Let Them Count An Argument for Inclusion of the Impact of. Household Rainwater Tanks When Designing an Urban Drainage. Network

Size: px
Start display at page:

Download "Let Them Count An Argument for Inclusion of the Impact of. Household Rainwater Tanks When Designing an Urban Drainage. Network"

Transcription

1 Let Them Count An Argument for Inclusion of the Impact of Household Rainwater Tanks When Designing an Urban Drainage Network L.Strauch* 1 *Presenting Author Household rainwater tanks are currently an optional extra' for new homebuilders and existing homeowners. However, the consistent use of rainwater tanks by a critical mass of homeowners has the potential to significantly reduce the total volume of stormwater leaving an urban catchment, lower peak flows in storm events and hence potentially reduce the required capacity of the local drainage networks. This paper presents a small hypothetical residential catchment of approximately 100 lots and demonstrates how the site-specific design and mandatory use of rainwater tanks and overflow storage on individual allotments has the potential to halve peaks in the 20% and 1% AEP events, reduce the required diameter of pipes in the minor drainage network, achieve 75% of the current Best Practice target for the removal of Total Nitrogen (reducing the size of downstream water quality treatment assets), supply homeowners with an alternative water supply in the order of 50kL per year, and reduce the total annual volume of stormwater leaving the catchment by one third. At present, 1 Associate - Water, Spiire, PO Box Melbourne VIC 8007, leah.strauch@spiire.com.au 1

2 the impact of rainwater tanks is not considered in the calculation of storm flows or drainage capacity in Victoria. Understanding these results and their ability to be replicated will allow for a stronger argument for authorities to accept the inclusion of tanks in drainage calculations, and developers and asset owners will be able to derive benefit in the form of reduced asset sizes and are more likely to promote this scenario. I. Introduction Household rainwater tanks are currently an optional extra' for new homebuilders and existing homeowners. Size and end use of the tanks are not controlled or inspected for ongoing performance. However, the consistent use of rainwater tanks by a critical mass of homeowners has the potential to significantly reduce the total volume of stormwater leaving an urban catchment, lower peak flows in storm events and hence potentially reduce the required capacity of the local drainage networks. At present, the impact of rainwater tanks is not considered in the calculation of storm flows or drainage capacity in Victoria. Where their potential performance can be better understood, calculated and mandated, authorities are more likely to accept their inclusion in drainage calculations, and developers and asset owners will be able to derive benefit in the form of reduced asset sizes and are more likely to promote this scenario. Advancing this approach can ultimately produce benefits for: Homeowners - lower water bills Retailers and water authorities - reduced asset sizes (networks and retardation requirements) Developers and Councils - less pressure on drainage networks, reduced asset sizes for maintenance and land use 2

3 Waterways - less urban stormwater entering waterways (lower volume, frequency, pollutants and velocity), when the balance of control, maintenance, cost and confidence can be fully understood. II. Objectives The objective of this theoretical exercise is to allow comment on: Potential reductions in downstream drainage infrastructure when detention storage (and reuse) in household rainwater tanks is included in flow rate and velocity calculations Potential savings in potable water through the use of rainwater tanks for annually consistent demands (for example, toilet flushing rather than garden watering) Potential reductions in catchment-scale stormwater treatment assets due to the removal of pollutants at the allotment level Potential reductions in retardation assets where urban stormwater flows need to be reduced to predevelopment levels. III. Method The impact of this approach on a single catchment is calculated by: Estimating the fraction impervious of the typical lot and road reserve in the catchment Estimating pre-development peak flows and volumes for individual roof areas, and the full catchment Establishing household demand for harvested rainwater and modelling the reliability of supply Determining required storage and outflows to restrict flows from roofs to pre-development levels Calculating the equivalent fraction impervious of the catchment with rainwater tanks in operation Sizing a drainage network for the catchment with and without tanks Sizing a water quality treatment asset to remove target pollutants to Best Practice levels for the catchment with and without tanks 3

4 Sizing a retardation asset to reduce 1% AEP peak flows to pre-development for the catchment with and without tanks Quantifying the differences between the two scenarios in terms of simple costs and annual stormwater volumes. The scenarios are noted as Scenario A, traditional drainage approach, and Scenario B, individual rainwater collection and retardation. For this exercise, a small 7.6ha urban layout containing 104 individual lots was selected. Lots ranged in size from 350m 2 to 816m 2, with an average of 555m 2. This slice of the suburbs is hypothetically located in Melbourne s Western Growth Corridor. In order to apply a realistic impervious fraction to calculations, area measurements were taken on aerial photography of similar lots sizes with established houses, gardens and paved areas. The final typical lot was estimated to have an area of 530m 2, a roof of 250m 2, and 65m 2 of further impervious surfaces. The proposal is to either capture or retard flows off an individual roof to the level generated by a pervious catchment. The adopted fraction impervious is therefore: Scenario A 59% Scenario B 12% The typical 16m road reserve had a fraction impervious of 68%. Rainwater tanks are assumed to supply toilets, laundry and individual gardens. Indoor demand is estimated as a uniform 175L/hh/day based on a household of 3. Garden demand is estimated as 36kL annually, distributed across September to April. MUSIC has been used to model the generation and harvesting of stormwater. The Melbourne Airport station has been used for rainfall data, and the decade from modelled. A range of tank sizes from 2kL to 20kL is modelled at a 6 minute time-step to determine reliability of supply. Tanks are assumed to be a charged system and connected to the entire roof. 4

5 IFD polynomial coefficients have been generated for a location in the Western Growth Corridor. The rational method with Adams estimation for time of concentration has been used to calculate the expected rural/predevelopment peak flows. The rational method has also been used to estimate the size of the local drainage network, using expected velocities to determine time of concentration, for Scenarios A and B. The Swinburne Tech Method has been used to identify the maximum storage required either at an individual house to permit a maximum outflow of pre-development levels for the 20% and 1% AEP events, and also to establish the total end of line storage required to restrict outflows from the catchment to pre-development levels for the 1% AEP event in both Scenario A and B. The alternative system (Scenario B) is expected to function as follows: Rainfall hits an individual roof, and generated runoff is directed to a storage tank. When the nominated capacity of the tank is exceeded, retardation storage is engaged, and the outflow from the tank is restricted to pre-development 20% AEP flows. Where an event larger than the 20% AEP occurs, a second outlet will be engaged, allowing the equivalent of the 1% AEP pre-development flow to discharge. Stored water in the tank is used for toilet, laundry and garden watering. When insufficient water is available, either potable or recycled Class A water will be used to make up the deficit, depending on the location. The major and minor drainage networks are directed to a single point to allow for an individual stormwater quality treatment asset and a retardation basin to achieve Best Practice pollutant removal targets and restrict flows out of the total catchment to pre-development 1% AEP levels. 5

6 IV. Results When comparing possible sizes for rainwater tanks on individual lots, the following results were achieved: Nominal tank size To make use of the consistent demands on the rainwater tanks, the minimum available volume within the nominal tank volume at least 95% of the time over ten years was calculated, and assumed to be available in a rain event. This reduces the volume of extra overflow storage required to maintain pre-development flow levels. The 5kL tank is selected as Scenario B. It is expected that tanks will be located in dead space (ie along the side wall of a house), so the difference in size between the 9.15kL storage and the 6.80kL storage should not be a concern, and supplies an extra 10kL to each household per year. The selected 5kL reuse scenario provides a 50% reliability of supply, or approximately 50kL of rainwater to each household per year. The total household demand is expected to be approximately 179kL per year, which means that the introduction of the tank is able to reduce each household s demand on the reticulated supply by around 30%. Depending on the make-up of the catchment, it was determined that introducing the Scenario B rainwater tanks reduced the 20% and 1% AEP peak flows by anywhere between 30-50%. Once the contributing catchment exceeds approximately 1ha, this reduction in peak flow manifests in a reduction in the required size of the pipe diameters in the minor drainage network. Reliability of supply 95% available volume Extra storage for 20% AEP Extra storage for 1% AEP Total volume 2kL 39% 0.3kL 3.20kL 4.80kL 6.80kL 5kL 50% 0.95kL 2.55kL 4.15kL 9.15kL 10kL 56% 3.20kL 0.30kL 1.90kL 11.90kL 15kL 59% 4.50kL kL 15.60kL 20kL 62% 5.40kL kL Table 1. Tank sizing results. Indicating both the nominal tank size (available for reuse) and total tank volume required to reduce peak flows. tank 6

7 For the catchment in this exercise, around 25% of the drainage network was able to be reduced, and the reductions occurred in the larger diameter pipes. Generally reductions were in the order of one standard size smaller (ie 525mm diameter reducing to 450mm diameter). The reuse of rainwater at the household level removes both water and pollutants from the drainage network. The use of rainwater tanks on every lot in the catchment was found to reduce Total Nitrogen leaving the catchment by 33%, or 75% of the Best Practice pollutant removal requirements. The inclusion of a 200m 2 sedimentation basin at the end of the catchment generated the further required pollutant removal. As a comparison, a 150m 2 rain garden was required in conjunction with a 200m 2 sedimentation basin to achieve Best Practice pollutant removal requirements for Scenario A. In order to restrict stormwater flows from the entire catchment to the pre-development 1% AEP peak, a storage volume of 1888m 3 is required for Scenario A compared to 687m 3 for Scenario B. A simple estimate of relative costs is presented to facilitate comparison of the two scenarios. Maintenance and general operating costs have not been considered at this point. A B Rainwater tanks $ - $572, Pipe drainage1 $ 27, $ - Reticulated water2 $340, $ - Sedimentation basin $ 50, $ 50, Rain garden $ 60, $ - Retardation basin3 $ 37, $ 13, Cost of land (WQ and basin) $ 64, $ 27, Total $580, $662, Table 2. Indicative cost of Scenarios A and B. I 1. Relative additional cost of piped drainage in the traditional network 2. Relative additional cost of reticulated water over 25 year life of tank 3. Estimate of earthworks only. 7

8 I. Conclusions This exercise examined a single residential catchment, and the results cannot be directly translated to all locations. The key outcomes were that with the introduction of overflow storage on household rainwater tanks, peak flow rates for the major and minor drainage networks were able to be significantly reduced, and the diameter of pipes in the minor drainage network was able to be reduced. A further result of the inclusion of rainwater harvesting and reuse was a significant reduction in the requirement for end of line water quality treatment and retardation (where retardation to pre-development levels is required). A simple cost analysis (not including maintenance savings or distribution) suggests that in its basic form, Scenario B is within 15% of the traditional Scenario A. There are also benefits in terms of use of public land, and total volume of stormwater reaching local waterways. Broader investigations into this style of drainage network should be undertaken to understand applicability across different locations, catchment sizes and types, or varied end uses at the household level. It is heavily reliant on the involvement and engagement of local residents and appropriate use of household tanks. Before drainage authorities can accept this style of drainage network, a level on confidence in ability to control and predict use must be achieved to complement the modelling and mathematics that suggests its positive potential. 8

Stormwater Management Practice Note NSC 07: Detention Tanks

Stormwater Management Practice Note NSC 07: Detention Tanks Stormwater Management Practice Note NSC 07: Detention Tanks This practice note has been developed to give general information on the minimum design requirements and maintenance of detention tanks for both

More information

WSUD On-site Detention in xprafts 2013

WSUD On-site Detention in xprafts 2013 WSUD On-site Detention in xprafts 2013 Content 1. Introduction of ODS 2. General a. Impervious Area b. Pervious Area Capture c. Average Allotment Density d. Developed Area/Total Area 3. On-site Detention

More information

Masters Geelong Stormwater Management Plan

Masters Geelong Stormwater Management Plan ` Masters Geelong Job Number: CG111748 ABN 47 106 610 913 150 Oxford Street, Collingwood Victoria 3066 Australia Telephone: 03 8415 7777 Facsimile: 03 8415 7788 International: +61 3 8415 7777 victoria@cardno.com.au

More information

Stormwater design considerations

Stormwater design considerations Stormwater design considerations Manage the small and frequent rainfall events first Bill Till Supervising Engineer Urban Water Management Stormwater management information Decision Process for Stormwater

More information

Insights from editing the ARR Urban Book. Peter J Coombes

Insights from editing the ARR Urban Book. Peter J Coombes Insights from editing the ARR Urban Book Peter J Coombes Motivation for revision of ARR Many practices and data in ARR 1987 are outdated More rainfall and streamflow data Improved understanding of climate

More information

Armstrong Creek West Precinct. Review of Stormwater Management Strategy

Armstrong Creek West Precinct. Review of Stormwater Management Strategy Armstrong Creek West Precinct Review of Stormwater Management Strategy 31 October 2011 Report by: Valerie Mag, B.E. Civil (Hons), M. Eng. Sci. Stormy Water Solutions stormywater@optusnet.com.au Ph 9511

More information

Modelling and sizing evapotranspiration fields to manage urban. stormwater excess: reducing surface runoff volume

Modelling and sizing evapotranspiration fields to manage urban. stormwater excess: reducing surface runoff volume Modelling and sizing evapotranspiration fields to manage urban stormwater excess: reducing surface runoff volume Emma James* 1, Peter Breen 2, Sara Lloyd 3 and Courtney Henderson 4 *Presenting Author Surface

More information

Water sensitive urban design. Developing design objectives for urban development in South East Queensland

Water sensitive urban design. Developing design objectives for urban development in South East Queensland Water sensitive urban design Developing design objectives for urban development in South East Queensland Version 2-8 November 2007 Contents Contents......... ii Executive Summary............1 1 Introduction.........1

More information

Taking the pain out of the treatment train: continuous simulation modelling for integrated water management

Taking the pain out of the treatment train: continuous simulation modelling for integrated water management Engineers & Consultants Taking the pain out of the treatment train: continuous simulation modelling for integrated water management Stu Farrant & Reuben Ferguson, Morphum Environmental Limited Abstract

More information

Integrated Catchment Modelling

Integrated Catchment Modelling Integrated Catchment Modelling Modelling the whole water cycle in one package Ann Pugh Integrated Water Planning Historically water, wastewater and stormwater modelling occurred in silos with little integration

More information

Section 1 - Introduction

Section 1 - Introduction VERSION 1.0 Stormwater Solutions for Residential Sites Section 1 - Introduction Prepared for EcoWater Solutions A Department of Waitakere City Council 113 Central Park Drive Henderson WAITAKERE CITY November

More information

Integrated Water Management Developer Guidance

Integrated Water Management Developer Guidance WESTERN WATER Western Water Whole-of-water-cycle Strategy Integrated Water Management Developer Guidance Edition 1, 2018 For more information call 1300 650 422 or visit us at WesternWater.com.au Development

More information

Overview of Water Policy Challenges for Victoria. Dr Peter Coombes

Overview of Water Policy Challenges for Victoria. Dr Peter Coombes Overview of Water Policy Challenges for Victoria Dr Peter Coombes Insights from investigations into integrating urban drainage into water cycle management Working with Engineers Australia on this task

More information

The role of domestic rainwater harvesting systems in storm water runoff mitigation

The role of domestic rainwater harvesting systems in storm water runoff mitigation European Water 58: 497-53, 217. 217 E.W. Publications The role of domestic rainwater harvesting systems in storm water runoff mitigation I. Gnecco *, A. Palla and P. La Barbera Department of Civil, Chemical

More information

The SuDS Manual Frequently asked questions

The SuDS Manual Frequently asked questions The SuDS Manual Frequently asked questions 1. Is source control still a requirement of the new SuDS Manual? Yes. Source control components are fundamental elements of a SuDS scheme. The benefits of source

More information

Two Case Studies of Stormwater Harvesting: The Coburg and Merrifield Projects, Victoria, Australia

Two Case Studies of Stormwater Harvesting: The Coburg and Merrifield Projects, Victoria, Australia Two Case Studies of Stormwater Harvesting: The Coburg and Merrifield Projects, Victoria, Australia J. McGrath*, G. Wilson**, D. Elliott**, J. Baumann*, H. Wahjudi* * Dalton Consulting Engineers, 255 Whitehorse

More information

Nuriootpa (Sturt Highway Service Centre) DPA The Barossa Council Appendices. Appendix C - Herriot Consulting Engineering Assessment

Nuriootpa (Sturt Highway Service Centre) DPA The Barossa Council Appendices. Appendix C - Herriot Consulting Engineering Assessment Nuriootpa (Sturt Highway Service Centre) DPA The Barossa Council Appendices Appendix C - Herriot Consulting Engineering Assessment 4th May 2018 C1803-002 Rocland Estate Lot 147 Sturt Highway, Nuriootpa

More information

INTEGRATED WATER MANAGEMENT PLANNING IN MELBOURNE, AUSTRALIA MANAGING COMPETING OBJECTIVES

INTEGRATED WATER MANAGEMENT PLANNING IN MELBOURNE, AUSTRALIA MANAGING COMPETING OBJECTIVES INTEGRATED WATER MANAGEMENT PLANNING IN MELBOURNE, AUSTRALIA MANAGING COMPETING OBJECTIVES G. Wilson 1, P. Edwards 2, J. McGrath 3, J. Bauman 3, F. Pamminger 1 1. Yarra Valley Water, Lucknow Street, Mitcham,

More information

Water Outlook for Melbourne

Water Outlook for Melbourne Water Outlook for Melbourne 1 December 2016 Water availability Melbourne s water availability is secure for next 12 months Melbourne s water storages are in the High Zone and are likely to remain in

More information

CIE4491 Lecture. Quantifying stormwater flow Rational method

CIE4491 Lecture. Quantifying stormwater flow Rational method CIE4491 Lecture. Quantifying stormwater flow Rational method 27-5-2014 Marie-claire ten Veldhuis, Watermanagement Department Delft University of Technology Challenge the future Robust method stationary

More information

STORMWATER HARVESTING, AN INNOVATIVE WAY OF MEETING THE CATCHMENT WIDE NEEDS OF THE BUILT AND SOCIAL ENVIRONMENTS

STORMWATER HARVESTING, AN INNOVATIVE WAY OF MEETING THE CATCHMENT WIDE NEEDS OF THE BUILT AND SOCIAL ENVIRONMENTS STORMWATER HARVESTING, AN INNOVATIVE WAY OF MEETING THE CATCHMENT WIDE NEEDS OF THE BUILT AND SOCIAL ENVIRONMENTS Bronwyn Rhynd, CPEng, MIPENZ, IntPE ABSTRACT Catchment wide stormwater management objectives

More information

Analysis of the Performance of Rainwater Tanks in Australian Capital Cities

Analysis of the Performance of Rainwater Tanks in Australian Capital Cities Analysis of the Performance of Rainwater Tanks in Australian Capital Cities 1 Peter J Coombes and 2 George Kuczera 1 Post Doctoral Fellow, School of Engineering, University of Newcastle, Callaghan NSW

More information

Urban Developer: Technical Overview

Urban Developer: Technical Overview Urban Developer: Technical Overview Technical Report 13 December 2011 Copyright Notice ewater Ltd 2011 Legal Information This work is copyright. You are permitted to copy and reproduce the information,

More information

MUSIC Parameters for use within the City of Greater Geelong

MUSIC Parameters for use within the City of Greater Geelong MUSIC Parameters for use within the City of Greater Geelong Introduction The following MUSIC Guidelines have been developed by Parsons Brinckerhoff (PB) for the City of Greater Geelong for use in modelling

More information

MUSIC Guidelines. Recommended input parameters and modelling approaches for MUSIC users Draft January 2016 update

MUSIC Guidelines. Recommended input parameters and modelling approaches for MUSIC users Draft January 2016 update MUSIC Guidelines Recommended input parameters and modelling approaches for MUSIC users Draft January 2016 update Table of contents 1. Introduction 1 2. Purpose of document 1 3. Climate data 2 4. Hydrologic

More information

Stormwater Management Practice Notes. District Plan Change 22 (Decision Notice Version)

Stormwater Management Practice Notes. District Plan Change 22 (Decision Notice Version) Stormwater Management Practice Notes for District Plan Change 22 (Decision Notice Version) Stormwater Management Practice Notes List of Practice Notes Stormwater Management Practice Notes: NSC 01: Stormwater

More information

Assessing Integrated Water Management Options for Urban Developments - Canberra Case Study

Assessing Integrated Water Management Options for Urban Developments - Canberra Case Study Assessing Integrated Water Management Options for Urban Developments - Canberra Case Study Ashok Sharma 1*, Stephen Gray 2, Clare Diaper 1, Peter Liston 3 and Carol Howe 1 1 CSIRO Land and Water, PO Box

More information

SpencerHolmes engineers - surveyors - planners

SpencerHolmes engineers - surveyors - planners Preliminary Stormwater Design Mary Potter Hospice 48-62 Mein Street Newtown Wellington SpencerHolmes engineers - surveyors - planners PO Box 588 Level 6, 8 Willis Street Wellington New Zealand Phone 04

More information

Whole of Water Cycle Modelling Pilot Study

Whole of Water Cycle Modelling Pilot Study Whole of Water Cycle Modelling Pilot Study Presentation Outline Background Model development Water and Sewer Stormwater Advantages of Integrated Modelling Challenges and Limitations Project Aims To investigate

More information

A Case Study on Integrated Urban Water Modelling using Aquacycle NTUA, 2007

A Case Study on Integrated Urban Water Modelling using Aquacycle NTUA, 2007 A Case Study on Integrated Urban Water Modelling using Aquacycle NTUA, 2007 Contents Motivation Input Data Requirements Case Study - Greater Athens Area Model calibration and validation Formulation and

More information

Points. To encourage and recognise the minimisation of peak stormwater flows and the protection of receiving waters from pollutants.

Points. To encourage and recognise the minimisation of peak stormwater flows and the protection of receiving waters from pollutants. Points Available 3 Aim of Credit To encourage and recognise the minimisation of peak stormwater flows and the protection of receiving waters from pollutants. Credit Criteria Up to three points are available.

More information

Stormwater untapping the potential. A rapid approach to assessing avoided drainage costs

Stormwater untapping the potential. A rapid approach to assessing avoided drainage costs Stormwater untapping the potential. A rapid approach to assessing avoided drainage costs Sestokas, K* 1, Bishop, E 2, van Raalte, L 3, Watkinson, R 4, Marshall P and Stokes, D 5 As the population of Melbourne

More information

Modelling Climate Change and Urbanization Impacts on Urban Stormwater and Adaptation Capacity

Modelling Climate Change and Urbanization Impacts on Urban Stormwater and Adaptation Capacity 9th International Conference on Urban Drainage Modelling, Belgrade 2012 C4. Climate change impacts, pp.287-288 Modelling Climate Change and Urbanization Impacts on Urban Stormwater and Adaptation Capacity

More information

SURFACE/STORM WATER MANAGEMENT STRATEGY: 1960 & 2040 Mickleham Road, Mickleham. Lindum Vale. Satterley Property Group

SURFACE/STORM WATER MANAGEMENT STRATEGY: 1960 & 2040 Mickleham Road, Mickleham. Lindum Vale. Satterley Property Group SURFACE/STORM WATER MANAGEMENT STRATEGY: 1960 & 2040 Mickleham Road, Mickleham Lindum Vale Satterley Property Group October 2017 Document history Revision: Revision no. 04 Author/s Jonathon McLean Andrew

More information

Paraprofessional Training Session 1

Paraprofessional Training Session 1 Paraprofessional Training Session 1 Part 2: Stormwater Basics November 26, 2012 Rutgers University, Cook Campus Christopher C. Obropta, Ph.D., P.E. Extension Specialist in Water Resources Associate Professor

More information

RE: AGL Energy Limited Newcastle Gas Storage Facility Storm Water Management Peer Review Part 1: Design Modelling

RE: AGL Energy Limited Newcastle Gas Storage Facility Storm Water Management Peer Review Part 1: Design Modelling 30 th January 2011 Level 22, 101 Miller Street North Sydney, NSW 2060 Attn: Ms Arianna Henty/Alex Kennedy-Clark Dear Arianna/Alex, RE: AGL Energy Limited Newcastle Gas Storage Facility Storm Water Management

More information

Planning Considerations for Stormwater Management in Alberta. R. D. (Rick) Carnduff, M. Eng., P. Eng. February 20, 2013.

Planning Considerations for Stormwater Management in Alberta. R. D. (Rick) Carnduff, M. Eng., P. Eng. February 20, 2013. Planning Considerations for Stormwater Management in Alberta R. D. (Rick) Carnduff, M. Eng., P. Eng. February 20, 2013 Photo Optional Purpose The purpose of urban stormwater management is to provide solutions

More information

Stormwater Attenuation Systems Sustainable Drainage Solutions for Domestic & Commercial Applications

Stormwater Attenuation Systems Sustainable Drainage Solutions for Domestic & Commercial Applications Environmental Stormwater Attenuation Systems Sustainable Drainage Solutions for Domestic & Commercial Applications Sustainable, Reliable, Affordable Stormwater Attenuation Systems Sustainable Drainage

More information

What makes a sustainable stormwater harvesting project?

What makes a sustainable stormwater harvesting project? What makes a sustainable stormwater harvesting project? D. Knights 1 and A. McAuley 1 1 Equatica The last five years has seen a period of rapid change in stormwater harvesting. The industry has seen a

More information

Sustainability Criteria for the Design of Stormwater Drainage Systems for the 21 st Century

Sustainability Criteria for the Design of Stormwater Drainage Systems for the 21 st Century Sustainability Criteria for the Design of Stormwater Drainage Systems for the 21 st Century R. Kellagher 1 and H. Udale-Clarke 1 * 1 HR Wallingford Ltd., Howbery Park, Wallingford. Oxfordshire, OX10 8BA,

More information

Sizing Calculations and Design Considerations for LID Treatment Measures

Sizing Calculations and Design Considerations for LID Treatment Measures SCVURPPP C.3 Workshop December 18, 2012 Sizing Calculations and Design Considerations for LID Treatment Measures Jill Bicknell, P.E., EOA, Inc. Santa Clara Valley Urban Runoff Pollution Prevention Program

More information

The Process for Designing for Shallow Groundwater. and Small Rainfall Event Management in Urban. Developments

The Process for Designing for Shallow Groundwater. and Small Rainfall Event Management in Urban. Developments The Process for Designing for Shallow Groundwater and Small Rainfall Event Management in Urban Developments Bill Till* and Emma Monk *Presenting Author The Decision process for stormwater management in

More information

3.4 Harvest and Use BMPs

3.4 Harvest and Use BMPs 3.4 Harvest and Use BMPs Type of BMP Treatment Mechanisms Minimum Tributary Drainage Area Other Names LID Harvest and Use Volume Reduction This BMP is generally limited by the cistern / detention storage

More information

Modelling a Combined Sewage and Stormwater Flood Detention Basin

Modelling a Combined Sewage and Stormwater Flood Detention Basin Modelling a Combined Sewage and Stormwater Flood Detention Basin A. Pugh B.E. (Hons), Member A.W.A. Sales and Support Manager, Wallingford Software Pty Ltd, Australia S. Ratcliffe B.Sc(Hons), Grad Dip

More information

WESTERN REGIONAL WATER BALANCE

WESTERN REGIONAL WATER BALANCE WESTERN REGIONAL WATER BALANCE Greg Finlayson 1, Ryan Brotchie 1, Steven Roach 1, Lauren Mittiga 2, Abigail Farmer 3, John Chambers 3 1. GHD, Melbourne, VIC, Australia 2. Melbourne Water, Melbourne, VIC,

More information

The MASMA and Sustainable Drainage Systems

The MASMA and Sustainable Drainage Systems RLD 512 LANDSCAPE HYDROLOGY The MASMA and Sustainable Drainage Systems Dr Naser Ghani PhD, P.Eng, MIEM, MASCE, MACEM anaser@usm.my www.hbp.usm.my/naser ROOM 104 E49 MASMA The main focus of Urban Storm

More information

Policy Statement. Purpose. Scope. Definitions

Policy Statement. Purpose. Scope. Definitions Policy Number: 09-01-04 Section: Environment And Conservation Subsection: Stormwater Management Effective Date: May 27, 2015 Last Review Date: Approved by: Council Owner Division/Contact: Environmental

More information

PRELIMINARY DRAINAGE STUDY

PRELIMINARY DRAINAGE STUDY PRELIMINARY DRAINAGE STUDY For 34 th & J Residences 3402 J St. San Diego, CA 92102 A.P.N 545-250-08 Prepared By: Kenneth J. Discenza, P.E. Site Design Associates, Inc. 1016 Broadway, Suite A El Cajon,

More information

Lesson W9 Wastewater and CSOs

Lesson W9 Wastewater and CSOs Lesson W9 Wastewater and CSOs Where Does our Water Go When We Flush it Down the Drain? When you flush your toilet or wash your dishes, where does the water go? We learned that only 2-3% of the water used

More information

Chapter 10 Infiltration Measures

Chapter 10 Infiltration Measures Chapter 10 Infiltration Measures Definition: A sub-surface water filtration system designed to allow water to infiltrate into surrounding soils. Purpose: To encourage stormwater to infiltrate into surrounding

More information

DRAFT REPORT: Paynes Road PSP Drainage Review

DRAFT REPORT: Paynes Road PSP Drainage Review DRAFT REPORT: Paynes Road PSP Drainage Review November 2014 Document history Revision: Revision no. 01 Author/s Penny Clark Dan O Halloran Checked Jonathon McLean Approved Jonathon McLean Distribution:

More information

The viability of rainwater and stormwater harvesting in the residential areas of the Liesbeek River Catchment, Cape Town.

The viability of rainwater and stormwater harvesting in the residential areas of the Liesbeek River Catchment, Cape Town. The viability of rainwater and stormwater harvesting in the residential areas of the Liesbeek River Catchment, Cape Town Lloyd Fisher-Jeffes 11 November 2015 Urban Water Management research unit: Team

More information

MURDOCH RESEARCH REPOSITORY.

MURDOCH RESEARCH REPOSITORY. MURDOCH RESEARCH REPOSITORY This is the author s final version of the work, as accepted for publication following peer review but without the publisher s layout or pagination. http://researchrepository.murdoch.edu.au/20967/

More information

MELBOURNE S WATER SUPPLY IS SECURE

MELBOURNE S WATER SUPPLY IS SECURE December 2017 MELBOURNE S WATER SUPPLY IS SECURE Our water storages are in the High (Secure) Zone and we encourage our customers to continue to use water wisely. Melbourne s water supply system 1, which

More information

Hydrologic Modeling for Green Roofs, Rainwater Harvesting and LID Foundations

Hydrologic Modeling for Green Roofs, Rainwater Harvesting and LID Foundations Hydrologic Modeling for Green Roofs, Rainwater Harvesting and LID Foundations Robin Kirschbaum, PE, LEED AP Alice Lancaster, PE May 8, 2013 Presentation Outline Overview of Hydrologic Modeling Performance

More information

EnviroModule TM 2. modular underground tank systems. rainwater harvesting infiltration on-site detention bio-remediation filtration

EnviroModule TM 2. modular underground tank systems. rainwater harvesting infiltration on-site detention bio-remediation filtration EnviroModule TM 2 modular underground tank systems rainwater harvesting infiltration on-site detention bio-remediation filtration our mission AUSDRAIN TM recognises that water is one of our most precious

More information

Retention Infiltration Storage. Ph: novaplas.com.au

Retention Infiltration Storage. Ph: novaplas.com.au Retention Infiltration Storage Ph: 08 6250 3000 novaplas.com.au Specifications DRAINWELL SPECIFICATIONS Maximum Load (Tons/m²) 2 Inner Plates -3 Inner Plates 23.66 t/m² 4 Inner Plates 29.76 t/m² 5 Inner

More information

Metropolitan Planning Authority Whole of Water Cycle Assessment: PSP 1067 Donnybrook and PSP 1096 Woodstock Summary Report

Metropolitan Planning Authority Whole of Water Cycle Assessment: PSP 1067 Donnybrook and PSP 1096 Woodstock Summary Report Metropolitan Planning Authority Whole of Water Cycle Assessment: PSP 1067 Donnybrook and PSP 1096 Final Issue 27 June 2014 This report takes into account the particular instructions and requirements of

More information

Thinking about developing or building on land with ponding or drainage issues?

Thinking about developing or building on land with ponding or drainage issues? Thinking about developing or building on land with ponding or drainage issues? Much of the Kāpiti Coast is low-lying and subject to flooding, ponding or drainage issues. We need to pay careful attention

More information

Storm Water Management

Storm Water Management Storm Water Management Policy September 2014 2 Sustainable drainage feature designed to control and manage flows through a series of check dams 3 Document Name: Storm Water Management Controlled Copy No:

More information

TECHNICAL GUIDANCE DOCUMENT APPENDICES

TECHNICAL GUIDANCE DOCUMENT APPENDICES XIV.4. Harvest and Use BMP Fact Sheets (HU) HU-1: Above-Ground Cisterns Cisterns are large rain barrels. While rain barrels are less than 100 gallons, cisterns range from 100 to more than 10,000 gallons

More information

Wetland Design Manual. Supporting document: Wetland form and function

Wetland Design Manual. Supporting document: Wetland form and function Wetland Design Manual Supporting document: Wetland form and function Table of contents Contents Water Sensitive Urban Design... 3 Protection of waterways... 3 Management of stormwater in urban landscapes...

More information

Ecosol Rain Tank Technical Specification. environmentally engineered for a better future URBAN ASSET SOLUTIONS

Ecosol Rain Tank Technical Specification. environmentally engineered for a better future URBAN ASSET SOLUTIONS Ecosol Rain Tank Technical Specification environmentally engineered for a better future CONTENTS 1.0 Introduction 1.1 How And Why The Ecosol Rain Tank Works 2.0 Warranty And Life Expectancy 3.0 Safety

More information

Water Balance Methodology

Water Balance Methodology Water Balance Methodology Integrating the Site with the Watershed and the Stream March 2012 An initiative under the umbrella of the Water Sustainability Action Plan for British Columbia Water Balance Methodology

More information

Smart modelling for future proof rainwater systems: Sirio & Scan software

Smart modelling for future proof rainwater systems: Sirio & Scan software Smart modelling for future proof rainwater systems: Sirio & Scan software Stormwater Poland 2018 15-16 March, Gdansk dr. ir. Vincent Wolfs Situation in Belgium Climate change Floods Droughts Urbanisation

More information

Rainwater Harvesting:

Rainwater Harvesting: Rainwater Harvesting: Using and Reducing the Water that Goes to Waste. By Steve Williams 2012 An Answer to Urban Water Quantity and Quality Problems Urban Ecosystem Analysis The City of Atlanta Tree loss

More information

Supporting Information for Rainwater Catchment Rebate:

Supporting Information for Rainwater Catchment Rebate: Supporting Information for Rainwater Catchment Rebate: When creating a cost-benefit analysis this can be very difficult because numerous parameters factor into water savings such as: demand, tank size,

More information

Storm Sewers, Page 2

Storm Sewers, Page 2 Storm Sewers storm sewer systems are dendritic systems used to collect and direct stormwater runoff storm sewer systems are integral components of any urban infrastructure curbs, gutters and storm inlets

More information

Cochise Hall Water Harvesting / Storm water Management - Class Project

Cochise Hall Water Harvesting / Storm water Management - Class Project 1 The modern water harvesting movement is part of a broader change, or paradigm shift, in how water is treated on sites. And that is the shift from viewing water as a problem to seeing it as a resource.

More information

Modelling Stormwater Contaminant Loads in Older Urban Catchments: Developing Targeted Management Options to Improve Water Quality

Modelling Stormwater Contaminant Loads in Older Urban Catchments: Developing Targeted Management Options to Improve Water Quality Modelling Stormwater Contaminant Loads in Older Urban Catchments: Developing Targeted Management Options to Improve Water Quality Frances J. CHARTERS 1, Thomas A. COCHRANE 1, Aisling D. O SULLIVAN 1 1

More information

SURFACE/STORM WATER MANAGEMENT STRATEGY: 1960 & 2040 Mickleham Road, Mickleham. Lindum Vale. Satterley Property Group

SURFACE/STORM WATER MANAGEMENT STRATEGY: 1960 & 2040 Mickleham Road, Mickleham. Lindum Vale. Satterley Property Group SURFACE/STORM WATER MANAGEMENT STRATEGY: 1960 & 2040 Mickleham Road, Mickleham Lindum Vale Satterley Property Group December 2017 Document history Revision: Revision no. 05 Author/s Jonathon McLean Andrew

More information

Memorandum Neighborhood Development Services Office of the City Engineer City Hall Annex, 610 East Market St., Charlottesville

Memorandum Neighborhood Development Services Office of the City Engineer City Hall Annex, 610 East Market St., Charlottesville Memorandum Neighborhood Development Services Office of the City Engineer City Hall Annex, 610 East Market St., Charlottesville To: WHOM IT MAY CONCERN From: Engineering Division Date: February 9, 2009

More information

Memorandum Neighborhood Development Services Office of the City Engineer City Hall Annex, 610 East Market St., Charlottesville

Memorandum Neighborhood Development Services Office of the City Engineer City Hall Annex, 610 East Market St., Charlottesville Memorandum Neighborhood Development Services Office of the City Engineer City Hall Annex, 610 East Market St., Charlottesville To: WHOM IT MAY CONCERN From: Engineering Division Date: February 17, 2009

More information

Tucson Water s Rainwater Harvesting Incentive Workshop Provided as a community service by

Tucson Water s Rainwater Harvesting Incentive Workshop Provided as a community service by Tucson Water s Rainwater Harvesting Incentive Workshop Provided as a community service by A 501(c)3 Non-profit organization Rainwater Harvesting Systems Capturing rainwater for beneficial use 1. Harvest

More information

HYDROLOGIC-HYDRAULIC STUDY ISABELLA OCEAN RESIDENCES ISLA VERDE, CAROLINA, PR

HYDROLOGIC-HYDRAULIC STUDY ISABELLA OCEAN RESIDENCES ISLA VERDE, CAROLINA, PR HYDROLOGIC-HYDRAULIC STUDY ISABELLA OCEAN RESIDENCES ISLA VERDE, CAROLINA, PR 1 INTRODUCTION 1.1 Project Description and Location Isabella Ocean Residences is a residential development to be constructed

More information

SURFACE/STORM WATER MANAGEMENT STRATEGY: 1960 & 2040 Mickleham Road, Mickleham. Lindum Vale. Satterley Property Group

SURFACE/STORM WATER MANAGEMENT STRATEGY: 1960 & 2040 Mickleham Road, Mickleham. Lindum Vale. Satterley Property Group SURFACE/STORM WATER MANAGEMENT STRATEGY: 1960 & 2040 Mickleham Road, Mickleham Lindum Vale Satterley Property Group May 2018 Document history Revision: Revision no. 07 Author/s Jonathon McLean Andrew John

More information

Storm Water Management Pollution and Treatment

Storm Water Management Pollution and Treatment 7th EWA Bruxells Conference 25.10.2011 Effektive Urban Wastewater Treatment Theo G. Schmitt, University of Kaiserslautern Storm Water Management Pollution and Treatment 10.11.2011-2 Overview Major Storm

More information

Hume Planning Scheme Amendment C207. Expert Witness report provided to Planning Panels Victoria

Hume Planning Scheme Amendment C207. Expert Witness report provided to Planning Panels Victoria Hume Planning Scheme Amendment C207 Expert Witness report provided to Planning Panels Victoria Drainage Evidence (Property 94, 95, 96, 97, 98 and 99) Prepared for Hi Quality Pty Ltd and Trantaret Pty Ltd

More information

Matt Lundsted Principal Comprehensive Environmental Inc.

Matt Lundsted Principal Comprehensive Environmental Inc. Matt Lundsted Principal Comprehensive Environmental Inc. Traditional Development vs. LID Application of LID to New and Redeveloped Sites Standard Engineering Practice Q = CIA Minimum velocity of 3 ft/sec.

More information

Pennsylvania Stormwater Best Management Practices Manual. Chapter 3. Stormwater Management Principles and Recommended Control Guidelines

Pennsylvania Stormwater Best Management Practices Manual. Chapter 3. Stormwater Management Principles and Recommended Control Guidelines Pennsylvania Stormwater Best Management Practices Manual Chapter 3 Stormwater Management Principles and Recommended Control Guidelines 363-0300-002 / December 30, 2006 Chapter 3 Stormwater Management Principles

More information

Environmental SAVE ON WATER BILLS MONEY. Rainwater Harvesting Systems for Domestic Applications. Sustainable, Reliable, Affordable

Environmental SAVE ON WATER BILLS MONEY. Rainwater Harvesting Systems for Domestic Applications. Sustainable, Reliable, Affordable Environmental SAVE MONEY ON WATER BILLS Rainwater Harvesting s for Domestic Applications Sustainable, Reliable, Affordable RAINWATER HARVESTING The portfolio of Rainwater Harvesting products offer economical

More information

Applying the Water Quality Volume

Applying the Water Quality Volume Applying the Water Quality Volume Justin Reinhart, PE Division of Surface Water Northeast Ohio Stormwater Training Council Cleveland, Ohio & Richfield, Ohio July 12, 2018 July 25, 2018 Post-Construction

More information

Storm water Catchment Analysis

Storm water Catchment Analysis Storm water Catchment Analysis Analysis index 1. Storm water attenuation tank sizing method 2. Consent notices for storm water attenuation tanks 3. Summary of sub catchments 4. Hydrological Analysis for

More information

THE STUDY ON INTEGRATED URBAN DRAINAGE IMPROVEMENT FOR MELAKA AND SUNGAI PETANI IN MALAYSIA FINAL REPORT

THE STUDY ON INTEGRATED URBAN DRAINAGE IMPROVEMENT FOR MELAKA AND SUNGAI PETANI IN MALAYSIA FINAL REPORT THE GOVERNMENT OF MALAYSIA PRIME MINISTER S DEPARTMENT ECONOMIC PLANNING UNIT THE STUDY ON INTEGRATED URBAN DRAINAGE IMPROVEMENT FOR MELAKA AND SUNGAI PETANI IN MALAYSIA FINAL REPORT VOL. 5: TECHNICAL

More information

MODULE 1 RUNOFF HYDROGRAPHS WORKSHEET 1. Precipitation

MODULE 1 RUNOFF HYDROGRAPHS WORKSHEET 1. Precipitation Watershed MODULE 1 RUNOFF HYDROGRAPHS WORKSHEET 1 A watershed is an area of land thaaptures rainfall and other precipitation and funnels it to a lake or stream or wetland. The area within the watershed

More information

Alternative water sources and Integrated water management

Alternative water sources and Integrated water management Service delivery Alternative water sources and Integrated water management Strategic Goals Our Aim Contribute to a more sustainable, prosperous, liveable and healthy community by planning and delivering

More information

Drainage Analysis. Appendix E

Drainage Analysis. Appendix E Drainage Analysis Appendix E The existing and proposed storm drainage systems have been modeled with Bentley CivilStorm V8 computer modeling software. The peak stormwater discharge was determined for

More information

Quality of Rainwater From Rainwater Harvesting Systems in Sanaa. Nagib Ghaleb N. Mohammed, Civil Engineering Department, University of Bahrain

Quality of Rainwater From Rainwater Harvesting Systems in Sanaa. Nagib Ghaleb N. Mohammed, Civil Engineering Department, University of Bahrain Quality of Rainwater From Rainwater Harvesting Systems in Sanaa Nagib Ghaleb N. Mohammed, Civil Engineering Department, University of Bahrain Outlines Shortage of Water Rain water harvesting Benefits of

More information

HANDBOOK ON DRAINAGE DESIGN GUIDELINES

HANDBOOK ON DRAINAGE DESIGN GUIDELINES HANDBOOK ON DRAINAGE DESIGN GUIDELINES December 2013 TABLE OF CONTENTS 1. Introduction... 1 2. Design Guidelines for On-site Stormwater Management... 2 2.1 Site Discharge Index... 2 2.2 General Principles...

More information

Modelling the Impacts of Rainwater Tanks on Sanitary Sewer Overflows

Modelling the Impacts of Rainwater Tanks on Sanitary Sewer Overflows 21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 Nov to 4 Dec 2015 www.mssanz.org.au/modsim2015 Modelling the Impacts of Rainwater Tanks on Sanitary Sewer Overflows T.

More information

The Role of Pervious Paving in Meeting the Requirements of the Auckland Unitary Plan

The Role of Pervious Paving in Meeting the Requirements of the Auckland Unitary Plan The Role of Pervious Paving in Meeting the Requirements of the Auckland Unitary Plan Nick Vigar Waterways Planning Team Manager Auckland Council Healthy Waters Outline Stormwater management under the Air,

More information

Hydrologic Study Report for Single Lot Detention Basin Analysis

Hydrologic Study Report for Single Lot Detention Basin Analysis Hydrologic Study Report for Single Lot Detention Basin Analysis Prepared for: City of Vista, California August 18, 2006 Tory R. Walker, R.C.E. 45005 President W.O. 116-01 01/23/2007 Table of Contents Page

More information

Stormwater Management Report Bachman Terrace Residential Development

Stormwater Management Report Bachman Terrace Residential Development Stormwater Management Report Bachman Terrace Residential Development Project # 160401069 Prepared for: Tega Developments Prepared by: Stantec Consulting Ltd. April 14, 2014 Sign-off Sheet This document

More information

Lesson 37: Low-Impact Urban Development

Lesson 37: Low-Impact Urban Development Lesson 37: Low-Impact Urban Development 53:171 Water Resources Engineering Low-Impact Development (LID) LID is a site design strategy with a goal of maintaining or replicating the predevelopment hydrologic

More information

Urban Rainwater Harvesting Systems: Promises and Challenges

Urban Rainwater Harvesting Systems: Promises and Challenges TheWaterChannel Webinar #5 Urban Rainwater Harvesting Systems: Promises and Challenges By Vishwanath S Zenrainman@gmail.com www.ircsa.org www.rainwaterclub.org Thanks for coming. The webinar will begin

More information

WinSLAMM v Program Modifications Final, 3/16/19

WinSLAMM v Program Modifications Final, 3/16/19 WinSLAMM v 10.4.1 Program Modifications Final, 3/16/19 1. Printing Set up a printing option for.pdf files for input data and output summary data. 2. Added the Pipe input data to the printing input data

More information

ENGINEERED SOLUTIONS. low impact development application guide

ENGINEERED SOLUTIONS. low impact development application guide ENGINEERED SOLUTIONS low impact development application guide Lower Your Impact with Contech. Our flexible, customizable systems can be easily integrated onto your site to meet Low Impact Development (LID)

More information

Cisterns SMP One-Sheet - download a summary of this tool, with quick reference facts for clients and. developers.

Cisterns SMP One-Sheet - download a summary of this tool, with quick reference facts for clients and. developers. 4.5 Cisterns Cisterns SMP One-Sheet - download a summary of this tool, with quick reference facts for clients and developers. Chapter 4 - pg. 84 Philadelphia Water Stormwater Management Guidance Manual

More information

Some stormwater governance issues

Some stormwater governance issues Some stormwater governance issues Bayside beach litter control, Melbourne Port Phillip Bay, Melbourne endpoint for stormwater discharges. Litter source control, Los Angeles region Los Angeles River outflow,

More information

RETENTION BASIN EXAMPLE

RETENTION BASIN EXAMPLE -7 Given: Total Tributary Area = 7.5 ac o Tributary Area within Existing R/W = 5.8 ac o Tributary Area, Impervious, Outside of R/W = 0.0 ac o Tributary Area, Pervious, Outside of R/W = 1.7 ac o Tributary

More information