A Survey of Tool Wear in Cutting the Titanium-Based Alloy Ti-6Al-4V: Metallurgical Effects, Wear Mechanisms, & Prediction Methods

Size: px
Start display at page:

Download "A Survey of Tool Wear in Cutting the Titanium-Based Alloy Ti-6Al-4V: Metallurgical Effects, Wear Mechanisms, & Prediction Methods"

Transcription

1 A Survey of Tool Wear in Cutting the Titanium-Based Alloy Ti-6Al-4V: Metallurgical Effects, Wear Mechanisms, & Prediction Methods Kristine Carnavos ME 6960: Friction, Wear & Lubrication of Materials Spring 2015 RPI Hartford Professor Ernesto Gutierrez-Miravete Submitted On: 13 May

2 Abstract Titanium-based alloys are not only one of the most commonly used materials in industry; they are also designated as one of the most difficult-to-cut materials due to their metallurgical makeup for cutting processes and result in high tool wear rates for cutting tools. One of the most commonly used insert types is carbide, specifically the WC/Co insert type. An evaluation of the wear mechanisms of cutting metallic materials and this insert type has determined that the most commonly seen wear mechanism on this insert type is crater wear caused by a combination of diffusion and abrasive wear. Mathematical models that currently exist to estimate this tool wear include the Taylor Equation and the Usui and Takayama Wear Models are limited and do not take interactions of cutting parameters into account. Research has been conducted into FEA and other modeling types to predict tool wear in carbide-based inserts in cutting Ti6Al4V, including the works of Hua and Crosskey to model diffusion tool wear in WC/Co carbide inserts; however, there are significant improvements that can be made to these modeling techniques. Ultimately, it is the combinations of the mathematical modeling as well as these other modeling techniques that will ultimately result in accurate tool wear predictions in cutting titanium alloys. 2

3 Table of Contents Abstract Introduction Titanium Structure & Properties Titanium Metallurgy Unalloyed Titanium Alpha Alloys Near Alpha Alloys Alpha-Beta Alloys Metastable Beta Alloys Beta Alloys Titanium & Titanium Alloy Properties & Effects on Tool Wear Mechanical Properties Hardness Material Hardening Due To Elevated Temperatures Hardening due to Diffusion Strain/Work Hardening due to Plastic Deformation Strength/Modulus of Elasticity Chemical Properties Chemical Reactivity Thermal Properties Thermal Conductivity Chip Formation Characteristics Low Speeds High Speeds Wear on Tool Inserts Types of Wear Experienced by Metallic Machining Adhesive Wear Abrasive Wear Diffusion Wear Chemical/Corrosive Wear Plastic Deformation Wear Mechanisms of Cutting Tools Clearance/Flank Wear Crater Wear Notch/Corner Wear Other Phenomena Associated with Tool Wear Chipping Chatter Fracture Coating Delamination Models to Predict Tool Wear/Life Mathematical Models Taylor Tool Life Equation Usui s Model of Tool Wear Prediction..20 3

4 Takeyama Model of Tool Wear Other Modeling & Research on Tool Wear Predictions Thermal Diffusion Model for Predicting Crater Wear Rate FEA Model of Diffusion Wear Conclusion References. 26 4

5 1. Introduction Titanium and its associated alloys, including the alloy Ti6Al4V, are one of the most commonly used materials in industry today. Their applications are diverse and broad, from 15% of the airframe weight of the 787 Boeing Dreamliner (including most of the components of the landing gear) [1] to the titanium-aluminide blades of the 3-stage low pressure turbine on Pratt & Whitney s 1100G Geared Turbofan Engine [2] to numerous uses in dental and bone/joint implants in the medical industry [3], and multiple uses in the energy and marine industries. This material s desirability is due to its low material density (light-weight) as well as good corrosion resistance, chemical inertness, high strength-to-weight ratio at high temperatures, non-magnetic nature, and superior elasticity [4]. Although this material has multiple desirable properties, its metallurgical makeup causes mechanical, chemical, and thermal material characteristics that have caused it to be classified as a difficult-to-cut material and results in high tool wear rates for cutting tools and limits on the tool life usage in cutting processes. Ultimately, many of these tool wear mechanisms are unpredictable as they are affected by the combination of a number of factors and variables in the cutting process, such as cut speed, material feed, the presence of coolant lubrication in the cutting process, material insert type, etc. For the purposes of this survey, the type of insert that has been limited to carbide-based inserts. Fundamental mathematical models have been used in industry for years to predict tool wear in inserts cutting titanium based alloys; however, the mathematical models are limited and do not take interactions of cutting parameters into account. Research has been conducted into FEA and other modeling types to predict tool wear in carbide-based inserts in cutting Ti6Al4V, but it is combination of the mathematical modeling as well as these other modeling techniques that will ultimately result in accurate tool wear predictions. 5

6 2. Titanium Structure & Properties 2.1. Titanium Metallurgy Pure titanium has two crystal structures, alpha and beta. Alpha phase exists primarily as a hexagonal close packed (hcp) crystographic phase at below O C. Once the temperature reaches above 882 O C, titanium undergoes an allotropic transformation to the body centered cubic (bcc) Beta Phase and remains stable until the melting point of titanium, 1668 O C, is reached. Titanium is alloyed by the addition of alpha stabilizers and beta stabilizers, which have a great influence on the transformation temperature and as consequence, the mechanical, thermal, and chemical properties of the alloy. Based on the addition of these materials, titanium alloys can be classified into multiple groups. Machado s Machining of Titanium and its alloys- a review [5] notes only four distinct groups, but Hosseini et. al [4] separates these categories based on specific percentage levels of beta and alpha stabilizers present in the alloys to distinguish between their material properties. This paper will summarize both categorization methods into one in order to provide a comprehensive understanding of the properties of each of these levels Unalloyed Titanium This level describes pure titanium without any addition of alpha or beta stabilizers. Pure titanium experiences high corrosion resistance but has low tensile strength, especially at high temperatures. This makes the use of pure unalloyed titanium undesirable and is mostly not used in industry. [5] Alpha Alloys Alpha Alloys only contain alpha stabilizers and maintain tensile strength up to 300 O C. They also exhibit excellent creep resistance but are not heat treatable. [4,5] Near Alpha Alloys These alloys are highly stable alpha alloys that include a small amount (1-2%) of beta stabilizers in order to improve strength capabilities at higher temperature ranges. They are similar to Alpha alloys in their material behaviors, but the addition of the beta stabilizers increases their material capability at elevated temperatures to the range of 400 O C to 520 O C. [4,5] Alpha-Beta Alloys These alloys contain up to 4-6% of beta stabilizers, which allows them to be heat treated to improve their strength capabilities up to the range of 350 O C to 400 O C. This is the most commonly used group of alloys in the aerospace industry and is the group which Ti-6Al- 4V, the most commonly used Ti Alloy used in industry accounting for ~45% of the total titanium produced belongs to and will be the focus of this paper. [4,5] Metastable Beta Alloys This group contains up to 10-15% of beta stabilizers and a small amount of alpha stabilizers in order to increase strength capability of the material. These have high strength, hardenability, and toughness capabilities as well as forgeability over a large range of temperatures. [4,5] Beta Alloys Beta alloys are classified as Ti alloys that contain ~30% beta stabilizers. They have high corrosive resistance, high hardenability, and burn-resistance, but are typically characterized by high density and poor ductility. [4,5] 6

7 2.2 Titanium & Titanium Alloy Properties & Effects on Tool Wear As noted before, titanium alloys are classified as difficult-to-cut materials due to their material properties and attribute to high tool wear and a decrease in tool life. There are four distinct categories of properties that attribute to its overall poor machinability & accelerated tool wear: mechanical, thermal, chemical, and chip formation characteristics [4] Mechanical Properties Hardness Titanium has a Brinell hardness rating of 160, but its alloys have a range from This has given each of them a machinability index of 0.3 and 0.2 respectively, which compared to steel and steel alloys, are quite low. It is noted that a higher hardness of the workpiece material in machining leads to acceleration of tool wear & decrease in tool life. [4] Material Hardening Due to Elevated Temperatures Hardening due to Diffusion During the cutting process, the cutting zone between the tool and workpiece can reach up to 1100 O C (this will further be discussed in the thermal conductivity section below). At ranges of 600 to 700 O C, Oxygen and Nitrogen molecules present on the titanium workpiece surface will diffuse into the surface layer and harden the workpiece; this hardening will immediately increase tool wear rate.[4,5] Strain/Work Hardening due to Plastic Deformation Titanium is able to maintain its strength and properties at much higher temperatures than other metals, and as such, requires higher cutting power to produce the cutting forces necessary to plastically deform the material. The higher cutting forces result twindislocation interactions in the titanium alloy microstructure, causing plastic deformation & ultimately resulting in work/strain hardening. The material hardening results in significant tool wear. [4,5] Strength/Modulus of Elasticity Titanium and its alloys have a high elasticity, but has a low modulus of elasticity; due to the higher strains on the workpiece caused by the low modulus of elasticity, this can result in issues such as increased tool deflection and rub. This will increase tool wear and reduce tool life as well as cause dimensional and surface finish issues to the workpiece. [4,5] Chemical Properties Chemical Reactivity Titanium becomes highly chemically reactive at elevated temperatures of 500 O C and above, which results in chemical reactions between the workpiece and tool and causes chemical wear to deteriorate the tool. It should be noted that most tools types currently available for turning operations have a chemical affinity with titanium so only certain types of tool inserts can be used in turning titanium. [4,5] Thermal Properties Thermal Conductivity Titanium has a thermal conductivity of 15 W/m O C, which is quite poor. This results in poor dissipation of heat generated by the interaction between the workpiece and tool in the cutting zone. Hossini notes that studies have shown that Titanium experiences up to 80% heat transfer between the workpiece and tool, which is ~30% greater than most 7

8 other materials. [4]. Titanium & associated alloys often reach up to 1100 O C in cutting zone due to poor thermal conductivity, which will dull the cutting edge and result in increased tool wear rate. Pramanik et. al mentions that the elevated temperatures of the titanium cutting zone can also cause chips to re-weld to the tool, resulting in a wear mechanism known as adhesive wear, causing additional rapidly accelerated tool wear during machining as small tool pieces break. This will be discussed further later on in this paper. [14] Chip Formation Characteristics Titanium and its alloys have a characteristic chip formation shape at varying speeds that directly contribute to its difficulty in machining Low Speeds At low speeds, titanium alloys experience thermal softening, causing localization of shear stresses on the titanium work piece. This will cause cyclic variation on the tool, resulting in vibrations on the tool and will result in significant reduction in tool life [4,5,14]. Ultimately, this produces a condition known as chatter on the surface finish, which will be further discussed in section of this paper High Speeds At high speeds, titanium alloys experiences high temperatures and high strain hardening, causing thermo-plastic instability within the primary shearing zone. As material is cut, a chip segment is formed via normal cutting practices; however, the additional shear strain will result in extreme shear stresses, causing thermo-plastic instability (adiabatic shear). Ultimately, this results in a chip type known as segmentation or saw-tooth chips, as seen in figure 1 below. [4,14] Figure 1: Saw-Tooth Chip Seen in Machining of Ti6Al4V [14] As seen in figure 1, the chips are separated at the surface furthest from the workpiece, but continue to be connected at the tool/workpiece interface due to ductile fractures that occur as a result of the localized shearing. The shear band frequency that results in this chip type increased with the increase of the feed rate of the workpiece material, and the product of the feed and cutting speed gives a criteria at which this saw-tooth chip phenomenon occurs, which for Ti6Al4V is ~0.004 and above. Also, for Ti6Al4V, it has been determined that the cracks that result in the ductile fracture phenomenon will occur starting at cutting speeds of around 600 m/min. [4,14] 8

9 3. Wear on Tool Inserts Now that the fundamental structure of titanium as it affects tool wear is understood, the specific wear mechanism of tool inserts will be explored in further detail Types of Wear Experienced by Metallic Machining In order to capture a complete understanding of the specific mechanisms that tool inserts see during cutting processes, the fundamentals of wear must first be understood. What follows is a brief survey of the different wear types that metals most commonly see during machining processes. This includes: adhesive wear, abrasive wear, diffusion wear, chemical wear, and plastic deformation [6,9]. Brief overviews of some of these wear mechanisms as they affect cutting inserts on Ti6Al4V will also be discussed Adhesive Wear Adhesive wear is characterized as the weldment of small metallic particles to each other due to elevated temperatures as two metallic surfaces interact & frictional forces increase. The addition of a relative velocity will also result in tool chipping and possible fracture (both mechanisms are discussed further below). Odelros has noted that as material adheres to the cutting tool through this mechanism, a built-up edge can form (BUE) on the tool edge, especially at low cutting speeds, which will significantly accelerate tool wear. Figure 2 shows the built up edge on a cutting edge after adhesive wear during cutting operations. [6,9] Figure 2: Built-Up Edge (BUE) on Cutting Tool [9] Zhen et al conducted trials on WC/Co cutting inserts on Ti6Al4V at various cutting speeds and feed rates and proved that combinations of increasing feed rates and speeds, greater amounts of tool wear occurs, and the dominating wear mechanism seen on this specific insert type is adhesive wear. This can specifically be seen in figure 3 below, where a noticeable amount of material can be seen missing from the labeled tool-chip contact area. Zhen also notes that in some WC/Co cutting inserts that experienced adhesive wear, some of the carbide particles that were adhered to the workpiece experienced built-up edges that were characteristic of a form of adhesive wear called attrition wear, which plucks pieces of the WC/Co cutting tool into the chip [15]. 9

10 Figure 3: Adhesive Wear In Contact Area of WC/Co Insert Trials of Cutting Ti6Al4V [15] Abrasive Wear Abrasive wear is defined by ASTM International as the loss of material due to hard particles or hard protuberances that are forced against and move along a solid surface. [21]. During cutting operations, the Ti6Al4V workpiece often will cause wear on the softer cutting surface as temperatures increase due to Titanium s low hardness capabilities at high temperatures [6]. The contact type will determine the wear mode of abrasion: two-body abrasive wear and three-body abrasive wear. Two-body abrasive wear primarily occurs as a material is cut or plowed by asperities on the harder workpiece from the opposing softer tool surface. These results in a characteristic groove-like shape on the softer surface, and may have additional material built up to the sides of the grooves, as seen in figure 4 below. Three-body abrasive wear will occur once worn-off particles are unconstrained and become trapped between the cutting surfaces. [22] Odelros notes that in cutting processes, two-body abrasion will result in accelerated tool wear rates faster than those seen in three-body abrasion [6]. Figure 4: Characteristic Groove Shape of Abrasive Wear [22] In relation to cutting Ti6Al4V, Sato et. al conducted various tool studies on various inserts types to determine the effects of certain cutting parameters on tool wear, primarily the effects of wet and dry machining on coated and uncoated carbide inserts. It was noted that abrasive wear was seen on the carbide insert that was coated by diamond-based coating, 10

11 VCGX AL 1810, on both the cutting and opposing cutting surface, as seen in figure 5 below, but it did not lead to catastrophic tool failure. Another uncoated carbide-based insert with a Cermet matrix was used in machining operations for this test, VBMT KF H13A, and for both wet and dry machining, significant abrasive wear was seen on all faces of the tool rendering it useless for further machining, as seen in figure 6. From this study, it can be concluded that abrasive wear will be seen more significantly on uncoated carbide inserts vs. coated carbide inserts when machining Ti6Al4V. [16] Figure 5: Abrasive Wear on VCGX AL 1810 Carbide Diamond Coated Inserts after Cutting Ti6Al4V [16] Figure 6: Abrasive Wear on VBMT KF H13A Uncoated Inserts after Cutting Ti6Al4V [16] Diffusion Wear Diffusion wear occurs as one material diffuses into the other as they are in contact with one another at elevated temperatures. The extreme temperatures seen in the cutting zone of Ti cause this to be the primary wear mechanism of titanium alloys. Often, diffusion wear will result in crater wear on the rake face of the tool insert (this will be discussed further below). Odelros notes that through diffusion, the tool becomes fundamentally structurally weaker and more sensitive to other wear types, including abrasive and adhesion wear [6,9]. 11

12 Jiaxin et all conducted studies on the diffusion of WC/Co carbide inserts during the cutting of Ti6Al4V as a function of temperature from 400 O C to 800 O C and its effects on tool hardness. It was noted that significant penetration of tool particles were seen at 800 O C, up to a depth of 20 micrometers, and that the tool hardness at the workpiece interface more significantly depleted than that far away from the interface due to tool diffusion into the workpiece, significantly accelerating tool wear [17] Chemical/Corrosive Wear Chemical wear occurs when oxidation at elevated temperatures takes place on the tool surface due to the presence of oxides on the workpiece material surface. Depending on the composition of the oxide and workpiece material, oxide layers could either result in a strengthening of material hardness, or even result in chipping and tool fracture. [6,9] Plastic Deformation Plastic deformation can result in tool wear if the incorrect tool material is used beyond the thermal capabilities of the tool. As the tool material is softened by the elevated temperatures and cutting forces, the tool deforms to a new geometric shape, as seen in figure 7 below. Ultimately, this will result in differing tool properties than the intended use, accelerating tool wear. [6,9] Figure 7: Plastic Deformation Wear of Cutting Edge Surface [9] 3.2. Wear Mechanisms of Cutting Tools Figure 8 shows the ISO 3002/1 definition of the geometric parameters of the cutting tool insert surfaces during the turning process: 12

13 Figure 8: ISO 3002/I Diagram of the Cutting Tool Surfaces & Cutting Forces [10,6] There are two primary faces upon which wear mechanisms occur: the rake face, which is defined by the ISO standard as, the cutting tool surface closet to the chip, on the front edge of the cutting tool, over which the chip formed slides, and the flank face, which is defined as, the surface of the cutting tool that the newly created surface flows. [10] Odelros explains that cutting tools primarily experience tool wear on these two faces, and that three specific ranges exist to describe the tool wear evolution over the length of the cut of the workpiece, which can be seen in figure 9. Region 1 is the tool break-in region in which primary wear occurs on the tool at a high rate as the initial tool layer is damaged. Region 2 is the region in which steady state cutting occurs on the workpiece. The wear rate of the tool in this region is more gradual until a limit is reached. This limit is dependent on what tool material & workpiece combination is being cut. Finally, Region 3, indicated in the figure as a sharply increasing parabolic function, is where tool wear rapidly accelerates as cutting forces, vibrations, and temperatures increase [6,11]. Figure 9: Cutting Tool Wear Evolution as a Function of Flank Length (VB) [11] 13

14 Literature has noted that there are specific wear mechanisms that occur on the each of the tool faces that are derivations of the types of wear discussed in previous sections of this paper. These are clearance/flanks wear, crater wear, and notch wear, which can be characterized by their location, shape, and wear type, and can be seen in figure 10 below [11]. Figure 10: Types of Wear Mechanisms on Cutting Tool Insert [11] There are other phenomena to tools that are associated with or caused by these wear mechanisms and keep lead to further accelerated tool wear and eventual breakage; these are chipping, fracture, chatter, coating delamination [6,9,13]. In order to capture an accurate and comprehensive understanding of the characteristics of tool wear, these phenomena will also be discussed Clearance/Flank Wear Clearance wear, also known as flank wear, is a wear mechanism that is associated primarily with the flank face of the tool and is caused primarily by friction caused by tool rub between the flank face and workpiece (abrasive wear) [5]. Clearance (flank) wear is often characterized as the wear flank width, VB, and is characterized by a flat-worn surface [11]. This can be seen as the flat surface on the clearance face on figure 10 as well as in figure 11 below. It is noted that at lower machining speeds and temperatures, flank wear is the common wear mechanism. Figure 11: Flank Wear on Tool Insert [9] ASME B94.55M, Tool Life Testing With Single-point Turning Tools, is the current industry standard that sets out flank wear standard widths that set recommendations for tool life based on the rate of flank wear. Figure 12 shows the diagram set out by the ASME standard that is used to take flank wear measurements for the standard evaluations [21]. In this diagram, the worn cutting edge length is designated as distance b w, distance C is designated as the curved 14

15 edge of the cutting tool at the tool corner, and distance N is the last quarter of the worn cutting edge furthest from the tool corner. Finally, distance B is the remaining distance between C and N along the worn cutting edge. VB max is a standard allowable tool life criterion, 0.6 mm, and is used to compare to VB determine if tool wear is acceptable for continued tool use. If VB is less than 0.03mm and VB max is less than 0.06mm, the tool wear is acceptable for continued use. [6, 7,8] For carbide inserts, it has been noted that the width of the flank wear allowable for tool life considerations is in. [7] Figure 12: ASME B94.55M Flank Wear Measurement Standard Insert Diagram [7] Siddhpura & Paurobally note that the current main monitoring system for this type of wear on tools is to utilize a tool condition monitoring system (TCMS) in process, which historically involves the use of signal acquisition to take measurements of the width of the flank wear land, VB, or directly via optical measurements of tool geometry. An indirect method that uses signal processing methods to derive tool predictions via evaluation of cutting parameters or workpiece characteristics has been proposed and developed among industry that will allow a more robust understanding of this wear mechanism and prediction, but needs further development in sensory technology to allow this to be used widespread throughout industry [6, 23] Crater Wear Crater wear is the primary wear mechanism that occurs on the rake face of the tool. Figure 13 shows the characteristic wear shape of this wear mechanism, which is a concave or crater shape on the rake face of the tool: Figure 13: Crater Wear on Tool Insert [9] 15

16 Crater wear is governed primarily by diffusive wear and abrasive wear; chips slide across the rake face and causes chemical erosion of the tool face as tool material dissolves into the chip material at increased temperatures in the cutting zone. It was discussed earlier that titanium is primarily susceptible to chemical reactivity with other metals beyond 500 O C; it was also noted that the cutting zone of titanium reaches up to 1100 O C during cutting operations. Because of these properties, it should be noted that crater wear is the most dominant tool wear mechanism in titanium-based alloys. It should also be noted that crater wear is also a function of cutting speed. Marinov et. all notes that because the crater will increase the angle between the tool face and workpiece, otherwise known as the rake angle, it will make cutting easier, but will significantly reduce tool life by increasing risk of tool breakage. [6,7,8] The current method in industry being used to measure crater wear on tool faces is by using a profilometer. DerGarmo s Materials & Processes in Manufacturing discusses the specific method used, and this can be seen in figure 14. Figure 14: Evaluation of Crater Wear (DeGarmo s Materials & Processes in Manufacturing) [7] K L is the length from the cutting edge to the start of the crater. K B is the length of the crater on the rake face, and K T is crater wear depth. The dark gray area illustrates where the abrasive wear mechanism occurs. [7] Another method has been proposed by Hua in order to estimate the amount of crater wear utilizing FEA, which will be discussed further in section of this paper Notch Wear/Corner Wear Notch wear is governed by chemical adhesive wear. As the rake face and flank face see increased wear on their surfaces, heightened pressures and temperatures in the cutting region will cause adhesion of chips to the tool face surface. Simultaneous wear on both faces will cause the characteristic notching shape, as seen in figures 10 & 15, on the cutting edge. [6,7,9] Figure 15: Notch Wear on Tool Insert [9] 16

17 This type of wear has a significant effect on machining precision as tool wear will reduce the tool length and can reach up to 0.03 to 0.05 mm of error in workpiece dimensions [8]. Figure 16 shows the process of notch wear described above. Notch wear will also issues with surface finish on the workpiece surface [6]. Figure 16: Notch Wear/Corner Wear Mechanism Diagram during Cutting Processes Other Phenomena Associated With Tool Wear Chipping Chipping is primarily caused on tool faces by an overload of mechanical tensile stresses on the tool faces [8]. It is characterized as a small piece of the workpiece breaking loose, as seen in figure 17 below. This wear mechanism is very unpredictable and is caused by a number of factors, including depth of cut, workpiece feed, sudden vibrations or thermal shocks, excessive wear, or workpiece material variations [6]. If any of these factors occur during the cutting process, chipping will occur along any of the insert faces. Figure 17: Chipping in Tool Inserts [9] Chatter Chatter is caused on the surface of the workpiece by significant vibration issues in the process. This phenomenon is not a primary tool wear mechanism; however, the poor surface finish and increased vibrations will lead to accelerated tool wear. This 17

18 phenomenon is primarily seen in the machining of titanium alloys such as Ti6Al4V due to the inherent characteristic low modulus of elasticity. The decreased strength of the tool causes deflection of the workpiece surface as cutting forces increase and will ultimately result in tool bouncing and rub on the workpiece surface and the characteristic waviness on the surface finish of the workpiece [6,8]. Figure 18 shows a comparison of surface finish of a stable cut vs. a cutting operation that experienced chatter & the resulting waviness that occurs, often resulting in rejection of the hardware. Figure 18: Surface Finish Comparison in Stable Cutting Operations vs. Chatter [8] Fracture As tool wear moves into the third region of tool wear shown in the diagram in figure 18, the insert will be significantly worn from regular use. Temperatures and pressures will move into the extreme region, which will cause significantly higher cutting forces causing the tool to break at the cutting edge. Fracture is also often seen in non-optimized cutting operations for difficult to cut materials such as titanium & its alloys [6] Coating Delamination Coatings are often applied to cutting tool inserts to improve productivity of machine operations of workpiece materials. Not only are they chemically inert with the workpiece materials, they also are able to maintain their hardness at high temperatures (also known as high hot hardness ) and have better thermal conductivity to aid in to dissipating heat from the cutting zone. Although these are the primary intensions of coatings, coating delamination often occurs on coated carbide inserts when cutting titanium-based alloys and other hard-to-cut materials. This mechanism occurs early in region 1 of the tool wear evolution curve (figure 9), the break-in region. As temperatures and cutting forces interact with the new tool, heightened temperatures will often either cause a chemical reaction between the workpiece & the coating material and diffuse into the chip flowing away from the workpiece or cause a breakdown in the coating due to differing coefficients of thermal expansion of the coating matrix & substrate [8,9,13]. Palansiamy et. al looked at the tool life of carbide tools when cutting Ti6Al4V both coated with a diamond-like coating (DLC) and without and concluded that delamination occurred early on in turning operations for the coated tools (see figure 19), due to the elevated temperatures in the cutting region & unsuitability of the DLC thermal diffusion to remove temperatures quick enough from the cutting zone, and 18

19 reduced the tool life to lower than that of the uncoated inserts. They suggest that in order to fully optimize coatings for use on Ti-based alloys, additional strategies must be used to remove heat quickly enough from the cutting region. [13] Figure 19: Coating Delamination in DLC Coated Insert After Cutting Ti6Al4V [13] 4. Models to Predict Tool Wear/Life 4.1. Mathematical Models There are multiple wear rate and tool life prediction models that exist in industry today. The most widespread model currently used is the Taylor Tool Life Equation; however, other mathematical models have been proposed that take multiple wear mechanisms and process parameters into account that allow better prediction of tool wear than the standard model, including the Usui Wear Model and Takeyama Wear Model. These three models are the bases of all wear research and modeling being conducted today Taylor Tool Life Equation The Taylor Tool Life Equation was first published in 1907 in the ASME Transactions Journal in the article On the Art of Cutting Metals. The equation, seen below as equation 1, relates tool life to the cutting speed and time of cutting operations, and suggests that tool life is strongly dependent on the cutting speed: VT n C (1) In Taylor s Equation (Equation 1), V and T represent the cutting speed and time of cut to tool wear, n is an exponent that is primarily affected by the tool material type, and C is a process constant that encompasses process input parameters, including depth of cut, feed rate, and cutting coolant/lubrication. Typically, these values are evaluated documented in literature in different cutting tables based on specific geometries, workpiece materials, depth & feed of cut, and cutting fluids [6,20]. Ultimately, the Taylor equation is used to plot the two specific parameters on a log-log plot vs each other to create tool life curves for both flank and crater wear as seen in figure 20. These curves also can be used to determine machinability ratings by plotting the tool life curves for the system being evaluated vs. a standard material cut with the same material, as seen in figure 21 below. This specific case shown in figure 21 below is for B1112 Steel vs. an unknown steel material. Ultimately, using these curves, it is evaluated that Material X has a 70% rating, meaning it cuts 70% as fast as the standard for equal tool life. One pitfall associated with this model is that it assumes wear mechanisms remain constant for the unknown material as the standard being evaluated. This is not always the case. [11] Another pitfall to the Taylor equation is that it assumes that the process is primarily driven by cutting speed, and ignores effects of such 19

20 important process parameters as feed rate and depth of cut. Even though it is an elementary view of tool wear, the Taylor Equation continues to be used as the basis of all tool wear research being conducted in industry and academia today. [6,7,19] Figure 20: Tool Wear & Life Curves Created by Taylor s Equation of Tool Wear [7] Figure 21: Machinability Rating Curves based on Taylor s Equation [7] Usui s Model of Tool Wear Prediction Usui et al proposed a model for tool wear based on the Shaw equation of adhesive wear, equation 2: c dw A r b ZdL (2) In this equation, dw is the wear volume for the cutting distance, dl, A r is the real contact area between metals, c is the height of the wear particle, b is the mean spacing of the asperities on the workpiece surface, and Z is the probability of producing a wear particle per asperity encounter. Usui s wear rate model, equation 3, was derived in a carbide-wear tool study based on this adhesion law and suggests that there is an influence of temperature upon the tool wear. 20

21 dw σ t dl = AVexp ( B θ ) (3) where dw is the change in volume caused by material removal, dl is the change in distance during material removal, t is the normal pressure on the cutting tool/workpiece interface, is the cutting zone temperature, V is the cutting speed, A is a material constant based on the material topographies and wear mechanisms, and B is a thermal material constant based on the activation energy of the wear mechanisms and the material harness. If there are multiple wear mechanisms, the total wear can be estimated by summing up all the possible A and B constants. The normal pressure, sliding velocity (dw*dl), and tool temperatures can be predicted using FEA simulations or a combination of finite element difference methods (FED) and analytical methods. Ultimately, this model is a useful tool for estimations of tool wear using these methods more so than the Taylor equation [18, 20, 6] Takeyama Model of Tool Wear The Takeyama Model of Tool Wear takes the effects of diffusion wear and abrasive wear, as proportional to cutting distance, into account, and can be seen in equation 4: dw G(V, f ) Dexp E dt RT (4) where dw/dt is the wear rate of the tool, V is the cutting speed, f is the feed rate, E is the activation energy of the wear mechanism, R is the universal gas constant, and T is the cutting temperature. G and D are material and system constants. Like the Usui model, the equation has constants that must be determined experimentally for the workpiece/tool system. The first abrasive term in the equation, G(V,f), can be neglected temperatures higher than 800 O C. This wear model has been tested and proven to be effective on carbon steels to relate tool wear rate to the average cutting zone temperature by Matthew. [18,19] 4.2. Other Modeling and Research on Tool Wear Predictions Although the mathematical models described above are the basis of all research being conducted, the standard mathematical models currently used in industry & practice do not take all factors & interactions into account to predict tool wear. In order to capture an accurate prediction and understanding of tool wear, more advanced modeling methods such as FEA or other signaling methods (such as the ANFIS method described below) must be used to capture effects of certain inputs and their interactions on tool wear. Below is a brief survey of some of the research and modeling methods being conducted in industry today on cutting Ti6Al4V with carbide inserts. Ultimately, the most robust method to model tool wear will be a combination of those described below with the mathematical models described above Thermal Diffusion Model for Predicting Crater Wear Rate Hua et al developed a thermal based diffusion model to predict crater wear rates in WC/Co Carbide based inserts in turning Ti6Al4V from cutting speeds up to 240m/min. An orthogonal cutting model was created using FEM software with the workpiece modeled as a rigid visco-plastic material using the Von-Mises yield criterion and flow rule in the deformation zone: ε ij = 3 ε σ 2 σ ij where the effective stress is determine by equation 5b and the effective strain rate is determined by equation 5c. (5a) 21

22 σ = 3 {σ 2 ij σ ij } 1/2 (5b) ε = 2 {ε ijε ij} 1/2 (5c) 3 Also, the tool material was modeled as a rigid surface. The Cockcraft-Latham ductile fracture criterion was used to model ductile chip segmentation (equation 6) in the FEA Model: f C *d (6) 0 Where * is the maximum principle stress and C is the critical damage value. Ultimately, this criterion predicts the likelihood of ductile fracture once the criterion is reached for specific workpiece materials. Once a C value was accurately predicted, it was then held constant in subsequent simulations that modified other cutting parameters, and was then compared to actual cutting trials conducted. The comparison of the FEM model to the actual cutting experimental model can be seen in figure 22 below: Figure 22: FEM Model & Chip Formation Comparison from Hua s Cobalt Based Diffusion Model [12] Ultimately, the diffusion model proposed accurately predicted crater depth and for different concentrations of cobalt in WC/Co inserts as well as differing cutting speeds. Figure 23 below 22

23 shows the comparison of the predictive crater wear rate of the experimental results for a 0.127mm/rev feed rate: Figure 23: Comparison of Predicted Crate Wear Rate with Hua s Experimental Results [12] As seen in figure 23, the predictive results of the FEA model were consistently seen to be 10 to 15% higher than that measured in the experimental results. Hua attributes this difference to the following possible reasons: 1. The orthogonal modeling of the tooling system may not be completely accurate in modeling titanium machining, and an adjustment factor needs to be assumed of approx to compensate for the non-orthogonal cutting systems based on the ratio of the accurate chip width to the predicted chip width. 2. Temperatures predicted by the FEM model in the cutting zone were predicted to be higher than those in the turning test. Friction factors & heat transfer coefficients were estimated from literature and not verified by measuring during trials. 3. The diffusion factor used was not suitable for the tool temperatures ranges seen during machining of Ti6Al4V, and the barrier effects of the insert grain boundary was not taken into effect. Ultimately, this barrier effect will slow down diffusion into workpiece material. 4. Hua s model does not accurately model the simultaneous wear of the rake and clearance faces, and rather calculates the wear rates based on the unworn flank rates of the tool inserts. This results in increased modeled temperatures seen in the cutting zone. Ultimately in order to accurately determine the wear rate and profile, the evolution of the wear of the tool insert must be modeled and understood, which is difficult to monitor in process. [12] FEA Model of Diffusion Wear Crosskey and Gutierrez-Miravete propose a modeling system to predict diffusion wear in carbide tools while cutting Ti6Al4V using an orthogonal cutting model in COMSOL Multiphysics in combination with AdvantEdge. The AdvantEdge software was used to first compute the material deformation & temperatures seen in cutting Ti6Al4V. Once these were obtained, they were used as inputs into the COMSOL model to create a solid-state diffusion model that would predict the diffusion of material from the carbon tool. Crosskey notes that because diffusion wear is a transient process, steady state conditions could not be assumed. Due 23

24 to this transient nature, the diffusion equation ultimately used in the orthogonal model became (equation 7): D C C t dx D C dy (7) dx dy where D is a self-diffusion coefficient of Cobalt and C is the concentration of Cobalt in the Carbide tool. Ultimately, the model was relatively accurate in computing the temperature fields predicted by the AdvantEdge software, and the computed diffusive flux field, seen in figure 24 below, agreed with the diffusive wear rates seen in Hua s experiments described in section [24] Figure 24: Cobalt Diffusive Flux Field in Solid-State Diffusive Model of Carbide Tool While Cutting Ti6Al4V [24] 24

25 5. Conclusion The cutting of Ti6Al4V as a titanium alloy is difficult due to its metallurgical makeup, ultimately accelerating tool wear in cutting inserts. The most common wear mechanism seen in cutting titanium based alloys is diffusion wear, and this in combination with abrasive wear results in crater wear on the rake face of the insert. Mathematical models that currently exist to estimate this tool wear include the Taylor Equation and the Usui and Takayama Wear Models are limited and do not take interactions of cutting parameters into account. Research has been conducted into FEA and other modeling types to predict tool wear in carbide-based inserts in cutting Ti6Al4V, including the works of Hua and Crosskey to model diffusion tool wear in WC/Co carbide inserts; however, there are significant improvements that can be made to these modeling techniques including taking into account simultaneous wear mechanisms of the rake and flank faces, accounting for barrier effects, using the correct diffusion factors, friction factors, and heat transfer coefficients, and the expansion of the system to model the non-orthogonal cutting parameters seen in cutting titanium. Ultimately, it is the combinations of the mathematical modeling as well as these other modeling techniques that will ultimately result in accurate tool wear predictions in cutting titanium alloys. 25

26 6. References 1. Ostrower, John & Pasztor, Andy. Boeing, United Technologies Stockpile Titanium Parts. Wall Street Journal Business. 7 Aug Available online: Pratt & Whitney s Geared Turbofan Growth Plan. Aviation Week & Space Technology. 1 Jul Available Online: 3. Titanium Alloys in Medical Applications. AZO Materials. 11 Jan Available Online: 4. Hosseini, A. and Kishawy, H.A. Chapter 2: Cutting Tool Materials & Tool Wear Machining of Titanium Alloys, Material Forming, Machining & Tribology Machado, AR and Wallbank, J, Machining of titanium and its alloys- a review. Proceedings of the Institute of Mechanical Engineers. Vol Odelros, Stina, Tool Wear in Titanium Machining. Upsala University De Garmo, Ernest P. et al, Chapter 21: Cutting Tools for Machining. De Garmo s Materials and Processing in Manufacturing. John Wiley & Sons, Marinov, Valery, Section 5.5: Tool Wear and Tool Life. Manufacturing Technology. pp Available online: 9. Wear on Cutting Edges. Cutting tool materials. Sandvik Coromant. Available online: x 10. ISO : 1982: Basic quantities in cutting and grinding -- Part 1: Geometry of the active part of cutting tools -- General terms, reference systems, tool and working angles, chip breakers. International Organization for Standardization (ISO) Yalcin, Bekir and Yilmaz, Nihat, Finite Element Analyses for the Effects of Flank Wear and Some Cutting Parameters on Cutting Stresses in Turning of AISI 1060 Steel. Journal of Manufacturing Technology, Volume 2, Issue ½ Hua, Jiang and Shivpuri, Rajiv, A Cobalt Diffusion Based Model for Predicting Crater Wear of Carbide Tools in Machining Titanium Alloys. Transactions of the ASME, Volume 127, pp January Palanisamy, S. et al, Tool Life Study of Coated/uncoated Carbide Inserts during Turning of Ti6Al4V. Advanced Materials Research, Vol. 974, pp Pramanik, Alokesh et. al, Machining and Tool Wear Mechanisms during Machining Titanium Alloys, Advanced Materials Research, Volume 651, pp Jan Zhen, Li et al, Experimental Investigation of Tool Wear and Chip Morphology in Turning Titanium Alloy Ti6Al4V. Materials Science Forum, Vols , pp Sato, F.C.Y.C et al, A Contribution to the Study of Ti-6Al-4V Turning. Proceedings of the COBEM Jianxin, Deng et al, Diffusion Wear in dry cutting of Ti-6Al-4V with WC/Co carbide Tools. Wear. Volume 265, Issues 11-12, pp November

27 18. Li, Bin, A review of tool wear estimation using theoretical analysis and numerical simulation technologies. Int. Journal of Refractory Metals and Hard Materials, Volume 35, pp Umbrello, D. et al, Prediction of Tool Wear Progress in Machining of Carbon Steel using different Tool Wear Mechanisms. International Journal of Material Formation, Volume 1, pp April Latifzada, Mushtaq Ahmad, Estimation of flank wear growth on coated inserts. Upsala University, Standard Terminology Relating to Wear and Erosion. ASTM Annual Book of Standards, Vol 03.02, pp ASTM Kopeliovich, Dmitri, Mechanisms of Wear. SubsTech: Substances & Technologies. 12 March Available Online: Siddhpura, A. & Paurobally, R, A review of flank wear prediction methods for tool condition monitoring in a turning process. International Journal of Advanced Manufacturing Technology, Vol. 65, No. 1-4, pp Crosskey, M. & Gutierrez,-Miravete, A Modeling Study of Diffusion Wear of Carbide Tools in Titanium Machining. Rensselaer at Hartford,

Manufacturing Processes 1 (MDP 114)

Manufacturing Processes 1 (MDP 114) Manufacturing Processes 1 (MDP 114) First Year, Mechanical Engineering Dept., Faculty of Engineering, Fayoum University Dr. Ahmed Salah Abou Taleb 1 Cutting-Tool Materials and Cutting Fluids 2 Fracture

More information

Identification of Tool Life and Wear Characteristics of HSS Tools Used in Turning of Ck45

Identification of Tool Life and Wear Characteristics of HSS Tools Used in Turning of Ck45 Identification of Tool Life and Wear Characteristics of HSS Tools Used in Turning of Ck45 B. Moetakef Imani, S.A. Hosseini 2 and A. Baghal Safa 3 Mechanical Engineering Department, Ferdowsi University,

More information

Module 3 Machinability. Version 2 ME IIT, Kharagpur

Module 3 Machinability. Version 2 ME IIT, Kharagpur Module 3 Machinability Lesson 14 Failure of cutting tools and tool life Instructional objectives At the end of this lesson, the students will be able to (i) (ii) (iii) (iv) (v) State how the cutting tools

More information

FINITE ELEMENTSIMULATION IN ORTHOGONAL MACHINING OF INCONEL 718 ALLOY

FINITE ELEMENTSIMULATION IN ORTHOGONAL MACHINING OF INCONEL 718 ALLOY FINITE ELEMENTSIMULATION IN ORTHOGONAL MACHINING OF INCONEL 718 ALLOY P.DEEPAGANESH. ME CAD/CAM, Shanmuganathan Engineering College, Pudukottai. ABSTRACT Knowing the stringent operating conditions to which

More information

CUTTING TOOL TECHNOLOGY

CUTTING TOOL TECHNOLOGY CUTTING TOOL TECHNOLOGY Tool Life Tool Materials Tool Geometry Cutting Fluids Cutting Tool Technology Two principal aspects: 1. Tool material 2. Tool geometry Three Modes of Tool Failure Fracture failure

More information

STATUS OF FEM MODELING IN HIGH SPEED CUTTING - A Progress Report -

STATUS OF FEM MODELING IN HIGH SPEED CUTTING - A Progress Report - STATUS OF FEM MODELING IN HIGH SPEED CUTTING - A Progress Report - Dr. Taylan Altan, Professor and Director Partchapol (Jay) Sartkulvanich, Graduate Research Associate Ibrahim Al-Zkeri, Graduate Research

More information

Tool Wear Detection of Cutting Tool Using Matlab Software

Tool Wear Detection of Cutting Tool Using Matlab Software International Journal of Engineering and Technical Research (IJETR) Tool Wear Detection of Cutting Tool Using Matlab Software S.P. Patil, D. M. Tilekar Abstract Tool wear in machining processes is directly

More information

Cutting Tool Materials and Cutting Fluids. Dr. Mohammad Abuhaiba

Cutting Tool Materials and Cutting Fluids. Dr. Mohammad Abuhaiba Cutting Tool Materials and Cutting Fluids HomeWork #2 22.37 obtain data on the thermal properties of various commonly used cutting fluids. Identify those which are basically effective coolants and those

More information

Fundamentals of Metal Forming

Fundamentals of Metal Forming Fundamentals of Metal Forming Chapter 15 15.1 Introduction Deformation processes have been designed to exploit the plasticity of engineering materials Plasticity is the ability of a material to flow as

More information

Cutting Properties Analysis of Titanium Alloy (Ti-6Al-4V) Based on Cryogenic Cooling

Cutting Properties Analysis of Titanium Alloy (Ti-6Al-4V) Based on Cryogenic Cooling Send Orders for Reprints to reprints@benthamscience.ae 122 The Open Materials Science Journal, 2014, 8, 122-126 Open Access Cutting Properties Analysis of Titanium Alloy (Ti-6Al-4V) Based on Cryogenic

More information

Chapter 8. Material-Removal

Chapter 8. Material-Removal 4 4 6. 3 0 5 A M A N U F A C T U R I N G P R O C E S S E S Chapter 8. Material-Removal Processes: Cutting Sung-Hoon Ahn School of Mechanical and Aerospace Engineering Seoul National University Machining

More information

PES INSTITUTE OF TECHNOLOGY BANGALORE SOUTH CAMPUS Hosur Road, (1K.M. Before Electronic City), Bangalore DEPARTMENT OF MECHANICAL ENGINEERING

PES INSTITUTE OF TECHNOLOGY BANGALORE SOUTH CAMPUS Hosur Road, (1K.M. Before Electronic City), Bangalore DEPARTMENT OF MECHANICAL ENGINEERING PES INSTITUTE OF TECHNOLOGY BANGALORE SOUTH CAMPUS Hosur Road, (1K.M. Before Electronic City), Bangalore 560 100 DEPARTMENT OF MECHANICAL ENGINEERING SOLUTION 3 rd INTERNAL TEST Subject : Machine Tools

More information

TOOLMAKER SOLUTIONS Custom-Made Inserts Blanks

TOOLMAKER SOLUTIONS Custom-Made Inserts Blanks Non-ISO carbide insert blanks for threading, parting, grooving, drilling, reaming and milling applications TOOLMAKER SOLUTIONS Custom-Made Inserts Blanks HYPERION CUSTOM-MADE INSERT BLANKS Hyperion manufacturers

More information

GRINDING AND OTHER ABRASIVE PROCESSES

GRINDING AND OTHER ABRASIVE PROCESSES GRINDING AND OTHER ABRASIVE PROCESSES Grinding Related Abrasive Process Abrasive Machining Material removal by action of hard, abrasive particles usually in the form of a bonded wheel Generally used as

More information

Machining - Cutting Tool Life. ver. 1

Machining - Cutting Tool Life. ver. 1 Machining - Cutting Tool Life ver. 1 1 Overview Failure mechanisms Wear mechanisms Wear of ceramic tools Tool life Machining conditions selection 2 Tool Wear Zones chip shear zone cutting tool Crater wear

More information

Effect of Cutting Parameters on Tool Life

Effect of Cutting Parameters on Tool Life International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Sandip

More information

CHAPTER 21. Cutting-Tool Materials and Cutting Fluids. Kalpakjian Schmid Manufacturing Engineering and Technology 2001 Prentice-Hall Page 21-1

CHAPTER 21. Cutting-Tool Materials and Cutting Fluids. Kalpakjian Schmid Manufacturing Engineering and Technology 2001 Prentice-Hall Page 21-1 CHAPTER 21 Cutting-Tool Materials and Cutting Fluids Manufacturing Engineering and Technology 2001 Prentice-Hall Page 21-1 Cutting Tool Material Hardnesses Figure 21.1 The hardness of various cutting-tool

More information

Investigation of Surface Roughness and Flank Wear by CBN and PCBN Tools on Hard Cr-Mo Steel

Investigation of Surface Roughness and Flank Wear by CBN and PCBN Tools on Hard Cr-Mo Steel Investigation of Surface Roughness and Flank Wear by CBN and PCBN Tools on Hard Cr-Mo Steel S.Thamizhmanii* and S.Hasan Abstract Hard turning is the latest technology and is used to turn hard materials

More information

Wear of PVD Coated and CVD+PVD Coated Inserts in Turning

Wear of PVD Coated and CVD+PVD Coated Inserts in Turning Wear of PVD Coated and CVD+PVD Coated Inserts in Turning Paper No.: 65 Session No.: Author Name: Title: Affiliation: Address: Email: 56 (Dynamics and Vibrations in Experimental Mechanics) M.A. Zeb Assistant

More information

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture.

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture. 1- Fracture Fracture: Separation of a body into pieces due to stress, at temperatures below the melting point. Steps in fracture: 1-Crack formation 2-Crack propagation There are two modes of fracture depending

More information

CHAPTER 7 PREDICTION OF TEMPERATURE DISTRIBUTION ON CUTTING TOOL

CHAPTER 7 PREDICTION OF TEMPERATURE DISTRIBUTION ON CUTTING TOOL 142 CHAPTER 7 PREDICTION OF TEMPERATURE DISTRIBUTION ON CUTTING TOOL The main objective of this chapter is to predict the temperature distribution on a turning tool by using the following methods: Build

More information

Chapter Outline: Failure

Chapter Outline: Failure Chapter Outline: Failure How do Materials Break? Ductile vs. brittle fracture Principles of fracture mechanics Stress concentration Impact fracture testing Fatigue (cyclic stresses) Cyclic stresses, the

More information

Cutting Tools for Machining

Cutting Tools for Machining Cutting Tools for Machining Chapter 21 21.1 Introduction Improvements in Cutting Tools FIGURE 21-1 Improvements in cutting tool materials have led to significant increases in cutting speeds (and productivity)

More information

ANALYSIS OF CUTTING FORCE AND CHIP MORPHOLOGY DURING HARD TURNING OF AISI D2 STEEL

ANALYSIS OF CUTTING FORCE AND CHIP MORPHOLOGY DURING HARD TURNING OF AISI D2 STEEL Journal of Engineering Science and Technology Vol. 10, No. 3 (2015) 282-290 School of Engineering, Taylor s University ANALYSIS OF CUTTING FORCE AND CHIP MORPHOLOGY DURING HARD TURNING OF AISI D2 STEEL

More information

Tool wear mechanisms in machining of titanium alloys

Tool wear mechanisms in machining of titanium alloys Pravin Pawar, Shashikant Joshi, Asim Tewari, Suhas Joshi, Evaluation of tool wear s in machining of three different types of titanium alloys, Page no.345-348, 4th International & 25 th AIMTDR Conference

More information

Theory of cutting Tool wear. Technology II Jan Tomíček

Theory of cutting Tool wear. Technology II Jan Tomíček Theory of cutting Tool wear Technology II Jan Tomíček Tool wear Cutting tools undergone wear during the cutting. The wear means that the tool loses its volume and geometrical properties. There are different

More information

Tool wear Mechanism. 1.Abrasive wear. 1.Abrasive wear cont. 1/4/2013

Tool wear Mechanism. 1.Abrasive wear. 1.Abrasive wear cont. 1/4/2013 Tool wear Mechanism 2 Major wear mechanisms 1. Abrasive wear 2. Adhesion wear 3. Diusion 4. Oxidation 5. Fatigue 6. Chemical decomposing 1 1.Abrasive wear 1.Abrasive wear cont. 3 4 Soter material sliding

More information

Cryogenic Machining of Super Alloys used in Aerospace Industry: A Review

Cryogenic Machining of Super Alloys used in Aerospace Industry: A Review Cryogenic Machining of Super Alloys used in Aerospace Industry: A Review Mr. Akash M. Joshi 1, Prof. Ajay Pathak 2 P. G. Student, Dept. Of Mechanical Engineering, D. Y. Patil College Of Engineering, Akurdi,

More information

CIRP Annals - Manufacturing Technology

CIRP Annals - Manufacturing Technology CIRP Annals - Manufacturing Technology 59 (2010) 77 82 Contents lists available at ScienceDirect CIRP Annals - Manufacturing Technology journal homepage: http://ees.elsevier.com/cirp/default.asp Investigations

More information

Investigation into Wear Characteristics of Tungsten Carbide under Different Lubricating Conditions R.J.Hire 1 Prof.S.V.Lomte 2

Investigation into Wear Characteristics of Tungsten Carbide under Different Lubricating Conditions R.J.Hire 1 Prof.S.V.Lomte 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 04, 2015 ISSN (online): 2321-0613 Investigation into Wear Characteristics of Tungsten Carbide under Different Lubricating

More information

FINITE ELEMENT MODELLING OF BURR FORMATION IN METAL CUTTING 1. INTRODUCTION

FINITE ELEMENT MODELLING OF BURR FORMATION IN METAL CUTTING 1. INTRODUCTION Journal of Machine Engineering, Vol. 14, No. 2, 2014 orthogonal cutting, burr, FEM simulation Pawel PRES 1 Waclaw SKOCZYNSKI 1 Marek STEMBALSKI 1 FINITE ELEMENT MODELLING OF BURR FORMATION IN METAL CUTTING

More information

INTRODUCTION. Think HSS

INTRODUCTION. Think HSS INTRODUCTION Think HSS SUMMARY METALLURGY 2 Excellent strength 3 A super sharp edge 4 Safe and reliable tools Alloy elements 6 The influence of alloy elements 7 Standard compositions of HSS 8 The HSS-PM

More information

The Art and Science of Milling Titanium.

The Art and Science of Milling Titanium. Tom Hofmann Global Product Manager - Milling ATI Stellram The Art and Science of Milling Titanium. ATI Stellram, a business unit of ATI Engineered Products, and an Allegheny Technologies company. Increasingly

More information

Chapter 6: Thermal aspects of machining

Chapter 6: Thermal aspects of machining Chapter 6: Thermal aspects of machining LEARNING OBJECTIVES Heat Generation in metal cutting Temperature distribution in work and chip in orthogonal cutting Measurement of temperature in metal cutting

More information

CREEP CREEP. Mechanical Metallurgy George E Dieter McGraw-Hill Book Company, London (1988)

CREEP CREEP. Mechanical Metallurgy George E Dieter McGraw-Hill Book Company, London (1988) CREEP CREEP Mechanical Metallurgy George E Dieter McGraw-Hill Book Company, London (1988) Review If failure is considered as change in desired performance*- which could involve changes in properties and/or

More information

Finite Element Analysis of Drilling of Titanium Alloy

Finite Element Analysis of Drilling of Titanium Alloy Available online at www.sciencedirect.com Procedia Engineering 10 (2011) 1877 1882 ICM11 Finite Element Analysis of Drilling of Titanium Alloy Ozden Isbilir a, Elaheh Ghassemieh a a Department of Mechanical

More information

Using finite element simulations to optimise metal machining

Using finite element simulations to optimise metal machining Using finite element simulations to optimise metal machining The majority of metal-cutting operations involve the creation of chips from the workpiece. Prediction of chip form is important because chip

More information

Creep failure Strain-time curve Effect of temperature and applied stress Factors reducing creep rate High-temperature alloys

Creep failure Strain-time curve Effect of temperature and applied stress Factors reducing creep rate High-temperature alloys Fatigue and Creep of Materials Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Fatigue failure Laboratory fatigue test The S-N Ncurve Fractography of fractured surface Factors improving fatigue life

More information

MANUFACTURING PROCESSES. Tool Material & Cutting Fluid

MANUFACTURING PROCESSES. Tool Material & Cutting Fluid MANUFACTURING PROCESSES Tool Material & Cutting Fluid 1 CUTTING TOOL MATERIAL Success in metal cutting depends on the selection of the proper cutting tool (material and geometry) for a given work material.

More information

True Stress and True Strain

True Stress and True Strain True Stress and True Strain For engineering stress ( ) and engineering strain ( ), the original (gauge) dimensions of specimen are employed. However, length and cross-sectional area change in plastic region.

More information

Experimental Research on the Influence of Tool Material and Geometric Parameters on Cutting Surface Quality of Super Alloy

Experimental Research on the Influence of Tool Material and Geometric Parameters on Cutting Surface Quality of Super Alloy International Journal of Smart Home Vol. 10, No. 5 (016), pp. 55-60 http://dx.doi.org/10.1457/ijsh.016.10.5.06 Experimental Research on the Influence of Tool Material and Geometric Parameters on Cutting

More information

Manufacturing Technology I. Lecture 3. Fundamentals of Cutting

Manufacturing Technology I. Lecture 3. Fundamentals of Cutting Manufacturing Technology I Lecture 3 Fundamentals of Cutting Prof. Dr.-Ing. F. Klocke Structure of the lecture Examples: turning of steel The cutting part - Terms and symbols The cutting operation Loads

More information

Determination of Optimal Cutting Conditions in Orthogonal Metal Cutting Using LS-DYNA with Design of Experiments Approach.

Determination of Optimal Cutting Conditions in Orthogonal Metal Cutting Using LS-DYNA with Design of Experiments Approach. 8 th International LS-DYNA Users Conference Metal Forming (1) Determination of Optimal Cutting Conditions in Orthogonal Metal Cutting Using LS-DYNA with Design of Experiments Approach. David P. Masillamani

More information

ME -215 ENGINEERING MATERIALS AND PROCESES

ME -215 ENGINEERING MATERIALS AND PROCESES ME -215 ENGINEERING MATERIALS AND PROCESES Instructor: Office: MEC325, Tel.: 973-642-7455 E-mail: samardzi@njit.edu PROPERTIES OF MATERIALS Chapter 3 Materials Properties STRUCTURE PERFORMANCE PROCESSING

More information

TO STUDY THE PROCESS PARAMETERS OF NIMONIC80A ON SURFACE ROUGHNESS IN DRY MACHINING: BY ANOVA APPROACH 1

TO STUDY THE PROCESS PARAMETERS OF NIMONIC80A ON SURFACE ROUGHNESS IN DRY MACHINING: BY ANOVA APPROACH 1 TO STUDY THE PROCESS PARAMETERS OF NIMONIC80A ON SURFACE ROUGHNESS IN DRY MACHINING: BY ANOVA APPROACH O. Archana M. V. R Durga Prasad Research Scholar, Department of Mechanical Engineering, VNR Vignana

More information

Taguchi Analysis on Cutting Forces and Temperature in Turning Titanium Ti-6Al-4V

Taguchi Analysis on Cutting Forces and Temperature in Turning Titanium Ti-6Al-4V Taguchi Analysis on Forces and Temperature in Turning Titanium Ti-6Al-4V Satyanarayana Kosaraju, Venu Gopal Anne & Bangaru Babu Popuri Mechanical Engineering Department, National Institute of Technology,

More information

An Innovative FEA methodology for Minimizing the Heat generation on Tungsten carbide insert by applying Air and Water as Coolants

An Innovative FEA methodology for Minimizing the Heat generation on Tungsten carbide insert by applying Air and Water as Coolants An Innovative FEA methodology for Minimizing the Heat generation on Tungsten carbide insert by applying Air and Water as Coolants Madan Mohan Reddy Nune Research Scholar, Mechanical Engineering Department,

More information

CONCLUSIONS AND SCOPE FOR FUTURE WORK

CONCLUSIONS AND SCOPE FOR FUTURE WORK CHAPTER 9 CONCLUSIONS AND SCOPE FOR FUTURE WORK From the present study conducted on the effects of cryogenic treatment and its mechanism on AISI M2 HSS and tungsten carbide cutting tools, the following

More information

Investigating Flank Wear and Cutting Force on Hard Steels by CBN Cutting Tool by Turning

Investigating Flank Wear and Cutting Force on Hard Steels by CBN Cutting Tool by Turning Proceedings of the World Congress on Engineering 8 Vol III WCE 8, July 2-4, 8, London, U.K. Investigating Flank Wear and Cutting Force on Hard Steels by CBN Cutting Tool by Turning SThamizhmanii* and S.Hasan

More information

Thermal Analysis of Milling Cutter Using Finite Element Analysis Tool

Thermal Analysis of Milling Cutter Using Finite Element Analysis Tool Thermal Analysis of Milling Cutter Using Finite Element Analysis Tool Meher R. Pratapwar 1, Neeraj P. Raut 2, Akash S. Rameshware 3, Pavan S. Manekar 4 1,2,3,4Student, Dept. of Mechanical Engineering,

More information

TOOL WEAR MODELING OF HARDENED 42CrMo4 STEEL DEPENDING ON CUTTING PARAMETERS AND WORKPIECE MATERIAL HARDNESS DURING TURNING PROCESS

TOOL WEAR MODELING OF HARDENED 42CrMo4 STEEL DEPENDING ON CUTTING PARAMETERS AND WORKPIECE MATERIAL HARDNESS DURING TURNING PROCESS ANNALS of Faculty Engineering Hunedoara International Journal of Engineering Tome XV [2017] Fascicule 4 [November] ISSN: 1584-2665 [print; online] ISSN: 1584-2673 [CD-Rom; online] a free-access multidisciplinary

More information

1) Fracture, ductile and brittle fracture 2) Fracture mechanics

1) Fracture, ductile and brittle fracture 2) Fracture mechanics Module-08 Failure 1) Fracture, ductile and brittle fracture 2) Fracture mechanics Contents 3) Impact fracture, ductile-to-brittle transition 4) Fatigue, crack initiation and propagation, crack propagation

More information

Available online at ScienceDirect. Procedia CIRP 31 (2015 ) th CIRP Conference on Modelling of Machining Operations

Available online at  ScienceDirect. Procedia CIRP 31 (2015 ) th CIRP Conference on Modelling of Machining Operations Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 31 (2015 ) 24 28 15th CIRP Conference on Modelling of Machining Operations Springback in metal cutting with high cutting speeds N.

More information

Experimental Study on Tool Parameters of Al2O3 in High Speed Machining

Experimental Study on Tool Parameters of Al2O3 in High Speed Machining International Journal of Current Engineering and Technology E-ISSN 2277 416, P-ISSN 2347 5161 215INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Study on

More information

Glossary of Steel Terms

Glossary of Steel Terms Glossary of Steel Terms Steel Terms Explained. Below we list some of the most common steel terms and explain what they mean. AISI Alloy Alloy Steel Annealing ASTM Austenitic Bar Brinell (HB) Bright Drawn

More information

Available online at ScienceDirect. Procedia CIRP 13 (2014 ) On surface grind hardening induced residual stresses

Available online at   ScienceDirect. Procedia CIRP 13 (2014 ) On surface grind hardening induced residual stresses Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 13 (2014 ) 264 269 2 nd CIRP Conference on Surface Integrity (CSI) On surface grind hardening induced residual stresses Konstantinos

More information

Comprehensive study of chip morphology in turning of Ti-6Al-4V

Comprehensive study of chip morphology in turning of Ti-6Al-4V 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Vikas Upadhyay 1 *, P.K. Jain 2, N.K.

More information

RESPONSE SURFACE METHODOLOGY IN FINISH TURNING INCONEL 718

RESPONSE SURFACE METHODOLOGY IN FINISH TURNING INCONEL 718 RESPONSE SURFACE METHODOLOGY IN FINISH TURNING INCONEL 718 M. Aruna 1 Department of Mechanical Engineering, Velammal College of Engineering and Technology, Madurai, India. Dr. V. Dhanalakshmi 2 Department

More information

RESIDUAL STRESSES IN MACHINING USING FEM

RESIDUAL STRESSES IN MACHINING USING FEM : Rev. Adv. A : Mater. Sci. 30 (2012) : : : : 267-272 : 267 RESIDUAL STRESSES IN MACHINING USING FEM A REVIEW C. Maranh o and J. P. Davim Department of Mechanical Engineering, University of Aveiro, Campus

More information

PERFORMANCE OF CARBIDE TOOL IN HIGH SPEED TURNING OF TI- 6AL-4V ELI UNDER CONVENTIONAL COOLANT AND MINIMAL QUANTITY LUBRICATION

PERFORMANCE OF CARBIDE TOOL IN HIGH SPEED TURNING OF TI- 6AL-4V ELI UNDER CONVENTIONAL COOLANT AND MINIMAL QUANTITY LUBRICATION PERFORMANCE OF CARBIDE TOOL IN HIGH SPEED TURNING OF TI- 6AL-4V ELI UNDER CONVENTIONAL COOLANT AND MINIMAL QUANTITY LUBRICATION C. H. Che Haron 1, M. A. Sulaiman 2, J. A. Ghani 1, M. S. Kasim 2 and E.

More information

Chapter 15 Fundamentals of Metal Forming. Materials Processing. Deformation Processes. MET Manufacturing Processes

Chapter 15 Fundamentals of Metal Forming. Materials Processing. Deformation Processes. MET Manufacturing Processes MET 33800 Manufacturing Processes Chapter 15 Fundamentals of Metal Forming Before you begin: Turn on the sound on your computer. There is audio to accompany this presentation. Materials Processing Chapters

More information

Metals and alloys for biomedical applications

Metals and alloys for biomedical applications http://pioneer.netserv.chula.ac.th/~pchedtha/ Metals and alloys for biomedical applications Fundamental of Materials Engineering 2189202 Chedtha Puncreobutr Department of Metallurgical Engineering Chulalongkorn

More information

Cutting Data and Grinding. Dr Mirza Jahanzaib

Cutting Data and Grinding. Dr Mirza Jahanzaib Cutting Data and Grinding Dr Mirza Jahanzaib Cutting Data TABLE 8.1 Data on orthogonal cutting of 4130 steel. TABLE 8.2 Data on orthogonal cutting of 9445 steel. Thrust force as a function of rake angle

More information

PRIMARY GRADES TURNING TURNING / INSERTS / INTRODUCTION TO CARBIDE INSERTS

PRIMARY GRADES TURNING TURNING / INSERTS / INTRODUCTION TO CARBIDE INSERTS / ISERTS / ITRODUCTIO TO CARBIDE ISERTS PRIMARY GRADES group PVD Coated grades Carbide CVD Ceramics CB PCD Uncoated grades Carbide Cermet P M K S H P01 P05 P10 P15 P20 P25 P30 P35 P40 P45 P50 M01 M05 M15

More information

Finite Element Simulations of Ti6Al4V Titanium Alloy Machining to Assess Material Model Parameters of the Johnson-Cook Constitutive Equation

Finite Element Simulations of Ti6Al4V Titanium Alloy Machining to Assess Material Model Parameters of the Johnson-Cook Constitutive Equation Finite Element Simulations of Ti6Al4V Titanium Alloy Machining to Assess Material Model Parameters of the Johnson-Cook Constitutive Equation K. S. Vijay Sekar vijaysekarks@ssn.edu.in SSN College of Engineering

More information

Introduction to Engineering Materials ENGR2000 Chapter 8: Failure. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 8: Failure. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 8: Failure Dr. Coates Canopy fracture related to corrosion of the Al alloy used as a skin material. 8.2 Fundamentals of Fracture Fracture is the separation

More information

Selection of Tool & Die Steels

Selection of Tool & Die Steels Selection of Tool & Die Steels Introduction The success of a metal forming tool depends on optimizing all the factors affecting its performance. Usually, operating conditions (applied loads, abrasive environments,

More information

A study of flank wear in orthogonal cutting with internal cooling

A study of flank wear in orthogonal cutting with internal cooling Wear 253 (2002) 957 962 A study of flank wear in orthogonal cutting with internal cooling H. Zhao, G.C. Barber,Q.Zou Department of Mechanical Engineering, Oakland University, Rochester, MI 48309, USA Received

More information

Tool Wear when Finish Turning Inconel 718 under Dry Conditions

Tool Wear when Finish Turning Inconel 718 under Dry Conditions International Journal of Science Engineering and Technology Vol. 2, No. 3, 2009 ISSN: 1985-3785 Available online at: www.ijset.org 2009 ILRAM Publisher Tool Wear when Finish Turning Inconel 718 under Dry

More information

Influence of Milling Conditions on the Surface Quality in High-Speed Milling of Titanium Alloy

Influence of Milling Conditions on the Surface Quality in High-Speed Milling of Titanium Alloy Influence of Milling Conditions on the Surface Quality in High-Speed Milling of Titanium Alloy Xiaolong Shen, Laixi Zhang, and Chenggao Ren Hunan Industry Polytechnic, Changsha, 410208, China ShenXL64@163.com,

More information

Optimization of Process parameters in hot machining of Inconel 718 alloy using FEM

Optimization of Process parameters in hot machining of Inconel 718 alloy using FEM Optimization of Process parameters in hot machining of Inconel 718 alloy using FEM A. Kiran Kumar 1 and Dr. P. Venkataramaiah 2 1 Assistant Professor, Department of Mechanical Engineering, GITAM, Hyderabad,

More information

COMPARATIVE STUDY OF CONVENTIONAL AND MINIMUM QUANTITY LUBRICATION (MQL) DURING MACHINING 17-4PH STAINLESS STEEL

COMPARATIVE STUDY OF CONVENTIONAL AND MINIMUM QUANTITY LUBRICATION (MQL) DURING MACHINING 17-4PH STAINLESS STEEL International Journal on Recent Researches in Science, Engineering & Technology (IJRRSET) A Journal Established in early 2000 as National journal and upgraded to International journal in 2013 and is in

More information

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN 1 SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL C O N T E N T 2 1. MACHINE DESIGN 03-21 2. FLEXIBLE MECHANICAL ELEMENTS. 22-34 3. JOURNAL BEARINGS... 35-65 4. CLUTCH AND BRAKES.

More information

MMPDS January 2003 CHAPTER 5 TITANIUM

MMPDS January 2003 CHAPTER 5 TITANIUM CHAPTER 5 TITANIUM 5.1 GENERAL This chapter contains the engineering properties and related characteristics of titanium and titanium alloys used in aircraft and missile structural applications. General

More information

NUMERICAL MACHINING SIMULATION FOR AN AISI 304 STAINLESS STEEL CONSIDERING MICROFRACTURE MECHANICS ASPECTS

NUMERICAL MACHINING SIMULATION FOR AN AISI 304 STAINLESS STEEL CONSIDERING MICROFRACTURE MECHANICS ASPECTS Copyright 2013 by ABCM NUMERICAL MACHINING SIMULATION FOR AN AISI 304 STAINLESS STEEL CONSIDERING MICROFRACTURE MECHANICS ASPECTS Gil Magno Portal Chagas University of Sao Paulo USP Polytechnic School

More information

LUBRICATION & MACHINING OF COMPACTED GRAPHITE IRON

LUBRICATION & MACHINING OF COMPACTED GRAPHITE IRON LUBRICATION & MACHINING OF COMPACTED By R. Evans, F. Hoogendoorn, & E. Platt, Quaker Chemical Corporation, Metalworking Division Laboratory SCOPE Compacted graphite iron (CGI) continues to gain use within

More information

CH 6: Fatigue Failure Resulting from Variable Loading

CH 6: Fatigue Failure Resulting from Variable Loading CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to statics loads and for such elements, statics failure theories are used to predict failure (yielding or fracture).

More information

Available online at ScienceDirect. Procedia Manufacturing 6 (2016 )

Available online at   ScienceDirect. Procedia Manufacturing 6 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Manufacturing 6 (2016 ) 154 159 16th Machining Innovations Conference for Aerospace Industry - MIC 2016 Tool Wear Investigation in Dry and

More information

By William A Glaeser (Member, STLE), Richard C Erickson (Member, STLE), Keith F Dufrane (Member, STLE) and Jerrold W Kannel Battelle Columbus, Ohio

By William A Glaeser (Member, STLE), Richard C Erickson (Member, STLE), Keith F Dufrane (Member, STLE) and Jerrold W Kannel Battelle Columbus, Ohio TRIBOLOGY: THE SCIENCE OF COMBATTING WEAR By William A Glaeser (Member, STLE), Richard C Erickson (Member, STLE), Keith F Dufrane (Member, STLE) and Jerrold W Kannel Battelle Columbus, Ohio Reprinted with

More information

High speed end milling of AISI 304 stainless steel using new geometrically developed carbide inserts

High speed end milling of AISI 304 stainless steel using new geometrically developed carbide inserts High speed end milling of AISI 34 stainless steel using new geometrically developed carbide inserts K.A. Abou-El-Hossein, Z. Yahya Department of Mechanical Engineering, Universiti Tenaga Nasional, 49,

More information

Coated-Carbide Grades AC8015P, AC8025P, and AC8035P for Steel Turning

Coated-Carbide Grades AC8015P, AC8025P, and AC8035P for Steel Turning INDUSTRIAL MATERIALS Coated-Carbide Grades AC8015P, AC8025P, and for Steel Turning Satoshi ONO*, Yasuki KIDO, Susumu OKUNO, Hideaki KANAOKA, Shinya IMAMURA, and Kazuhiro HIROSE ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

NTB DiaCer NTB CeraCBN

NTB DiaCer NTB CeraCBN NTB DiaCer NTB CeraCBN Diamond & CBN Grinding Wheels 1.0 Super-Abrasive Diamond and CBN Vitrified Grinding Wheels Super-Abrasive wheels play a key role in the grinding process for Advanced Ceramics, Semi-Conductor,

More information

Technics Research on Polycrystalline Cubic Boron Nitride Cutting Tools Dry Turning Ti-6AL- 4V Alloy Based on Orthogonal Experimental Design

Technics Research on Polycrystalline Cubic Boron Nitride Cutting Tools Dry Turning Ti-6AL- 4V Alloy Based on Orthogonal Experimental Design Technics Research on Polycrystalline Cubic Boron Nitride Cutting Tools Dry Turning Ti-6AL- 4V Alloy Based on Orthogonal Experimental Design Yunhai Jia 1,2 *, Lixin Zhu 2 1 Beijing Institute of Electro-machining,

More information

Efficient Machining Solutions in Titanium Alloys. David J Wills

Efficient Machining Solutions in Titanium Alloys. David J Wills Efficient Machining Solutions in Titanium Alloys David J Wills Acknowledgement The following presentation is a result of collaboration of ATI s metallurgists, scientists and engineers in providing an effective

More information

TOOLMAKER SOLUTIONS Rotary Tool Blanks

TOOLMAKER SOLUTIONS Rotary Tool Blanks TOOLMAKER SOLUTIONS Rotary Tool Blanks Cemented carbide blanks for drills and end mills TABLE OF CONTENTS HYPERION ROTARY TOOL BLANKS SOLID BLANKS 04 06 END MILL BLANKS WITH CHAMFER, GROUND TO HYPERION

More information

Available online at ScienceDirect. 6th CIRP International Conference on High Performance Cutting, HPC2014

Available online at   ScienceDirect. 6th CIRP International Conference on High Performance Cutting, HPC2014 Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 14 ( 2014 ) 599 604 6th CIRP International Conference on High Performance Cutting, HPC2014 Experimental Study and Modelling of Plastic

More information

Modelling And Study Of Chip Tool Interactions With High Velocity Air Jet As Cooling Media

Modelling And Study Of Chip Tool Interactions With High Velocity Air Jet As Cooling Media IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 9 (September. 2013), V1 PP 16-25 Modelling And Study Of Chip Tool Interactions With High Velocity Air Jet As Cooling

More information

VDM Alloy 80 A Nicrofer 7520 Ti

VDM Alloy 80 A Nicrofer 7520 Ti VDM Alloy 80 A Nicrofer 7520 Ti Material Data Sheet No. 4048 February 2017 February 2017 VDM Alloy 80 A 2 VDM Alloy 80 A Nicrofer 7520 Ti VDM Alloy 80 A is a nickel-chromium alloy that can be age-hardened.

More information

Study on the Cutting Temperature of Serrated Chip while Machining Titanium Alloy TC4 Dong LIU

Study on the Cutting Temperature of Serrated Chip while Machining Titanium Alloy TC4 Dong LIU 2016 International Conference on Applied Mechanics, Mechanical and Materials Engineering (AMMME 2016) ISBN: 978-1-60595-409-7 Study on the Cutting Temperature of Serrated Chip while Machining Titanium

More information

Influence of Process Parameters of Surface Grinding on Maraging Steel

Influence of Process Parameters of Surface Grinding on Maraging Steel International Journal of Materials Science ISSN 0973-4589 Volume 12, Number 1 (2017), pp. 127-135 Research India Publications http://www.ripublication.com Influence of Process Parameters of Surface Grinding

More information

CRIMP TOOLING WHERE FORM MEETS FUNCTION

CRIMP TOOLING WHERE FORM MEETS FUNCTION CRIMP TOOLING WHERE FORM MEETS FUNCTION The cost of quality can be expensive Introduction Quality, cost, and throughput are associated with specific measurements and linked to process variables. Crimp

More information

MODELLING OF TURNING PROCESS FOR FLANK AND CRATER WEAR OF TOOL USING ANFIS Bhagyashri D. Deore 1,Prof. Dr.P.S.Desale 2, Prof. Dr.E.

MODELLING OF TURNING PROCESS FOR FLANK AND CRATER WEAR OF TOOL USING ANFIS Bhagyashri D. Deore 1,Prof. Dr.P.S.Desale 2, Prof. Dr.E. MODELLING OF TURNING PROCESS FOR FLANK AND CRATER WEAR OF TOOL USING ANFIS Bhagyashri D. Deore 1,Prof. Dr.P.S.Desale 2, Prof. Dr.E.R Deore 3 1,2,3 Dept. Mechanical Engineering, S S V P S s Bapusaheb Shivajirao

More information

1 Cutting Tool Materials of common use

1 Cutting Tool Materials of common use 1 Cutting Tool Materials of common use Instructional Objectives At the end of this lesson, the students will be able to (i) Identify the needs and cite the chronological development of cutting tool materials.

More information

2

2 1 2 3 4 5 6 7 Direct -Straightforward steady forward force by hydraulic ram Indirect -Has the advantage that there is no friction between billet and chamber (no movement) -Note dummy block at face of ram

More information

Solution Wear. Carbide cutting tools (not HSS steel tools) in cutting ferrous alloys at high speeds

Solution Wear. Carbide cutting tools (not HSS steel tools) in cutting ferrous alloys at high speeds Solution Wear Carbide cutting tools (not HSS steel tools) in cutting ferrous alloys at high speeds 1 Mechanical Behavior Dominated Wear Friction and wear controlled by mechanical behavior of materials

More information

Metals are used by industry for either one or combination of the following properties

Metals are used by industry for either one or combination of the following properties Basic Metallurgy Metals are the backbone of the engineering industry being the most important Engineering Materials. In comparison to other engineering materials such as wood, ceramics, fabric and plastics,

More information

Crimp Tooling Where Form Meets Function

Crimp Tooling Where Form Meets Function Crimp Tooling Where Form Meets Function Quality, cost, and throughput are key attributes for any production process. The crimp termination process is no exception. Many variables contribute to the results.

More information

WEIGHT LOSS FUNCTIONS FOR TOLERABLE WEAR RATE OF AA1100/BN METAL MATRIX COMPOSITES

WEIGHT LOSS FUNCTIONS FOR TOLERABLE WEAR RATE OF AA1100/BN METAL MATRIX COMPOSITES International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 5, September October 2016, pp.09 17, Article ID: IJMET_07_05_002 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=5

More information

Modeling and Simulation of Drilling Process in Ti-6Al-4V, Al6061 Using Deform-3D Software

Modeling and Simulation of Drilling Process in Ti-6Al-4V, Al6061 Using Deform-3D Software International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.3, pp 137-142, 2017 Modeling and Simulation of Drilling Process in Ti-6Al-4V, Al6061 Using

More information

Performance Comparison Between Dry and Nitrogen Gas Cooling when Turning Hardened Tool Steel with Coated Carbide

Performance Comparison Between Dry and Nitrogen Gas Cooling when Turning Hardened Tool Steel with Coated Carbide Performance Comparison Between Dry and Nitrogen Gas Cooling when Turning Hardened Tool Steel with Coated Carbide AmadElddeinIssaElshwain 1,a, Mohamed Handawi 1,b, Norizah Redzuan 1,c, NoordinMohdYusof

More information