Materials Science and Engineering

Size: px
Start display at page:

Download "Materials Science and Engineering"

Transcription

1 FOURTH E DITION Materials Science and Engineering An Introduction William D. Callister, Jr. Department of Metallurgical Engineering The University of Utah John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore Weinheim

2 Contents LIST OF SYMBOLS xviii /. Introduction Historical Perspective Materials Science and Engineering Classification of Materials Advanced Materials Modern Materials Needs 6 References 7 2. Atomic Structure and Interatomic Bonding Introduction 9 ATOMIC STKUCTURE Fundamental Concepts Electrons in Atoms The Periodic Table 15 ATOMIC BONDINC IN SOLIDS Bonding Forces and Energies Primary Interatomic Bonds Secondary Bonding or van der Waals Bonding Molecules 25 Summary 25 Implications 26 Important Terms and Concepts 26 References 26 Questions and Problems The Structure of Crystalline Solids Introduction 30 CRYSTAL STRUCTURES Fundamental Concepts Unit Cells Metallic Crystal Structures Density Computations Polymorphism and Allotropy Crystal Systems 37 CRYSTALLOGRAPHIC DIRECTIONS AND PLANES 37 xi

3 xii Contents 3.8 Crystallographic Directions Crystallographic Planes Linear and Planar Atomic Densities Close-Packed Crystal Structures 48 CRYSTALLINE AND NONCRYSTALLINE MATERIALS Single Crystals Polycrystalline Materials Anisotropy X-Ray Diffraction: Determination of Crystal Structures Noncrystalline Solids 57 Summary 58 Implications 59 Important Terms and Concepts 59 References 59 Questions and Problems Imperfections in Solids Introduction 66 POINT DEFECTS Vacancies and Self-Interstitials Impurities in Solids 68 MISCELLANEOUS IMPERFECTIONS Dislocations Linear Defects Interfacial Defects Bulk or Volume Defects Atomic Vibrations 79 MICROSCOPIC EXAMINATION General Microscopy Grain Size Determination 84 Summary 84 Implications 85 Important Terms and Concepts 86 References 86 Questions and Problems Diffusion Introduction Diffusion Mechanisms Steady-State Diffusion Nonsteady-State Diffusion Factors That Influence Diffusion Other Diffusion Paths 103 Summary 104 Implications 104 Important Terms and Concepts 104 References 104 Questions and Problems Mechanical Properties of Metals Introduction Concepts of Stress and Strain 110 ELASTIC DEFORMATION Stress-Strain Behavior Anelasticity Elastic Properties of Materials 117 PLASTIC DEFORMATION Tensile Properties True Stress and Strain Elastic Recovery During Plastic Deformation Compressive, Shear, and Torsional Deformation Hardness Variability of Material Properties Design/Safety Factors 138 Summary 139 Important Terms and Concepts 140 References 140 Questions and Problems Dislocations and Strengthening Mechanisms Introduction 148 DISLOCATIONS AND PLASTIC DEFORMATION Basic Concepts Characteristics of Dislocations Slip Systems Slip in Single Crystals Plastic Deformation of Polycrystalline Materials Deformation by Twinning 158 MECHANISMS OF STRENGTIIENINC IN METALS Strengthening by Grain Size Reduction Solid-Solution Strengthening Strain Hardening 163 RECOVERY, RECRYSTALLIZATION, AND GRAIN GROWTH Recovery Recrystallization Grain Growth 171 Summary 173 Important Terms and Concepts 174 References 174 Questions and Problems 174

4 Contents xiii 8. Failure Introduction 179 FRACTURE Fundamentals of Fracture Ductile Fracture Brittle Fracture Principles of Fracture Mechanics Impact Fracture Testing 199 FATIGUE Cyclic Stresses The S-N Curve Crack Initiation and Propagation Crack Propagation Rate Factors That Affect Fatigue Life Environmental Effects 219 CREEP Generalized Creep Behavior Stress and Temperature Effects Data Extrapolation Methods Alloys for High-Temperature Use 224 Summary 225 Important Terms and Concepts 227 References 228 Questions and Problems Phase Diagrams Introduction 237 DEFINITIONS AND BASIC CONCEPTS Solubility Limit Phases Microstructure Phase Equilibria 239 EQUILIBRIUM PHASE DIAGRAMS Binary Isomorphous Systems Binary Eutectic Systems Equilibrium Diagrams Having Intermediate Phases or Compounds' Eutectoid and Peritectic Reactions Congruent Phase Transformations Ceramic and Ternary Phase Diagrams The Gibbs Phase Rule 267 THE IRON-CARBON SYSTEM The Iron-Iron Carbide (Fe-Fe 3 C) Phase Diagram Development of Microstructures in Iron-Carbon Alloys The Influence of Other Alloying Elements 280 Summary 280 Implications 281 Important Terms and Concepts 282 References 282 Questions and Problems Phase Transformations in Metals: Development of Microstructure and Alteration of Mechanical Properties Introduction 290 PHASE TRANSFORMATIONS Basic Concepts The Kinetics of Solid-State Reactions Multiphase Transformations 292 MLCROSTRUGTURAL AND PROPKRTY CHANCES IN IRON-CARBON ALLOYS Isothermal Transformation Diagrams Continuous Cooling Transformation Diagrams Mechanical Behavior of Iron-Carbon Alloys Tempered Martensite Review of Phase Transformations for Iron-Carbon Alloys 314 Summary 315 Important Terms and Concepts 315 References 316 Questions and Problems Thermal Processing ofmetal Alloys Introduction 322 ANNEALING PROCESSES Process Annealing Stress Relief Annealing of Ferrous Alloys 323 HEAT TREATMENT OF STEELS Hardenability Influence of Quenching Medium, Specimen Size, and Geometry 329 PRECIPITATION HARDENING Heat Treatments Mechanism of Hardening 337

5 xiv Contents 11.9 Miscellaneous Considerations 338 Summary 339 Important Terms and Concepts 340 References 340 Questions and Problems Metal Alloys Introduction 344 FABRICATION OF METALS Forming Operations Casting Miscellaneous Techniques 347 FERROUS ALLOYS Steels Cast Irons 355 NONFERROUS ALLOYS Copper and Its Alloys Aluminum and Its Alloys Magnesium and Its Alloys Titanium and Its Alloys The Refractory Metals The Superalloys The Noble Metals Miscellaneous Nonferrous Alloys 368 Summary 369 Important Terms and Concepts 369 References 369 Questions and Problems Structures and Properties of Ceramics Applications and Processing of Ceramics Introduction 412 GLASSES Glass Properties Glass Forming Heat Treating Glasses Glass-Ceramics 418 CLAY PRODUCTS The Characteristics of Clay Compositions of Clay Products Fabrication Techniques Drying and Firing 421 REFRACTORIES Fireclay Refractories Silica Refractories Basic Refractories Special Refractories 425 OTHER APPLICATIONS AND PROCESSING METHODS Abrasives Powder Pressing Tape Casting Cements Advanced Ceramics 431 Summary 433 Important Terms and Concepts 434 References 434 Questions and Problems Introduction 373 CERAMIC STRUCTURES Crystal Structures Silicate Ceramics Carbon Imperfections in Ceramics Ceramic Phase Diagrams 394 MECHANICAL PROPERTIES Brittle Fracture of Ceramics Stress-Strain Behavior Mechanisms of Plastic Deformation Miscellaneous Mechanical Considerations 403 Summary 405 Important Terms and Concepts 406 References 406 Questions and Problems Polymer Structures Introduction Hydrocarbon Molecules Polymer Molecules The Chemistry of Polymer Molecules Molecular Weight Molecular Shape Molecular Structure Molecular Configurations Copolymers Polymer Crystallinity Polymer Crystals 457 Summary 460 Important Terms and Concepts 460 References 461 Questions and Problems 461

6 Contents xv 16. Characteristics, Applications, and Processing of Polymers Introduction 466 MECHANICAL AND THERMOMECHANICAL CHARACTEKISTICS Stress-Strain Behavior Deformation of Semicrystalline Polymers Crystallization, Melting, and Glass Transition Phenomena Thermoplastic and Thermosetting Polymers Viscoelasticity Deformation of Elastomers Fracture of Polymers Miscellaneous Characteristics 484 POLYMER APPUCATIONS AND PROCESSING Polymerization Polymer Additives Polymer Types Plastics Elastomers Fibers Miscellaneous Applications Advanced Polymerie Materials 499 Summary 503 Important Terms and Concepts 504 References 504 Questions and Problems Composites Introduction 511 PARTICLE-REINFORCED COMPOSITES Large-Particle Composites Dispersion-Strengthened Composites 517 FIBER-REINFORCED COMPOSITES Influence of Fiber Length Influence of Fiber Orientation and Concentration The Fiber Phase The Matrix Phase Polymer-Matrix Composites Metal-Matrix Composites Ceramic-Matrix Composites Carbon-Carbon Composites Hybrid Composites Processing of Fiber-Reinforced Composites 535 STRUCTURAL COMPOSITES Laminar Composites Sandwich Panels 541 Summary 542 Important Terms and Concepts 544 References 544 Questions and Problems Corrosion and Degradation of Materials Introduction 550 CORROSION OF METALS Electrochemical Considerations Corrosion Rates Prediction of Corrosion Rates Passivity Environmental Effects Forms of Corrosion Corrosion Environments Corrosion Prevention Oxidation 578 CORROSION OF CERAMIC MATERIALS 581 DEGRADATION OF POLYMERS Swelling and Dissolution Bond Rupture Weathering 584 Summary 585 Important Terms and Concepts 586 References 586 Questions and Problems Electrical Properties Introduction 592 ELECTRICAL CONDUCTION Ohm's Law Electrical Conductivity Electronic and Ionic Conduction Energy Band Structures in Solids Conduction in Terms of Band and Atomic Bonding Models Electron Mobility Electrical Resistivity of Metals Electrical Characteristics of Commercial Alloys 602

7 xvi Contents SEMICONDUCTIVITY Intrinsic Semiconduction Extrinsic Semiconduction The Temperature Variation of Conductivity and Carrier Concentration The Hall Effect Semiconductor Devices 616 ELECTRICAL CONDUCTION IN IONIC CERAMICS AND IN POLYMERS Conduction in Ionic Materials Electrical Properties of Polymers 624 DIELECTRIC BEIIAVIOR Capacitance Field Vectors and Polarization Types of Polarization Frequency Dependence of the Dielectric Constant Dielectric Strength Dielectric Materials 633 OTHER ELECTRICAL CHARACTERISTICS OE MATERIALS Ferroelectricity Piezoelectricity 634 Summary 635 Important Terms and Concepts 636 References 637 Questions and Problems Thermal Properties Introduction Heat Capacity Thermal Expansion Thermal Conductivity Thermal Stresses 652 Summary 654 Important Terms and Concepts 655 References 655 Questions and Problems The Influence of Temperature on Magnetic Behavior Domains and Hysteresis Soft Magnetic Materials Hard Magnetic Materials Magnetic Storage Superconductivity 683 Summary 686 Important Terms and Concepts 687 References 688 Questions and Problems Optical Properties Introduction 693 BASIC CONCEPTS Electromagnetic Radiation Light Interactions with Solids Atomic and Electronic Interactions 695 OPTICAL PROPERTIES OF METALS 697 OPTICAL PROPERTIES OF NONMETALS Refraction Reflection Absorption Transmission Color Opacity and Translucency in Insulators 705 APPLICATIONS OF OPTICAL PHENOMENA Luminescence Photoconductivity Lasers Optical Fibers in Communications 712 Summary 715 Important Terms and Concepts 716 References 716 Questions and Problems Materials Selection and Design Considerations Introduction Magnetic Properties Introduction Basic Concepts Diamagnetism and Paramagnetism Ferromagnetism Antiferromagnetism and Ferrimagnetism 667 MATERIALS SELECTION FOR A TORSIONALLY- STRESSED CYLINDRICAL SHAFT Strength Other Property Considerations and the Final Decision 725 AUTOMOBILE VALVE SPRING Introduction 725

8 Contents xvii 23.5 Automobile Valve Spring 727 ARTIFICIAL TOTAL HIP REPLACEMENT Anatomy of the Hip Joint Material Requirements Materials Employed 736 THERMAL PROTECTION SYSTEM ON THE SPACE SHUTTLE ORBITER Introduction Thermal Protection System Design Requirements Thermal Protection System Components 741 MATERIALS FOR INTKGRATED CIRCUIT PACKAGES Introduction Leadframe Design and Materials Die Bonding Wire Bonding Package Encapsulation Tape Automatic Bonding 753 Summary 755 References 756 Questions and Problems Economic, Environmental, and Societal Issues in Materials Science and Engineering Introduction 760 ECONOMIC CONSIDERATIONS Component Design Materials Manufacturing Techniques 761 ENVIRONMENTAL AND SOCIETAL CONSIDERATIONS Recycling Issues in Materials Science and Engineering 764 Summary 766 References 767 Appendix A The International System of Units (SI) 768 Appendix B Electron Configurations for the Elements 770 Appendix C Properties of Selected Engineering Materials 774 C.l Density 775 C.2 Modulus of Elasticity 777 C.3 Poisson's Ratio 779 C.4 Strength and Ductility 781 C.5 Plane Strain Fracture Toughness 787 C.6 Linear Coefficient of Thermal Expansion 788 C.7 Thermal Conductivity 791 C.8 Specific Heat 794 C.9 Electrical Resistivity 796 CIO Metal AUoy Compositions 799 C.ll Glass-Transition and Melting Temperatures (Polymers) 801 Appendix D Mer Structures for Common Polymers 802 Appendix E Taxonomic Charts 807 E.l Strengthening Techniques 808 E.2 Heat Treatments 809 Glossary 810 Answers to Selected Problems 825 Index 830

Materials Science and Engineering: An Introduction

Materials Science and Engineering: An Introduction Materials Science and Engineering: An Introduction Callister, William D. ISBN-13: 9780470419977 Table of Contents List of Symbols. 1 Introduction. 1.1 Historical Perspective. 1.2 Materials Science and

More information

The University of Jordan School of Engineering Chemical Engineering Department

The University of Jordan School of Engineering Chemical Engineering Department The University of Jordan School of Engineering Chemical Engineering Department 0905351 Engineering Materials Science Second Semester 2016/2017 Course Catalog 3 Credit hours.all engineering structures and

More information

Atomic structure, arrangement, and movement Introduction to Materials Introduction Types of Materials Structure-Property-Processing Relationship

Atomic structure, arrangement, and movement Introduction to Materials Introduction Types of Materials Structure-Property-Processing Relationship Atomic structure, arrangement, and movement to Materials Types of Materials Structure-Property-Processing Relationship Environmental Effects on Material Behavior Materials Design and Selection Atomic Structure

More information

Last Date of Submission:. Section: CE 21/CE 22. Babu Banarasi Das- National Institute of Technology & Management, Lucknow

Last Date of Submission:. Section: CE 21/CE 22. Babu Banarasi Das- National Institute of Technology & Management, Lucknow Tutorial Sheet: I /Unit: 1 1. Discuss importance of engineering materials with proper illustration and examples. 2. Describe Bohrs Atomic Model along with its merits and limitations. 3. Differentiate between

More information

2. Atomic Structure and Interatomic Bonding 18

2. Atomic Structure and Interatomic Bonding 18 Learning Objectives 2 1.1 Historical Perspective 2 1.2 Materials Science and Engineering 3 1.3 Why Study Materials Science and Engineering? 5 1.4 Classification of Materials 5 Materials of Importance-Carbonated

More information

City University of Hong Kong. Course Syllabus. offered by Department of Materials Science and Engineering with effect from Semester A 2018 / 19

City University of Hong Kong. Course Syllabus. offered by Department of Materials Science and Engineering with effect from Semester A 2018 / 19 City University of Hong Kong offered by Department of Materials Science and Engineering with effect from Semester A 2018 / 19 Part I Course Overview Course Title: Introduction to Materials Science and

More information

EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites by Zhe Cheng

EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites by Zhe Cheng EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites 2017 by Zhe Cheng Expectations on Chapter 11 Chapter 11 Understand metals are generally categorized as ferrous alloys and non-ferrous alloys

More information

Elementary Materials Science

Elementary Materials Science Elementary Materials Science William F. Hosford ASM International Materials Park, Ohio 44073-0002 www.asminternational.org Copyright 2013 by ASM International All rights reserved No part of this book may

More information

Contents. PREFACE TO THE FOURTH EDITION... xiii ACKNOWLEDGEMENTS...xv GENERAL INTRODUCTION... xvii

Contents. PREFACE TO THE FOURTH EDITION... xiii ACKNOWLEDGEMENTS...xv GENERAL INTRODUCTION... xvii Contents PREFACE TO THE FOURTH EDITION... xiii ACKNOWLEDGEMENTS...xv GENERAL INTRODUCTION... xvii Part A Metals CHAPTER 1 Metals...3 1.1 Introduction... 3 1.2 Metals for a Model Steam Engine... 3 1.3 Metals

More information

The Structure of Materials

The Structure of Materials The Structure of Materials Samuel M. Allen Edwin L. Thomas Massachusetts Institute of Technology Cambridge, Massachusetts / John Wiley & Sons, Inc. New York Chichester Weinheim Brisbane Singapore Toronto

More information

Introduction to Materials Science

Introduction to Materials Science EPMA Powder Metallurgy Summer School 27 June 1 July 2016 Valencia, Spain Introduction to Materials Science Prof. Alberto Molinari University of Trento, Italy Some of the figures used in this presentation

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK Course Name METALLURGY AND MATERIAL SCIENCE Course Code AME005 Class III Semester

More information

MT 348 Outline No MECHANICAL PROPERTIES

MT 348 Outline No MECHANICAL PROPERTIES MT 348 Outline No. 1 2009 MECHANICAL PROPERTIES I. Introduction A. Stresses and Strains, Normal and Shear Loading B. Elastic Behavior II. Stresses and Metal Failure A. ʺPrincipal Stressʺ Concept B. Plastic

More information

ESE 2019 UPSC ENGINEERING SERVICES EXAMINATION Preliminary Examination

ESE 2019 UPSC ENGINEERING SERVICES EXAMINATION Preliminary Examination ESE 2019 UPSC ENGINEERING SERVICES EXAMINATION Preliminary Examination General Studies and Engineering Aptitude Basics of Material Science and Engineering Comprehensive Theory with Practice Questions and

More information

LEARNING OBJECTIVES PREFACE

LEARNING OBJECTIVES PREFACE LEARNING OBJECTIVES PREFACE Accreditation standards, as mandated by many engineering accreditation organizations, now include outcome assessment components. Often one of these components includes the delineation

More information

Learning Goals for MSE courses

Learning Goals for MSE courses Learning Goals for MSE courses Students respond to these goals as Supplemental Questions on the Student Instructional Ratings System at the end of the class (updated 29 March 2016) For Fall semester, pages

More information

Steels Processing, Structure, and Performance, Second Edition Copyright 2015 ASM International G. Krauss All rights reserved asminternational.

Steels Processing, Structure, and Performance, Second Edition Copyright 2015 ASM International G. Krauss All rights reserved asminternational. Steels Processing, Structure, and Performance, Second Edition Copyright 2015 ASM International G. Krauss All rights reserved asminternational.org Contents Preface to the Second Edition of Steels: Processing,

More information

PHASE DIAGRAMS UNDERSTANDING BASICS THE. Edited. F.C. Campbell. Materials Park, Ohio The Materials Information Society.

PHASE DIAGRAMS UNDERSTANDING BASICS THE. Edited. F.C. Campbell. Materials Park, Ohio The Materials Information Society. PHASE DIAGRAMS UNDERSTANDING THE BASICS Edited by F.C. Campbell The Materials Information Society ASM International Materials Park, Ohio 44073-0002 www.asm i nternational.org Phase Diagrams Understanding

More information

LEARNING OBJECTIVES PREFACE

LEARNING OBJECTIVES PREFACE LEARNING OBJECTIVES PREFACE Accreditation standards, as mandated by many engineering accreditation organizations, now include outcome assessment components. Often one of these components includes the delineation

More information

Tutorial 2 : Crystalline Solid, Solidification, Crystal Defect and Diffusion

Tutorial 2 : Crystalline Solid, Solidification, Crystal Defect and Diffusion Tutorial 1 : Introduction and Atomic Bonding 1. Explain the difference between ionic and metallic bonding between atoms in engineering materials. 2. Show that the atomic packing factor for Face Centred

More information

Engineering Materials & Minerals

Engineering Materials & Minerals Course Book Engineering Materials & Minerals Lecturer: Dr.Payman Suhbat Ahmed E-mail: payman.suhbat@koyauniversity.org Coordinator: Nawzat Rashad Ismail E-mail: nawzat.rashad@koyauniversity.org 2 nd Stage

More information

Equilibria in Materials

Equilibria in Materials 2009 fall Advanced Physical Metallurgy Phase Equilibria in Materials 09.01.2009 Eun Soo Park Office: 33-316 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment 1 Text: A. PRINCE,

More information

Engineering Materials 2

Engineering Materials 2 -951-5- Engineering Materials 2 An Introduction to Microstructures, Processing and Design Third Edition Michael F. Ashby and David R. H. Jones Department of Engineering, Cambridge University, UK ELSEVIER

More information

LEARNING OBJECTIVES FUNDAMENTALS PREFACE

LEARNING OBJECTIVES FUNDAMENTALS PREFACE FUNDAMENTALS PREFACE Accreditation standards, as mandated by many engineering accreditation organizations, now include outcome assessment components. Often one of these components includes the delineation

More information

Modules offered by MSE

Modules offered by MSE s offered by MSE Code MLE1101 Title Introductory Materials Science And Engineering Description Introductory aspects of materials science and engineering (i.e. structure, properties and function). Structure

More information

MATERIALS SCIENCE AND ENGINEERING

MATERIALS SCIENCE AND ENGINEERING MATERIALS SCIENCE AND ENGINEERING materials science - the discipline that involves investigating the relationships that exist between the structures and properties of materials materials engineering -

More information

Physical Ceramics. Principles for Ceramic Science and Engineering. Yet-Ming Chiang Massachusetts Institute of Technology Cambridge, Massachusetts

Physical Ceramics. Principles for Ceramic Science and Engineering. Yet-Ming Chiang Massachusetts Institute of Technology Cambridge, Massachusetts Physical Ceramics Principles for Ceramic Science and Engineering Yet-Ming Chiang Massachusetts Institute of Technology Cambridge, Massachusetts Dunbar P. Birnie, III University of Arizona Tucson, Arizona

More information

Properties of Materials

Properties of Materials Properties of Materials Thermal Properties Thermal Conductivity Temperature Wall The Thermal Conductivity (k) is the measure of the ability of a material to transmit heat by conduction. The heat (Q) is

More information

CHAPTER INTRODUCTION

CHAPTER INTRODUCTION 1 CHAPTER-1 1.0 INTRODUCTION Contents 1.0 Introduction 1 1.1 Aluminium alloys 2 1.2 Aluminium alloy classification 2 1.2.1 Aluminium alloys (Wrought) 3 1.2.2 Heat treatable alloys (Wrought). 3 1.2.3 Aluminum

More information

Sample2 EXAM 2 Name Closed book, allowed a 5x7 card, calculator, and brain. Budget your time!

Sample2 EXAM 2 Name Closed book, allowed a 5x7 card, calculator, and brain. Budget your time! MEEN 3344 001 Material Science Sample2 EXAM 2 Name Closed book, allowed a 5x7 card, calculator, and brain. Budget your time! Definitions: (10 terms, each definition is worth 1.5 points, 15 total) Match

More information

Kinetics - Heat Treatment

Kinetics - Heat Treatment Kinetics - Heat Treatment Nonequilibrium Cooling All of the discussion up till now has been for slow cooling Many times, this is TOO slow, and unnecessary Nonequilibrium effects Phase changes at T other

More information

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1 CHAPTER 3 PROPERTIES OF MATERIALS PART 1 30 July 2007 1 OUTLINE 3.1 Mechanical Properties 3.1.1 Definition 3.1.2 Factors Affecting Mechanical Properties 3.1.3 Kinds of Mechanical Properties 3.1.4 Stress

More information

CONTENTS PART II. MAGNETIC PROPERTIES OF MATERIALS

CONTENTS PART II. MAGNETIC PROPERTIES OF MATERIALS PART I. INTRODUCTION 1. CONCEPTS OF FERROMAGNETISM I Magnetic Field 1 Intensity of Magnetization and Magnetic Induction 2 Magnetization and Permeability Curves 3 Hysteresis Loop 4 Ferromagnetism, Paramagnetism

More information

Contents. Part I Basic Thermodynamics and Kinetics of Phase Transformations 1

Contents. Part I Basic Thermodynamics and Kinetics of Phase Transformations 1 Contents Preface List of tables Notation page iii xiii xiv Part I Basic Thermodynamics and Kinetics of Phase Transformations 1 1 Introduction 3 1.1 What Is a Phase Transition? 3 1.2 Atoms and Materials

More information

Strengthening Mechanisms. Today s Topics

Strengthening Mechanisms. Today s Topics MME 131: Lecture 17 Strengthening Mechanisms Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics Strengthening strategies: Grain strengthening Solid solution strengthening Work hardening

More information

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING Course Guidelines: 1. Introduction to Engineering Materials 2. Bonding and Properties 3. Crystal Structures & Properties

More information

MSE 170 Final review part 2

MSE 170 Final review part 2 MSE 170 Final review part 2 Exam date: 12/9/2008 Tues, 8:30-10:20 Place: Here! Closed book, no notes and no collaborations Two sheets of letter-sized paper with doublesided notes is allowed Exam is comprehensive:

More information

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Mechanical Engineering

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Mechanical Engineering BME403-INDUSTRIAL METALLURGY Academic Course Description BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Mechanical Engineering BME403-INDUSTRIAL METALLURGY Fourth Semester, 2015-16

More information

NATURE OF METALS AND ALLOYS

NATURE OF METALS AND ALLOYS NATURE OF METALS AND ALLOYS Chapter 4 NATURE OF METALS AND ALLOYS Instructor: Office: MEC 325, Tel.: 973-642-7455 E-mail: samardzi@njit.edu Link to ME 215: http://mechanical.njit.edu/students/merequired.php

More information

Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms Dr. Coates An edge dislocation moves in response to an applied shear stress dislocation motion 7.1 Introduction

More information

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

ME 254 MATERIALS ENGINEERING 1 st Semester 1431/ rd Mid-Term Exam (1 hr)

ME 254 MATERIALS ENGINEERING 1 st Semester 1431/ rd Mid-Term Exam (1 hr) 1 st Semester 1431/1432 3 rd Mid-Term Exam (1 hr) Question 1 a) Answer the following: 1. Do all metals have the same slip system? Why or why not? 2. For each of edge, screw and mixed dislocations, cite

More information

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2 AERO 214 Introduction to Aerospace Mechanics of Materials Lecture 2 Materials for Aerospace Structures Aluminum Titanium Composites: Ceramic Fiber-Reinforced Polymer Matrix Composites High Temperature

More information

INTRODUCTION TO MAGNETIC MATERIALS

INTRODUCTION TO MAGNETIC MATERIALS INTRODUCTION TO MAGNETIC MATERIALS Second Edition B. D. CULLITY University of Notre Dame С D. GRAHAM University of Pennsylvania 4>IEEE PRESS WILEY A JOHN WILEY & SONS, INC., PUBLICATION PREFACE TO THE

More information

Introduction to Materials Science, Chapter 8, Failure. Failure. Ship-cyclic loading from waves.

Introduction to Materials Science, Chapter 8, Failure. Failure. Ship-cyclic loading from waves. Failure Ship-cyclic loading from waves. Computer chip-cyclic thermal loading. University of Tennessee, Dept. of Materials Science and Engineering 1 Chapter Outline: Failure How do Materials Break? Ductile

More information

Chapter Outline: Failure

Chapter Outline: Failure Chapter Outline: Failure How do Materials Break? Ductile vs. brittle fracture Principles of fracture mechanics Stress concentration Impact fracture testing Fatigue (cyclic stresses) Cyclic stresses, the

More information

14ME406/ME 226. Material science &Metallurgy. Hall Ticket Number: Fourth Semester. II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION

14ME406/ME 226. Material science &Metallurgy. Hall Ticket Number: Fourth Semester. II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION Hall Ticket Number: 14ME406/ME 226 April, 2017 Fourth Semester Time: Three Hours Answer Question No.1 compulsorily. Answer ONE question from each unit. II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION

More information

CONCEPT CHECK QUESTIONS AND ANSWERS. Chapter 2 Atomic Structure and Interatomic Bonding

CONCEPT CHECK QUESTIONS AND ANSWERS. Chapter 2 Atomic Structure and Interatomic Bonding CONCEPT CHECK QUESTIONS AND ANSWERS Chapter 2 Atomic Structure and Interatomic Bonding Concept Check 2.1 Question: Why are the atomic weights of the elements generally not integers? Cite two reasons. Answer:

More information

1-Materials Science & Materials Engineering

1-Materials Science & Materials Engineering 1-Materials Science & Materials Engineering 1-1-Structure & Properties Relationship (Materials Science or Materials Engineering) Processing Structure Properties Performance Sub Atomic Atomic Sub Atomic

More information

Introduction to Materials Science & Engineering

Introduction to Materials Science & Engineering Introduction to Materials Science & Engineering Course Objective... Introduce fundamental concepts in Materials Science You will learn about: material structure how structure dictates properties how processing

More information

KINGS COLLEGE OF ENGINEERING, PUNALKULAM DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING, PUNALKULAM DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING, PUNALKULAM-613303. DEPARTMENT OF MECHANICAL ENGINEERING YEAR/SEMESTER:II / IV QUESTION BANK Subject: ME2251-Engineering Materials &Metallurgy UNIT-I PART-A 1. What is an alloy?

More information

ESE (Prelims) - Offline Test Series GENERAL STUDIES AND ENGINEERING APTITUDE SUBJECT: BASICS OF MATERIAL SCIENCE AND ENGINEERING SOLUTIONS

ESE (Prelims) - Offline Test Series GENERAL STUDIES AND ENGINEERING APTITUDE SUBJECT: BASICS OF MATERIAL SCIENCE AND ENGINEERING SOLUTIONS TEST ID: 610 ESE- 2019 (Prelims) - Offline Test Series Test-20 GENERAL STUDIES AND ENGINEERING APTITUDE SUBJECT: BASICS OF MATERIAL SCIENCE AND ENGINEERING SOLUTIONS 01. Ans: (d) Sol: The superconductivity

More information

Phase Transformation in Materials

Phase Transformation in Materials 2015 Fall Phase Transformation in Materials 09. 02. 2015 Eun Soo Park Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment 1 Introduction Web lecture assistance: http://etl.snu.ac.kr

More information

Mechanical Properties of Metals. Goals of this unit

Mechanical Properties of Metals. Goals of this unit Mechanical Properties of Metals Instructor: Joshua U. Otaigbe Iowa State University Goals of this unit Quick survey of important metal systems Detailed coverage of basic mechanical properties, especially

More information

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING Course Guidelines: 1. Introduction to Engineering Materials 2. Bonding and Properties 3. Crystal Structures & Properties

More information

Materials Science and Engineering

Materials Science and Engineering Program Structure The program consists of one year of full-time study (two sessions) or two years of part-time study (four sessions). This comprises 36 UOC of formal coursework plus 12 UOC of experimental

More information

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress?

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress? MATERIALS SCIENCE 43 Which of the following statements is FALSE? (A) The surface energy of a liquid tends toward a minimum. (B) The surface energy is the work required to create a unit area of additional

More information

CREEP CREEP. Mechanical Metallurgy George E Dieter McGraw-Hill Book Company, London (1988)

CREEP CREEP. Mechanical Metallurgy George E Dieter McGraw-Hill Book Company, London (1988) CREEP CREEP Mechanical Metallurgy George E Dieter McGraw-Hill Book Company, London (1988) Review If failure is considered as change in desired performance*- which could involve changes in properties and/or

More information

Engineering Materials

Engineering Materials Engineering Materials Heat Treatments of Ferrous Alloys Annealing Processes The term annealing refers to a heat treatment in which a material is exposed to an elevated temperature for an extended time

More information

Chapter Outline: Failure

Chapter Outline: Failure Chapter Outline: Failure How do Materials Break? Ductile vs. brittle fracture Principles of fracture mechanics Stress concentration Impact fracture testing Fatigue (cyclic stresses) Cyclic stresses, the

More information

Issues to address. Why Mechanical Test?? Mechanical Properties. Why mechanical properties?

Issues to address. Why Mechanical Test?? Mechanical Properties. Why mechanical properties? Mechanical Properties Why mechanical properties? Folsom Dam Gate Failure, July 1995 Need to design materials that can withstand applied load e.g. materials used in building bridges that can hold up automobiles,

More information

Analysis and design of composite structures

Analysis and design of composite structures Analysis and design of composite structures Class notes 1 1. Introduction 2 Definition: composite means that different materials are combined to form a third material whose properties are superior to those

More information

WEDNESDAY SEPTEMBER 20, 2017

WEDNESDAY SEPTEMBER 20, 2017 WEDNESDAY SEPTEMBER 20, 2017 Session Title: Multiscalle modeling and connecting to continuum level descriptions Chairperson: Harmandaris-Goddin 11.20 Atomistically informed full-field simulation of tempered

More information

School of Chemistry UNIVERSITY OF KWAZULU-NATAL JUNE 2008 EXAMINATION APCH312W1: MATERIALS CHEMISTRY DURATION: 3 HOURS TOTAL MARKS: 100

School of Chemistry UNIVERSITY OF KWAZULU-NATAL JUNE 2008 EXAMINATION APCH312W1: MATERIALS CHEMISTRY DURATION: 3 HOURS TOTAL MARKS: 100 School of Chemistry UNIVERSITY OF KWAZULU-NATAL JUNE 2008 EXAMINATION APCH312W1: MATERIALS CHEMISTRY DURATION: 3 HOURS TOTAL MARKS: 100 External Examiner: Internal Examiner: Dr M Fernandes University of

More information

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds.

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds. 11-2 11.2 (a) Ferrous alloys are used extensively because: (1) Iron ores exist in abundant quantities. (2) Economical extraction, refining, and fabrication techniques are available. (3) The alloys may

More information

5. A round rod is subjected to an axial force of 10 kn. The diameter of the rod is 1 inch. The engineering stress is (a) MPa (b) 3.

5. A round rod is subjected to an axial force of 10 kn. The diameter of the rod is 1 inch. The engineering stress is (a) MPa (b) 3. The Avogadro's number = 6.02 10 23 1 lb = 4.45 N 1 nm = 10 Å = 10-9 m SE104 Structural Materials Sample Midterm Exam Multiple choice problems (2.5 points each) For each problem, choose one and only one

More information

Imperfections, Defects and Diffusion

Imperfections, Defects and Diffusion Imperfections, Defects and Diffusion Lattice Defects Week5 Material Sciences and Engineering MatE271 1 Goals for the Unit I. Recognize various imperfections in crystals (Chapter 4) - Point imperfections

More information

Wrought Aluminum I - Metallurgy

Wrought Aluminum I - Metallurgy Wrought Aluminum I - Metallurgy Northbrook, IL www.imetllc.com Copyright 2015 Industrial Metallurgists, LLC Course learning objectives Explain the composition and strength differences between the alloy

More information

Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4.

Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4. Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4. Mechanical behaviour of ceramics 7.5. Mechanical behaviour of polymers

More information

Subject Index. STP1169-EB/Sep.1992

Subject Index. STP1169-EB/Sep.1992 STP1169-EB/Sep.1992 Subject Index A Acoustic spectroscopy, frequency response in Ta and Nb, 358 Aluminum ceramic-reinforced, 76 pure, dislocations in, 199 Aluminum-indium alloys, melting-related internal

More information

Fundamentals of. Steel Product. Graduate Institute of Ferrous Metallurgy

Fundamentals of. Steel Product. Graduate Institute of Ferrous Metallurgy Fundamentals of Steel Product Physical Metallurgy B.C. De Cooman Graduate Institute of Ferrous Metallurgy Pohang University of Science and Technology, South Korea J.G Speer Advanced Steel Products and

More information

Chapter 1 - Introduction

Chapter 1 - Introduction Chapter 1 - Introduction What is materials science? Why should we know about it? Materials drive our society Stone Age Bronze Age Iron Age Now? Silicon Age? Polymer Age? Chapter 1-1 Chapter 1-2 Hardness

More information

Properties of Engineering Materials

Properties of Engineering Materials Properties of Engineering Materials Syllabus Mechanical Properties, Tensile, Fatigue, Creep, Impact, Hardness, Chemical Properties, Physical properties, Corrosion and Cathodic Protection, Carbon Steel,

More information

IMPERFECTIONSFOR BENEFIT. Sub-topics. Point defects Linear defects dislocations Plastic deformation through dislocations motion Surface

IMPERFECTIONSFOR BENEFIT. Sub-topics. Point defects Linear defects dislocations Plastic deformation through dislocations motion Surface IMPERFECTIONSFOR BENEFIT Sub-topics 1 Point defects Linear defects dislocations Plastic deformation through dislocations motion Surface IDEAL STRENGTH Ideally, the strength of a material is the force necessary

More information

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties بسم الله الرحمن الرحیم Materials Science Chapter 7 Mechanical Properties 1 Mechanical Properties Can be characterized using some quantities: 1. Strength, resistance of materials to (elastic+plastic) deformation;

More information

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ COMPOSITE MATERIALS Office Hours: Tuesday, 16:30-17:30 akalemtas@mu.edu.tr, akalemtas@gmail.com Phone: +90 252 211 19 17 Metallurgical and Materials Engineering Department ISSUES TO ADDRESS Ceramic Materials

More information

Properties of Metals

Properties of Metals Properties of Metals Alessandro Anzalone, Ph.D. Hillsborough Community College Brandon Campus 1. Mechanical Properties 2. Physical Properties 3. Metallurgical Microscopy 4. Nondestructive Testing 5. References

More information

Chapter 8: Strain Hardening and Annealing

Chapter 8: Strain Hardening and Annealing Slide 1 Chapter 8: Strain Hardening and Annealing 8-1 Slide 2 Learning Objectives 1. Relationship of cold working to the stress-strain curve 2. Strain-hardening mechanisms 3. Properties versus percent

More information

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture.

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture. 1- Fracture Fracture: Separation of a body into pieces due to stress, at temperatures below the melting point. Steps in fracture: 1-Crack formation 2-Crack propagation There are two modes of fracture depending

More information

Phase Transformation in Materials

Phase Transformation in Materials 2016 Fall Phase Transformation in Materials 09. 05. 2016 Eun Soo Park Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment 1 Introduction Web lecture assistance: http://etl.snu.ac.kr

More information

PART 1- INTRODUCTION

PART 1- INTRODUCTION UNIVERSITY OF MAURITIUS FACULTY OF ENGINEERING MECHANICAL AND PRODUCTION ENGINEERING DEPARTMENT ( MECH 2001Y & MECH 2006Y ) LECTURER: Mr. Main Topics to be Covered Atomic Structure and Inter Atomic Bonding

More information

Today s Topics. Plastic stress-strain behaviour of metals Energy of mechanical ldeformation Hardness testing Design/safety factors

Today s Topics. Plastic stress-strain behaviour of metals Energy of mechanical ldeformation Hardness testing Design/safety factors MME 291: Lecture 10 Mechanical Properties of Materials 2 Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics Plastic stress- behaviour of metals Energy of mechanical ldeformation Hardness

More information

SMU 2113 ENGINEERING SCIENCE. PART 1 Introduction to Mechanics of Materials and Structures

SMU 2113 ENGINEERING SCIENCE. PART 1 Introduction to Mechanics of Materials and Structures SMU 2113 ENGINEERING SCIENCE PART 1 Introduction to Mechanics of Materials and Structures These slides are designed based on the content of these reference textbooks. OBJECTIVES To introduce basic principles

More information

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 7 Strain Hardening and Annealing

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 7 Strain Hardening and Annealing The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé Chapter 7 Strain Hardening and Annealing 1 Objectives of Chapter 7 To learn how the strength of metals and alloys is

More information

Chapter 8 Strain Hardening and Annealing

Chapter 8 Strain Hardening and Annealing Chapter 8 Strain Hardening and Annealing This is a further application of our knowledge of plastic deformation and is an introduction to heat treatment. Part of this lecture is covered by Chapter 4 of

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

ES-260 Practice Final Exam Fall Name: St. No. Problems 1 to 3 were not appropriate for the current course coverage.

ES-260 Practice Final Exam Fall Name: St. No. Problems 1 to 3 were not appropriate for the current course coverage. ES-260 Practice Final Exam Fall 2014 Name: St. No. Circle correct answers All Questions worth 4 pts each. The True and False section at the end are bonus questions worth 1 point for a correct and -1 point

More information

Lecture Outline. Mechanical Properties of Ceramics. Mechanical properties of ceramics. Mechanical properties of ceramics

Lecture Outline. Mechanical Properties of Ceramics. Mechanical properties of ceramics. Mechanical properties of ceramics Mechanical properties of ceramics Lecture Outline Mechanical properties of ceramics Applications of ceramics abrication of Glasses Glass properties Processing of Ceramics Dr. M. Medraj Mech. Eng. Dept.

More information

Creep and High Temperature Failure. Creep and High Temperature Failure. Creep Curve. Outline

Creep and High Temperature Failure. Creep and High Temperature Failure. Creep Curve. Outline Creep and High Temperature Failure Outline Creep and high temperature failure Creep testing Factors affecting creep Stress rupture life time behaviour Creep mechanisms Example Materials for high creep

More information

Problem 1 (10 points): Mark True (T) or False (F) for the following statements.

Problem 1 (10 points): Mark True (T) or False (F) for the following statements. MSE 170 Final 03/19/09 166pts. total Exam is closed book, closed notes, closed neighbors Instruction: 1. Write your name and student I on top of page. 2. Write legibly. 3. Show work as needed to justify

More information

Gamma Titanium Aluminide Alloys

Gamma Titanium Aluminide Alloys Fritz Appel, Jonathan David Heaton Paul, and Michael Oehring Gamma Titanium Aluminide Alloys Science and Technology WILEY- VCH WILEY-VCH Verlag GmbH & Co. KG aa I' Preface XIII Figures-Tables Acknowledgement

More information

Applications of Engineering Materials

Applications of Engineering Materials Unit 7: Properties and Applications of Level: 3 Unit type: Optional Assessment type: Internal Guided learning: 60 Unit introduction In-depth knowledge of the structure and behaviour of materials is vital

More information

Joining of Dissimilar Automotive Materials

Joining of Dissimilar Automotive Materials Joining of Dissimilar Automotive Materials P.K. Mallick William E. Stirton Professor of Mechanical Engineering Director, Center for Lighweighting Automotive Materials and Processing University of Michigan-Dearborn

More information

MH 1151-ENGINEERING MATERIALS AND METALLURGY S4 MECHANICAL 1. Define Solid solution. Two metals combined together to form a single structure

MH 1151-ENGINEERING MATERIALS AND METALLURGY S4 MECHANICAL 1. Define Solid solution. Two metals combined together to form a single structure MH 1151-ENGINEERING MATERIALS AND METALLURGY S4 MECHANICAL 1. Define Solid solution. Two metals combined together to form a single structure 2. Name the two kinds of Solid Solutions Substitutional Interstitial

More information

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden )

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden ) of Materials Course KGP003 Ch. 6 High Temperature Materials By Docent. N. Menad Dept. of Chemical Engineering and Geosciences Div. Of process metallurgy Luleå University of Technology ( Sweden ) Mohs scale

More information

Short Notes for Engineering Materials

Short Notes for Engineering Materials Crystal Structure of Materials Short Notes for Engineering Materials When metals solidify from molten state, the atoms arrange themselves into various crderly configurations called crystal. There are seven

More information

Module-6. Dislocations and Strengthening Mechanisms

Module-6. Dislocations and Strengthening Mechanisms Module-6 Dislocations and Strengthening Mechanisms Contents 1) Dislocations & Plastic deformation and Mechanisms of plastic deformation in metals 2) Strengthening mechanisms in metals 3) Recovery, Recrystallization

More information

Chapter 2. Ans: e (<100nm size materials are called nanomaterials)

Chapter 2. Ans: e (<100nm size materials are called nanomaterials) Chapter 2 1. Materials science and engineering include (s) the study of: (a) metals (b) polymers (c) ceramics (d) composites (e) nanomaterials (f) all of the above Ans: f 2. Which one of the following

More information

much research (in physics, chemistry, material science, etc.) have been done to understand the difference in materials properties.

much research (in physics, chemistry, material science, etc.) have been done to understand the difference in materials properties. 1.1: Introduction Material science and engineering Classify common features of structure and properties of different materials in a well-known manner (chemical or biological): * bonding in solids are classified

More information

Chapter 15: Characteristics, Applications & Processing of Polymers

Chapter 15: Characteristics, Applications & Processing of Polymers Chapter 15: Characteristics, Applications & Processing of Polymers ISSUES TO ADDRESS... What are the tensile properties of polymers and how are they affected by basic microstructural features? Hardening,

More information