Windfarm Value Engineering & Optimisation. Dr. Christoph Hessel

Size: px
Start display at page:

Download "Windfarm Value Engineering & Optimisation. Dr. Christoph Hessel"

Transcription

1 Windfarm Value Engineering & Optimisation Dr. Christoph Hessel 1

2 AGENDA 1 Introduction 2 Optimising P75/P90 reducing uncertainties 3 Optimising P50 increasing yield and reducing losses 4 Optimising Weather Forecast 2

3 3

4 4 Helping the Business Case

5 Probability [-] Relevant Business Case Drivers Objective is to reduce the investment risk by: Optimising the wind farm efficiency (reduce wake and technical losses, increase P50) and reduce associated uncertainties (P75*/P90) *P75 is the annual energy production which is reached with a probability of 75% Losses P50 Total Uncertainty equals 1σ of normal distribution Uncertainty P90/P75 [GWh/Y] [GWh/Y] 5

6 AGENDA 1 Introduction 2 Optimising P75/P90 reducing uncertainties 3 Optimising P50 increasing yield and reducing losses 4 Optimising Weather Forecast 6

7 P75/P90 uncertainty measuring and modelling chain Wind measurement Main values for the BC P50/ P75/ P90 Long Term and Site Correction Wind Flow Model Wake Model Technical Losses Net P50 U N C E R T A I N T I E S 7

8 P75/P90 uncertainty Wind measurement 2.5%-10% 2.5%-10% Long Term and Site Correction Wind Flow Model Wake Model Wind Variability Net P50 U N C E R T A I N T I E S 2%-8% 2%-18% 0%-15% 0%-10% 2%-8% Uncertainty Total = Total 4%-24% U WM 2 U LTC 2 U FM 2 U WM 2.. 8

9 Improve P75/P90 reduces wind measurements uncertainty By: Offering and high quality measurement concept to our customers. Onsite measurement, high quality mast, suitable duration Benefit Wind analysis for optimal yield prognoses during WP planning Bankable data & cost effective financing Needed for risk analysis - site verification (life time) Needed for layout optimization 9

10 Improve P75/P90 reduces wind measurements uncertainty Met masts: Lattice masts (up to 200 m) & tubular masts (up to 100m) Tubular: Not appropriate for cold climates! Exact wind measurement (3D) and turbulence determination LiDAR: Highly mobile Measurement at 12 levels up to 290 meters 2D wind measurement Low precision at turbulence characterization due to volume 10

11 Improve P75/P90 reduce wind flow modelling uncertainty By Considering more physics in the wind flow modelling. Benefit Provide local wind speed, shear, inflow angle and turbulence for each turbine position in complex terrain Enables proper and optimized site verification and yield estimation 11

12 Improve P75/P90 reduce wake modelling uncertainties By: From: simplified analytical models Considering more physics in the wake modelling. e.g. NO Jensen (superposition for Benefit multiple wakes) Considering deep array wake effects, stability and turbulence influence on wake propagation stable unstable u wake = u C T 1 + kx r 0 2 To: enhanced 3D flow solver 12

13 Improve P75/P90 reduce wake modelling uncertainties E-Wind can model neutral, stable and unstable atmospheric conditions The turbine wakes are modelled as uniformly loaded actuator disks stable unstable 13

14 Improve P75/P90 reduce power curve uncertainty By: Offering site specific PC which considers shear turbulence, veer and density. Calculated with Blade Element Method From: Generic power curve with simplified density correction according to IEC To: Site specific power curve calculated with Blade Element Momentum Method Benefit Adjusted power curve that fits to the atmospheric conditions of the site. dt(r) = da cos φ + dw sin φ T = z dt(r) r 14

15 AGENDA 1 Introduction 2 Optimising P75/P90 reducing uncertainties 3 Optimising P50 increasing yield and reducing losses 4 Optimising Weather Forecast 15

16 P50 modelling chain Wake Effect 0% to -20% Storm Control Sector Management Power Curve Suboptimal Perf. Blade Degradation Availability Electrical loss Bat/Shadow/Temp Sound curtailment Icing 0% to+3% 0% to -8% 0% to -4% 0.5% to -3% 0 to-2% - 1% to -3% -1% to -4% 0% to -4% 0% to -3% 0% to -5% TechLoss Total = 100% (E WE E SC E SM E Elec E PC.) E(Efficiency)=100%-Technical Loss Total Total [-3% to-45%] Average -8% to -20% 16

17 Increase wind farm efficiency by advanced technology Wake Effect Storm Control Sector Mangement Power Curve Suboptimal Perf. Blade Degradation Availability Electrical loss Bat/Shadow/Temp Sound curtailment Icing Reduced by erosion protection sealing at the leading edge Enercon guarantees availability Service Software for optimised power set point in development reduces electrical losses Geographical and atmospherically specific Refer to Andree Altmiskus presentation. Optimised operation modes Refer to Katharina Roloffs presentation. Improved blade heating and ice detection Total 17

18 Increase wind farm efficiency with layout optimisation By: Multi-objective wind farm optimisation Maximum energy production Maximum possible capacity Distances between turbines Steepness Wind class (Max. wind speed) Noise Benefit: Integrated wind farm development Investigated jointly with Site Verification to ensure turbine s site suitability. Production costs COE 1 energy produced 18

19 Increase wind farm efficiency with storm control By: Offering a storm control software update Instead of generating high wind speed hysteresis losses. For sites exceeding 25 m/s of several hours per year. Benefit: Gain in energy yield: Wind speed@hh Possible Yield Gain 8 m/s 1% 9 m/s 1.5% 10 m/s 2% 11 m/s 2.5% 19

20 Increase wind farm efficiency by smart controls By: Offering a Maximum Power Point Tracker (MPPT) software. The learning algorithm finds the optimised locational specific wind direction adjustment to maximise the power output for various wind speeds. The adjustments are higher in the beginning of the learning phase and getting smaller over the time. Convergence towards the optimal directional alignment within a few weeks. From: WEC controller settings derived from prototype measurements. To: Automated site and turbine specific control optimisation Benefit: Avoid suboptimal performance due to misaligned anemometer Power optimised yaw alignment algorithm 20

21 Increase wind farm efficiency by optimising WECs in operations By: Offering an onsite WEC optimisation. Site specific WEC adjustments with regards to pitch settings, wind direction, wind vane, inclination angle. Benefit: Gain more yield by adjust turbine setting to site specific conditions. Reduce loads due to an optimised site and local WEC inflow. Power Performance tests performed in a variety of site conditions and countries: Europe (Germany, Portugal, Scotland ) North America (Canada) Latin America (Brazil, Bolivia, Costa Rica) Most of them are complex sites Non-IEC Performance Assessment (Indicative power curve only) Side-by-side comparison LIDAR or met masts power curves SCADA power curves Combination of all methods 21

22 AGENDA 1 Introduction 2 Optimising P75/P90 reducing uncertainties 3 Optimising P50 increasing yield and reducing losses 4 Optimising Weather Forecast 22

23 Optimise logistics and service at contruction sites By: 5-day weather forecast for construction site for optimising manpower and logistic planning (cost saving potential) Benefit: Site specific forecasts instead of default neighbouring spots higher time, spatial resolution Site specific heights instead of 10 m MSL, considering stability relevant for rotor star installation Considering various weather models reduces forecasting uncertainty 23

24 Optimise direct marketing By: offering a customer portfolio optimised power forecasts Benefit: Precise power forecasts enable optimised portfolio power management Maximise management and market bonus increase revenues Enable forecast opposing the main stream decrease imbalance costs 24

25 Summary Optimising Customer Value by increasing yield and reducing losses Optimising Customer Value by reducing uncertainty Optimising Installation and Operation by advancing Weather Forecast 25

26 Thank You for Your Attention! Dr. Christoph Hessel 26

Onshore Wind. Optimisation & Cost Reduction. All Energy 2015

Onshore Wind. Optimisation & Cost Reduction. All Energy 2015 Onshore Wind Optimisation & Cost Reduction All Energy 2015 Our network of local offices Global track record We have consulted on over 110GW of renewable energy in over 70 countries covering both project

More information

Framework for the Categorisation of Losses and Uncertainty for Wind Energy Assessments

Framework for the Categorisation of Losses and Uncertainty for Wind Energy Assessments Framework for the Categorisation of Losses and Uncertainty for Wind Energy Assessments In collaboration with: Introduction A typical wind resource and energy yield assessment derives gross generation from

More information

Wind Analysis in Operation phases: Identifying and Unlocking Optimization Capacities. Guillaume Steinmetz Business Manager ROMO Wind

Wind Analysis in Operation phases: Identifying and Unlocking Optimization Capacities. Guillaume Steinmetz Business Manager ROMO Wind Wind Analysis in Operation phases: Identifying and Unlocking Optimization Capacities Guillaume Steinmetz Business Manager France @ ROMO Wind Introduction: Huge potential for optimization of wind operations

More information

SET Analysis. WinterWind 2014 Sundsvall (S), February 12, Concluding Remarks. Jos Beurskens. Photo Jos Beurskens (Umeǻ, )

SET Analysis. WinterWind 2014 Sundsvall (S), February 12, Concluding Remarks. Jos Beurskens. Photo Jos Beurskens (Umeǻ, ) WinterWind 2014 Sundsvall (S), February 12, 2014 Concluding Remarks Jos Beurskens Photo Jos Beurskens (Umeǻ, 08-02-2011) The CC agenda Physics of icing (accretion of ice; types of icing) Atlas of icing

More information

Technology evolution and new market developments NZWEA Conference 2016 Daniel Belton Vestas New Zealand

Technology evolution and new market developments NZWEA Conference 2016 Daniel Belton Vestas New Zealand Technology evolution and new market developments NZWEA Conference 2016 Daniel Belton dabtn@vestas.com Vestas New Zealand Agenda FASTER Turbine technology trends, modular platforms, larger rotors HIGHER

More information

Verification and validation of a real-time 3D-CFD wake model for large wind farms

Verification and validation of a real-time 3D-CFD wake model for large wind farms Verification and validation of a real-time 3D-CFD wake model for large wind farms Presented by: Wolfgang Schlez 1,2 Co-Authors: Philip Bradstock 2, Michael Tinning 2, Staffan Lindahl 2 (1) ProPlanEn GmbH;

More information

Wind Power and Comparison to Conventional Generation

Wind Power and Comparison to Conventional Generation Wind Power and Comparison to Conventional Generation PRAMOD JAIN, Ph.D. Consultant, USAID Power the Future October 1, 2018 Almaty, Republic of Kazakhstan Venue: Almaty University of Power Engineering and

More information

Can we quantify performance changes based on nacelle power curves? EWEA Technology Workshop Analysis of Operating Wind Farms Bilbao, 14 April 2016

Can we quantify performance changes based on nacelle power curves? EWEA Technology Workshop Analysis of Operating Wind Farms Bilbao, 14 April 2016 Can we quantify performance changes based on nacelle power curves? EWEA Technology Workshop Analysis of Operating Wind Farms Bilbao, 14 April 2016 Anthony Crockford Philippe Cambron École de technologie

More information

Wind and Meteo: Common energy. What can we learn from each other?

Wind and Meteo: Common energy. What can we learn from each other? Wind and Meteo: Common energy What can we learn from each other? 25/11/2016 NVBM Lustrum 2016 Mission, Vision & Values Facts & Figures Mission sustainable energy for everyone Vision Based on our deep expertise

More information

Changing wind. New technologies for wind-turbine and wind-farm control

Changing wind. New technologies for wind-turbine and wind-farm control Changing wind New technologies for wind-turbine and wind-farm control ADRIAN TIMBUS Throughout time one of man s greatest aspirations has been harnessing the power of the wind. However, capturing this

More information

GE Renewable Energy CAPACITY FACTOR LEADERSHIP IN HIGH WIND REGIMES. GE s

GE Renewable Energy CAPACITY FACTOR LEADERSHIP IN HIGH WIND REGIMES. GE s GE Renewable Energy CAPACITY FACTOR LEADERSHIP IN HIGH WIND REGIMES GE s 1.85-82.5 www.ge.com/wind GE S 1.85-82.5 PITCH Since entering the wind industry in 2002, GE Renewable Energy has invested more than

More information

Lidar Measurements at SWIFT

Lidar Measurements at SWIFT Photos placed in horizontal position with even amount of white space between photos and header Lidar Measurements at SWIFT David Maniaci and Thomas Herges IEA Task 31 + 32 Meeting October 4, 2016 Sandia

More information

BEFORE THE HEARING COMMISSIONERS AT PALMERSTON NORTH. IN THE MATTER of the Resource Management Act 1991 (the Act)

BEFORE THE HEARING COMMISSIONERS AT PALMERSTON NORTH. IN THE MATTER of the Resource Management Act 1991 (the Act) BEFORE THE HEARING COMMISSIONERS AT PALMERSTON NORTH IN THE MATTER of the Resource Management Act 1991 (the Act) AND IN THE MATTER of a review by PALMERSTON NORTH CITY COUNCIL of the conditions of consent

More information

GE Power & Water. Improved Aeroacoustics and Noise Management Options. Saskia Honhoff, Dr. Benoît Petitjean, Dr. Roger Drobietz, Dr. Kevin W.

GE Power & Water. Improved Aeroacoustics and Noise Management Options. Saskia Honhoff, Dr. Benoît Petitjean, Dr. Roger Drobietz, Dr. Kevin W. GE Power & Water Saskia Honhoff, Dr. Benoît Petitjean, Dr. Roger Drobietz, Dr. Kevin W. Kinzie From turbine to receptor Source Blade noise Machinery noise Turbine operation Flexible turbine & farm operation

More information

Quantifying Change in Power Performance using SCADA Data

Quantifying Change in Power Performance using SCADA Data Quantifying Change in Power Performance using SCADA Data Methods of measuring power performance and a case study to apply side-by-side testing. Part 3 of 3: How to quantify change in power performance.

More information

VALIDATION OF GH ENERGY AND UNCERTAINTY PREDICTIONS BY COMPARISON TO ACTUAL PRODUCTION

VALIDATION OF GH ENERGY AND UNCERTAINTY PREDICTIONS BY COMPARISON TO ACTUAL PRODUCTION VALIDATION OF GH ENERGY AND UNCERTAINTY PREDICTIONS BY COMPARISON TO ACTUAL PRODUCTION Andrew Tindal, Keir Harman, Clint Johnson, Adam Schwarz, Andrew Garrad, Garrad Hassan 1 INTRODUCTION Garrad Hassan

More information

A Guide to Design Load Validation

A Guide to Design Load Validation A Guide to Design Load Validation Holger Söker, Martina Damaschke, Deutsches Windenergie-Institut GmbH, Ebertstr. 96, D-26382 Wilhelmshaven, Germany, Tel. : +49-4421-4808 0, Fax: +49-4421-4808-43, h.soeker@dewi.de

More information

Sylvia Broneske Hayes McKenzie Partnership Ltd Machynlleth & Salisbury. Overview

Sylvia Broneske Hayes McKenzie Partnership Ltd Machynlleth & Salisbury. Overview Wind Turbine Noise The mechanisms of noise generation and ways of mitigation Sylvia Broneske Hayes McKenzie Partnership Ltd Machynlleth & Salisbury www.hayesmckenzie.co.uk 1 Overview Main sources of noise

More information

WIND FLOW MODELING IN BUSINESS!!

WIND FLOW MODELING IN BUSINESS!! WIND FLOW MODELING IN BUSINESS!! Do more sophisticated models produce more accurate wind resource estimates???? Mytrah Energy (India) Limited WindSim User Meeting June 2014 As we ago along. MYTRAH : A

More information

RD3-42: Development of a High-Resolution Virtual Wind Simulator for Optimal Design of Wind Energy Projects

RD3-42: Development of a High-Resolution Virtual Wind Simulator for Optimal Design of Wind Energy Projects RD3-42: Development of a High-Resolution Virtual Wind Simulator for Optimal Design of Wind Energy Projects Principal Investigator: Fotis Sotiropoulos St. Anthony Falls laboratory and Department of Civil

More information

Analysis of SCADA data from offshore wind farms. Kurt S. Hansen

Analysis of SCADA data from offshore wind farms. Kurt S. Hansen Analysis of SCADA data from offshore wind farms Kurt S. Hansen E-mail: kuhan@dtu.dk CV Kurt S. Hansen Senior Scientist Department of Wind Energy/DTU 240 Employees DTU/WE educate 40-60 students on master

More information

Modelling Wind Turbine Inflow:

Modelling Wind Turbine Inflow: Modelling Wind Turbine Inflow: The Induction zone Alexander R Meyer Forsting Main Supervisor: Niels Troldborg Co-supervisors: Andreas Bechmann & Pierre-Elouan Réthoré Why wind turbine inflow? Inflow KE

More information

GE Power & Water Renewable Energy. Introducing GE s 2.75 MW Wind Turbines Increased customer value through product evolution

GE Power & Water Renewable Energy. Introducing GE s 2.75 MW Wind Turbines Increased customer value through product evolution GE Power & Water Renewable Energy Introducing GE s 2.75 MW Wind Turbines 2.75-100 2.75-103 Increased customer value through product evolution Introducing GE s 2.75-100 and 2.75-103 Product evolution. It

More information

GE Power & Water Renewable Energy. Introducing GE s 2.85 MW Wind Turbines Increased customer value through product evolution

GE Power & Water Renewable Energy. Introducing GE s 2.85 MW Wind Turbines Increased customer value through product evolution GE Power & Water Renewable Energy Introducing GE s 2.85 MW Wind Turbines 2.85-100 2.85-103 Increased customer value through product evolution Introducing GE s 2.85-100 and 2.85-103 Product evolution. It

More information

GE Renewable Energy. GE s 2 MW Platform PROVEN, RELIABLE WIND ENERGY SOLUTIONS YESTERDAY, TODAY, AND TOMORROW.

GE Renewable Energy. GE s 2 MW Platform PROVEN, RELIABLE WIND ENERGY SOLUTIONS YESTERDAY, TODAY, AND TOMORROW. GE Renewable Energy GE s 2 MW Platform PROVEN, RELIABLE WIND ENERGY SOLUTIONS YESTERDAY, TODAY, AND TOMORROW. www.gerenewableenergy.com GE S 2 MW PLATFORM PITCH Since entering the wind industry in 2002,

More information

Onshore Services for. Wind Farms. Developers, Operators, Owners, Lenders & Investors

Onshore Services for. Wind Farms. Developers, Operators, Owners, Lenders & Investors Onshore Services for Wind Farms Developers, Operators, Owners, Lenders & Investors Global Wind Energy Measurement Services All-in-One Service Provider Combining technical expertise with many years of in-depth

More information

Introducing GE s

Introducing GE s GE Energy Renewable Energy Introducing GE s 1.6-100 Best-in-class capacity factor Introducing GE s 1.6-100 Product evolution. It s one of the things GE does best. Especially when it comes to the next generation

More information

Wind Turbine Optimization. Great at Control

Wind Turbine Optimization. Great at Control Wind Turbine Optimization Version 1.0 2014 Contents Wind Turbine Optimization 3-4 Advanced Controls 5-6 Load Simulations 7-8 Optimized Experience 9-10 Wind Turbine Optimization Wind Turbine 3-4 Optimization

More information

Using Real-time Environmental Data to Improve Wind Turbine Operations

Using Real-time Environmental Data to Improve Wind Turbine Operations Using Real-time Environmental Data to Improve Wind Turbine Operations Ben Coulson, P.Eng. Principal, Leader Acoustics/Noise/Vibration WWW.RWDI.COM I CANADA I CHINA I HONG KONG I INDIA I SINGAPORE I UK

More information

Nordex Delta4000 Product Series Efficient Operation at cold climate and strong-wind sites How to address typical Norwegian requirements

Nordex Delta4000 Product Series Efficient Operation at cold climate and strong-wind sites How to address typical Norwegian requirements Nordex Delta4000 Product Series Efficient Operation at cold climate and strong-wind sites How to address typical Norwegian requirements Till Neuburger, Head of Product Strategy & Sales Support, Nordex

More information

Post-construction Yield Analysis. Performance and budget analysis for probabilistic yield modeling of operational wind plant

Post-construction Yield Analysis. Performance and budget analysis for probabilistic yield modeling of operational wind plant Post-construction Yield Analysis Performance and budget analysis for probabilistic yield modeling of operational wind plant Jessica Cameron, Asset Analyst EWEA Technology Workshop - Lyon 02/07/2012 NATURAL

More information

GE Power & Water Renewable Energy. GE s A brilliant wind turbine for India. ge-energy.com/wind

GE Power & Water Renewable Energy. GE s A brilliant wind turbine for India. ge-energy.com/wind GE Power & Water Renewable Energy GE s 1.7-103 A brilliant wind turbine for India ge-energy.com/wind GE s 1.7-103 Wind Turbine Since entering the wind industry in 2002, GE Power & Water s Renewable Energy

More information

GE Renewable Energy BEST-IN-CLASS CAPACITY FACTOR. GE s

GE Renewable Energy BEST-IN-CLASS CAPACITY FACTOR. GE s GE Renewable Energy BEST-IN-CLASS CAPACITY FACTOR GE s 1.7-100 www.ge.com/wind GE S 1.7-100 PITCH Since entering the wind industry in 2002, GE Renewable Energy has invested more than $2 billion in next-generation

More information

Leveraging technology to deliver business value with your data: Real life examples in the renewable sector

Leveraging technology to deliver business value with your data: Real life examples in the renewable sector Exceed the Expected Leveraging technology to deliver business value with your data: Real life examples in the renewable sector October 17-18, 2017 Toronto Regional SEMINAR 2017 Francis Pelletier, P. Eng.,

More information

Optimization of Wind Farm Layout taking Load Constraints into Account

Optimization of Wind Farm Layout taking Load Constraints into Account Optimization of Wind Farm Layout taking Load Constraints into Account AMRENDER SINGH BACHHAL SUPERVISOR Professor H.G. Beyer (University of Agder), Professor Mohan Kolhe (University of Agder), Dr. Abhijit

More information

OpenFOAM in Wind Energy

OpenFOAM in Wind Energy OpenFOAM in Wind Energy GOFUN 2018, Braunschweig Matthias Schramm Fraunhofer IWES and ForWind Oldenburg University started with wind physics Research on wind fields, aerodynamics and turbulence CFD is

More information

Digital Wind Operations Optimization from GE Renewable Energy. Enhance the performance and efficiency of your people and machines to drive outcomes

Digital Wind Operations Optimization from GE Renewable Energy. Enhance the performance and efficiency of your people and machines to drive outcomes Digital Wind Operations Optimization from GE Renewable Energy Enhance the performance and efficiency of your people and machines to drive outcomes Operations Optimization Business Challenges Solution:

More information

A Study on Method for Identifying Capacity Factor Declination of Wind Turbines

A Study on Method for Identifying Capacity Factor Declination of Wind Turbines A Study on Method for Identifying Capacity Factor Declination of Wind Turbines Dongheon Shin, Kyungnam Ko, Jongchul Huh Abstract The investigation on wind turbine degradation was carried out using the

More information

Onshore Wind Services

Onshore Wind Services GE Renewable Energy Onshore Wind Services www.gerenewableenergy.com PITCH OPERATE AND MAINTAIN TABLE OF CONTENTS: 3 Operate and Maintain 3 Turbine Maintenance 7 Asset and Park Management 8 Enhance and

More information

arxiv: v1 [physics.flu-dyn] 11 Oct 2013

arxiv: v1 [physics.flu-dyn] 11 Oct 2013 arxiv:1310.3294v1 [physics.flu-dyn] 11 Oct 2013 Wake Turbulence of Two NREL 5-MW Wind Turbines Immersed in a Neutral Atmospheric Boundary-Layer Flow Jessica L. Bashioum, Pankaj K. Jha, Dr. Sven Schmitz

More information

Visualization of the tip vortices in a wind turbine wake

Visualization of the tip vortices in a wind turbine wake J Vis (2012) 15:39 44 DOI 10.1007/s12650-011-0112-z SHORT PAPER Zifeng Yang Partha Sarkar Hui Hu Visualization of the tip vortices in a wind turbine wake Received: 30 December 2010 / Revised: 19 September

More information

Wind Turbine Engineering R&D

Wind Turbine Engineering R&D Wind Turbine Engineering R&D at Los Alamos National Laboratory Curtt Ammerman Applied Engineering & Technology Division U N C L A S S I F I E D Operated by Los Alamos National Security, LLC for the U.S.

More information

PERDIGÃO WIND TURBINE WAKE MEASUREMENT

PERDIGÃO WIND TURBINE WAKE MEASUREMENT PERDIGÃO WIND TURBINE WAKE MEASUREMENT Kurt S. Hansen, Robert Menke, Nikola Vasiljevicv & Nikolas Angelou Mail: kuhan@dtu.dk Outline Objectives Perdigão experiment site description; Measurement setup,

More information

Wind Energy in Cold Climate - experiences from Sweden and the world!

Wind Energy in Cold Climate - experiences from Sweden and the world! Wind Energy in Cold Climate - experiences from Sweden and the world! Winterwind 2015 in Piteå Eva Sjögren Sales Manager Sales Sweden Content 1: ENERCON 1.1 Financial stability 1.2 Global installed capacity

More information

Offshore Wind Met-ocean Data Gaps:

Offshore Wind Met-ocean Data Gaps: Workshop on Offshore Wind Energy Standards & Guidelines June 2014, Arlington, VA Offshore Wind Met-ocean Data Gaps: Assessing External Conditions for Offshore Wind Design in a Data-scarce Environment Matthew

More information

A Holistic View of Wind Farm Control

A Holistic View of Wind Farm Control A Holistic View of Wind Farm Control Peter Seiler February 11, 2014 Seminar: Saint Anthony Falls Laboratory James Blyth, 1887: 1 st electric wind turbine in Marykirk, Scotland. (Not Shown) Turbine Shown,

More information

The future of wind power

The future of wind power Downloaded from orbit.dtu.dk on: Dec 20, 2017 The future of wind power Aagaard Madsen, Helge Publication date: 2012 Link back to DTU Orbit Citation (APA): Aagaard Madsen, H. (2012). The future of wind

More information

Anti-icing and De-icing Technologies for Wind Turbines

Anti-icing and De-icing Technologies for Wind Turbines Anti-icing and De-icing Technologies for Wind Turbines Ice presents a major problem for wind turbine blades in cold climates, but there is great potential for wind energy in those environments due to the

More information

Simulation-assisted optimisation of wind turbines

Simulation-assisted optimisation of wind turbines Simulation-assisted optimisation of wind turbines Uwe Ritschel (Windrad Engineering GmbH) About Windrad Structural dynamics and impacts on wind turbines The virtual prototype Special topics: Tower optimization

More information

Wind energy research in Denmark: International cooperation

Wind energy research in Denmark: International cooperation Downloaded from orbit.dtu.dk on: Dec 22, 2017 Wind energy research in Denmark: International cooperation Hansen, Jens Carsten; Hummelshøj, Poul Publication date: 2011 Document Version Publisher's PDF,

More information

Energy Yield Assessment for: Sudenai, Lithuania. 14 MW Wind farm 7 x Enercon E MW 78 m hub height

Energy Yield Assessment for: Sudenai, Lithuania. 14 MW Wind farm 7 x Enercon E MW 78 m hub height Energy Yield Assessment for: Sudenai, Lithuania 14 MW Wind farm 7 x Enercon E-82 2.0 MW 78 m hub height EMD International A/S May 2007 OÜ Nelja Energia Estonia pst. 1/3 10143 Tallinn ESTONIA Attn. Andrus

More information

Combining induction control and wake steering for wind farm energy and fatigue loads optimisation

Combining induction control and wake steering for wind farm energy and fatigue loads optimisation Journal of Physics: Conference Series PAPER OPEN ACCESS Combining induction control and wake steering for wind farm energy and fatigue loads optimisation To cite this article: Ervin Bossanyi 2018 J. Phys.:

More information

Optimization of wind turbine performance and related revenues What to expect of specific applications

Optimization of wind turbine performance and related revenues What to expect of specific applications Optimization of wind turbine performance and related revenues What to expect of specific applications Jörg Fuchs Head of Sales Windtechnik X-Service GmbH Nacelle Control Oil Service Rotor Blade Tower Offshore

More information

EWEA Analysis of Operating Wind Farms 2014 Sweden Malmo Dec How to find underperforming turbines in an operating wind farm.

EWEA Analysis of Operating Wind Farms 2014 Sweden Malmo Dec How to find underperforming turbines in an operating wind farm. EWEA Analysis of Operating Wind Farms 2014 Sweden Malmo Dec 2014 How to find underperforming turbines in an operating wind farm Xu Jia LongYuan Power Wind Energy Overview/Portfolio >12 GW Wind Energy >9000

More information

Off-shore wind power generation for coastal sustainable urban development

Off-shore wind power generation for coastal sustainable urban development Off-shore wind power generation for coastal sustainable urban development Prof. YANGHongxing 楊洪興 Research Institute for Sustainable Urban Development Department of Building Services Engineering, The Hong

More information

Load & Optimization. Written and published by Wind Power Monthly 2014 Sponsored by Mita-Teknik. Great at Control

Load & Optimization. Written and published by Wind Power Monthly 2014 Sponsored by Mita-Teknik. Great at Control Load & Optimization The latest products and technical advances that are helping the wind industry to improve cost of energy by managing turbine loads during operation. 2015 Mita-Teknik. All rights reserved.

More information

BC Hydro Wind Data Study Update

BC Hydro Wind Data Study Update PUBLIC DOCUMENT September 24, 2009 Prepared for: British Columbia Hydro & Power Authority 333 Dunsmuir Street Vancouver, BC V6B 5R3 DNV Global Energy Concepts Inc. 1809 7th Avenue, Suite 900 Seattle, Washington

More information

Wind turbine blade heating does it pay?

Wind turbine blade heating does it pay? Wind turbine blade heating does it pay? René Cattin, Meteotest, Switzerland Wind map of Switzerland Wind turbine blade heating 6-7.5 m/s Wind map of Switzerland Icing map of Switzerland Almost all Swiss

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW 40 CHAPTER 2 LITERATURE REVIEW The literature review presented in the thesis are classified into three major domains namely Wind turbine airfoil aerodynamics, Design and performance of wind turbine, Optimization

More information

SAWEP Workshop. Cape Town, 4 th March Wind farm calculations - Annual Energy Production

SAWEP Workshop. Cape Town, 4 th March Wind farm calculations - Annual Energy Production SAWEP Workshop Wind Atlas for South Africa (WASA) Cape Town, 4 th March 2010 Wind farm calculations - Annual Energy Production What is AEP? AEP = Annual Energy Production Watt-hours produced over an average

More information

SUPERGEN Wind Wind Energy Technology

SUPERGEN Wind Wind Energy Technology SUPERGEN Wind Wind Energy Technology SUPERGEN WIND 2 Activity Overview Offshore Wind Farm Aerodynamics & the Environment Prof Simon Watson (On behalf of consortium) Joint Supergen Wind 2 / EDP University

More information

On the Effects of Directional Bin Size when Simulating Large Offshore Wind Farms with CFD

On the Effects of Directional Bin Size when Simulating Large Offshore Wind Farms with CFD On the Effects of Directional Bin Size when Simulating Large Offshore Wind Farms with CFD Peter Argyle, Simon Watson CREST, Loughborough University, ENGLAND p.argyle@lboro.ac.uk ABSTRACT Computational

More information

Managing and Mitigating Wind Farm Operational Risks

Managing and Mitigating Wind Farm Operational Risks Page 1 of 7 Managing and Mitigating Wind Farm Operational Risks January 28, 2015 Introduction Operation of wind farms is a business with clear risk exposure to meteorological, engineering and technological

More information

Industry view on the development of turbine technology and the (market) value of wind Dr. Thomas Korzeniewski Chief Product Manager, Product Strategy

Industry view on the development of turbine technology and the (market) value of wind Dr. Thomas Korzeniewski Chief Product Manager, Product Strategy Industry view on the development of turbine technology and the (market) value of wind Dr. Thomas Korzeniewski Chief Product Manager, Product Strategy 22 nd November 2017 Vestas facts Undisputed global

More information

GE APM Reliability Management for Wind

GE APM Reliability Management for Wind GE Renewable Energy GE APM Reliability Management for Wind Your Challenge: How do you reduce maintenance costs and increase the availability of your renewables assets? Each time a turbine trips or a component

More information

RETScreen. International CLEAN ENERGY PROJECT ANALYSIS: WIND ENERGY PROJECT ANALYSIS CHAPTER RETSCREEN ENGINEERING & CASES TEXTBOOK

RETScreen. International CLEAN ENERGY PROJECT ANALYSIS: WIND ENERGY PROJECT ANALYSIS CHAPTER RETSCREEN ENGINEERING & CASES TEXTBOOK RETScreen International Clean Energy Decision Support Centre www.retscreen.net CLEAN ENERGY PROJECT ANALYSIS: RETSCREEN ENGINEERING & CASES TEXTBOOK WIND ENERGY PROJECT ANALYSIS CHAPTER Disclaimer This

More information

renewable energy services and applications

renewable energy services and applications renewable energy services and applications www.2en.com profile 2EN [Enallaktiki Energiaki SA], founded in 2001, is a dynamically developing company with extensive experience in the field of Renewable Energy.

More information

Reducing Uncertainty in Wind Project Energy Estimates

Reducing Uncertainty in Wind Project Energy Estimates www.vaisala.com Reducing Uncertainty in Wind Project Energy Estimates A Cost-Benefit Analysis of Additional Measurement Campaign Methods Wind project energy production estimates are a key element in determining

More information

Cold Climate Operation. Carl Bolduc, Eastern Regional Service Manager Americas CANWEA O&M Summit February 26 th, Toronto

Cold Climate Operation. Carl Bolduc, Eastern Regional Service Manager Americas CANWEA O&M Summit February 26 th, Toronto Cold Climate Operation Carl Bolduc, Eastern Regional Service Manager Americas CANWEA O&M Summit February 26 th, Toronto Agenda Introduction CCV Fleet Ice Management Concept Challenges Turbine protection

More information

Modelling to measurements and back

Modelling to measurements and back Modelling to measurements and back Niels G Mortensen Resource Assessment Modelling Section SARETEC Study Tour DTU Risø Campus This material is not for public distribution. Any use of the material must

More information

Summary of Actual vs. Predicted Wind Farm Performance Recap of WINDPOWER 2008 Clint Johnson Garrad Hassan America

Summary of Actual vs. Predicted Wind Farm Performance Recap of WINDPOWER 2008 Clint Johnson Garrad Hassan America Summary of Actual vs. Predicted Wind Farm Performance Recap of WINDPOWER 2008 Clint Johnson Garrad Hassan America 2008 AWEA Wind Resource Assessment Workshop Portland, OR Summary of 3 presentations given

More information

Are you looking for the maximum return on your investment in wind energy?

Are you looking for the maximum return on your investment in wind energy? Are you looking for the maximum return on your investment in wind energy? Wind energy means the world to us. And we want it to mean the world to our customers, too, by maximising your profits and strengthening

More information

Reducing Solar Performance Uncertainty. Presented by: Gwendalyn Bender, Head of Solar Product Development

Reducing Solar Performance Uncertainty. Presented by: Gwendalyn Bender, Head of Solar Product Development Reducing Solar Performance Uncertainty Presented by: Gwendalyn Bender, Head of Solar Product Development Vaisala Measurement, Assessment, Forecasting Over 80 years helping industries manage the impact

More information

Content. 0 Questionnaire 87 from Max Frisch

Content. 0 Questionnaire 87 from Max Frisch Content 0 Questionnaire 87 from Max Frisch 1 Introduction to Wind Energy... 1 1.1 Wind Energy in the year 2010... 1 1.2 The Demand for Electricity... 4 1.3 Energy Policy and Governmental Instruments...

More information

Onshore Services for. Manufacturers. of Wind Turbines & Components

Onshore Services for. Manufacturers. of Wind Turbines & Components Onshore Services for Manufacturers of Wind Turbines & Components Research & Studies Customers benefit from our in-depth knowledge based on UL s participation in a number of stateof-the-art research projects,

More information

ELG4126 Distributed Generation and Renewables

ELG4126 Distributed Generation and Renewables ELG4126 Distributed Generation and Renewables Case Study of Renewable Energy and Smart Grid of Three Phases Phase One: Wind Farm Conduct a feasibility study for initiating a profitable wind energy farm

More information

Presentation: Paul van Lieshout - Jacobs Consultancy Extreme Weather Events and Wind Energy Production Analysis

Presentation: Paul van Lieshout - Jacobs Consultancy Extreme Weather Events and Wind Energy Production Analysis Presentation: Paul van Lieshout - Jacobs Consultancy Extreme Weather Events and Wind Energy Production Analysis www.jacobsconsultancy.com Introductions and Objective The IPCC concludes that small changes

More information

Aeroelasticity and aeroacoustics of wind turbines

Aeroelasticity and aeroacoustics of wind turbines Downloaded from orbit.dtu.dk on: Mar 08, 2019 Aeroelasticity and aeroacoustics of wind turbines Aagaard Madsen, Helge Publication date: 2011 Link back to DTU Orbit Citation (APA): Aagaard Madsen, H. (Invited

More information

V MW. One turbine for one world. vestas.com

V MW. One turbine for one world. vestas.com V112-3.0 MW One turbine for one world vestas.com We deliver on the promise of wind power ONE HARD-WORKING, RELIABLE TURBINE FOR ONE WORLD Hard-working and reliable The V112-3.0 MW is a hard-working,

More information

Wake Conference 2017 Uppsala,

Wake Conference 2017 Uppsala, Wake Conference 2017 Uppsala, 31.05.17 Modelling of Wind Turbine Loads nearby a Wind Farm Alexander Werkmeister, M.Sc. Prof. Dr.-Ing. Georg Jacobs, Prof. Dr.-Ing. Ralf Schelenz Outline Motivation Site

More information

Guide to Data Requirements for AWEFS and ASEFS. December Supplementary material to the Solar and Wind Energy Conversion Models

Guide to Data Requirements for AWEFS and ASEFS. December Supplementary material to the Solar and Wind Energy Conversion Models Guide to Data Requirements for AWEFS and ASEFS December 2018 Supplementary material to the Solar and Wind Energy Conversion Models Important notice PURPOSE AEMO has prepared this document to provide information

More information

A Guide to Data Requirements for AWEFS and ASEFS. October Supplementary material to the Solar and Wind Energy Conversion Models

A Guide to Data Requirements for AWEFS and ASEFS. October Supplementary material to the Solar and Wind Energy Conversion Models A Guide to Data Requirements for AWEFS and ASEFS October 2018 Supplementary material to the Solar and Wind Energy Conversion Models Important notice PURPOSE AEMO has prepared this document to provide information

More information

Wind Turbine Generator System Acoustic Noise Test Report. Bergey Excel Wind Turbine

Wind Turbine Generator System Acoustic Noise Test Report. Bergey Excel Wind Turbine June 2003 NREL/EL-500-33833 Wind Turbine Generator System Acoustic Noise Test Report for the Bergey Excel Wind Turbine By National Wind Technology Center National Renewable Energy Laboratory 1617 Cole

More information

v mw One turbine for one world vestas.com

v mw One turbine for one world vestas.com v112-3.0 mw One turbine for one world vestas.com We deliver on the promise of wind power one hard-working, reliable turbine for one World Hard-working and reliable The V112-3.0 MW is a hard-working,

More information

Interference of Wind Turbines with Different Yaw Angles of the Upstream Wind Turbine

Interference of Wind Turbines with Different Yaw Angles of the Upstream Wind Turbine 42nd AIAA Fluid Dynamics Conference and Exhibit 25-28 June 2012, New Orleans, Louisiana AIAA 2012-2719 Interference of Wind Turbines with Different Yaw Angles of the Upstream Wind Turbine Ahmet Ozbay 1,

More information

Statoil Wind O&M data monitoring, analysis and simulation Dr. Nenad Keseric

Statoil Wind O&M data monitoring, analysis and simulation Dr. Nenad Keseric Statoil Wind O&M data monitoring, analysis and simulation Dr. Nenad Keseric Statoil MPR Renewables, Operations Strategy and Support Norcowe, Science meets industry, Bergen 9.9.2014 Classification: Internal

More information

AKTUELLE FORSCHUNGSERGEBNISSE ZUR INSTANDHALTUNG UND WEITERBETRIEB VON WINDTURBINEN

AKTUELLE FORSCHUNGSERGEBNISSE ZUR INSTANDHALTUNG UND WEITERBETRIEB VON WINDTURBINEN AKTUELLE FORSCHUNGSERGEBNISSE ZUR INSTANDHALTUNG UND WEITERBETRIEB VON WINDTURBINEN Lisa Ziegler 26. Windenergietage Warnemünde, 08.11.2017 AWESOME AWESOME = Advanced wind energy systems operation and

More information

South Branch Wind Farm Acoustic Audit - Emission Summary for Public Distribution

South Branch Wind Farm Acoustic Audit - Emission Summary for Public Distribution South Branch Wind Farm Acoustic Audit - Emission Summary for Public Distribution Introduction The South Branch Wind Farm (project) operates 10 Siemens SWT-3.0-113 wind turbines located within the Township

More information

Oldman 2 Wind Farm Limited

Oldman 2 Wind Farm Limited Decision 22706-D01-2017 Spring 2017 Comprehensive Sound Survey at Receptors R and S August 25, 2017 Alberta Utilities Commission Decision 22706-D01-2017 Proceeding 22706 Application 22706-A001 August 25,

More information

Published by and copyright 2009: Siemens AG Energy Sector Freyeslebenstrasse Erlangen, Germany

Published by and copyright 2009: Siemens AG Energy Sector Freyeslebenstrasse Erlangen, Germany Published by and copyright 2009: Siemens AG Energy Sector Freyeslebenstrasse 1 91058 Erlangen, Germany Siemens Wind Power A/S Borupvej 16 7330 Brande, Denmark www.siemens.com/wind For more information,

More information

V MW. One turbine for one world. vestas.com

V MW. One turbine for one world. vestas.com V112-3.0 MW One turbine for one world vestas.com No. 1 in Modern Energy The world needs ever-greater supplies of clean, sustainable energy. Modern energy that promotes sustainable development and greater

More information

CERC activities under the TOPFARM project: Wind turbine wake modelling using ADMS

CERC activities under the TOPFARM project: Wind turbine wake modelling using ADMS CERC activities under the TOPFARM project: Wind turbine wake modelling using ADMS Final report Prepared for Risø DTU, National Laboratory for Sustainable Energy 13 th January 211 Report Information FM766

More information

DESIGN CHALLENGES FOR LARGE OWTS WITH FOCUS ON SUPPORT STRUCTURES

DESIGN CHALLENGES FOR LARGE OWTS WITH FOCUS ON SUPPORT STRUCTURES DESIGN CHALLENGES FOR LARGE OWTS WITH FOCUS ON SUPPORT STRUCTURES Science Meets Industry Bergen By Jørgen R. Krokstad (with contributions from Loup Suja Thauvin and Lene Eliassen and others) Content Design

More information

WIND RESOURCE & ENERGY YIELD ASSESSMENT PRESENTATION

WIND RESOURCE & ENERGY YIELD ASSESSMENT PRESENTATION ASX Release 17 January 2007 WIND RESOURCE & ENERGY YIELD ASSESSMENT PRESENTATION Babcock & Brown Wind Partners (ASX: BBW) has today released to the market a wind resource and energy yield assessment presentation

More information

صباح الخير. Kalimera أهال بك. kalosorisate

صباح الخير. Kalimera أهال بك. kalosorisate صباح الخير Kalimera أهال بك kalosorisate 1 White : peace and prosperity, Red: recalls battles against foreign invaders Green: symbolizes the Jebel Akhdar, and fertility 2 Wind Energy curriculum Wind turbine(wind

More information

Engineering, Environmental, Biological and Geophysical Fluid Dynamics. Department of Civil Engineering College of Science and Engineering

Engineering, Environmental, Biological and Geophysical Fluid Dynamics. Department of Civil Engineering College of Science and Engineering Twin Cities Campus Saint Anthony Falls Laboratory Engineering, Environmental, Biological and Geophysical Fluid Dynamics Department of Civil Engineering College of Science and Engineering Mississippi River

More information

Available Active Power Estimation for the Provision of Control Reserve by Wind Turbines Summary Keywords: 1. Introduction 2.

Available Active Power Estimation for the Provision of Control Reserve by Wind Turbines Summary Keywords: 1. Introduction 2. Available Active Power Estimation for the Provision of Control Reserve by Wind Turbines Dominik Schneider, Kristie Kaminski Küster, Malte Siefert, Markus Speckmann Fraunhofer IWES, Kassel, Germany Koenigstor

More information

Wind Farms 1. Wind Farms

Wind Farms 1. Wind Farms Wind Farms 1 Wind Farms Wind farms are a cluster of wind turbines that are located at a site to generate electricity. Wind farms are also sometimes referred to as a plant, array or a park. The first onshore

More information

CHAPTER 4 WIND TURBINE MODELING AND SRG BASED WIND ENERGY CONVERSION SYSTEM

CHAPTER 4 WIND TURBINE MODELING AND SRG BASED WIND ENERGY CONVERSION SYSTEM 85 CHAPTER 4 WIND TURBINE MODELING AND SRG BASED WIND ENERGY CONVERSION SYSTEM 4.1 INTRODUCTION Wind energy is one of the fastest growing renewable energies in the world. The generation of wind power is

More information

Improved Wind Turbine Efficiency using Synchronized Sensors

Improved Wind Turbine Efficiency using Synchronized Sensors Improved Wind Turbine Efficiency using Synchronized Sensors 26/03/2015 Uwe Schmidt Paulsen uwpa@dtu.dk Oscar Moñux Claus Brian Pedersen Karen Enevoldsen Project objective & overview To improve the efficiency

More information