time) 1 Joule = 1 Watt x 1 second 1 hour Energy = (Power) x (time) 1 kwh = 1 kw x 1 h time Precise Formulae Power: du P = dt Energy: P U t 2 = P t 1 dt t 1 t 2 t 22

23 Electric Power: Direct Current Source (D. C.) I D. C. Source V Wires Load -Battery -D. C. generator -Etc. Power produced by the source: P = V I -Light bulbs -D. C. motors -Etc. Units: 1 watt = 1 ampere x 1 volt 1W = 1 A x 1 V Electric Power: Single-Phase Alternating Current (A. C.) Source I A. C. Source V Load -Single-phase tap -A. C. generator -Etc. Power produced by the source: P = V I (PF) -Light bulbs -A. C. motors -Heaters -Etc. V and I are the effective (RMS) values of voltage and current PF = power factor 23

24 The Price of Electrical Energy (relatively old values ~1999) Industrial Rates Residential Rates US $/kwh US $/kwh Austria Belgium Canada France Germany India Italy Japan Switzerland United Kingdom United States What is going on in my House? 24

25 Typical Power Consumption of Home Appliances Device Light bulb Fan Typical Wattage (not a constant) 60 watts 75 watts Small black/white television Color television Home computer and monitor Electric blanket Microwave oven Furnace fan Refrigerator Hair Dryer Electric water heater Whole-house A/C or heat pump 100 watts 300 watts 400 watts 400 watts 750 watts 750 watts 300 watts 750 watts 4,500 watts 15,000 watts Load Curve for Typical House House Load Watts MISC. TV COMP KITCHEN LIGHTS REFRIG Hours 25

26 Energy and Money Consumption (Based on a flat price of $/kwh) Energy consumption during the day Money consumption during the day Ho urs H our s Monthly cost: $ 45 Approx. Generation needs are determined by the demand. Figures: energy, load curve, peak load, average load, load factor. Load Curve Load (MW) Time (hours) 26

27 Energy and Power Consumption Monthly Typical power consumptions (approximated) Monthly (kwh) Load (kw) Number of Habitants consumption per habitant (kwh) House type 1 (USA) 4, ,037.5 Residential House type 2 (Latinamerica) 1, Apartment type 1 (USA) 2, ,075.0 Apartment type 2 (Latinamerica) 1, Commercial Zone in Town ( Typical US average commercial client) 3, Commercial Mall Size 1 (12 average US commercial clients with not big supermarket) Mall Size 2 (12 average US commercial clients with supermarket or big Store) 45, , Industry 1 (Latinamerica) 52, Industrial Industry 2 (Small US Industry) 103, Industry 3 (USA) 306, City type 1 (Latin america 100,000 20,174,500 28, , inhabitant) Community City type 2 (USA) 545,267, ,317 1,000, City type 3 (USA Hot city) 2,350,267,893 3,264,261 3,000, Country type 1 (Vzla) 5,011,936,010 6,961,022 24,135, Countries Country type 2 (Guatemala) 1,761,936,010 2,447,133 11,986, Country type 3 (San Francisco Area) 6,761,936,010 9,391,578 8,636, Continent (*) Mexico - USA - CANADA 410 millions of habitants 380,000,000, ,777, ,000, Planet Earth 463,600,000, ,888,889 6,300,000, (*) The consumtion of North America is 4.5 times the consumption of the rest of the World Sources - Websites 1.- ElectricGeneratoScience Service HistoricImage Collection.url 2.- ElectricPower and Machines.url 3.- Bolivia_animal_traction.pdf.url 4.- Circuit Breaker Design.url 5.- Converticaloriesto Joules.url 6.- Cooper Bussmann.url 7.- DOE Office of Energy Efficienand RenewablEnergy (EERE) Home Page.url 8.- DOE's ConcentrSolar Power Overview.url 9.- earth at night.url 10.- ElectricAppliancand the Energy Dollar, HEG78-94-A.url 11.- ElectricGenerato- AC or DC.url 12.- ENERGY CONVERSIBOOK.url 13.- Enlaces Molinos de Viento en Espa a.url 14.- Gemta Ltd..url 15.- High Voltage ExperimeHandbook.url 16.- HomeowneHandbook- MSN House & Home.url 17.- How Your House Works, A Free Referencfor Homeowners.url 18.- HowStuff- Learn how EverythiWorks!.url 19.- http Hydro turbines2.url 21.- Hydro Turbines.url 22.- HydroelePower How it works.url 23.- Long Run Energy Demandÿ World Consumpt1999.url 24.- Magnet Man - Cool Experimewith Magnets.url 25.- MOLINOS DE LA MANCHA en La portada de Madridej( Toledo Espa a ).url 26.- Nuclear Energy NEI - GraphicsGallery.url 27.- Nuclear Tour.url 28.- PATIO DE DISTRIBUDE GURI.url 29.- Physics Lessons,Tutorialand Help by Science Joy Wagon.url 30.- Power and Energy Systems Group.url 31.- Simple AC Circuits.url 32.- Solar Energy Panels - Solar Water Heaters - Wind Power.url 33.- Swedish Innovati- Bike Dynamo.url 34.- The Dutch Windmill.url 35.- World electricprices (2).url 36.- World ElectricPrices.url 37.- World's Largest HydroelePlants.url 27

16.3 Electric generators and transformers

16.3 Electric generators and transformers ElEctromagnEts and InductIon Chapter 16 16.3 Electric generators and transformers Motors transform electrical energy into mechanical energy. Electric generators do the opposite. They transform mechanical

More information

AP Environmental Science. Understanding Energy Units- Skeleton Notes

AP Environmental Science. Understanding Energy Units- Skeleton Notes Name: Period: Date: AP Environmental Science Understanding Energy Units- Skeleton Notes The Joule Energy is defined as the ability to do work. The Joule (J) is a unit of energy or work. 10 Joules of energy

More information

REET Energy Conversion. 0 Introduction. Energy. the ability or capacity to do work

REET Energy Conversion. 0 Introduction. Energy. the ability or capacity to do work REET 3020 Energy Conversion 0 Introduction Energy can be defined as: Energy the ability or capacity to do work or the property of a system that diminishes when the system does work on any other system,

More information

Guided Reading Chapter 10: Electric Charges and Magnetic Fields

Guided Reading Chapter 10: Electric Charges and Magnetic Fields Name Number Date Guided Reading Chapter 10: Electric Charges and Magnetic Fields Section 10-1: Electricity, Magnetism, and Motion 1. The ability to move an object some distance is called 2. Complete the

More information

Measuring Electricity Class Activity

Measuring Electricity Class Activity Measuring Electricity Class Activity Materials Needed: 1. 6 Kill A Watt devices (note: these can be obtained from a variety of sources, i.e., local hardware stores, internet [average cost is $19.99; available

More information

Which power station is the most efficient overall, the normal power station or the combined heat and power station? Give reasons for your answer. ...

Which power station is the most efficient overall, the normal power station or the combined heat and power station? Give reasons for your answer. ... Q1. Power stations are usually not very efficient. A lot of energy is wasted as thermal energy. The diagrams show the percentage of energy transferred by two coal-burning power stations. (a) (b) Write

More information

2/17/2017. Energy Accounting & Education. Topics (Electricity) Creating Electricity

2/17/2017. Energy Accounting & Education. Topics (Electricity) Creating Electricity Energy Accounting & Education Energy Managers Kermit King School District of La Crosse John Daily School District of Holmen 1 Topics (Electricity) Creating electricity Defining degree days Customer charges

More information

Understanding and Measuring School Electronics

Understanding and Measuring School Electronics Understanding and Measuring School Electronics MATERIALS NEEDED: 1. 6 energy monitoring devices. Note: These can be obtained from a variety of sources, i.e. local hardware stores, internet -- average cost

More information

Measuring School Electronics Energy at Work 1

Measuring School Electronics Energy at Work 1 1 GRADE LEVEL 6-12 TIME NEEDED FOR COMPLETION 2 class periods or 1.5-2 hours STANDARDS LA GLEs and NGSS alignments are found in the Appendix starting on page A-1 MATERIALS 6 energy monitoring devices.

More information

Generators supply electrical energy.

Generators supply electrical energy. Page of 5 KY CONCPT Generators supply electrical energy. BFOR, you learned Magnetism is a force exerted by magnets A moving magnetic field can generate an electric current in a conductor Generators use

More information

2010 Culver Media, LLC 1

2010 Culver Media, LLC 1 Alternating current Also known as AC power, alternating current is electricity that reverses direction within a circuit. The electricity we use in our homes does this 120 times per second. Appliances Devices

More information

Farm Energy IQ. Farms Today Securing Our Energy Future. Farm Energy Efficiency Principles Tom Manning, New Jersey Agricultural Experiment Station

Farm Energy IQ. Farms Today Securing Our Energy Future. Farm Energy Efficiency Principles Tom Manning, New Jersey Agricultural Experiment Station Farm Energy IQ Farms Today Securing Our Energy Future Farm Energy Efficiency Principles Tom Manning, New Jersey Agricultural Experiment Station Farm Energy IQ Farm Energy Efficiency Principles Tom Manning,

More information

Farm Energy IQ. Farm Energy Efficiency Principles 2/16/2015. Farm Energy Efficiency. Basic Energy Principles

Farm Energy IQ. Farm Energy Efficiency Principles 2/16/2015. Farm Energy Efficiency. Basic Energy Principles Farm Energy IQ Farm Energy IQ Farms Today Securing Our Energy Future Farm Energy Efficiency Principles Tom Manning, New Jersey Agricultural Experiment Station Farm Energy Efficiency Principles Tom Manning,

More information

Energy. Energy is the ability to do work or effect change.

Energy. Energy is the ability to do work or effect change. Energy Energy Energy is the ability to do work or effect change. Energy Energy is the ability to do work or effect change. Energy exists in many different forms. Energy carried by electrons in motion.

More information

Section 1. Electricity and Your Community. What Do You See? Think About It. Investigate. Learning Outcomes

Section 1. Electricity and Your Community. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 7 Earth s Natural Resources Section 1 Electricity and Your Community What Do You See? Learning Outcomes In this section, you will Compare energy resources used to generate electricity in the United

More information

Richard F. Dick Storm. Sammy Tuzenew Field Services Manager

Richard F. Dick Storm. Sammy Tuzenew Field Services Manager Richard F. Dick Storm CEO, Storm Technologies, Inc. Sammy Tuzenew Field Services Manager Did You Ever Think about What Energy Does for Americans? How Energy and Economic Prosperity are Related? Office

More information

Renewable Energy Options Solar Photovoltaic Technologies. Lecture-1. Prof. C.S. Solanki Energy Systems Engineering, IIT Bombay

Renewable Energy Options Solar Photovoltaic Technologies. Lecture-1. Prof. C.S. Solanki Energy Systems Engineering, IIT Bombay Renewable Energy Options Solar Photovoltaic Technologies Lecture-1 Prof. C.S. Solanki Energy Systems Engineering, IIT Bombay chetanss@iitb.ac.in Contents Energy Energy Conversion processes Direct and indirect

More information

Energy Vocabulary. Word Definition Memory Aid the ability to cause an object to 1. energy move, change, or work

Energy Vocabulary. Word Definition Memory Aid the ability to cause an object to 1. energy move, change, or work the ability to cause an object to 1. move, change, or work 2. trade-off something that you do not want, but have to accept in order to have something that you want (disadvantage) 3. variable a changing

More information

Y7 Energy Summary Booklet

Y7 Energy Summary Booklet Y7 Energy Summary Booklet Energy Units Energy changes are measured in joules (J) or kilojoules (kj). Energy Stores and Transfers Energy stores Key word Description Examples Magnetic The energy stored in

More information

Basic Electrical Theory by: Brian H. Hurd. Work

Basic Electrical Theory by: Brian H. Hurd. Work Basic Electrical Theory by: Brian H. Hurd Work Work is the transfer of energy from one form to another. Electricity is one form of energy that results from a transfer of energy from any of several other

More information

Comparing Renewable Energy Sources

Comparing Renewable Energy Sources Section 1 - Supply and Demand Fossil Fuels At present our main sources of energy are the fossil fuels. These are coal, oil and gas. Fossil fuels are the remains of plants and animals that died millions

More information

Energy Flow and Conversion

Energy Flow and Conversion Energy Flow and Conversion PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo February 4, 2014 Some near-term topics Energy conversion Need for

More information

UES Bright Students: The Conservation Generation Pre Visit PowerPoint Script for Teachers

UES Bright Students: The Conservation Generation Pre Visit PowerPoint Script for Teachers Slide 1 UES / Bright Students Title Slide Slide 2 Energy Introduction Energy. It s in you, your home, your environment it s in everyone and it s everywhere. Energy is what moves us, what makes life happen.

More information

Course Lecture on book: Renewable Energy Power For A Sustainable Future Godfrey Boyle

Course Lecture on book: Renewable Energy Power For A Sustainable Future Godfrey Boyle 1 Course Lecture on book: Renewable Energy Power For A Sustainable Future Godfrey Boyle Chapter 1: Introducing Renewable Energy 1.1 Introduction Sun s power is 380 billion, billion MW. Each second, 600

More information

Electrical Principles and Technologies Unit D

Electrical Principles and Technologies Unit D Electrical Principles and Technologies Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Electric Charges Producing Charges Making Sense of Electrical Charges Conductors, Insulators, and

More information

Introduction to Energy Economics. Basic Concepts and Global Energy Picture

Introduction to Energy Economics. Basic Concepts and Global Energy Picture Introduction to Energy Economics Basic Concepts and Global Energy Picture Agenda Basic Definitions Units and Conversion Factors Energy Balances Global Energy Picture Exercise 2 Definitions Energy: the

More information

KNOWLEDGE EXPANDER ENERGY Shell Global Solutions International B.V.

KNOWLEDGE EXPANDER ENERGY Shell Global Solutions International B.V. KNOWLEDGE EXPANDER ENERGY WHAT IS THE DIFFERENCE BETWEEN ENERGY CONSERVATION AND ENERGY EFFICIENCY? ENERGY CONSERVATION involves reducing energy consumption, largely through behavioural change. ENERGY

More information

Energy. Energy an intangible phenomenon which can change the position, physical composition or temperature of matter.

Energy. Energy an intangible phenomenon which can change the position, physical composition or temperature of matter. Intro to Energy Energy Energy Energy Energy an intangible phenomenon which can change the position, physical composition or temperature of matter. Energy Energy an intangible phenomenon which can change

More information

Q1. A student investigated the efficiency of a motor using the equipment in Figure 1.

Q1. A student investigated the efficiency of a motor using the equipment in Figure 1. EFFICIENCY Q1. A student investigated the efficiency of a motor using the equipment in Figure 1. Figure 1 He used the motor to lift a weight of 2.5 N a height of 2.0 m. He measured the speed at which the

More information

Technology Exploration-II

Technology Exploration-II Technology Exploration-II Module 2 Renewable Energy PREPARED BY Academic Services Unit January 2012 Institute of Applied Technology, 2012 Module Objectives Module 2: Renewable Energy After the completion

More information

Energy and Global Issues

Energy and Global Issues Energy and Global Issues Chemical reactions Reactions that release heat are exothermic Reactions that absorb heat from surroundings are endothermic The energy involved in chemical reactions is measured

More information

Energy Literacy Survey

Energy Literacy Survey Note: questions have been updated in September 2013 with most recent data available from the U.S. Energy Information Administration. Energy Literacy Survey A Broad Assessment of Energy-related Knowledge,

More information

Assessment of Energy Conservation at Amman Try Steel Industries through Led Lighting Retrofit

Assessment of Energy Conservation at Amman Try Steel Industries through Led Lighting Retrofit Assessment of Conservation at Amman Try Steel Industries through Led Lighting Retrofit [1] K Sarath Kumar [] M Sathyamoorthi [3] M Selva Kumar [4] V Heawin Jeba Kumar Final year EEE, Saranathan College

More information

What are the 3 ways in which energy can travel? Explain what. conduction is. Does conduction happen best in solids, liquids or gases?

What are the 3 ways in which energy can travel? Explain what. conduction is. Does conduction happen best in solids, liquids or gases? What are the 3 ways in which energy can travel? Explain what conduction is What type of materials are good conductors and what type of materials are bad conductors (good insulators)? Does conduction happen

More information

Management Tools to Optimize Energy Consumption 1

Management Tools to Optimize Energy Consumption 1 Management Tools to Optimize Energy Consumption 1 Energy efficiency is usually defined as the relationship between the amount of energy consumed and the final products resulting from that consumption.

More information

National Energy Literacy Survey Assessment Questionnaire

National Energy Literacy Survey Assessment Questionnaire National Energy Literacy Survey Assessment Questionnaire BLOCK 1: Behaviors PLEASE READ CAREFULLY: This survey will ask you a variety of uestions as it relates to (1) your knowledge of energy concepts,

More information

- Free resources for K-12 1/6

- Free resources for K-12 1/6 Lesson: What is Energy? Summary copyright With an introduction to the ideas of energy, students discuss specific types of energy and the practical sources of energy. Hands-on activities help them identify

More information

Now, click on the word Oil (Petroleum) 2.) How is oil formed? 3.) Describe crude oil and where it is found.

Now, click on the word Oil (Petroleum) 2.) How is oil formed? 3.) Describe crude oil and where it is found. Energy Kids Page WebQuest You must follow the instructions step by step. Do not jump ahead. You will be using the website below to answer questions about energy resources. Log in to the computer. Open

More information

Contents. 3(a) Useful Energy and Efficiency. 3(b) Electricity and Circuits. Dynamics. 3(c) 2 P h y s i c s

Contents. 3(a) Useful Energy and Efficiency. 3(b) Electricity and Circuits. Dynamics. 3(c) 2 P h y s i c s 1 P h y s i c s Contents 3(a) 3(b) 3(c) Useful Energy and Efficiency Electricity and Circuits Dynamics 3 9 19 2 P h y s i c s 3(a) Useful Energy and Efficiency It is useful for energy consultants to be

More information

COSI ON WHEELS ENERGY! Program Information Packet

COSI ON WHEELS ENERGY! Program Information Packet COSI ON WHEELS ENERGY! Program Information Packet Energy! is designed to introduce students to the science of energy. The program consists of a 45 minute interactive assembly followed by exciting hands-on

More information

Exploring Hydroelectricity

Exploring Hydroelectricity 2013-2014 Exploring Hydroelectricity Student Guide SECONDARY 2 Exploring Hydroelectricity e What Is Energy? Energy makes change; it does things for us. It moves cars along the road and boats on the water.

More information

General Energy Use & Conservation Measures

General Energy Use & Conservation Measures General Energy Use & Conservation Measures What is Energy? The ability to do work (create motion or change matter) Ways to Measure Energy Joule (J) BTU British Thermal Unit amount of energy needed to heat

More information

APPA 2017 Fuels 1. Energy Fuel Types Fuel consumption What fuels are we using? What are we using it for?

APPA 2017 Fuels 1. Energy Fuel Types Fuel consumption What fuels are we using? What are we using it for? Barry Mielke, PE South Dakota State University Energy Fuel Types Fuel consumption What fuels are we using? What are we using it for? APPA 2017 Fuels 1 As defined by your science teacher, Energy is the

More information

Explain how energy is conserved within a closed system. Explain the law of conservation of energy.

Explain how energy is conserved within a closed system. Explain the law of conservation of energy. Section 3 Conservation of Energy Objectives Explain how energy is conserved within a closed system. Explain the law of conservation of energy. Give examples of how thermal energy is always a result of

More information

Energy Efficiency. Sound. Mechanical. Heat. Light. Chemical. Gravitational. There are many different forms of energy. Most of our

Energy Efficiency. Sound. Mechanical. Heat. Light. Chemical. Gravitational. There are many different forms of energy. Most of our Energy Efficiency Energy Efficiency There are many different forms of energy. Most of our household Sound appliances convert electrical energy into some other useful form of energy. Mechanical Heat Chemical

More information

SPH3U UNIVERSITY PHYSICS

SPH3U UNIVERSITY PHYSICS SPH3U UNIVERSITY PHYSICS ENERGY & SOCIETY L & (P.242-249) Incandescent light bulbs were invented over 150 years ago. Today, billions of light bulbs (lamps) illuminate vast areas of Earth at night. January

More information

5.2 Energy Transformation Technologies. Section 5.1 Questions

5.2 Energy Transformation Technologies. Section 5.1 Questions 5.2 Section 5.1 Questions 1. If our oil reserves are dwindling at a rate of 6%/a, what percent of our current supply will remain after 24 a? 2. (a) What is the approximate current cost per litre of regular

More information

Energy Efficiency. Sound. Mechanical. Heat. Light. Chemical. Gravitational. There are many different forms of energy. Most of our

Energy Efficiency. Sound. Mechanical. Heat. Light. Chemical. Gravitational. There are many different forms of energy. Most of our Energy Efficiency Energy Efficiency There are many different forms of energy. Most of our household Sound appliances convert electrical energy into some other useful form of energy. Mechanical Heat Chemical

More information

Curriculum Connections for re- energy.ca

Curriculum Connections for re- energy.ca Curriculum Connections for re- energy.ca Science, Grades 6 to 12 Alberta & Northwest Territories SCIENCE 7 Heat and Temperature Overall apply an understanding of heat and temperature in interpreting natural

More information

Living Science (Second Edition) Unit Test 1

Living Science (Second Edition) Unit Test 1 Living Science (Second Edition) Unit Test 1 4 Energy S1 Science Test Unit 4 Energy Name: ( ) Time and Marks Class: Date: Part A: 35 min / 100 marks Parts A & B: 45 min / 120 marks Note: 1 Attempt ALL questions.

More information

Electricity is All Around You

Electricity is All Around You LESSON : Electricity is All Around You There aren t a lot of places that you can see electricity. The most common form of electricity you may know is lightning. Lightning is a big spark that occurs when

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: EE1451-RENEWABLE ENERGY SOURCES YEAR / SEM : IV /VIII UNIT- I ENERGY SCENARIO 1. Mention

More information

Energy Education. Intermediate Phase (Grade 4-6) (CAPS) Educator Guide Natural Science and Technology

Energy Education. Intermediate Phase (Grade 4-6) (CAPS) Educator Guide Natural Science and Technology Energy Education Intermediate Phase (Grade 4-6) (CAPS) Educator Guide Natural Science and Technology 1 Energy Education Energy Education The demand for electricity is growing. An alternative to building

More information

Smart Grid. Project Types and Technology EnerNex. All Rights Reserved.

Smart Grid. Project Types and Technology EnerNex. All Rights Reserved. Smart Grid Project Types and Technology NIST Smart Grid Model Project Types Substation automation Distribution Automation Control Center Systems Electric Vehicle Charging Infrastructure Automated Metering

More information

10 Energy Consumption. Copyright 2012 John Wiley & Sons, Inc. All rights reserved.

10 Energy Consumption. Copyright 2012 John Wiley & Sons, Inc. All rights reserved. 10 Energy Consumption Copyright Overview of Chapter 10 Energy Consumption and Policy Energy Efficiency and Conservation Electricity, Hydrogen and Energy Storage Energy Policy Energy and Climate Change

More information

Carbon in US Energy Production

Carbon in US Energy Production Carbon in US Energy Production Peter Wilcoxen Departments of Economics and Public Administration The Maxwell School, Syracuse University SURE 2009 November 5, 2009 http://wilcoxen.maxwell.insightworks.com/pages/talks/

More information

Hands-On Energy Efficiency Teacher s Guide

Hands-On Energy Efficiency Teacher s Guide Hands-On Energy Efficiency Teacher s Guide Introduction The Hands-On Energy Efficiency activity booklet can be used to teach students the principles of wise energy use at home and at school. This presentation

More information

Electricity. Electricity at a Glance The Nature of Electricity. Making Electricity. Moving Electricity. 56 Secondary Energy Infobook 8.9% 19.

Electricity. Electricity at a Glance The Nature of Electricity. Making Electricity. Moving Electricity. 56 Secondary Energy Infobook 8.9% 19. Electricity at a Glance 2008 Secondary Source of Energy, Energy Carrier The Nature of Electricity Electricity is a little different from the other sources of energy that we talk about. Unlike coal, petroleum,

More information

ESSC Hold. Complete MyPlanner through graduation Workshops on MyPlanner. 08/27

ESSC Hold. Complete MyPlanner through graduation Workshops on MyPlanner. 08/27 ESSC Hold To remove hold: Complete MyPlanner through graduation Workshops on MyPlanner Sign up for Monday (Engr 391) 08/27 https://goo.gl/forms/rnur44uekfgbpit92 Sign up for Tuesday (Engr 407) 08/28 https://goo.gl/forms/hhhumn4q3hthei2j2

More information

Now, click on the word Oil (Petroleum) 2.) How is oil formed? 3.) What does the word petroleum mean? 4.) Describe crude oil and where it is found.

Now, click on the word Oil (Petroleum) 2.) How is oil formed? 3.) What does the word petroleum mean? 4.) Describe crude oil and where it is found. Energy Kids Page WebQuest You must follow the instructions step by step. Do not jump ahead. You will be using the website below to answer questions about energy resources. Log in to the computer. Open

More information

Voltage: electrical energy that is used to push electricity through a wire

Voltage: electrical energy that is used to push electricity through a wire Energy Resources Wednesday, March 25 th, 2015 EQ#12 Block #3 EQ: What is a KWH? How big is it? Kilo-Watt Hour, 3,600,000 J AA: If the period of a pendulum is 3 s when the bob has a mass of 100 g, what

More information

Environmental Life Cycle Assessment PSE 476/FB 576

Environmental Life Cycle Assessment PSE 476/FB 576 Environmental Life Cycle Assessment PSE 476/FB 576 Lecture 4: Life Cycle Inventory: Units and Material and Energy Balances Fall 2016 Richard A. Venditti Forest Biomaterials North Carolina State University

More information

ENERGY 1: RESOURCES. Ppt. by Robin D. Seamon

ENERGY 1: RESOURCES. Ppt. by Robin D. Seamon ENERGY 1: RESOURCES Ppt. by Robin D. Seamon Types of Energy Energy: the ability to do work (joules) (amt. of E to lift an apple 1m) Energy comes in many forms. FORMS of ENERGY: Thermal energy: energy from

More information

BUILDING ELECTRICAL AND SIGNAL SYSTEMS. Electricity Background

BUILDING ELECTRICAL AND SIGNAL SYSTEMS. Electricity Background BUILDING ELECTRICAL AND SIGNAL SYSTEMS Ball State Architecture ENVIRONMENTAL SYSTEMS 2 Grondzik 1 Electricity Background Electric charge was known to the ancient Greeks Magnetism was known historically

More information

Introduction to Energy. Energy

Introduction to Energy. Energy Introduction to Energy Dossin Energy- What is It? Alternative Vs. Renewable Energy Energy- Two Main Forms Conservation of Energy Energy Efficiency Measuring Energy Using Energy RESOURCES Information copied

More information

What are your Energy Needs?

What are your Energy Needs? FLORIDA SOLAR ENERGY CENTER A Research Institute of the University of Central Florida What are your Energy Needs? Bill Young Florida Solar Energy Center 1679 Clearlake Road Cocoa, Florida 32922 (321) 638-1443

More information

We use energy every day. It surrounds us in different

We use energy every day. It surrounds us in different Page 1 of 6 Energy is all around us We use energy every day. It surrounds us in different forms, such as light, heat, and electricity. Our bodies use the energy stored in molecules of substances like carbohydrates

More information

TEP Bright Students: The Conservation Generation Pre- Visit PowerPoint Script for Teachers

TEP Bright Students: The Conservation Generation Pre- Visit PowerPoint Script for Teachers Slide 1 Intro Welcome to the Bright Students: The Conservation Generation pre- visit PowerPoint presentation. The information we ll learn in this activity will help us prepare for our guest presenters

More information

sources, conserving energy & efficiency.notebook. December 15, Sources of Electrical Energy: How does a generator work?

sources, conserving energy & efficiency.notebook. December 15, Sources of Electrical Energy: How does a generator work? Sources of Electrical Energy Efficiency Cost of Electricity SNC 1P/D Sources of Electrical Energy: Energy comes in many different forms, including kinetic energy (energy of motion), chemical energy (energy

More information

Basics 6 Converting solar power into electricity 6 Solar models with solar module 7. If something doesn't work right 9

Basics 6 Converting solar power into electricity 6 Solar models with solar module 7. If something doesn't work right 9 Welcome to the world of fischertechnik's PROFI line 3 Energy in your everyday life 3 Oil, Coal, Nuclear Power 4 Water and Wind 4 Solar Energy 5 Energy 5 6 Basics 6 Converting solar power into electricity

More information

The diagram shows how electricity is distributed from a power station and transmitted along the National Grid.

The diagram shows how electricity is distributed from a power station and transmitted along the National Grid. 1 The diagram shows how electricity is distributed from a power station and transmitted along the National Grid. (a) (b) Complete labels A and B on the diagram. Use the correct word from the box to complete

More information

GRADE VI ELECTRICAL ENERGY. Identify energy and their uses (electrical)

GRADE VI ELECTRICAL ENERGY. Identify energy and their uses (electrical) GRADE VI ELECTRICAL ENERGY At the end of the module, you should be able to: Identify energy and their uses (electrical) Try to Recall Study the type of energy shown in each picture. Identify whether it

More information

PRE- VISIT POWERPOINT SCRIPT FOR TEACHERS TEP BRIGHT STUDENTS: THE CONSERVATION GENERATION

PRE- VISIT POWERPOINT SCRIPT FOR TEACHERS TEP BRIGHT STUDENTS: THE CONSERVATION GENERATION PRE- VISIT POWERPOINT SCRIPT FOR TEACHERS TEP BRIGHT STUDENTS: THE CONSERVATION GENERATION Slide 1 Intro Welcome to the Bright Students: The Conservation Generation pre- -visit PowerPoint presentation.

More information

&KDSWHU $QVZHUV 6HFWLRQ 5HYLHZ &KDOOHQJH S 6HFWLRQ 5HYLHZ 6HFWLRQ 5HYLHZ 81,7 027,21 )25&( $1' (1(5*<

&KDSWHU $QVZHUV 6HFWLRQ 5HYLHZ &KDOOHQJH S 6HFWLRQ 5HYLHZ 6HFWLRQ 5HYLHZ 81,7 027,21 )25&( $1' (1(5*< 1. Sample answer: A simple machine is useful because it can provide mechanical advantage by multiplying force or distance. For example, levers are useful because you can arrange the fulcrum and the input

More information

Global Energy Production & Use 101

Global Energy Production & Use 101 Global Energy Production & Use 101 Jean-Sébastien Rioux The School of Public Policy SPP-HEI Summer School on the Geopolitics of Energy & Natural Resources Calgary, AB May 15-20, 2017 Presentation highlights

More information

Energy and Energy Resources

Energy and Energy Resources Energy and Energy Resources Energy Defined as the ability to do work or the ability to cause change. Two types of energy: Kinetic energy- energy of motion; anything that moves has kinetic energy, cars,

More information

Energy Efficiency & Renewable Energy Resources

Energy Efficiency & Renewable Energy Resources Energy Efficiency & Renewable Energy Resources Discuss with your table partner: What is the difference between energy conservation and energy efficiency? Give an example of each. Improving the percentage

More information

CHAPTER I Introduction to Electrical Power

CHAPTER I Introduction to Electrical Power CHAPTER I Introduction to Electrical Power 1 Electrical power is the prime source of energy that supports almost all of our technologies. Electricity is the most convenient and omnipresent energy available

More information

WORK Potential Kinetic

WORK Potential Kinetic Energy What is energy? - Ability to do WORK - The transfer of energy is work, power is the rate at which energy is transferred. - There are many forms of energy (chemical, mechanical, nuclear, thermal,

More information

Session 6. Solar Power Plant

Session 6. Solar Power Plant Session 6 Solar Power Plant What is Solar Energy? Originates with the thermonuclear fusion reactions occurring in the sun. Represents the entire electromagnetic radiation (visible light, infrared, ultraviolet,

More information

ECE 333 GREEN ELECTRIC ENERGY Introduction and Overview

ECE 333 GREEN ELECTRIC ENERGY Introduction and Overview ECE 333 GREEN ELECTRIC ENERGY Introduction and Overview Pete Sauer subbing for George Gross Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign RENEWABLE ENERGY

More information

Hands-On Energy Efficiency Teacher s Guide

Hands-On Energy Efficiency Teacher s Guide Hands-On Energy Efficiency Teacher s Guide Introduction The Hands-On Energy Efficiency activity booklet can be used to teach students the principles of wise energy use at home and at school. The content

More information

ELECTRICITY AND ENERGY

ELECTRICITY AND ENERGY 1 Using electricity Electricity is a very important type of energy. There are lots of ways we can describe electricity they all have specialised meanings. Draw lines to connect each word with its meaning

More information

Energy Consumption. Energy Use. U.S. Energy Consumption by Sector, Who Uses Energy? Residential and Commercial Sectors

Energy Consumption. Energy Use. U.S. Energy Consumption by Sector, Who Uses Energy? Residential and Commercial Sectors Energy Use Think about how you use energy every day. You wake up to an alarm clock. You take a shower with water warmed by a hot water heater. You listen to music on the radio as you dress. You catch the

More information

CHAPTER 1. Fundamentals of Energy and the Power System

CHAPTER 1. Fundamentals of Energy and the Power System CHAPTER 1 Fundamentals of Energy and the Power System 1 Historical Facts In 600 B.C. Thales discovered that amber, when rubbed, attracted small objects. He had discovered static electricity. In 1600 the

More information

Technology Exploration-II

Technology Exploration-II Technology Exploration-II Module 2 Renewable Energy PRACTICAL TASKS ONLY PREPARED BY Academic Services Unit January 2012 Institute of Applied Technology, 2012 2.3 Practical Activity 1: Collecting Energy

More information

Name CHAPTER 12 NONRENEWABLE ENERGY RESOURCES. (watts)(hours used per day)(365 days) = total kwh used 1000

Name CHAPTER 12 NONRENEWABLE ENERGY RESOURCES. (watts)(hours used per day)(365 days) = total kwh used 1000 Name CHAPTER 12 NONRENEWABLE ENERGY RESOURCES PREPARE TO DO THE MATH Knowing Units of Energy Units of energy/power can often be difficult for students to understand. It is important to go over several

More information

Topic P3 Sustainable Energy Homework booklet

Topic P3 Sustainable Energy Homework booklet Name Key terms and spellings on back page Topic P3 Sustainable Energy Homework booklet Due Date Teacher Comment Homework 1 Homework 2 Homework 3 Homework 4 Homework One: Energy and Power Stations Add these

More information

Energy Efficiency World Teacher s Guide

Energy Efficiency World Teacher s Guide Energy Efficiency World Teacher s Guide INTRODUCTION The Energy Efficiency World booklet teaches the basic principles of energy and how to use it efficiently. Topics include renewable and nonrenewable

More information

Energy Efficiency World Teacher s Guide

Energy Efficiency World Teacher s Guide Energy Efficiency World Teacher s Guide INTRODUCTION The Energy Efficiency World booklet teaches the basic principles of energy and how to use it efficiently. Topics include renewable and nonrenewable

More information

Energy Efficiency World Teacher s Guide

Energy Efficiency World Teacher s Guide Energy Efficiency World Teacher s Guide INTRODUCTION The Energy Efficiency World booklet teaches the basic principles of energy and how to use it efficiently. Topics include renewable and nonrenewable

More information

Name Class Date. What is an energy resource? How do we use nonrenewable energy resources? What are renewable energy resources?

Name Class Date. What is an energy resource? How do we use nonrenewable energy resources? What are renewable energy resources? CHAPTER 5 4 Energy Resources SECTION Energy and Energy Resources BEFORE YOU READ After you read this section, you should be able to answer these questions: What is an energy resource? How do we use nonrenewable

More information

General Certificate of Secondary Education Foundation Tier and Higher Tier November 2009

General Certificate of Secondary Education Foundation Tier and Higher Tier November 2009 Centre Number Candidate Number Surname Other Names Candidate Signature General Certificate of Secondary Education Foundation Tier and Higher Tier November 2009 Science A Unit Physics P1a (Energy and Electricity)

More information

Lesson: Carbon Footprint of Lightbulbs

Lesson: Carbon Footprint of Lightbulbs Drexel-SDP GK-12 LESSON Lesson: Carbon Footprint of Lightbulbs Subject Area(s) Electrical engineering, environmental engineering Associated Unit Environments, module 4 Lesson Title Lesson: Carbon Footprint

More information

Energy in nature and technology

Energy in nature and technology Energy in nature and technology Objectives Provide examples of kinetic and potential energy and their transformations. Communicate and apply scientific information extracted from various sources. Research

More information

30/11/14 Topic 4 Waves and the Earth

30/11/14 Topic 4 Waves and the Earth Topic 4 Waves and the Earth Ultrasound Ultrasound is the region of sound above 20,000Hz it can t be heard by humans. There are a number of uses for ultrasound: 1) Pre-natal scanning 2) Sonar 3) Communication

More information

Image Credits. Energy Applications. Check

Image Credits. Energy Applications. Check 11. Answers will vary. An internal combustion machine has an efficiency of less than 20%. A perpetual motion machine, theoretically, has an efficiency of 100%. The efficiency of an internal combustion

More information

BASIC CONCEPTS. Yahia Baghzouz Electrical & Computer Engineering Department

BASIC CONCEPTS. Yahia Baghzouz Electrical & Computer Engineering Department BASIC CONCEPTS Yahia Baghzouz Electrical & Computer Engineering Department INSTANTANEOUS VOLTAGE, CURRENT AND POWER, RMS VALUES AVERAGE (REAL) POWER, REACTIVE POWER, APPARENT POWER, POWER FACTOR INSTANTANEOUS

More information

Sources of Electricity

Sources of Electricity Sources of Electricity S C I E N C E L I N K S 9 U N I T 4 T O P I C 4. 1 B R A I N P O P S : E N E R G Y S O U R C E S N U C L E A R E N E R G Y W I N D E N E R G Y S O L A R E N E R G Y F O S S I L F

More information