Influence of Vanadium and Tungsten on the Bainite start temperature

Size: px
Start display at page:

Download "Influence of Vanadium and Tungsten on the Bainite start temperature"

Transcription

1 Influence of Vanadium and Tungsten on the Bainite start temperature Author: Andreas Malmberg Mentors: Mats Hillert and Lars Höglund

2 Abstract This paper tries to display the influence of the alloying elements, Vanadium and Tungsten, on the bainite transformation start temperature (Bs). The purpose of this work was to establish data of interaction parameters to be part of newly created computer software called Bs-program which will be used to calculate the banite start temperature in steel alloys. This will be achieved by extensive literature studies and analysis of the data gathered. The data will then be used to calculate the transformation barrier (B) for bainite transformation and try to differentiate the influence of Vanadium and Tungsten on this Barrier. These calculations gave quite clear results for the Vanadium steels and interaction parameters could be isolated. As for the Tungsten steels it proved hard to find the Tungsten influence as Vanadium was present in the majority of those steels. Key words: Bainite start temperature, Transformation Barrier, Influence, Vanadium, Tungsten 1

3 Table of content Introduction... 3 Method... 4 How does one acquire Bs-temperatures?... 4 Gathering of values... 4 Calculations Calculation of G in the Bs-program Models created in Matlab... 7 Result... 8 Methods to determine Bs-temperature Metallographic observation Dilatometry C content calculated from lattice parameter of austenite measured by X-ray diffraction... 9 List of Vanadium and Tungsten Steels... 9 Influence calculations Vanadium Tungsten Discussion Conclusion Acknowledgement References Appendix

4 Introduction For the last decades the industrial production and engineering of steel have gone through a huge transformation as a result of the exponential growth of the computer industry. The increased capacity of computers and understanding of software programing have enabled an integration of engineering problems with computer simulations, resulting in software like Thermo-Calc and Dictra. These softwares can be used in the processing industries to calculate complex multicomponent systems more effectively. Companies discovered that a great deal of money could be saved and production capacity could be increased by integrating these kinds of softwares. This project is a subproject of a bigger project within the Hero-m initiative. The project objective is to create computer software with the ability to make a good estimation of the bainite start temperature (Bs) for steel alloys called the Bs-program 1. In order to achieve this, an understanding of the different influences of alloying elements on the Bs-temperature is vital. The general perception of bainite transformation is that formation of Widmanstätten ferrite is the start of bainite transformation and that perception will be used in this report as well. This report concerns the influence of the elements Vanadium and Tungsten with the objective to establish a model of the influence by creating plots and, if the result is satisfying, interaction parameters will be calculated and be part of the software. This will be achieved by a literature study of steel alloys containing various amounts of vanadium and tungsten, searching for TTT-diagrams and tables. CCT diagrams will not be a source to values in this report as the error margin of the start transformation temperature is too big when dealing with continuous cooling. It s also important to understand how these literature values have been acquired so a brief investigation regarding the most common methods of determine the Bs-temperature will be presented. Because of a very limited number of steels containing only Fe-C-Cr-Mo-V and Fe-C-Cr-Mo-W, other elements are allowed but preferably small amounts as these elements will be neglected when calculating the influence of V and W. All element contents presented in this report will be given in weight % if not specified as something else. 1 Bs-program is used internally at the institution of material science and engineering, KTH, and is under development. 3

5 Method How does one acquire Bs-temperatures? First stage in the project was to understand different measuring methods to acquire Bs-temperature values. This was done by reading reports concerning determination of transformation temperature and characteristics for example a report by Peter Kolmskog, 2013[1] and report by R.C Cochrane and W.B Morrison [2]. The methods found during the gathering of Vanadium and Tungsten steels were then further investigated and summarized with pros and cons. Gathering of values The second step was to gather values from the literature concerning Bs, composition, austenite conditions and method of achieving the values. Values of Bs from TTT diagrams were interpreted and then included in excel with the composition of the steel, the austenitization conditions and source. 83 different steels were interpreted and registered in excel, not all with austenitization condition though. To further investigate these steels and their structure before the banite transformation, an equilibrium calculation was made in Thermo-Calc [3] and the database TCFE7 [4] was used. This was only done with the steels in which an austenitization temperature could be found in the literature. The reason for the equilibrium investigation was a suspicion of carbides in the austenite as some of the steels found had the same compositions but a different austenitization temperature, giving a wide variety in the Bs-temperature. Calculations From the equilibrium calculations, phases, their composition and volume percentage of the different phases could be gathered and put into an excel table. The calculated phases were then compared with the literature value to see if the composition of the austenite had been altered remarkably by the austenitization treatment. If that would be the case, it should be decided how well one could trust the literature information that had not been tested by equilibrium calculations. Calculation of G in the Bs-program The values gathered were then used to calculate the energy barrier for bainite transformation. This was done in the Bs-program [5] that has been developed by Lars Höglund. The thermodynamic theory behind the calculation of transformation barrier was explained by Mats Hillert [6] in an interview and also in a report by C. Garcia-Mateo s [7]. The theory can be summarized that there has to be a critical driving force to start nucleation or growth of bainite. The simple equilibrium between γ and α is pictured in figure 2 and the black dot displays the T 0 in figure 3. The bainite structure is far from equilibrium, though. According to basic thermodynamics the lowest free energy would occur if transformation to grain boundary ferrite took place instead of bainitic ferrite. The reason for bainite forming instead of grain boundary ferrite is the influence of kinetics as Widmanstätten ferrite (W-α) can grow much faster, because of the lower surface energy in the flat surfaces of the plates and shorter distance for carbon atoms to diffuse at the edge than in the case of grain boundary ferrite growth, illustrated in figure 1. 4

6 γ W-α γ grain α Figure 1, Simple illustration of the difference in growth of Widmanstätten ferrite and grain boundary ferrite. The red arrows indicates the growth direction and the blue arrows the diffusion of carbon atoms. The figure was made in word. G m T=T 1 γ µ B α µ A α α + γ γ A B Figure 2, General Gibbs energy curve to illustrate thermodynamic equilibrium between two phases α and γ at temperature T 1. Gibbs molar energy on the y-axis and mol% of B increasing on the x-axis. 5

7 T T 1 WB s T 0 u B Figure 3, a general example of a phase diagram and the difference between the standard equilibrium and the metastable equilibrium at WB s. The existence of a barrier implies that an excess energy is present that makes it possible for bainite to form. It can be described as a metastable equilibrium where austenite (γ) is in equilibrium with Widmanstätten ferrite (W-α). Imagine that Bs occurs at a temperature and composition displayed by the red dot in figure 2. A new tangent is drawn to illustrate the metastable equilibrium with W-α, displayed in figure 3. γ µ B α G µ A α α + γ γ A B Figure 4, Illustrates the change of the Gibbs curve when metastable equilibrium occurs with W-α instead of grain boundary α and the Barrier ( G) that the transformation has to overcome. 6

8 It becomes apparent that the Gibbs energy curve for α has to be moved up in order to be in a state of equilibrium. So there has to be a driving force of G where, G has to overcome the barrier (B) that is represented by large influence on either growth or nucleation to induce the transformation. This G will be calculated in the Bs-program for the gathered values and put into a table for comparison. The influence on this Barrier from the alloying elements can be described as, where u i is the amount of element i and f i (T) is the parameter for interaction which is a function of temperature. is the temperature dependent barrier of the binary system Fe-C which is well defined in the Bs-program. This will be the fundamental approach for calculating the influence of Vanadium and Tungsten. The barrier as a function of the elements with known effects, C, Mo and Cr and the temperature will first be calculated. Then the barrier as a function of bainite start temperature (Bs) will be calculated and the difference between these will give the influence on the barrier from the element with unknown effect in this case Vanadium. Models created in Matlab With values of barrier influence and composition of the different steels the software Matlab was used to create models and curves of the influence of V and W contents on the G barrier. Vectors of the B s -temperature values, %V and were imported to Matlab. The majority of Tungsten steels found in the literature contained Vanadium as well as Tungsten so correction terms from the Vanadium steel calculations will be isolated before calculations with the Tungsten steels. Plots of the barrier as a function of content of Vanadium will be created to see if a general tendency could be observed. Then a function will be fitted to the points to illustrate the correction terms for Vanadium. B will be normalised with Vanadium content and made as a function of transformation temperature. A spline function for will be fitted to the normalised values and plotted. This will give the correction terms for the same kind of calculations with the Tungsten steels. The code for calculation of the spline functions was supplied by Lars Höglund [8]. 7

9 Result Methods to determine Bs-temperature During the gathering of values of Bs for different alloys three different methods to determine transformation start temperature were discovered. In Atlas zur wärmebehandlung der stähle [9] the TTT-diagrams were created with metallographic observation and Dilatometry which were found commonly mentioned in other reports as well. Another method mentioned is C content calculated in retained austenite from lattice parameter measured by X-ray diffraction. Metallographic observation When determining the Bs in a TTT-diagram with Metallographic observation you treat the steel isothermally and look at the transformation that has occurred. This can be done with optical microscope, scanning electron microscope or transmission electron microscope for example. This makes for a margin of error in the values brought forth with this method as it s sometimes very hard to distinguish the start of the Bainitic transformation with an optical microscope as pearlite can influence the Bainite transformation as described in Peter Kolmskog s report [1]. The perception of the viewer will be an aspect that can contribute to error. Dilatometry As explained in a report by Ahmed Ismail Zaky Farahat [10], during a phase transformation a small change in the volume of the sample will change, this change can be measured by a dilatometer. This makes it possible to determine with quite good accuracy when a phase transition occurs. During the phase transformation the computer linked to the dilatometer will produce a graph giving you the Dilation as a function of time. Making it possible to determine the start temperatures for different phase transformations with rather ease. Figure 5, Illustrates the data output from a Dilatometry test, this figure was published by Ahmed Ismail Zaky Farahat[10] 8

10 A negative aspect of Dilatometry is the need to compliment with microscopy to understand what phases are actually forming at the different temperatures. When making TTT diagrams you use a quenching type of dilatometer, to get an isothermal treatment of the steel. Figure 6, displays the isothermal heat treatment when using quenching type of dilatometer, Ahmed Ismail Zaky Farahat published this graph in journal, [10] C content calculated from lattice parameter of austenite measured by X-ray diffraction The third method discovered is based on the fact that C content in the lattice makes the lattice expand as the C atoms dissolve interstitially resulting in an increase in the lattice parameter which is explained by M.Onink, 1993 [11]. This expansion of the lattice can be measured by X-ray or neutron diffraction. So when a sample of steel is heat-treated and carbon enrichment of austenite starts, an increase in lattice size this can be seen which is an indication that ferrite is forming. If that ferrite is Widmanstätten ferrite the perception that W-α transformation is a part of the bainite transformation gives a Bs-temperature. List of Vanadium and Tungsten Steels After gathering values from different steels containing vanadium and tungsten from the literature, a table was created displaying the different steels and it can be seen in table 1(appendix). Along with the values of Bs-temp, austinitization temperature, composition and source you can also see the method used to create the TTT-diagrams or tables. The equilibrium calculations in Thermo-Calc made it evident that there are carbides and phases other than austenite present in most of the steels when quenched. The new composition of the austenite and amount of different phases is displayed in table 2(appendix). Due to the fact that the difference in Vanadium and Tungsten content between the literature values and equilibrium calculations was quite extensive, only the equilibrium values will be used for further investigation. They are displayed in table 3 and table 4 for Vanadium steels and Tungsten steels, some of the steels containing very low contents of V and W have also been disregarded in further calculations. 9

11 Vanadium steels Steel nr. Bs [⁰C] %C %Cr %Mo %V 4 594,00 0,430 0,320 0,030 0, ,00 0,440 1,701 0,080 0, ,00 0,550 1, , ,00 0,470 1,200 0,050 0, ,00 0,470 1, , ,00 0,377 5,530 0,864 0, ,00 0,390 5,531 0,870 0, ,00 0,430 1,310 0,720 0, ,00 0,430 1,310 0,720 0, ,00 0,380 1,540 0,630 0, ,00 0,520 1,090 0,430 0, ,00 1,150 1, , ,00 0,565 1,265 0,019 0, ,00 0,580 1,270 0,020 0, ,00 0,145 1, ,288 Table 3, list of the Vanadium steels that have been analysed and determined good enough for further calculations Tungsten Steels Steel nr. Bs [⁰C] %C %Cr %Mo %V %W ,00 0,786 0,778 0, , ,00 0,460 1,530 0, , ,00 0,625 4,119 2,301 1,111 2, ,00 0,724 4,077 2,409 1,557 2, ,00 0,53 4,66 0,39 1,02 6, ,00 0,58 4,17 0,46 1,48 5, ,00 0,28 2,35 0,06 0,53 4, ,00 0,23 2,59 0,02 0,30 6, ,00 0,44 1,28 0,04 0,05 0, ,00 0,35 1,45 0,46 0,52 0, ,00 0,57 3,94 0,21 0,70 7, ,00 0,59 4,28 2,57 1,32 2,62 Table 4, list of Tungsten steels that have been analysed and determined good enough for further calculations 10

12 Influence calculations Vanadium The results from the calculation of the transformation barrier of bainite in the Bs-program with regard to the Vanadium steels are displayed in table 5. The Barrier values in the second column represent tabulated values of what the barrier should be with regard to the temperature conditions and Fe-C-Cr-Mo alloy content. In the third column the calculated value of the Barrier is represented and the difference between these columns gives the influence of Vanadium on the barrier. It s important to point out that the barrier values calculated is influenced by temperature, C content, Cr content, Mo content as well as the aimed V content. Steel nr 20 proved to have a negative barrier influence and will be neglected in further calculations as it contained rather high carbon content in comparison to Vanadium content. Vanadium Steel nr. Barrier, B(u,T) Barrier, B(B s ) Vanadium influence 4 605,4 792,5 187, , , , , ,7 108, ,5 899,8 99, , , ,9 859,4 46, ,7 169,7 Table 5, the result of the barrier influence of the Vanadium steels Figure 7 shows the result of Matlab plot with the Vanadium steels. The calculation of correction terms for Vanadium on the transformation barrier is illustrated in figure 8 and from this spline function generated in the plot, can be isolated and put into vectors seen in table 4. This correction term can then be put into the Bs-program script and new Influence parameters from the Tungsten steels can be calculated. 11

13 Figure 7, plot to see the general tendency of Vanadium s (V) effect on the Barrier (B) Figure 8, Illustrates the spline function that has been fitted to the Vanadium content normalised black crosses. Interaction parameters of Vanadium Temperature Barrier influence Table 6, the values used to create the spline curve in figure 8, these values will be put into the Bs-program script for calculations with the Tungsten steels. 12

14 Tungsten In table 7 the barrier calculations with the Tungsten steels is presented although, almost all of the Tungsten steels contained Vanadium so a correction of Vanadium is necessary. The interaction parameters for Vanadium were incorporated in the Bs-program and a new influence calculation was executed, the result can be seen in table 8. These values could then be imported to Matlab and the resulting plot can be seen in figure 9. Tungsten, without V correction Steel nr. Barrier, B(u,T) Barrier, B(B s ) Tungsten influence , , Table 7, influence calculations of tungsten steels without taking Vanadium content into consideration Tungsten, with V correction Steel nr. Barrier, B(u,T) Barrier, B(B s ) Tungsten influence , , Table 8, the influence calculations of the Tungsten steels when influence of Vanadium is taken into consideration and removed. 13

15 Figure 8, plot to see the general tendency of tungsten influence on the barrier, the line indicates zero influence on the barrier. The (V) in the top right corner indicates that not all steels contained V but the majority. 14

16 Discussion The methods of determining Bs-temperature found during the research are used extensively and have been proved as good methods. Metallographic observation and Dilatometry was the method used in most of the TTT-diagrams found. These two methods complement each other well as the difficulties of distinguishing the start transformation in a light transmission microscope can be complemented with Dilatometry, which measures with quite good accuracy when transformation takes place but not what phase that s transforming. The information on the TTT-diagrams didn t say what kind of dilatometer or microscope that was used but as the date of publishing the data was one could make assumptions that the dilatometer was of an early design and not as accurate as todays equipment. The microscope used was probably a light emission microscope (LEM) if usage of electron transmission microscope of atom probe microscope would have been used instead, more accurate data would have been gathered. The method of calculating the C content by the lattice parameter measured with X-ray diffraction can be improved by changing X-ray diffraction with neutron diffraction which will give a more accurate result when dealing with high temperatures as neutrons penetrate and probe more of the material. The Literature values gathered from TTT-diagrams and tables was proven when equilibrium calculated to have quite different compositions of Vanadium and Tungsten in the austenite. This is due to the strong tendency of V and W to form carbides and to make further calculations proper only the equilibrium values was used. As a result of this the number of values was reduced drastically from 57 to 15 Fe-C-Cr-Mo-V steels. Number of Fe-C-Cr-Mo-V-W steels was reduced from 27 to 12. If this would have been discovered earlier, new literature studies could have been executed in order to compensate for this loss of data. A question mark has to be raised regarding the already integrated interaction parameters of temperature, carbon, chromium and molybdenum. All new influence calculations with this method are strongly dependent of these parameters so an error in these will quickly propagate through new interaction parameters. But although it s important to take this source of error into consideration the method have proven to give a good approximation of the influence. When plotting the influence of Vanadium a clear tendency could be seen although a rather rough approximation of the influence correction was made because of the limited number of data points. As for the Tungsten steels the results obtained from the influence calculations after removing the evaluated effect of V were hard to interpret. Very low values and even negative values can be seen with rather high %W. As for Tungsten content below 1 wt% a relative high barrier was calculated, so these results should not be trusted. It should be noted that the content of V in the majority of the Tungsten steels is much higher than in the Vanadium steels used to evaluate the effect of Vanadium subtracted from the Tungsten steels. It thus seems impossible to separate the effects of V and W with this method if the data of Vanadium steels and Tungsten steels can t be more coincident. An effort should be made to find data of steels containing a higher V content without W and data concerning W without V. 15

17 Conclusion The results from this work should then be treated as a guide line for further research on this subject. More extensive literature study should be made and the analysis of the values gathered should be done during this study. This will enable compensation for loss of data due to unreliable values from old experiments. The Vanadium influence result shows a clear tendency but lacks values of higher Vanadium content so it should only be trusted as an approximation for steels with low Vanadium content. When trying to separate Vanadium influence from Tungsten influence its necessary to first determine the Influence of Vanadium with more certainty as most of the industrially produced steels with Tungsten content generally seams to contain Vanadium as well. Acknowledgement Thanks to Mats Hillert for pedagogic and interesting discussions and guidance, a lot of knowledge has been embedded into a young man s brain thanks to him. Lars Höglund s great patience and expertise when explaining computer programing and methodology have been crucial for keeping this work within the timeframe. Also thanks to Peter Kolmskog for helping with the literature study by sharing his own studies for his doctoral thesis. 16

18 References [1]. Thermodynamic analysis of the critical conditions for acicular ferrite authors: Peter Kolmskog, Annika Borgenstam, Lars Höglund and Mats Hillert [2]. Influence of vanadium on transformation characteristics of high-strength line-pipe steels, Published in Metals technology in December, 1981 authors: R.C. Cochrane and W. B. Morrison [3]. Thermo-Calc Software version 3.0, software package used for thermodynamic calculations of multicomponent systems. Calculations are based on thermodynamic databases produced by expert evaluation of experimental data using the CALPHAD method. [4]. Database TCFE7, version 7.0 Database containing information of steel and Fe alloy design and processing. [5]. Bs-program, Software currently under development by Lars Höglund with team. It is used internally at the institute of Material Science and Technology at KTH. The program uses Thermo-Calc interface and database TCFE6. [6]. Mats Hillert Ph.D at department of Material science and engineering. [7]. New approach for the bainite start temperature calculation in steels] Published in Materials Science and Technology, volume 21, Year: 2005 authors: C. Garcia-Mateo, T.Sourmail, F.G. Gaballero, C.Capdevila and C. García de Andrés [8]. Lars Höglund, Ph.D at department of Material science and engineering. [9]. Atlas zur wärmebehandlung der sthäle, ISBN: authors: Adolf Rose, Walter Peter, Werner Strassburg, Leo Rademacher [10]. Dilatometry determination of phase transformation temperatures during heating of Nb bearing low carbon steel, Published in Journal of materials processing technology 204, 2008 author: Ahmed Ismail Zaky Farahat [11]. The lattice parameters of austenite and ferrite in Fe-C alloys as a function of carbon content and temperature, Published in Scripta Metallurgica et Materialia vol.29, 1993 authors: M.Onink, C.M. Brakman, F.D. Tichelar, E.J. Mittemeijer, S.Van der Zwaag, J.H. Root, N.B.Konyer [12]. The temperature of Formation of Martensite and Bainite in Low-alloy Steels, published in Journal of the Iron and steel institute in august, 1956 authors: W. Steven and A.G. Haynes [13]. Atlas of time-temperature diagrams for irons and steels, ISBN: author: G.F. Vander Voort 17

19 Appendix 18

20 19

21 Table 1. Literature values Steel nr. Year Source Bs [⁰C] %C %Mn %Cr %Mo %V %W %Ni %Si %S %P %Cu %Al %N %Ti %Co Austinitization [⁰C] Method [12] Tabel 1&6 ref ,00 0,51 0,72 0,94 0,05 0,20 0,00 0,15 0,27 0,02 0,02 0,00 0,00 0,00 0,00 0,00 875,00 Dilatometry and metallographic observation [12] Tabel 1&6 ref ,00 0,40 0,52 1,25 1,00 0,15 0,00 1,83 0,23 0,00 0,01 0,00 0,00 0,00 0,00 0,00 860,00 Dilatometry and metallographic observation [9] II-103D 589,00 0,43 1,67 0,32 0,03 0,10 0,00 0,11 0,28 0,01 0,02 0,06 0,00 0,00 0,00 0,00 870,00 Dilatometry and metallographic observation [9] II-103D 594,00 0,43 1,67 0,32 0,03 0,10 0,00 0,11 0,28 0,01 0,02 0,06 0,00 0,00 0,00 0, ,00 Dilatometry and metallographic observation [9] II-112D 539,00 0,44 0,75 1,70 0,08 0,09 0,00 0,17 0,26 0,02 0,02 0,18 0,00 0,00 0,00 0, ,00 Dilatometry and metallographic observation [9] II-113D 544,00 0,55 0,98 1,02 0,00 0,11 0,00 0,01 0,22 0,01 0,02 0,07 0,00 0,00 0,00 0, ,00 Dilatometry and metallographic observation [9] II-113H 555,00 0,47 1,04 1,20 0,05 0,12 0,00 0,05 0,35 0,01 0,03 0,16 0,00 0,00 0,00 0, ,00 Dilatometry and metallographic observation [9] II-113H 567,00 0,47 0,82 1,20 0,00 0,11 0,00 0,04 0,35 0,02 0,04 0,14 0,00 0,00 0,00 0, ,00 Dilatometry and metallographic observation [9] II-121D 600,00 0,16 1,12 0,99 0,02 0,01 0,00 0,12 0,22 0,01 0,03 0,00 0,02 0,00 0,00 0, ,00 Dilatometry and metallographic observation [9] II-123D 567,00 0,16 0,50 1,95 0,03 0,01 0,00 2,02 0,31 0,01 0,01 0,00 0,03 0,00 0,00 0, ,00 Dilatometry and metallographic observation [9] II-204D 350,00 0,39 0,48 5,53 0,87 0,48 0,00 0,04 0,94 0,01 0,01 0,30 0,00 0,00 0,00 0, ,00 Dilatometry and metallographic observation [9] II-204D 372,00 0,39 0,48 5,53 0,87 0,48 0,00 0,04 0,94 0,01 0,01 0,30 0,00 0,00 0,00 0, ,00 Dilatometry and metallographic observation [9] II-205D 489,00 0,43 0,75 1,31 0,72 0,23 0,00 0,11 0,27 0,01 0,01 0,00 0,00 0,00 0,00 0,00 970,00 Dilatometry and metallographic observation [9] II-205D 500,00 0,43 0,75 1,31 0,72 0,23 0,00 0,11 0,27 0,01 0,01 0,00 0,00 0,00 0,00 0, ,00 Dilatometry and metallographic observation [9] II-205G 500,00 0,38 0,81 1,54 0,63 0,27 0,00 0,01 0,18 0,01 0,02 0,00 0,00 0,00 0,00 0,00 970,00 Dilatometry and metallographic observation [9] II-206D 561,00 0,52 0,70 1,09 0,43 0,14 0,00 1,72 0,29 0,01 0,01 0,00 0,00 0,00 0,00 0,00 850,00 Dilatometry and metallographic observation [9] II-206D 461,00 0,52 0,70 1,09 0,43 0,14 0,00 1,72 0,29 0,01 0,01 0,00 0,00 0,00 0,00 0,00 950,00 Dilatometry and metallographic observation [9] II-222D 411,00 2,08 0,39 11,48 0,02 0,04 0,00 0,31 0,28 0,01 0,02 0,15 0,00 0,00 0,00 0,00 970,00 Dilatometry and metallographic observation [9] II-222D 389,00 2,08 0,39 11,48 0,02 0,04 0,00 0,31 0,28 0,01 0,02 0,15 0,00 0,00 0,00 0, ,00 Dilatometry and metallographic observation [9] II-224D 528,00 1,42 0,61 1,37 0,00 0,18 0,00 0,00 0,37 0,02 0,02 0,04 0,00 0,00 0,00 0,00 950,00 Dilatometry and metallographic observation [9] II-226D 522,00 1,03 0,97 1,05 0,03 0,00 1,15 0,13 0,28 0,02 0,02 0,25 0,00 0,00 0,00 0,00 815,00 Dilatometry and metallographic observation [9] II-227D 566,00 0,58 0,81 1,27 0,02 0,11 0,00 0,06 0,89 0,01 0,01 0,14 0,00 0,00 0,00 0,00 870,00 Dilatometry and metallographic observation [9] II-227D 511,00 0,58 0,81 1,27 0,02 0,11 0,00 0,06 0,89 0,01 0,01 0,14 0,00 0,00 0,00 0,00 950,00 Dilatometry and metallographic observation [9] II-229D 466,00 0,40 0,35 1,27 0,24 0,04 0,00 4,03 0,20 0,02 0,01 0,16 0,00 0,00 0,00 0,00 860,00 Dilatometry and metallographic observation [9] II-229D 450,00 0,40 0,35 1,27 0,24 0,04 0,00 4,03 0,20 0,02 0,01 0,16 0,00 0,00 0,00 0,00 950,00 Dilatometry and metallographic observation [9] II-229G 417,00 0,46 0,50 1,53 0,07 0,00 0,59 3,96 0,24 0,01 0,01 0,20 0,00 0,00 0,00 0,00 860,00 Dilatometry and metallographic observation [9] II-261D 350,00 0,97 0,18 4,11 2,61 2,51 3,23 0,25 0,31 0,01 0,04 0,00 0,00 0,00 0,00 0, ,00 Dilatometry and metallographic observation [9] II-261D 344,00 0,97 0,18 4,11 2,61 2,51 3,23 0,25 0,31 0,01 0,04 0,00 0,00 0,00 0,00 0, ,00 Dilatometry and metallographic observation [9] II-321D 661,00 0,15 0,67 1,20 0,00 0,31 0,00 0,25 0,48 0,02 0,04 0,18 0,00 0,00 0,00 0,00 920,00 Dilatometry and metallographic observation [13] sida 161 nedre 340,00 0,80 0,30 4,34 0,78 1,52 17,89 0,30 0,23 0,01 0,02 0,00 0,00 0,00 0,00 4, , [13] sida: 160 nedre 360,00 0,87 0,32 3,99 0,80 2,52 11,91 0,11 0,27 0,01 0,02 0,00 0,00 0,00 0,00 0, , [13] sida:154 övre 560,00 0,52 0,70 1,09 0,43 0,14 0,00 1,72 0,29 0,01 0,01 0,00 0,00 0,00 0,00 0,00 850, [13] sida: ,00 0,28 0,39 2,35 0,06 0,53 4,10 0,06 0,16 0,01 0,02 0,00 0,00 0,00 0,00 0, , [13] sida: ,00 0,28 0,36 2,57 0,03 0,35 8,88 0,04 0,11 0,00 0,01 0,00 0,00 0,00 0,00 0, , [13] sida: ,00 0,55 0,34 1,27 0,05 0,18 2,10 0,12 0,94 0,01 0,02 0,00 0,00 0,00 0,00 0,00 950, [13] sida: ,00 0,39 0,45 1,45 0,47 0,70 0,55 0,13 0,58 0,00 0,02 0,00 0,00 0,00 0,00 0, , [13] sida: ,00 0,81 0,33 3,77 0,44 1,07 18,25 0,12 0,15 0,00 0,02 0,00 0,00 0,00 0,00 0, , [13] sida: ,00 0,85 0,31 4,15 4,79 2,01 6,34 0,18 0,30 0,01 0,02 0,00 0,00 0,00 0,00 0, , [13] sida: ,00 0,30 0,30 1,63 0,49 0,08 0,00 3,64 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 840, [1] Hackenberg 600,00 0,30 0,00 0,00 0,00 0,00 6,30 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] US Steel p ,00 0,40 0,00 5,25 0,00 0,00 4,25 0,00 1,15 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] Hultgren 480,00 0,59 0,00 0,00 0,00 0,00 3,62 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ Metallographic observation [1] ASM p ,00 0,55 0,55 0,00 0,00 0,00 1,96 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ Dilatometry [1] Hultgren 590,00 0,55 0,00 0,00 0,00 0,00 1,96 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ Metallographic observation [12] Tabel 1&6 ref ,00 0,32 0,47 1,21 0,30 0,01 0,00 4,13 0,29 0,02 0,02 0,00 0,00 0,00 0,00 0,00 _ Dilatometry and metallographic observation [1] US Steel p ,00 0,32 0,47 1,21 0,30 0,01 0,11 4,13 0,29 0,00 0,00 0,51 0,00 0,00 0,00 0,00 _ [1] ASM p ,00 0,32 0,47 1,21 0,30 0,01 0,11 4,13 0,29 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ Metallographic observation [1] US Steel p ,00 0,32 0,61 0,63 0,22 0,03 0,16 3,22 0,28 0,00 0,00 0,12 0,00 0,00 0,00 0,00 _ [1] ASM p ,00 0,32 0,61 0,63 0,22 0,03 0,16 3,22 0,28 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ Metallographic observation [12] Tabel 1&6 ref ,00 0,32 0,61 0,63 0,22 0,03 0,00 3,22 0,28 0,03 0,02 0,00 0,00 0,00 0,00 0,00 _ Dilatometry and metallographic observation [13]. sida: ,00 0,40 0,35 1,27 0,24 0,04 0,00 4,03 0,20 0,02 0,01 0,16 0,00 0,00 0,00 0,00 _ [1] Rees 346,00 0,44 0,67 0,39 0,83 0,09 0,00 1,85 1,74 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] Peet 200,00 0,75 1,95 1,48 0,28 0,10 0,00 0,00 1,63 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ C content calculated from lattice parameter [1] ASM p ,00 0,27 0,84 0,73 0,90 0,11 0,00 0,60 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ Metallographic observation [1] US Steel p ,00 0,59 0,96 1,06 0,54 0,12 0,00 0,00 0,28 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [12] Tabel 1&6 ref ,00 0,36 0,56 1,22 0,31 0,13 0,00 1,46 0,16 0,03 0,01 0,00 0,00 0,00 0,00 0,00 _ Dilatometry and metallographic observation

22 [1] ASM p ,00 0,43 0,74 0,92 0,00 0,16 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] US Steel p ,00 0,25 0,52 1,14 0,65 0,16 0,00 3,33 0,15 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] ASM p ,00 0,25 0,52 1,14 0,65 0,16 0,00 3,33 0,15 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ Metallographic observation [12] Tabel 1&6 ref ,00 0,25 0,52 1,14 0,65 0,16 0,00 3,33 0,15 0,02 0,01 0,00 0,00 0,00 0,00 0,00 _ Dilatometry and metallographic observation [1] ASM p ,00 0,53 0,67 0,93 0,00 0,18 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ Dilatometry [12] Tabel 1&6 ref ,00 0,32 0,51 1,37 0,48 0,18 0,00 3,02 0,19 0,01 0,01 0,00 0,00 0,00 0,00 0,00 _ Dilatometry and metallographic observation [1] US Steel p ,00 0,32 0,51 1,37 0,48 0,18 0,00 3,02 0,19 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] ASM p ,00 0,51 0,72 0,94 0,05 0,20 0,11 0,15 0,27 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] US Steel p ,00 1,50 0,00 11,50 0,80 0,20 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] ASM p ,00 0,45 0,70 1,00 0,00 0,20 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] US Steel p ,00 2,25 0,00 11,50 0,80 0,20 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] US Steel p ,00 0,40 1,34 0,53 0,22 0,21 0,00 1,03 0,21 0,00 0,00 0,08 0,00 0,00 0,00 0,00 _ [1] ASM p ,00 0,23 0,82 1,22 0,53 0,22 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] ASM p ,00 0,40 0,78 1,25 0,53 0,22 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] ASM p ,00 0,25 0,88 0,73 0,88 0,23 0,00 0,59 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ Metallographic observation [1] US Steel p ,00 1,55 0,27 11,34 0,53 0,24 0,00 0,00 0,45 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] US Steel p ,00 0,97 0,48 4,58 1,04 0,25 0,00 0,00 0,40 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] US Steel p ,00 1,00 0,40 5,25 1,15 0,40 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] US Steel p ,00 0,55 0,00 3,90 0,45 0,90 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] Liu 525,00 0,42 0,00 0,00 0,00 1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] US Steel p ,00 0,73 0,21 4,39 0,18 1,09 17,80 0,00 0,33 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] US Steel p ,00 0,40 0,00 5,00 1,35 1,10 0,00 0,00 1,05 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] US Steel p ,00 0,72 0,27 4,09 0,00 1,25 18,59 0,00 0,39 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] US Steel p ,00 0,81 0,24 4,10 4,69 1,64 5,95 0,00 0,26 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] US Steel p ,00 0,80 0,23 4,07 6,09 1,65 5,70 0,00 0,27 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] US Steel p ,00 0,85 0,00 4,00 8,00 1,90 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ [1] US Steel p ,00 0,73 0,00 4,00 0,00 2,00 14,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _

23 Table 2. Equilibrium results Steel nr Phases %Pase [VOL%] Bs [⁰C] %C %Mn %Cr %Mo %V %W %Ni %Si %S %P %Cu %Al 1 FCC_A1#1 99,751% 560,00 0,481% 0,721% 0,935% 0,048% 0,076% 0,150% 0,270% 0,021% FCC_A1#2 0,249% 16,615% 0,058% 3,932% 1,311% 68,468% 0,000% 0,000% 0,000% 2 FCC_A1#1 99,709% 450,00 0,370% 0,514% 1,251% 0,911% 0,064% 1,834% 0,231% 0,000% 0,008% FCC_A1#2 0,083% 14,887% 0,032% 2,284% 23,609% 54,467% 0,004% 0,000% 0,000% 0,000% MC_ETA#1 0,195% 14,242% 51,421% 34,338% MNS#1 0,014% 63,100% 36,856% 3 FCC_A1#1 99,928% 589,00 0,425% 1,657% 0,320% 0,030% 0,077% 0,110% 0,280% 0,000% 0,021% 0,060% FCC_A1#2 0,045% 16,753% 0,122% 1,193% 0,924% 72,355% 0,000% 0,000% 0,000% 0,000% 0,000% MNS#1 0,027% 63,130% 36,856% 0,000% 4 FCC_A1#1 99,973% 594,00 0,430% 1,657% 0,320% 0,030% 0,100% 0,110% 0,280% 0,000% 0,021% 0,060% MNS#1 0,027% 63,060% 36,855% 0,000% 5 FCC_A1#1 99,936% 539,00 0,440% 0,718% 1,701% 0,080% 0,090% 0,170% 0,260% 0,000% 0,016% 0,180% MNS#1 0,064% 62,949% 36,855% 0,000% 6 FCC_A1#1 99,956% 544,00 0,550% 0,958% 1,020% 0,110% 0,010% 0,220% 0,000% 0,017% 0,070% MNS#1 0,044% 62,997% 36,855% 0,000% 7 FCC_A1#1 99,960% 555,00 0,470% 1,020% 1,200% 0,050% 0,120% 0,050% 0,350% 0,000% 0,032% 0,160% MNS#1 0,040% 63,005% 36,855% 0,000% 8 FCC_A1#1 99,949% 567,00 0,470% 0,795% 1,200% 0,110% 0,040% 0,350% 0,000% 0,035% 0,140% MNS#1 0,051% 62,965% 36,855% 0,000% 9 FCC_A1#1 99,973% 600,00 0,160% 1,107% 0,990% 0,020% 0,010% 0,120% 0,220% 0,000% 0,030% 0,015% MNS#1 0,027% 63,024% 36,855% 10 FCC_A1#1 99,953% 567,00 0,160% 0,476% 1,951% 0,030% 0,010% 2,021% 0,310% 0,000% 0,013% 0,030% MNS#1 0,047% 62,839% 36,854% 11 FCC_A1#1 99,872% 350,00 0,377% 0,472% 5,530% 0,864% 0,425% 0,040% 0,941% 0,000% 0,013% 0,300% FCC_A1#2 0,111% 15,571% 0,023% 6,613% 8,438% 65,732% 0,000% 0,000% 0,000% 0,000% 0,000% MNS#1 0,017% 62,893% 36,854% 0,000% 12 FCC_A1#1 99,983% 372,00 0,390% 0,472% 5,531% 0,870% 0,480% 0,040% 0,940% 0,000% 0,013% 0,300% MNS#1 0,017% 62,693% 36,853% 0,000% 13 FCC_A1#1 99,963% 489,00 0,430% 0,731% 1,310% 0,720% 0,230% 0,110% 0,270% 0,000% 0,011% MNS#1 0,037% 63,053% 36,855% 14 FCC_A1#1 99,963% 500,00 0,430% 0,732% 1,310% 0,720% 0,230% 0,110% 0,270% 0,000% 0,011% MNS#1 0,037% 62,955% 36,855% 15 FCC_A1#1 99,971% 500,00 0,380% 0,797% 1,540% 0,630% 0,269% 0,010% 0,180% 0,000% 0,021% FCC_A1#2 0,001% 15,906% 0,047% 2,540% 8,833% 68,376% 0,000% 0,000% 0,000% 0,000% MNS#1 0,027% 63,063% 36,855% 16 FCC_A1#1 99,760% 561,00 0,496% 0,684% 1,086% 0,411% 0,048% 1,723% 0,291% 0,000% 0,010% FCC_A1#2 0,206% 15,753% 0,053% 4,000% 12,917% 59,004% 0,005% 0,000% 0,000% 0,000% MNS#1 0,034% 63,114% 36,856% 17 FCC_A1#1 99,966% 461,00 0,520% 0,683% 1,090% 0,430% 0,140% 1,720% 0,290% 0,000% 0,010% MNS#1 0,034% 63,055% 36,855%

24 18 FCC_A1#1 81,503% 411,00 0,683% 0,353% 4,052% 0,009% 0,003% 0,372% 0,339% 0,000% 0,021% 0,182% M7C3#1 18,457% 8,732% 0,448% 46,856% 0,070% 0,215% 0,018% 0,000% MNS#1 0,040% 62,946% 36,855% 0,000% 19 FCC_A1#1 83,484% 389,00 0,856% 0,360% 5,121% 0,012% 0,006% 0,363% 0,332% 0,000% 0,020% 0,178% M7C3#1 16,477% 8,727% 0,424% 46,014% 0,063% 0,226% 0,021% 0,000% MNS#1 0,040% 62,744% 36,853% 0,000% 20 CEMENTITE#1 4,997% 6,738% 0,921% 7,551% 1,631% 0,000% FCC_A1#1 94,952% 528,00 1,150% 0,567% 1,056% 0,106% 0,389% 0,000% 0,025% 0,042% MNS#1 0,050% 63,032% 36,855% 0,000% 21 CEMENTITE#1 3,443% 6,682% 1,766% 9,165% 0,073% 1,139% 0,015% 0,000% FCC_A1#1 96,051% 522,00 0,786% 0,920% 0,778% 0,016% 0,306% 0,135% 0,292% 0,000% 0,017% 0,261% MC_SHP#1 0,444% 6,209% 1,360% 92,432% MNS#1 0,062% 63,129% 36,856% 0,000% 22 FCC_A1#1 99,847% 566,00 0,565% 0,801% 1,265% 0,019% 0,049% 0,060% 0,891% 0,000% 0,013% 0,140% FCC_A1#2 0,132% 16,573% 0,068% 6,906% 0,562% 63,916% 0,000% 0,000% 0,000% 0,000% 0,000% MNS#1 0,020% 63,110% 36,856% 0,000% 23 FCC_A1#1 99,980% 511,00 0,580% 0,800% 1,270% 0,020% 0,110% 0,060% 0,890% 0,000% 0,013% 0,140% MNS#1 0,020% 63,065% 36,855% 0,000% 24 FCC_A1#1 99,949% 466,00 0,400% 0,324% 1,271% 0,240% 0,040% 4,032% 0,200% 0,000% 0,010% 0,160% MNS#1 0,051% 63,064% 36,855% 0,000% 25 FCC_A1#1 99,949% 450,00 0,400% 0,325% 1,271% 0,240% 0,040% 4,032% 0,200% 0,000% 0,010% 0,160% MNS#1 0,051% 62,940% 36,855% 0,000% 26 FCC_A1#1 99,976% 417,00 0,460% 0,488% 1,530% 0,070% 0,590% 3,961% 0,240% 0,000% 0,012% 0,200% MNS#1 0,024% 63,091% 36,855% 0,000% 27 FCC_A1#1 96,605% 350,00 0,625% 0,176% 4,119% 2,301% 1,111% 2,692% 0,258% 0,320% 0,001% 0,036% FCC_A1#2 3,195% 12,832% 0,010% 3,916% 11,629% 50,954% 18,668% 0,001% 0,000% 0,000% 0,000% M6C#1 0,182% 2,209% 2,978% 21,800% 3,810% 39,835% 0,007% 0,097% MNS#1 0,018% 61,180% 36,844% 28 LIQUID#1 2,143% 2,532% 0,243% 5,996% 5,283% 5,311% 6,425% 0,181% 0,213% 0,255% 0,109% FCC_A1#1 95,892% 344,00 0,724% 0,182% 4,077% 2,409% 1,557% 2,907% 0,256% 0,318% 0,001% 0,034% FCC_A1#2 1,966% 12,982% 0,010% 3,717% 10,735% 53,072% 17,615% 0,002% 0,000% 0,000% 0,000% 29 FCC_A1#1 99,878% 661,00 0,145% 0,630% 1,201% 0,288% 0,250% 0,480% 0,000% 0,044% 0,180% FCC_A1#2 0,040% 16,517% 0,022% 1,357% 78,277% 0,000% 0,000% 0,000% 0,000% 0,000% MNS#1 0,082% 63,079% 36,855% 0,000% 30 FCC_A1#1 86,48% 340,00 0,53% 0,37% 4,66% 0,39% 1,02% 6,62% 0,37% 0,28% M6C#1 13,52% 1,90% 3,05% 2,39% 3,59% 64,06% 0,03% 0,01% 31 FCC_A1#1 91,24% 360,00 0,58% 0,36% 4,17% 0,46% 1,48% 5,30% 0,12% 0,31% FCC_A1#2 1,36% 12,07% 0,02% 2,95% 1,89% 50,64% 30,93% 0,00% 0,00% M6C#1 7,40% 1,93% 0,00% 2,63% 3,35% 5,61% 62,47% 0,01% 0,01% 32 FCC_A1#1 99,79% 560,00 0,50% 0,70% 1,09% 0,41% 0,05% 1,72% 0,29% FCC_A1#2 0,21% 15,76% 0,05% 3,99% 12,86% 59,07% 0,00% 0,00% 33 FCC_A1#1 100,00% 480,00 0,28% 0,39% 2,35% 0,06% 0,53% 4,10% 0,06% 0,16% 34 FCC_A1#1 97,84% 473,00 0,23% 0,37% 2,59% 0,02% 0,30% 6,56% 0,04% 0,11%

25 M6C#1 2,16% 1,78% 0,00% 1,90% 0,19% 1,77% 70,28% 0,00% 0,00% 35 FCC_A1#1 99,06% 500,00 0,44% 0,35% 1,28% 0,04% 0,05% 0,83% 0,12% 0,95% FCC_A1#2 0,30% 12,78% 0,02% 3,52% 0,76% 46,14% 31,74% 0,00% 0,00% MC_SHP#1 0,65% 6,19% 0,95% 92,86% 36 FCC_A1#1 99,66% 500,00 0,35% 0,45% 1,45% 0,46% 0,52% 0,53% 0,13% 0,58% FCC_A1#2 0,34% 15,26% 0,02% 1,61% 4,15% 68,78% 7,31% 0,00% 0,00% 37 FCC_A1#1 87,43% 347,00 0,57% 0,41% 3,94% 0,21% 0,70% 7,14% 0,14% 0,18% M6C#1 12,57% 1,85% 0,00% 3,03% 1,44% 2,66% 66,70% 0,01% 0,00% 38 FCC_A1#1 91,20% 347,00 0,59% 0,35% 4,28% 2,57% 1,32% 2,62% 0,20% 0,32% FCC_A1#2 0,89% 13,00% 0,02% 3,73% 11,78% 53,04% 16,54% 0,00% 0,00% M6C#1 7,91% 2,24% 0,00% 3,03% 23,33% 4,29% 37,57% 0,00% 0,11% 39 FCC_A1#1 99,98% 450,00 0,30% 0,30% 1,63% 0,49% 0,07% 3,64% FCC_A1#2 0,02% 15,82% 0,02% 4,44% 10,94% 62,07% 0,01%

The effect of driving force in Gibbs energy on the fraction of martensite

The effect of driving force in Gibbs energy on the fraction of martensite The effect of driving force in Gibbs energy on the fraction of martensite Erik Andersson Andreas Johansson Supervisor: Associate Prof. Annika Borgenstam 2013 Dept. of Material Science and Engineering Royal

More information

Material Degradation of Nuclear Structures Mitigation by Nondestructive Evaluation

Material Degradation of Nuclear Structures Mitigation by Nondestructive Evaluation Material Degradation of Nuclear Structures Mitigation by Nondestructive Evaluation 17 MnMoV 6 4 (WB35): Stretched Zone Material Degradation of Nuclear Structures Mitigation by Nondestructive Evaluation

More information

Part IV : Solid-Solid Phase Transformations I Module 3. Eutectoid transformations

Part IV : Solid-Solid Phase Transformations I Module 3. Eutectoid transformations Part IV : Solid-Solid Phase Transformations I Module 3. Eutectoid transformations 3 Eutectoid transformations 3.1 Motivation What are the different microstructural features due to the eutectoid transformation

More information

Each carbon atom causes a tetragonal distortion since the principal

Each carbon atom causes a tetragonal distortion since the principal Ferrous alloys Fig. 1: Iron-carbon equilibrium phase diagram martensite start temperature or M S. The fraction of martensite increases with the undercooling below M S. The martensite in steels is supersaturated

More information

TRANSFORMATIONS DURING QUENCHING AND TEMPERING OF HOT-WORK TOOL STEEL. Piotr BAŁA, Janusz KRAWCZYK

TRANSFORMATIONS DURING QUENCHING AND TEMPERING OF HOT-WORK TOOL STEEL. Piotr BAŁA, Janusz KRAWCZYK TRANSFORMATIONS DURING QUENCHING AND TEMPERING OF HOT-WORK TOOL STEEL Piotr BAŁA, Janusz KRAWCZYK AGH University of Science and Technology Faculty of Metals Engineering and Industrial Computer Science

More information

Three-Dimensional Atom Probe Analysis of Carbon Distribution in Low-Temperature Bainite

Three-Dimensional Atom Probe Analysis of Carbon Distribution in Low-Temperature Bainite Three-Dimensional Atom Probe Analysis of Carbon Distribution in Low-Temperature Bainite M. Peet *, S. S. Babu, M. K. Miller and H. K. D. H. Bhadeshia * * Department of Materials Science and Metallurgy,

More information

Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1

Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1 Ferrite - BCC Martensite - BCT Fe 3 C (cementite)- orthorhombic Austenite - FCC Chapter 10 Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1 Why do we study

More information

Porter & Easterling, chapter 5

Porter & Easterling, chapter 5 Porter & Easterling, chapter 5 Question 1 At a fixed composition, a certain binary metal alloy can take either of three different phases, indicated by the letters, β en. The three phases consist of three

More information

EFFECTS OF AUSTENITISATION TEMPERATURE AND MULTIPLE TEMPERING ON THE MICROSTRUCTURE AND IMPACT TOUGHNESS OF A 5 WT. % CR COLD WORK TOOL STEEL

EFFECTS OF AUSTENITISATION TEMPERATURE AND MULTIPLE TEMPERING ON THE MICROSTRUCTURE AND IMPACT TOUGHNESS OF A 5 WT. % CR COLD WORK TOOL STEEL M. Arbab Rehan 1,2, Anna Medvedeva 1, Lars-Erik Svensson 2 and Leif Karlsson 2. EFFECTS OF AUSTENITISATION TEMPERATURE AND MULTIPLE TEMPERING ON THE MICROSTRUCTURE AND IMPACT TOUGHNESS OF A 5 WT. % CR

More information

The peritectic transformation, where δ (ferrite) and L (liquid)

The peritectic transformation, where δ (ferrite) and L (liquid) Cellular automaton simulation of peritectic solidification of a C-Mn steel *Su Bin, Han Zhiqiang, and Liu Baicheng (Key Laboratory for Advanced Materials Processing Technology (Ministry of Education),

More information

Chapter 9 Heat treatment (This chapter covers selective sections in Callister Chap. 9, 10 &11)

Chapter 9 Heat treatment (This chapter covers selective sections in Callister Chap. 9, 10 &11) Chapter 9 Heat treatment (This chapter covers selective sections in Callister Chap. 9, 10 &11) Study theme outcomes: After studying this chapter, students should or should be able to: - know and understand

More information

Thermo-Calc Software. Thermo-Calc User Seminar CALCULATING THERMODYNAMIC PROPERTIES TC-PRISMA. Aachen, September 11th, 2008

Thermo-Calc Software. Thermo-Calc User Seminar CALCULATING THERMODYNAMIC PROPERTIES TC-PRISMA. Aachen, September 11th, 2008 CALCULATING THERMODYNAMIC PROPERTIES Thermo-Calc User Seminar TC-PRISMA Aachen, September 11th, 2008 http://www.thermocalc.com Phone: +46 8 545 959 30 E-mail: info@thermocalc.se Fax: +46 8 673 3718 Outline

More information

Lab Materials Science

Lab Materials Science Institute for Micro- and Nanomaterials Lab Summer Term 2007 Group 9: Adelheid Grob & Sukhum Ruangchai & Brook Esseye lab on June, 21st 2007 1 Questions 1.1 What is the goal of metallographic sample preparation?

More information

Combining bainite and martensite in steel microstructures for light weight applications

Combining bainite and martensite in steel microstructures for light weight applications Combining bainite and martensite in steel microstructures for light weight applications by M.J. Santofimia*, S.M.C. van Bohemen, and J. Sietsma Synopsis Multiphase microstructures in steel have been intensively

More information

Continuous Cooling Diagrams

Continuous Cooling Diagrams Continuous Cooling Diagrams Isothermal transformation (TTT) diagrams are obtained by rapidly quenching to a given temperature and then measuring the volume fraction of the various constituents that form

More information

Microstructural characterisation of as-deposited and reheated weld metal High Strength Steel Weld Metals

Microstructural characterisation of as-deposited and reheated weld metal High Strength Steel Weld Metals Microstructural characterisation of as-deposited and reheated weld metal High Strength Steel Weld Metals Enda Keehan, Leif Karlsson, Mattias Thuvander, Eva-Lena Bergquist Abstract ESAB AB, Gothenburg,

More information

MTLS 4L04 Steel Section. Lecture 6

MTLS 4L04 Steel Section. Lecture 6 MTLS 4L04 Steel Section Lecture 6 Tempering of Martensite To get around the problem of the brittleness of the Martensite, Martensite is heat treated at elevated temperatures (200-700 C) to precipitate

More information

Hypoeutectoid Carbon Steels. Hypereutectoid Carbon Steels

Hypoeutectoid Carbon Steels. Hypereutectoid Carbon Steels Hypoeutectoid Carbon Steels Another example: Amount of carbon? 1035 Steel: white regions are proeutectoid ferrite grains By the end of this lecture you should be able to predict the amount of carbon in

More information

EFFECT OF HEATING RATE AND MICROSTRUCTURAL SCALE ON AUSTENITIZATION

EFFECT OF HEATING RATE AND MICROSTRUCTURAL SCALE ON AUSTENITIZATION Proceedings of the International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2015 Edited by: Matthias Militzer, Gianluigi Botton, Long-Qing Chen, James Howe, Chadwick Sinclair,

More information

Heat Treatment of Steels : Metallurgical Principle

Heat Treatment of Steels : Metallurgical Principle Heat Treatment of Steels : Metallurgical Principle Outlines: Fe ad Fe-Fe 3 C system Phases and Microstructure Fe-Fe 3 C Phase Diaram General Physical and Mechanical Properties of each Microstructure Usanee

More information

Effect of titanium additions to low carbon, low manganese steels on sulphide precipitation

Effect of titanium additions to low carbon, low manganese steels on sulphide precipitation University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year 2008 Effect of titanium additions to low carbon, low manganese steels on sulphide precipitation

More information

Kinetics of austenite formation during continuous heating in a low carbon steel

Kinetics of austenite formation during continuous heating in a low carbon steel Materials Characterization 58 (2007) 256 261 Kinetics of austenite formation during continuous heating in a low carbon steel F.L.G. Oliveira a, M.S. Andrade b, A.B. Cota c, a REDEMAT, Federal University

More information

Introduction to Heat Treatment. Introduction

Introduction to Heat Treatment. Introduction MME444 Heat Treatment Sessional Week 01 Introduction to Heat Treatment Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction Can you control the microstructure that formed during cooling of

More information

Binary Phase Diagrams - II

Binary Phase Diagrams - II Binary Phase Diagrams - II Note the alternating one phase / two phase pattern at any given temperature Binary Phase Diagrams - Cu-Al Can you spot the eutectoids? The peritectic points? How many eutectic

More information

Critical Driving Forces for Formation of Bainite

Critical Driving Forces for Formation of Bainite Critical Driving Forces for Formation of Bainite LINDSAY LEACH, PETER KOLMSKOG, LARS HO GLUND, MATS HILLERT, and ANNIKA BORGENSTAM An empirical equation for predicting bainite start temperatures of steels

More information

In their simplest form, steels are alloys of Iron (Fe) and Carbon (C).

In their simplest form, steels are alloys of Iron (Fe) and Carbon (C). Iron-Carbon Phase Diagram Its defined as:- A map of the temperature at which different phase changes occur on very slow heating and cooling in relation to Carbon content. is Isothermal and continuous cooling

More information

Titanium and titanium alloys. Josef Stráský

Titanium and titanium alloys. Josef Stráský Titanium and titanium alloys Josef Stráský Lecture 2: Fundamentals of Ti alloys Polymorphism Alpha phase Beta phase Pure titanium Titanium alloys alloys alloys alloys Phase transformation β α phase Hardening

More information

Bainite Formation in Medium-Carbon Low-Silicon Spring Steels Accounting for Chemical Segregation

Bainite Formation in Medium-Carbon Low-Silicon Spring Steels Accounting for Chemical Segregation Bainite Formation in Medium-Carbon Low-Silicon Spring Steels Accounting for Chemical Segregation C. GOULAS, M.G. MECOZZI, and J. SIETSMA In this paper, the effect of chemical inhomogeneity on the isothermal

More information

Bainite Transformation at Atomic Scale

Bainite Transformation at Atomic Scale CENTRO NACIONAL DE INVESTIGACIONES METALÚRGICAS (CENIM) Bainite Transformation at Atomic Scale Francisca G. Caballero 1, M.K. Miller 2, C. Garcia-Mateo 1 and J. Cornide 1 1 Spanish National Research Center

More information

in Ni-base superalloys

in Ni-base superalloys Prof. Dr. Gerhard Inden Max-Planck-Institut für Eisenforschung Düsseldorf B enrichments at the γ / M23C6 interface in Ni-base superalloys Thermo-Calc Anwendertreffen 8. - 9. September 2011 Experimental

More information

Principles of Physical Metallurgy Prof. R. N. Ghosh Department of Metallurgical and Materials Engineering Indian Institute of Technology, Kharagpur

Principles of Physical Metallurgy Prof. R. N. Ghosh Department of Metallurgical and Materials Engineering Indian Institute of Technology, Kharagpur Principles of Physical Metallurgy Prof. R. N. Ghosh Department of Metallurgical and Materials Engineering Indian Institute of Technology, Kharagpur Lecture No. # 34 Heat Treatment of Steel (Contd.) (Refer

More information

GRAIN GROWTH BEHAVIOUR OF NIOBIUM-ALLOYED DIRECT QUENCHED STEELS DURING SLAB REHEATING

GRAIN GROWTH BEHAVIOUR OF NIOBIUM-ALLOYED DIRECT QUENCHED STEELS DURING SLAB REHEATING GRAIN GROWTH BEHAVIOUR OF NIOBIUM-ALLOYED DIRECT QUENCHED STEELS DURING SLAB REHEATING CASR-seminar 19.12.2013 Materials engineering laboratory/ Jaakko Hannula 2 CONTENT Introduction Purpose of the study/

More information

Experiment E: Martensitic Transformations

Experiment E: Martensitic Transformations Experiment E: Martensitic Transformations Introduction: The purpose of this experiment is to introduce students to a family of phase transformations which occur by shear rather than diffusion. In metals,

More information

Heat Treating Basics-Steels

Heat Treating Basics-Steels Heat Treating Basics-Steels Semih Genculu, P.E. Steel is the most important engineering material as it combines strength, ease of fabrication, and a wide range of properties along with relatively low cost.

More information

AFFECT OF CEMENTITE PRECIPITATION ON THE EXTEND OF BAINITE REACTION IN ADI

AFFECT OF CEMENTITE PRECIPITATION ON THE EXTEND OF BAINITE REACTION IN ADI AFFECT OF CEMENTITE PRECIPITATION ON THE EXTEND OF BAINITE REACTION IN ADI Zdzisław Ławrynowicz University of Technology and Life Sciences, Mechanical Engineering Faculty Department of Materials Science

More information

Physical Metallurgy Friday, January 28, 2011; 8:30 12:00 h

Physical Metallurgy Friday, January 28, 2011; 8:30 12:00 h Physical Metallurgy Friday, January 28, 2011; 8:30 12:00 h Always motivate your answers All sub-questions have equal weight in the assessment Question 1 Precipitation-hardening aluminium alloys are, after

More information

Diffusion in Fe-base Thick Coatings Produced by Hot Extrusion

Diffusion in Fe-base Thick Coatings Produced by Hot Extrusion Diffusion in Fe-base Thick Coatings Produced by Hot Extrusion S. Weber, P. Silva Max-Planck-Institut für Eisenforschung GmbH Materials Diagnostics and Steel Technology Prof. Dr.-Ing. A.R. Pyzalla Düsseldorf

More information

TCFE6: TCS Steel and Fe-alloys Database

TCFE6: TCS Steel and Fe-alloys Database TCFE6: TCS Steel and Fe-alloys Database Thermo-Calc Software is pleased to announce the release of TCFE6, a thermodynamic database for different kinds of steels and Fe-based alloys (stainless steels, high-speed

More information

Abstract INTRODUCTION

Abstract INTRODUCTION Nucleation Theory for High Carbon Bainite C. Garcia Mateo and H. K. D. H. Bhadeshia University of Cambridge Materials Science and Metallurgy Pembroke Street, Cambridge CB2 3QZ, U. K. www.msm.cam.ac.uk/phase

More information

Schematic representation of the development of microstructure. during the equilibrium solidification of a 35 wt% Ni-65 wt% Cu alloy

Schematic representation of the development of microstructure. during the equilibrium solidification of a 35 wt% Ni-65 wt% Cu alloy Schematic representation of the development of microstructure during the equilibrium solidification of a 35 wt% Ni-65 wt% Cu alloy At 1300 ºC (point a) the alloy is in the liquid condition This continues

More information

Kinetics - Heat Treatment

Kinetics - Heat Treatment Kinetics - Heat Treatment Nonequilibrium Cooling All of the discussion up till now has been for slow cooling Many times, this is TOO slow, and unnecessary Nonequilibrium effects Phase changes at T other

More information

Microsegregation in Nodular Cast Iron with Carbides

Microsegregation in Nodular Cast Iron with Carbides ARCHIVES of FOUNDRY ENGINEERING DOI: 10.2478/v10266-012-0120-z Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (2299-2944) Volume 12 Issue 4/2012 127 134

More information

THE REGULARITIES OF PHASE AND STRUCTURAL TRANSFORMATION IN BINARY TITANIUM ALLOYS WITH METALS OF IV VIII GROUPS OF THE PERIODIC TABLE

THE REGULARITIES OF PHASE AND STRUCTURAL TRANSFORMATION IN BINARY TITANIUM ALLOYS WITH METALS OF IV VIII GROUPS OF THE PERIODIC TABLE DOI: 10.2478/v10077-008-0004-7 A.V. Dobromyslov Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Еkaterinburg, Russia THE REGULARITIES OF PHASE AND STRUCTURAL TRANSFORMATION IN BINARY

More information

Recent Developments of Software and Databases

Recent Developments of Software and Databases Recent Developments of Software and Databases Aachen, Sept 1-2, 2016 Introduction 2015 Introduction 1000 Introduction 64 Introduction 46 Introduction Introduction 35 Outline - What we do About the company

More information

Precipitation Hardening. Outline. Precipitation Hardening. Precipitation Hardening

Precipitation Hardening. Outline. Precipitation Hardening. Precipitation Hardening Outline Dispersion Strengthening Mechanical Properties of Steel Effect of Pearlite Particles impede dislocations. Things that slow down/hinder/impede dislocation movement will increase, y and TS And also

More information

Alloy Steels. Engineering Materials. Introduction : Msc. Shaymaa Mahmood

Alloy Steels. Engineering Materials. Introduction : Msc. Shaymaa Mahmood Alloy Steels Introduction : Steels are, essentially, alloys of iron and carbon, containing up to 1.5 % of carbon. Steel is made by oxidizing away the impurities that are present in the iron produced in

More information

CHAPTER SEVEN EXPERIMENTAL RESULTS EFFECT OF THE STEEL S COMPOSITION 7.1 EFFECT OF ANNEALING TREATMENT ON STEEL B

CHAPTER SEVEN EXPERIMENTAL RESULTS EFFECT OF THE STEEL S COMPOSITION 7.1 EFFECT OF ANNEALING TREATMENT ON STEEL B CHAPTER SEVEN EXPERIMENTAL RESULTS EFFECT OF THE STEEL S COMPOSITION 7 7.1 EFFECT OF ANNEALING TREATMENT ON STEEL B In order to understand the precipitation behaviour of the Laves phase more precisely,

More information

Module 31. Heat treatment of steel I. Lecture 31. Heat treatment of steel I

Module 31. Heat treatment of steel I. Lecture 31. Heat treatment of steel I Module 31 Heat treatment of steel I Lecture 31 Heat treatment of steel I 1 Keywords : Transformation characteristics of eutectoid steel, isothermal diagram, microstructures of pearlite, bainite and martensite,

More information

5 Thermodynamics. 5.1 Deviations from Equilibrium

5 Thermodynamics. 5.1 Deviations from Equilibrium 5 Thermodynamics 5.1 Deviations from Equilibrium Equilibrium is said to exist in a system when it reaches a state in which no further change is perceptible, no matter how long one waits (Pippard, 1981).

More information

EXPERIMENT 6 HEAT TREATMENT OF STEEL

EXPERIMENT 6 HEAT TREATMENT OF STEEL EXPERIMENT 6 HEAT TREATMENT OF STEEL Purpose The purposes of this experiment are to: Investigate the processes of heat treating of steel Study hardness testing and its limits Examine microstructures of

More information

MSE 230 Fall 2007 Exam II

MSE 230 Fall 2007 Exam II 1 Purdue University School of Materials Engineering MSE 230 Fall 2007 Exam II November 8, 2007 Show All ork and Put Units on Answers Name: KEY Unique name or email : Recitation Day and Time: Recitation

More information

Chapter 10: Phase Transformations

Chapter 10: Phase Transformations Chapter 10: Phase Transformations ISSUES TO ADDRESS... Transforming one phase into another takes time. Fe C FCC (Austenite) Eutectoid transformation Fe 3 C (cementite) + (ferrite) (BCC) How does the rate

More information

Q-P PROCESSING OF HIGH-STRENGTH LOW-ALLOYED STEEL SHEETS

Q-P PROCESSING OF HIGH-STRENGTH LOW-ALLOYED STEEL SHEETS Q-P PROCESSING OF HIGH-STRENGTH LOW-ALLOYED STEEL SHEETS Daniela HAUSEROVÁ a, Zbyšek NOVÝ b, Jaromír DLOUHÝ c, Petr MOTYČKA d a,b,c,d COMTES FHT a.s., Průmyslová 995, 334 41 Dobřany, Czech Republic, comtesfht@comtesfht.cz

More information

Case Study: Design of Bainitic Steels

Case Study: Design of Bainitic Steels Materials Science & Metallurgy Part II Course C9, Alloys, H. K. D. H. Bhadeshia Case Study: Design of Bainitic Steels Bainite Summarised Bainite is a non lamellar aggregate of carbides and plate shaped

More information

THE EFFECT OF ALLOYING ELEMENTS ON THE TEMPERATURE RANGE OF PEARLITE TO AUSTENITE TRANSFORMATION IN LOW ALLOY HYPOEUTECTOID STEELS

THE EFFECT OF ALLOYING ELEMENTS ON THE TEMPERATURE RANGE OF PEARLITE TO AUSTENITE TRANSFORMATION IN LOW ALLOY HYPOEUTECTOID STEELS THE EFFECT OF ALLOYING ELEMENTS ON THE TEMPERATURE RANGE OF PEARLITE TO AUSTENITE TRANSFORMATION IN LOW ALLOY HYPOEUTECTOID STEELS PAWŁOWSKI Bogdan 1, BAŁA Piotr 1,2, DZIURKA Rafał 1 1 AGH University of

More information

MAE 212: Spring 2001 Lecture 14 PHASE DIAGRAMS AND EQUILIBRIUM MICROSTRUCTURES N. Zabaras

MAE 212: Spring 2001 Lecture 14 PHASE DIAGRAMS AND EQUILIBRIUM MICROSTRUCTURES N. Zabaras ME 212: Spring 2001 Lecture 14 PHSE DIGRMS ND EQUILIRIUM MICROSTRUCTURES N. Zabaras For more details on the topic read Chapter 9 of the Materials Science for Engineers by J. Shackelford, pp. 304 353. lso

More information

Chapter 10: Phase Transformations

Chapter 10: Phase Transformations Chapter 10: Phase Transformations ISSUES TO ADDRESS... Transforming one phase into another takes time. Fe (Austenite) Eutectoid transformation Fe 3 C (cementite) + C FCC (ferrite) (BCC) How does the rate

More information

The role of alloying elements in bainitic rail steels

The role of alloying elements in bainitic rail steels The role of alloying elements in bainitic rail steels by A. Kapito*, W. Stumpf, and M.J. Papo* Synopsis The formation of bainite in steel is dependent on the size of the casting, the heat treatment, and

More information

Thermo-Calc Software. Thermo-Calc User Seminar CALCULATING THERMODYNAMIC PROPERTIES. New versions of Databases. Aachen, September 11th, 2008

Thermo-Calc Software. Thermo-Calc User Seminar CALCULATING THERMODYNAMIC PROPERTIES. New versions of Databases. Aachen, September 11th, 2008 CALCULATING THERMODYNAMIC PROPERTIES Thermo-Calc User Seminar New versions of Databases Aachen, September 11th, 2008 http://www.thermocalc.com Phone: +46 8 4 99 30 E-mail: info@thermocalc.se Fax: +46 8

More information

PHASE DIAGRAMS UNDERSTANDING BASICS THE. Edited. F.C. Campbell. Materials Park, Ohio The Materials Information Society.

PHASE DIAGRAMS UNDERSTANDING BASICS THE. Edited. F.C. Campbell. Materials Park, Ohio The Materials Information Society. PHASE DIAGRAMS UNDERSTANDING THE BASICS Edited by F.C. Campbell The Materials Information Society ASM International Materials Park, Ohio 44073-0002 www.asm i nternational.org Phase Diagrams Understanding

More information

HOT DEFORMATION EFFECTS ON AUSTENITE DECOMPOSITION

HOT DEFORMATION EFFECTS ON AUSTENITE DECOMPOSITION OUTLINE---Contents HOT DEFORMATION EFFECTS ON AUSTENITE DECOMPOSITION 3-7 Parameters, techniques 8-17 Ferrite, TTT, acceleration 18-25 Nucleation and growth 26-31 Composition: low C tool steels H. J. McQueen,

More information

Microstructure and phase transformations in alloy steels and simulations of their processing

Microstructure and phase transformations in alloy steels and simulations of their processing AEDS 2004 WORKSHOP 11 12 November 2004, Pilsen - Czech Republic Microstructure and phase transformations in alloy steels and simulations of their processing D. Jandová, V. ernášek, H. Paterová and D. Kešner

More information

Carbon Concentration of Austenite in Austempered Ductile Iron (ADI)

Carbon Concentration of Austenite in Austempered Ductile Iron (ADI) A R C H I V E S o f F O U N D R Y E N G I N E E R I N G Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-331) Volume 7 Issue 3/27 93 98 19/3 Carbon

More information

Fundamentals of. Steel Product. Graduate Institute of Ferrous Metallurgy

Fundamentals of. Steel Product. Graduate Institute of Ferrous Metallurgy Fundamentals of Steel Product Physical Metallurgy B.C. De Cooman Graduate Institute of Ferrous Metallurgy Pohang University of Science and Technology, South Korea J.G Speer Advanced Steel Products and

More information

Multi-pass Hot Rolling of Steels

Multi-pass Hot Rolling of Steels Multi-pass Hot Rolling of Steels Multi-pass hot rolling is a general practice in the production of plates. An illustration of a plate mill, Fig. 1, is shown below to demonstrate how a series of processes

More information

In-situ study of austenite formation by dilatometry in a low carbon microalloyed Steel

In-situ study of austenite formation by dilatometry in a low carbon microalloyed Steel In-situ study of austenite formation by dilatometry in a low carbon microalloyed Steel D. San Martín,2, P. E. J. Rivera-Díaz-del-Castillo, C. García-de-Andrés 2. Fundamentals of Advanced Materials Group,

More information

University of Pretoria Z Tang (2006) Chapter 8 Studies of acicular ferrite by thin foil TEM

University of Pretoria Z Tang (2006) Chapter 8 Studies of acicular ferrite by thin foil TEM 8.2 Two types of acicular ferrite 8.2.1 Structure with parallel laths There appeared to be two types of acicular ferrite laths that were observed in those alloys cooled with a rapid cooling rate of 47

More information

New functionalities of TC-DICTRA

New functionalities of TC-DICTRA New functionalities of TC-DICTRA Thermo-Calc Anwendertreffen und Schulung Aachen 11-13 th of June 2003 Dr. Anders Engström Stockholm Technology Park SE-113 47 Stockholm, Sweden Outline Introduction Thermo-Calc

More information

Chapter 10, Phase Transformations

Chapter 10, Phase Transformations Chapter Outline: Phase Transformations Heat Treatment (time and temperature) Microstructure Kinetics of phase transformations Homogeneous and heterogeneous nucleation Growth, rate of the phase transformation

More information

Complete Calculation of Steel Microstructure for Strong Alloys

Complete Calculation of Steel Microstructure for Strong Alloys New Developments on Metallurgy and Applications of High Strength Steels, Buenos Aires 2008, Argentina Complete Calculation of Steel Microstructure for Strong Alloys J. Chen, H. K. D. H. Bhadeshia, S. Hasler,

More information

EFFECT OF AUSTENITISING TEMPERATURE AND COOLING RATE ON MICROSTRUCTURE IN A HOT- WORK TOOL STEEL

EFFECT OF AUSTENITISING TEMPERATURE AND COOLING RATE ON MICROSTRUCTURE IN A HOT- WORK TOOL STEEL EFFECT OF AUSTENITISING TEMPERATURE AND COOLING RATE ON MICROSTRUCTURE IN A HOT- WORK TOOL STEEL M. Coll Ferrari 1,2, A. Forsberg 1, J. Andersson 3, P. Mikula 4 and P. Beran 4 1 Uddeholms AB, Material

More information

Department of Mechanical Engineering University of Saskatchewan. ME324.3 Engineering Materials. Mid-Term Examination (Closed Book)

Department of Mechanical Engineering University of Saskatchewan. ME324.3 Engineering Materials. Mid-Term Examination (Closed Book) Student #: Department of Mechanical Engineering University of Saskatchewan ME. Engineering Materials Mid-Term Examination (Closed Book) Instructor: I. Oguocha Time Allowed: h Friday, 9 October 00. Section

More information

Cr-C alloys. (1) Background : Fe-Cr-C system. (2) Experimental data. (3) Phase equilibria (stable + metastable) : TCQ + TCFE3

Cr-C alloys. (1) Background : Fe-Cr-C system. (2) Experimental data. (3) Phase equilibria (stable + metastable) : TCQ + TCFE3 Eutectic growth during solidification of Fe-Cr Cr-C alloys (1) Background : Fe-Cr-C system (2) Experimental data (3) Phase equilibria (stable + metastable) : TCQ + TCFE3 (4) Diffusion controlled growth

More information

MSE-226 Engineering Materials

MSE-226 Engineering Materials MSE-226 Engineering Materials Lecture-4 THERMAL PROCESSING OF METALS-2 CONTINUOUS COOLING TRANSFORMATION (CCT) DIAGRAMS: In industrial heat-treating operations, in most cases a steel is not isothermally

More information

C-Curves for Lengthening of Widmanstätten and Bainitic Ferrite

C-Curves for Lengthening of Widmanstätten and Bainitic Ferrite C-Curves for Lengthening of Widmanstätten and Bainitic Ferrite JIAQING YIN, LINDSAY LEACH, MATS HILLERT, and ANNIKA BORGENSTAM Widmansta tten ferrite and bainitic ferrite are both acicular and their lengthening

More information

University of Pretoria Z Tang (2006) Chapter 8 Studies of acicular ferrite by thin foil TEM CHAPTER 8 STUDIES OF ACICULAR FERRITE BY THIN FOIL TEM

University of Pretoria Z Tang (2006) Chapter 8 Studies of acicular ferrite by thin foil TEM CHAPTER 8 STUDIES OF ACICULAR FERRITE BY THIN FOIL TEM CHAPTER 8 STUDIES OF ACICULAR FERRITE BY THIN FOIL TEM 8.1 Acicular ferrite morphology in experimental alloys The optical micrographs in figure 7.29 for the alloys after rapid cooling at a rate of 47 ºCs

More information

KINETICS OF ISOTHERMAL TRANSFORMATION OF HIGH-CARBON LOW-ALLOYED AUSTENITE AND ITS MICROSTRUCTURE AFTER SUCH TREATMENT

KINETICS OF ISOTHERMAL TRANSFORMATION OF HIGH-CARBON LOW-ALLOYED AUSTENITE AND ITS MICROSTRUCTURE AFTER SUCH TREATMENT KINETICS OF ISOTHERMAL TRANSFORMATION OF HIGH-CARBON LOW-ALLOYED AUSTENITE AND ITS MICROSTRUCTURE AFTER SUCH TREATMENT Olaf Hesse, Alexey Kapustyan, Michael Brykov Abstract In this study experiments were

More information

Thermal Stability of Austenite Retained in Bainitic Steels

Thermal Stability of Austenite Retained in Bainitic Steels Thermal Stability of Austenite Retained in Bainitic Steels A. Saha Podder and H. K. D. H. Bhadeshia University of Cambridge Materials Science and Metallurgy Pembroke Street, Cambridge CB2 3QZ, U. K. Abstract

More information

Effect of Mn and Si addition on the dynamic transformation of austenite during strip rolling

Effect of Mn and Si addition on the dynamic transformation of austenite during strip rolling Hatchett Seminar London, July 16, 2014 Effect of Mn and Si addition on the dynamic transformation of austenite during strip rolling John J. Jonas Birks Professor of Metallurgy Emeritus McGill University

More information

Characterization and development of FeCrW high speed steel coating for abrasive and impact wear applications

Characterization and development of FeCrW high speed steel coating for abrasive and impact wear applications Characterization and development of FeCrW high speed steel coating for abrasive and impact wear applications By Dennis Rinkel Diploma work No. 182/2016 At Department of Materials and Manufacturing Technology

More information

Heat treatment and effects of Cr and Ni in low alloy steel

Heat treatment and effects of Cr and Ni in low alloy steel Bull. Mater. Sci., Vol. 34, No. 7, December 2011, pp. 1439 1445. Indian Academy of Sciences. Heat treatment and effects of Cr and Ni in low alloy steel MOHAMMAD ABDUR RAZZAK Materials and Metallurgical

More information

Lecture 20: Eutectoid Transformation in Steels: kinetics of phase growth

Lecture 20: Eutectoid Transformation in Steels: kinetics of phase growth Lecture 0: Eutectoid Transformation in Steels: kinetics of phase growth Today s topics The growth of cellular precipitates requires the portioning of solute to the tips of the precipitates in contact with

More information

Very Strong, Low Temperature Bainite

Very Strong, Low Temperature Bainite Very Strong, Low Temperature Bainite GR/N 14620/01 Background and Context During the course of our research on the quantitative design of steels [1,2], an exciting discovery was made, in which carbide

More information

CHEMICAL POTENTIAL APPROACH TO DIFFUSION-LIMITED MICROSTRUCTURE EVOLUTION

CHEMICAL POTENTIAL APPROACH TO DIFFUSION-LIMITED MICROSTRUCTURE EVOLUTION CHEMICAL POTENTIAL APPROACH TO DIFFUSION-LIMITED MICROSTRUCTURE EVOLUTION M.A. Fradkin and J. Goldak Department of Mechanical & Aerospace Engineering Carleton University, Ottawa K1S 5B6 Canada R.C. Reed

More information

Lecture 31-36: Questions:

Lecture 31-36: Questions: Lecture 31-36: Heat treatment of steel: T-T-T diagram, Pearlitic, Martensitic & Bainitic transformation, effect of alloy elements on phase diagram & TTT diagram, CCT diagram, Annealing, normalizing, hardening

More information

Metals are used by industry for either one or combination of the following properties

Metals are used by industry for either one or combination of the following properties Basic Metallurgy Metals are the backbone of the engineering industry being the most important Engineering Materials. In comparison to other engineering materials such as wood, ceramics, fabric and plastics,

More information

Readme: VrHeatTreat HeatTreatDiskSetup1 Video

Readme: VrHeatTreat HeatTreatDiskSetup1 Video Readme: VrHeatTreat HeatTreatDiskSetup1 Video John Goldak, President Goldak Technologies Inc. May 13, 2008 The HDTV video, HeatTreatDiskSetup1, shows the procedure for setting up a heat treating project

More information

EFFECT OF BORON CONTENT ON METALLURGICAL AND MECHANICAL CHARACTERISTICS OF LOW CARBON STEEL

EFFECT OF BORON CONTENT ON METALLURGICAL AND MECHANICAL CHARACTERISTICS OF LOW CARBON STEEL International Journal of Mechanical Engineering (IJME) ISSN(P): 2319-2240; ISSN(E): 2319-2259 Vol. 5, Issue 2, Feb - Mar 2016, 1-14 IASET EFFECT OF BORON CONTENT ON METALLURGICAL AND MECHANICAL CHARACTERISTICS

More information

MSE 230 Fall 2003 Exam II

MSE 230 Fall 2003 Exam II Purdue University School of Materials Engineering MSE 230 Fall 2003 Exam II November 13, 2003 Show All Work and Put Units on Answers Name: Key Recitation Day and Time: Recitation Instructor s Name: 1 2

More information

New approach for the bainite start temperature calculation in steels

New approach for the bainite start temperature calculation in steels New approach for the bainite start temperature calculation in steels C. Garcia-Mateo* 1, T. Sourmail 2, F. G. Caballero 1, C. Capdevila 1 and C. García de Andrés 1 The bainite start temperature B s is

More information

COMPUTED PHASE EQUILIBRIA IN IRON-BASE TERNARY ALLOYS

COMPUTED PHASE EQUILIBRIA IN IRON-BASE TERNARY ALLOYS COMPUTED PHASE EQUILIBRIA IN IRON-BASE TERNARY ALLOYS by K.C. HARI KUMAR APPLIED MECHANICS DEPARTMENT Thesis submitted in fulfilment of the requirements of the Degree of DOCTOR OF PHILOSOPHY be vt, to

More information

The Characteristics of Strain Induced Transformation in Medium Carbon Steels

The Characteristics of Strain Induced Transformation in Medium Carbon Steels China Steel Technical Report, No. 30, pp.1-6, Chen (2017) Chien, Yuan-Tsung Wang and Ching-Yuan Huang 1 The Characteristics of Strain Induced Transformation in Medium Carbon Steels CHEN CHIEN, YUAN-TSUNG

More information

Effects of Coiling Temperature on Microstructure and Mechanical Properties of High-strength Hot-rolled Steel Plates Containing Cu, Cr and Ni

Effects of Coiling Temperature on Microstructure and Mechanical Properties of High-strength Hot-rolled Steel Plates Containing Cu, Cr and Ni , pp. 692 698 Effects of Coiling Temperature on Microstructure and Mechanical Properties of High-strength Hot-rolled Steel Plates Containing Cu, Cr and Ni Sung-Joon KIM, Chang Gil LEE, Tae-Ho LEE and Sunghak

More information

AN IMPROVEMENT OF CLOSED DIE FORGING OF HIGH STRENGTH STEEL PRODUCTS AND A STUDY OF ITS WELDING SUITABILITY

AN IMPROVEMENT OF CLOSED DIE FORGING OF HIGH STRENGTH STEEL PRODUCTS AND A STUDY OF ITS WELDING SUITABILITY AN IMPROVEMENT OF CLOSED DIE FORGING OF HIGH STRENGTH STEEL PRODUCTS AND A STUDY OF ITS WELDING SUITABILITY Ing. Khodr Ibrahim, West Bohemia University, Univerzitni 8, 306 14 Pilsen Czech Republic ABSTRACT

More information

Effects in Ductile Iron

Effects in Ductile Iron Summary of Element Effects in Ductile Iron Rick Gundlach Element Materials Technology Wixom Insert Company Logo Here DIS Annual Meeting, June 7, 2012 Muskegon, Michigan Types of Alloying Elements Substitutional

More information

the Phase Diagrams Today s Topics

the Phase Diagrams Today s Topics MME 291: Lecture 03 Introduction to the Phase Diagrams Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics Concept of alloying Classification of alloys Introduction to the phase diagram

More information

THE INFLUENCES OF SPECIMEN DIAMETER ON CONTINUOUS COOLING TRANSFORMATION CURVES MEASURED WITH DILATATION METHOD

THE INFLUENCES OF SPECIMEN DIAMETER ON CONTINUOUS COOLING TRANSFORMATION CURVES MEASURED WITH DILATATION METHOD Engineering Review Vol. 32, Issue 3, 173-179, 2012. 173 THE INFLUENCES OF SPECIMEN DIAMETER ON CONTINUOUS COOLING TRANSFORMATION CURVES MEASURED WITH DILATATION METHOD X. Zhou 1* X. Liu 2 1 Material Science

More information

INFLUENCE OF SECOND PHASE PARTICLES ON RECRYSTALLISATION OF COLD-ROLLED LOW CARBON MICROALLOYED STEELS DURING ISOTHERMAL ANNEALING

INFLUENCE OF SECOND PHASE PARTICLES ON RECRYSTALLISATION OF COLD-ROLLED LOW CARBON MICROALLOYED STEELS DURING ISOTHERMAL ANNEALING INFLUENCE OF SECOND PHASE PARTICLES ON RECRYSTALLISATION OF COLD-ROLLED LOW CARBON MICROALLOYED STEELS DURING ISOTHERMAL ANNEALING Carlos Capdevila a, Tommy De Cock b, Carlos García-Mateo c, Francisca

More information

Iranian Journal of Materials Science & Engineering Vol. 7, Number 1, Winter 2010

Iranian Journal of Materials Science & Engineering Vol. 7, Number 1, Winter 2010 Iranian Journal of Materials Science & Engineering Vol. 7, Number 1, Winter 2010 THE EFFECT OF COOLING RATE AND AUSTENITE GRAIN SIZE ON THE AUSTENITE TO FERRITE TRANSFORMATION TEMPERATURE AND DIFFERENT

More information

Chapter 9 Phase Diagrams. Dr. Feras Fraige

Chapter 9 Phase Diagrams. Dr. Feras Fraige Chapter 9 Phase Diagrams Dr. Feras Fraige Chapter Outline Definitions and basic concepts Phases and microstructure Binary isomorphous systems (complete solid solubility) Binary eutectic systems (limited

More information