Additive Manufacturing Viewed from Material Science: State of the Art & Fundamentals J.Y. Hascoet 1.a, K.P. Karunakaran 2.b and S.Marya 3.

Size: px
Start display at page:

Download "Additive Manufacturing Viewed from Material Science: State of the Art & Fundamentals J.Y. Hascoet 1.a, K.P. Karunakaran 2.b and S.Marya 3."

Transcription

1 Materials Science Forum Online: ISSN: , Vols , pp doi: / Trans Tech Publications, Switzerland Additive Manufacturing Viewed from Material Science: State of the Art & Fundamentals J.Y. Hascoet 1.a, K.P. Karunakaran 2.b and S.Marya 3.c 1 IRCCyN, Ecole Centrale Nantes, France 2 Dept. of Mechanical Engineering, Indian Institute of technology Bombay, INDIA 3 GeM, Ecole Centrale de Nantes, France a Jean-yves.hascoet@ec-nantes.fr, b karuna@iitb.ac.in c Surendar.marya@ec-nantes.fr Keywords Additive Manufacturing, Rapid Prototyping, 3D printing, LENS, Laser Melting Abstract Additive Manufacturing (AM), also designated as 3D Printing (3DP), is one of the most visionary and friendly approaches for flexible manufacturing with conservation of energy and material resources. It is a factory in a box that can generate multiple objects. It requires little manpower to bring virtual innovations into the real world. AM for metals can be mechanistically associated with welding. The technique employs a variety of energy sources (laser, electron beam, electric Arc, ), feed stocks (powder, wire and ribbon) and motion kinematics & control (articulated robot and 3-5 axes CNC machine ). From the materials perspectives, akin to fusion welding in many respects, AM involves a multitude of complex and interacting physical phenomena such as heat transfer, fluid flow, discrete and continuum mechanics, sintering, melting, solidification, solid state transformations, grain growth, diffusion, textures etc. The desired process performance can be achieved by controlling the parameters of energy, feed stock and motion. The effect of successive thermal cycles along with the epitaxial relations between substratum and deposits constitute some of the challenging tasks for developing optimized parts. This paper reviews the state of the art and presents some challenges facing metal product development for service applications. Introduction Manufacturing had been dominated by subtraction, viz., material removal, for centuries till Not only the machining processes, but also the formative processes of casting and forming were dependent on material removal to produce their tooling such as dies, molds and patterns. Manufacturing underwent a sign change from negative to positive, viz., material addition, with the launch of the first Rapid Prototyping machine by 3D Systems, USA in 1987 Ϯ. Additive manufacturing is a step forward from rapid prototyping as its main goal is to directly manufacture fully functional parts from digital models using real materials, opposite to rapid prototyping that aimed nonfunctional parts [1,2]. Figure 1 depicts the basic schematics of the process chain of additive manufacturing. Fig.1 Schematics of the basic chain for AM In AM, parts are generated by selectively adding detailed features to a functional substrate thanks to a computer-controlled deposition technique. Additive manufacturing is thus a free forming technology and has become a new paradigm as it opens new design possibilities that include shapes and multi-material parts to engineers without having to worry about the manufacturing routes. Physically, this involves a heat source, a feedstock, a computer controlled All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans Tech Publications, (# , Pennsylvania State University, University Park, USA-18/09/16,17:51:53)

2 2348 THERMEC 2013 machine that authorizes the deposition /fusion of the feedstock in locations predefined by the digital object model. The result is a near net shape preform that still may need additional processing to optimize product quality for service standards. AM has revealed as an effective tool to compress product development time, reduce raw material usage and/or manufacturing cost without sacrificing the performance of the end product. The technology seems to give a competitive edge in case of high tech materials and complex part shapes that would be impossible or difficult to produce such as: Conformal cooling channels, Assemblies without joints, Gradient matrix, Non-equilibrium matrix, Extremely complex Shapes, Customized solutions. The growing interest for AM is supported by recent reports that precise $2.2 billion revenues generated by AM in Of this, some 28% concerned directly the final product rather than prototypes or non- functional parts. US leads in installed AM systems (38%) followed by Japan (9,7%), Germany (9,4%) and China. Sixteen companies in Europe, seven in China, five in US are now selling industrial AM systems [3]. Star applications of AM that include fuel injector for rocket engines (Aerojet Rocketdyne) and nozzles for jet engines are being planned by GE for its LEAP project within the next three years. Briefly resumed, AM is emerging as a lead vector in manufacturing business and explains ensuing academic interest in comprehending the basics of the physical processes that would yield best product properties. After a brief description of the technology, this paper would present a review of mechanisms and constraints that would affect the overall behavior of the AM part. In fact, AM technology, in spite of its significant economic impact in manufacturing has not yet drawn strong interest from material science perspectives. General Approach for metallic parts Powder-bed technologies, Deposition technologies and to a lesser extent Laminated manufacturing are the most popular approaches for metallic objects. In a powder-bed technology, the layer of powder is spread on which the required adhesive jet(s) or energy beam(s) writes the cross-section of the object so as to join the particles of the layer. Adhesive joining results in poor green strength and hence is not suitable for metals. Joining using energy beam is popular among metals. The layer may be formed either through sintering or melting. The metal deposition technology invariably uses an energy beam that may be an arc, electron beam or laser. While powder-bed technology necessarily uses powder form of raw material, the deposition technology can use powder, wire as well as strip forms of raw material. When the feedstock is powder in a deposition technology, it is also known as powder-feed technology. In a deposition technology, the material is fed along with the energy beam. The sintered or molten metal by the energy beam coming out of the nozzle is moved in contouring and area-filling paths so as to weave the layer. Table 1 Comparison of Powder-bed and Deposition Technologies Characteristics Powder-Bed Technologies Deposition Technologies Raw material - Only powder + Powder, wire and strip Material feeding Coarse powder particles (> 20µm) requiring mechanical spreading. - If powder, particles are fine; so, fluidized feeding using Argon is used. + Wire/strip is easy to feed using Support mechanism + Inherent - Explicit support mechanism is required. The authors use 5-axis! Gradient matrix - Not readily amenable for FGM + Readily amenable for FGM (exception: 3DP) Bonding Fusion using Laser/ EB/ Arc Fusion using Laser/ EB/ arc Table 1 presents a comparison of powder-bed and deposition technologies. While the simplicity of support mechanism is the significant advantage of powder-bed technology, amenability for gradient deposition goes to the credit of deposition technology. Here the substrate can be a forging, a wrought product or even a damaged part requiring refection.

3 Materials Science Forum Vols Solid form of feedstock is the most suitable for deposition technologies. These forms are powder, wire, strip or ribbon, sheet and roll. Powder form alone is used in laser and electron beam processes so far despite a poor yield of 10-15% as it is difficult to dispense other material forms exactly below these very narrow beams. With the advent of excellent beam shaping, researchers are attempting to use wire as well as strip forms even in laser cladding. It is very easy to feed wire and strip forms and control their flow rate accurately. In short, the fusion based AM process that are outlined here are built on multi pass welding technology. Additive Manufacturing Using Laser-Weld Deposition Laser additive manufacturing remains the most dominant AM process due to the inherent characteristics of laser beams such as narrow and controllable spot size, energy densities beyond a million watt par sq cm, low divergence and a variety of wave lengths and sources. Most widely used lasers are either CO2 or fiber lasers. Generally, the powder feedstock is used and melted in the laser beam and deposited at pre- defined locations to manufacture the part. The general principle of LAM is depicted in Fig.2a.The main advantage lays in the compactness of the AM machine. Figure 2b shows the CLAD machine based on a 4KW fiber laser and equipped with two nozzles to supply multiple powders to make complex and functional gradient parts [4]. Laser power, powder feed rate, travel speed and the height shift during layer by layer deposition are some of the important process parameters (Table 2). The effect of travel speed at a given laser power and powder feed rate for a single layer and 10 layer deposits as shown in Fig.3 reveals that higher weld speeds generate lower heights, but the surface finish is better [5]. Surface roughness Ra between 12 to 25 microns can be attained by the choice of powders and process parameters. At lower speeds, the amount of molten powder is important due to higher beam powder interaction times and as anticipated the molten metal flows down to give a more rough surface finish. Other considerations that need careful thoughts are relevant to ensuing cooling rates that would affect the grain structures, phases and mechanical properties. This is discussed in subsequent sections. Fig. 2a Principle of Laser additive Manufacturing 2b Clad Machine (top), Clad parts (below) Table 2. Process parameters and input materials for CLAD (LAM) Process Parameters Input Materials Laser (Power, Wave Length, spot size, delivery system) Power density Powder (Flow rate, Single, multiple, coaxial or offset) Deposit layer thickness and line spacing Substrate (Chemistry, microstructure, texture..) Substrate (wrought, cast, forged..) Substrate temperature Shielding gas flow Post process treatment (HIP ) Feedstock (Powder, wire..)

4 2350 THERMEC 2013 Fig.3 Cross sections of laser tracks in case of 1 and10 layers with six different velocities (a)500, (b)700, ( c)900, (d)1100, (e)1300 and (f)1500 mm/min. Fixed laser power and powder flow rate [5]. Additive Manufacturing Using Arc-Weld Deposition Arc weld deposition is faster and more economical by an order of magnitude than laser and electron beam processes (50-130g/min as against 2-30g/min). The surface quality is in the decreasing order for laser, electron beam and arc. If finish machining is necessary, then these marginal quality differences do not matter. Gas Metal Arc Welding (GMAW) and Gas Tungsten Arc Welding (GTAW) are two of the potential techniques copied from welding for their simplicity and lower cost [6]. GMAW uses consumable electrode and so it is impossible to control independently the energy flow and mass flow. Therefore, the process tends to become unstable even for the slightest oxide layer. Furthermore, the feature size realizable is greater than 2mm and only materials that are available in wire or ribbon form can be used. GMAW-based is limited to large tools and parts. In Gas Tungsten Arc Welding (GTAW), the energy and mass flows can be controlled independent of each other, energy by controlling the current flow through the fixed tungsten electrode and mass flow by controlling the flow of the external consumable wire. Apart from this independent control which will lead to more homogeneous matrix and enable feature resolution of less than 1mm, it will be possible to employ differentially fed multiple wires/strips so as to build gradient matrix. Plasma arc laser deposition with wire addition has also been experimented in order to produce bulky parts faster with wire as feedstock [7]. Still not sure if arc processes would compete with laser or electron beam additive manufacturing, particularly as the price of laser based systems is coming down with their market extension. Metallurgical Features in Additive manufacturing Additive manufacturing is akin to multi-pass fusion welding as the part is constituted by layerby-layer deposition and depending on the process parameters and feedstock, the grain structures, phases and textures would be different and dependent on the lay out of the process itself [8]. From process perspectives itself, additive manufacturing brings in to foresight a number of complex interacting physical phenomena such as: Heat transfer, Fluid mechanics, continuum mechanics, melting, solidification, solid state phase transformations, grain growth, textures, diffusion. Further complexity arises as the number of process variables that include input materials interact to control the deposit characteristics such as: deposit dimensions, stress state, extent of lack of fusion, gas porosity, structure & chemical gradients. Heat is transferred to the powder from the laser beam and the molten droplets are transferred to a predefined point before solidification. The beam- powder interaction may result in evaporation of some of high vapor pressure elements contained in feed stock Further, any oxide on the feedstock or formed in its melting and solidification phases would be remnant in the AM product itself with subsequent consequences on the ductile characteristics of

5 Materials Science Forum Vols the part. The role of feedstock powders needs careful investigations as the grain homogeneity and shape are known to affect the profile of the deposit bead and the extent of projections that diminish the surface quality as well as the process stability. The microstructures and phase transformations are complex to predict without full knowledge of local thermal cycles and the structural characterization of the substrate. Besides difference in chemistry of feedstock and the substrate, their frame of reference relevant to the mechanical anisotropy, for instance rolling direction for a plate substrate, would be different from that of AM typically built around the laser axis. Further the dilution itself, which depends on the parameters selected during the process design, would generate chemical heterogeneity in the first build up passes. Additionally, the contours of the laser tracks and their order during product built up would influence the homogeneity, residual stresses and distortions of the AM product. Based on AM mechanisms and highlights discussed above, it seems important to list and examine some of the points from material perspectives. The contribution of substrate structure on the overall structure property relation. Relation between the feedstock and homogeneity of the deposit. Mechanical anisotropy along with structures in different regions of the deposit: close to substrate, middle and top of the deposit. For AM functional gradient materials, the transition zone strategy in relation with alloy compositions and process parameters. Selection of process parameters designed during AM fabrication: Laser power, power density, laser height/stitching shifts, travel speed and feedstock feed rate in relation with bead characteristics and surface finish. Establish methodologies in view of laser contours and sequences with critical focus on structure property relations. The above list is not exhaustive but proposes some of the points that merit investigations to elucidate and apprehend the basics of process design and its relation with the properties of the AM products. In fact, not only AM needs to be cost and time competitive with conventional processes, it must also deliver parts with sufficient and repeatable mechanical performance. Going a step forward, monitoring the process via temperature control followed by online NDT of the AM part would ensure confidence in the technology. An important point that needs to be considered is whether the conventional wrought alloys elaborated for thermal mechanical processing are viable candidates for AM technology. For example, Table 3 compares the tensile results on specimens machined from AM built up and those from a 316L plate. As anticipated from differences in their thermal mechanical treatments, AM specimens comparatively show lower ductility and lower mechanical strength. Theoretically, it looks be better to confine AM to alloys designed for casting. Or it may be necessary to design specific alloys for AM, but that would be time consuming and it s not sure if then the technology would be cost competitive with regards to the conventional manufacturing technologies. An intermediate solution may consist in working with conventional alloys and design post AM treatments such as HIP to improve mechanical characteristics and structural homogeneity. Table 3. Comparative tensile properties of AM and wrought commercial 316L stainless steel Yield Strength, MPa Ultimate Strength, MPa Elongation % AM 316L 401/ /771 43/ Plate 131/ /393 68/68

6 2352 THERMEC Conclusions The sign change in manufacturing led to phenomenal shortening of product launch times due to the total automation of the process. In conjunction with appropriate pre-/in-situ/post-build processes and treatments, it is today possible to obtain objects of almost any complexity and matrix. From material perspectives, the complexity of the process itself that brings in to play Fluid mechanics, continuum mechanics and thermic in first instance and then melting, solidification, and microstructural evolution during product geometrical evolution, requires more investigations to quantify the essential process parameters. As the essence of the technology to generate products as good as other conventional manufacturing technologies, the paper proposes a set of investigations that would and could facilitate the real product development apt for service via AM technology. References [1] G.N.Levy, R.Schindel, J.P. Kruth, Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, State of the art and future perspectives, CIRP Annals - Manufacturing Technology, Volume 52, Issue 2, 2003, [2] G. Levy, Additive Manufacturing and Electro Physical & Chemical Processes, CIRP ICME 12-8th CIRP Conference on Intelligent Computation in Manufacturing engineering, Innovative and Cognitive Production Technology Systems,18-20 July 2012, Ischia (Naples), Italy [3] Further information from [4] Further information from Irccyn, Ecole Centrale Nantes (France), [5] H.El Cheikh, B.Courant, S.Branchu, X.Huang, J.Y. Hascoet, Direct laser fabrication process with coaxial projection of 316L steel. Geometrical Characteristics and microstructure characterization of wall structures, Optics & laser Engineering 50 (2012), [6] S.Akula, K.P.Karunakaran, Hybrid adaptive layer manufacturing: an intelligent art of direct metal rapid tooling process. Robotics and Computer-Integrated Manufacturing 2 2,(2006) [7] F. Martina, J. Mehnen, S.W. Williams, P. Colegrove, and F. Wang, Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti 6Al 4V, Journal of Materials Processing Technology 212 (2012) [8] J.P.Kruth, G.Levy, F.Klocke, T.H.C.Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals: Manufacturing Technology 56, (2007)

Additive Manufacturing Challenges Ahead

Additive Manufacturing Challenges Ahead Additive Manufacturing Challenges Ahead Dr. S. SELVI Associate Professor, Dept. of Mechanical Engineering Institute of Road and Transport Technology, Erode 638 316. selvimech@yahoo.com Received 25, November

More information

MSC Solutions for Additive Manufacturing Simufact Additive

MSC Solutions for Additive Manufacturing Simufact Additive MSC Solutions for Additive Manufacturing Simufact Additive 15.01.2018 Simufact Product Portfolio Cold Forming Hot Forging Sheet Metal Forming Mechanical Joining Powder Bed Fusion Arc Welding Laser Beam

More information

Investigation of the benefits of pulse current for the additive manufacture of Ti-6Al-4V Guangsen Chen1, a, Zhenshu Ma2, b, Changmeng Liu3, c

Investigation of the benefits of pulse current for the additive manufacture of Ti-6Al-4V Guangsen Chen1, a, Zhenshu Ma2, b, Changmeng Liu3, c 5th International Conference on Environment, Materials, Chemistry and Power Electronics (EMCPE 2016) Investigation of the benefits of pulse current for the additive manufacture of Ti-6Al-4V Guangsen Chen1,

More information

Additive Manufacturing Technology

Additive Manufacturing Technology Additive Manufacturing Technology ME 012193 Spring I 2018 By Associate Prof. Xiaoyong Tian Cell:13709114235 Email: leoxyt@mail.xjtu.edu.cn Lecture 02 Fundmental AM processes Interactions in AM processes

More information

Lecture - 01 Introduction: Manufacturing and Joining

Lecture - 01 Introduction: Manufacturing and Joining Joining Technologies of Commercial Importance Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology Roorkee Lecture - 01 Introduction: Manufacturing and Joining

More information

Welding Engineering Dr. D. K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee

Welding Engineering Dr. D. K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Welding Engineering Dr. D. K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Module - 1 Introduction Lecture - 2 Classification of Welding Processes -

More information

Cladding with High Power Diode Lasers

Cladding with High Power Diode Lasers White Paper Cladding with High Power Diode Lasers Cladding is a well established process used in a variety of industries for improving the surface and near surface properties (e.g. wear, corrosion or heat

More information

Variable Axis Additive Manufacturing of Metallic Objects

Variable Axis Additive Manufacturing of Metallic Objects Keynote Lecture Variable Axis Additive Manufacturing of Metallic Objects K.P. Karunakaran, IIT Bombay, India Alain Bernard, IRCCyN, ECN, France Prathamesh Joshi, IIT Bombay, India 18 th European Forum

More information

BASED ON WELDING/JOINING TECHNOLOGIES

BASED ON WELDING/JOINING TECHNOLOGIES UDC 621.791:008 Generalized Additive Manufacturing BASED ON WELDING/JOINING TECHNOLOGIES GUAN QIAO Beijing Aeronautical Manufacturing Technology Research Institute P O Box 863, 100024 Beijing, China Being

More information

voestalpine Additive Manufacturing Center Singapore Pte Ltd

voestalpine Additive Manufacturing Center Singapore Pte Ltd voestalpine Additive Manufacturing Center Singapore Direct Metal Deposition, DMD. 30 th November 2017 www.voestalpine.com voestalpine Additive Manufacturing Center. Singapore Direct Metal Deposition» Company

More information

Chapter 3: Powders Production and Characterization

Chapter 3: Powders Production and Characterization Chapter 3: Powders Production and Characterization Course Objective... To introduce selective powder production processes and characterization methods. This course will help you : To understand properties

More information

Build-up strategies for generating components of cylindrical shape with laser metal deposition

Build-up strategies for generating components of cylindrical shape with laser metal deposition Lasers in Manufacturing Conference 2015 Build-up strategies for generating components of cylindrical shape with laser metal deposition Torsten Petrat a, *, Benjamin Graf b, Andrey Gumenyuk a,b, Michael

More information

Study of the characteristic of droplet transfer in laser-mig hybrid welding based on the phase matching control of laser pulse and arc waveform

Study of the characteristic of droplet transfer in laser-mig hybrid welding based on the phase matching control of laser pulse and arc waveform ICCM2015, 14-17 th July, Auckland, NZ Study of the characteristic of droplet transfer in laser-mig hybrid welding based on the phase matching control of laser pulse and arc waveform *G. Song¹, J.Wang¹,

More information

DIE RECONFIGURATION AND RESTORATION USING LASER-BASED DEPOSITION. T.W. Skszek and M. T. J. Lowney. Abstract. DMD Process Overview

DIE RECONFIGURATION AND RESTORATION USING LASER-BASED DEPOSITION. T.W. Skszek and M. T. J. Lowney. Abstract. DMD Process Overview DIE RECONFIGURATION AND RESTORATION USING LASER-BASED DEPOSITION T.W. Skszek and M. T. J. Lowney Abstract POM Company, Inc., located in Plymouth, Mich., has successfully commercialized the laser-based,

More information

Laser assisted Cold Spray

Laser assisted Cold Spray 2009-02-16 Laser assisted Cold Spray Andrew Cockburn, Matthew Bray, Rocco Lupoi Bill O Neill Innovative Manufacturing Research Centre (IMRC) Institute for Manufacturing, Department of Engineering, University

More information

Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication Materials Science Forum Online: 26-7- ISSN: 1662-9752, Vols. 519-521, pp 1291-1296 doi:1.428/www.scientific.net/msf.519-521.1291 26 Trans Tech Publications, Switzerland Metallurgical Mechanisms Controlling

More information

Lecture 29 DESIGN OF WELDED JOINTS VII

Lecture 29 DESIGN OF WELDED JOINTS VII Lecture 29 DESIGN OF WELDED JOINTS VII This chapter presents the influence of various welding related parameters on fatigue behavior of weld joints. Attempts have been made to explain how (residual stress,

More information

K-TIG vs EB. Keyhole TIG and Electron Beam Welding Compared

K-TIG vs EB. Keyhole TIG and Electron Beam Welding Compared What is? Keyhole GTAW explained Overview A high energy density variant of GTAW, (Keyhole TIG) is a high speed, single pass, full penetration welding technology that welds up to 100 times faster than TIG

More information

related to the welding of aluminium are due to its high thermal conductivity, high

related to the welding of aluminium are due to its high thermal conductivity, high Chapter 7 COMPARISON FSW WELD WITH TIG WELD 7.0 Introduction Aluminium welding still represents a critical operation due to its complexity and the high level of defect that can be produced in the joint.

More information

Cladding and Additive Layer Manufacturing with a laser supported arc process

Cladding and Additive Layer Manufacturing with a laser supported arc process Cladding and Additive Layer Manufacturing with a laser supported arc process A. Barroi, J. Hermsdorf, R. Kling Laser Zentrum Hannover e.v., Hannover, 30419, Germany Abstract This paper describes the potential

More information

Additive Manufacturing in the Nuclear Industry

Additive Manufacturing in the Nuclear Industry Additive Manufacturing in the Nuclear Industry Greg Hersak Mechanical Equipment Development May 4, 2018-1- Additive Manufacturing (AM) in the Nuclear Industry Agenda Overview of AM technologies Challenges

More information

Thermal Modeling and Experimental Validation in the LENS Process

Thermal Modeling and Experimental Validation in the LENS Process The Eighteenth Solid Freeform Fabrication Symposium August 6-8, 6 2007, Austin, Texas Thermal Modeling and Experimental Validation in the LENS Process Liang Wang 1, Sergio D. Felicelli 2, James E. Craig

More information

The Democratization of Additive Manufacturing

The Democratization of Additive Manufacturing The Democratization of Additive Manufacturing The Democratization of Additive Manufacturing 2 What is required of AM to be democratized? Cost Reduction (faster deposition) measured in Kg rather than gramms

More information

Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on 4340 Steel Substrate for Aircraft Landing Gear Application

Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on 4340 Steel Substrate for Aircraft Landing Gear Application Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on 4340 Steel Substrate for Aircraft Landing Gear Application Tian Fu 1, Todd E. Sparks 1, Frank Liou 1, Joseph Newkirk 2, Zhiqiang Fan 1,

More information

Keywords: Haynes 214, Nickel based super alloy, Gas tungsten arc welding, Post-weld heat treatment.

Keywords: Haynes 214, Nickel based super alloy, Gas tungsten arc welding, Post-weld heat treatment. Advanced Materials Research Vol. 585 (2012) pp 435-439 Online available since 2012/Nov/12 at www.scientific.net (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.585.435 Effect

More information

Control of Residual Stress, Distortion and Mechanical Properties in WAAM Ti64 Parts

Control of Residual Stress, Distortion and Mechanical Properties in WAAM Ti64 Parts Control of Residual Stress, Distortion and Mechanical Properties in WAAM Ti64 Parts Jan Roman Hönnige Welding Engineering and Laser Processing Centre Cranfield University Welding Engineering and Laser

More information

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304 A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304 Chen Zhang, Ming Gao, Geng Li, Xiaoyan Zeng Wuhan National Laboratory for Optoelectronics,

More information

LASIMM - AM production of large scale engineering structures

LASIMM - AM production of large scale engineering structures LASIMM - AM production of large scale engineering structures E. Assunção 1, L. Quintino 1, F. Martina 2, S. Williams 2, I. Pires 3, A. Lopez 3 1 EWF European Federation for Welding, Joining and Cutting

More information

In-Situ Preheating in Hybrid Layered Manufacturing for Tooling Elements

In-Situ Preheating in Hybrid Layered Manufacturing for Tooling Elements Solid Freeform Fabrication 2016: Proceedings of the 27th 2 th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper In-Situ Preheating in Hybrid

More information

IMPROVED MICROSTRUCTURE AND INCREASED MECHANICAL PROPERTIES OF ADDITIVE MANUFACTURE PRODUCED TI-6AL-4V BY INTERPASS COLD ROLLING.

IMPROVED MICROSTRUCTURE AND INCREASED MECHANICAL PROPERTIES OF ADDITIVE MANUFACTURE PRODUCED TI-6AL-4V BY INTERPASS COLD ROLLING. IMPROVED MICROSTRUCTURE AND INCREASED MECHANICAL PROPERTIES OF ADDITIVE MANUFACTURE PRODUCED TI-6AL-4V BY INTERPASS COLD ROLLING. Filomeno Martina,a, Stewart W. Williams, Paul Colegrove Welding Engineering

More information

Additive manufacturing of metallic alloys and its medical applications

Additive manufacturing of metallic alloys and its medical applications Additive manufacturing of metallic alloys and its medical applications A. Di Schino 1, M. Richetta 2 1 Dipartimento di Ingegneria Università degli Studi di Perugia, Via G. Duranti 93, 06125 Perugia, Italy

More information

Additive Manufacturing of Corrosion Resistant Alloys for Energy Applications

Additive Manufacturing of Corrosion Resistant Alloys for Energy Applications Additive Manufacturing of Corrosion Resistant Alloys for Energy Applications T.A. Palmer Department of Engineering Science and Mechanics and Materials Science and Engineering Pennsylvania State University

More information

Producing Metal Parts

Producing Metal Parts Producing Metal Parts CNC vs. Additive Manufacturing www.3dhubs.com METAL KIT 2 Introduction This Kit discusses how to select the right manufacturing process for metal parts by comparing CNC and Additive

More information

WELDING TECHNOLOGY AND WELDING INSPECTION

WELDING TECHNOLOGY AND WELDING INSPECTION WELDING TECHNOLOGY AND WELDING INSPECTION PRESENTED BY: GOPAL KUMAR CHOUDHARY SVL ENGINEERING SERVICES CHENNAI CONTENTS: DEFINATION TYPES OF WELDING ELECTRODE GEOMETRY EQUIPMENT QUALITY PROCESS SAFETY

More information

UNCLASSIFIED/UNLIMITED. Ultrasonic Consolidation : Status Report on Development of Solid State Net Shape Processing for Direct Manufacturing

UNCLASSIFIED/UNLIMITED. Ultrasonic Consolidation : Status Report on Development of Solid State Net Shape Processing for Direct Manufacturing of Solid State Net Shape Processing for Direct Manufacturing ABSTRACT Dr. Dawn R. White Solidica, Inc. 3941 Research Park Drive, Ste. C Ann Arbor, MI 48108 USA dawn@solidica.com Ultrasonic Consolidation

More information

MODELING OF LASER BASED DIRECT METAL DEPOSITION PROCESS

MODELING OF LASER BASED DIRECT METAL DEPOSITION PROCESS MODELING OF LASER BASED DIRECT METAL DEPOSITION PROCESS Jayanth N PG Student PSG College of Technology jayanthnagaraj@gmail.com Ravi K R Associate Professor PSG College of Technology Krravi.psgias@gmail.com

More information

Additive Manufacturing

Additive Manufacturing www.dmgmori.com LASERTEC 65 3D Additive Manufacturing Laser Deposition Welding & Milling LASERTEC integration in DMG MORI machines ALL IN 1: Laser Deposition Welding & Milling Additive Manufacturing in

More information

a service offered by the Hempel Special Metals Group

a service offered by the Hempel Special Metals Group Hot Isostatic Pressing of Near Net Shaped Parts a service offered by the Hempel Special Metals Group content introduction description of the method supply chain aspects & quality management applications

More information

"Advanced Manufacturing Technologies", UCL, Louvain-la-Neuve, 24/11/2015

Advanced Manufacturing Technologies, UCL, Louvain-la-Neuve, 24/11/2015 "Advanced Manufacturing Technologies", UCL, Louvain-la-Neuve, 24/11/2015 1 2 Outline Introduction Additive manufacturing Laser Beam Melting vs Laser Cladding Specificities (1) ultra-fast thermal cycles

More information

Module 3 Selection of Manufacturing Processes. IIT Bombay

Module 3 Selection of Manufacturing Processes. IIT Bombay Module 3 Selection of Manufacturing Processes Lecture 1 Review of Manufacturing Processes Instructional objectives By the end of this lecture, the student will learn what are the different types of manufacturing

More information

Investigation on the Cutting Process of Plasma Sprayed Iron Base Alloys

Investigation on the Cutting Process of Plasma Sprayed Iron Base Alloys Key Engineering Materials Online: 2010-09-06 ISSN: 1662-9795, Vols. 447-448, pp 821-825 doi:10.4028/www.scientific.net/kem.447-448.821 2010 Trans Tech Publications, Switzerland Investigation on the Cutting

More information

Introduction to Welding Technology

Introduction to Welding Technology Introduction to Welding Technology Welding is a fabrication process used to join materials, usually metals or thermoplastics, together. During welding, the pieces to be joined (the workpieces) are melted

More information

Literature Review [P. Jacobs, 1992] Needs of Manufacturing Industry [X. Yan, P. Gu, 1996] Karapatics N., 1999]

Literature Review [P. Jacobs, 1992] Needs of Manufacturing Industry [X. Yan, P. Gu, 1996] Karapatics N., 1999] Literature Review Based on this knowledge the work of others relating to selective laser sintering (SLSLM) of metal is reviewed, leading to a statement of aims for this PhD project. Provides background

More information

ADVANCING ADDITIVE MANUFACTURING IN AEROSPACE AM-AERO14

ADVANCING ADDITIVE MANUFACTURING IN AEROSPACE AM-AERO14 ADVANCING ADDITIVE MANUFACTURING IN AEROSPACE AM-AERO14 ADDITIVE MANUFACTURING Aerospace is leading the way in adopting additive manufacturing (AM) for the manufacturing industry. AM allows aerospace manufacturers

More information

Y. Zhou, X. Zhou, Q. Teng, Q.S. Wei, Y.S. Shi

Y. Zhou, X. Zhou, Q. Teng, Q.S. Wei, Y.S. Shi Investigation on the scan strategy and property of 316L stainless steel-inconel 718 functionally graded materials fabricated by selective laser melting Y. Zhou, X. Zhou, Q. Teng, Q.S. Wei, Y.S. Shi State

More information

Metallurgy, Alloys, and Applications p. 1 Introduction and Overview p. 3 Major Groups of Copper and Copper Alloys p. 3 Properties of Importance p.

Metallurgy, Alloys, and Applications p. 1 Introduction and Overview p. 3 Major Groups of Copper and Copper Alloys p. 3 Properties of Importance p. Preface p. vii Metallurgy, Alloys, and Applications p. 1 Introduction and Overview p. 3 Major Groups of Copper and Copper Alloys p. 3 Properties of Importance p. 3 Fabrication Characteristics p. 5 Alloy

More information

Laser Machining Processes Laser heat processing divided into 3 regions Heating Melting Vaporization

Laser Machining Processes Laser heat processing divided into 3 regions Heating Melting Vaporization Laser Machining Processes Laser heat processing divided into 3 regions Heating Melting Vaporization Laser Surface Treatment Annealing or Transformation Hardening Surface hardness Surface Melting Homogenization,

More information

Latest Development Work on Induction Assisted Laser Cladding Processes

Latest Development Work on Induction Assisted Laser Cladding Processes Latest Development Work on Induction Assisted Laser Cladding Processes C. Leyens 1,2, F. Brückner 1, S. Nowotny 1 1 Fraunhofer Institute for Material and Beam Technology (IWS), Dresden, Germany 2 Dresden

More information

Arc processes activities in Additive Manufacture. Geoff Melton and Adrian Addison

Arc processes activities in Additive Manufacture. Geoff Melton and Adrian Addison Arc processes activities in Additive Manufacture Geoff Melton and Adrian Addison Introduction There are many different processes for additive manufacture They all involve a source of heat and a consumable

More information

RESIDUAL STRESS REDUCTION IN HIGH PRESSURE INTERPASS ROLLED WIRE+ARC ADDITIVE MANUFACTURING TI-6AL-4V COMPONENTS

RESIDUAL STRESS REDUCTION IN HIGH PRESSURE INTERPASS ROLLED WIRE+ARC ADDITIVE MANUFACTURING TI-6AL-4V COMPONENTS RESIDUAL STRESS REDUCTION IN HIGH PRESSURE INTERPASS ROLLED WIRE+ARC ADDITIVE MANUFACTURING TI-6AL-4V COMPONENTS Filomeno Martina a,, Matthew Roy b, Paul Colegrove a, Stewart W. Williams a a Welding Engineering

More information

DEVELOPMENTS IN LARGE SCALE ADDITIVE MANUFACTURE THE POTENTIAL AND LIMITATIONS OF WIRE ARC ADDITIVE MANUFACTURE AND ASSOCIATED TECHNOLOGIES

DEVELOPMENTS IN LARGE SCALE ADDITIVE MANUFACTURE THE POTENTIAL AND LIMITATIONS OF WIRE ARC ADDITIVE MANUFACTURE AND ASSOCIATED TECHNOLOGIES 35 th International Manufacturing Conference (IMC35) 2018 DEVELOPMENTS IN LARGE SCALE ADDITIVE MANUFACTURE THE POTENTIAL AND LIMITATIONS OF WIRE ARC ADDITIVE MANUFACTURE AND ASSOCIATED TECHNOLOGIES Richard

More information

Welding of Thin Foils with Elliptical Beams. Abe, Nobuyuki; Funada, Yoshinori; Tsukamoto, Masahiro.

Welding of Thin Foils with Elliptical Beams. Abe, Nobuyuki; Funada, Yoshinori; Tsukamoto, Masahiro. Title Author(s) Citation Welding of Thin Foils with Elliptical Beams Abe, Nobuyuki; Funada, Yoshinori; Tsukamoto, Masahiro Transactions of JWRI. 37(1) P.27-P.31 Issue Date 2008-07 Text Version publisher

More information

New Technological Approach in Fabrication of High Purity Nickel Wire Theodor Stuth 1,a, Rainer Theile 1,b * and Oleksandra Krivtsova 1,c

New Technological Approach in Fabrication of High Purity Nickel Wire Theodor Stuth 1,a, Rainer Theile 1,b * and Oleksandra Krivtsova 1,c Materials Science Forum Submitted: 2016-09-27 ISSN: 1662-9752, Vol. 892, pp 59-63 Revised: 2016-12-02 doi:10.4028/www.scientific.net/msf.892.59 Accepted: 2016-12-19 2017 Trans Tech Publications, Switzerland

More information

Advanced technology for cladding

Advanced technology for cladding Advanced technology for cladding Oil and Gas www.commersald.com Via Labriola,42 41123 Modena - Italy Tel.+ 39 059 822374 Fax+ 39 059 333099 english version The requirements are growing New requirements

More information

Sanjay Joshi, Ph.D. Professor of Industrial and Manufacturing Engineering

Sanjay Joshi, Ph.D. Professor of Industrial and Manufacturing Engineering Sanjay Joshi, Ph.D. Professor of Industrial and Manufacturing Engineering Harold and Inge Marcus Department of Industrial and Manufacturing Engineering Introduction to CIMP-3D Center for Innovative Materials

More information

Dr. M. Sayuti, ST.,M.Sc JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS MALIKUSSALEH

Dr. M. Sayuti, ST.,M.Sc JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS MALIKUSSALEH POWDER METALLURGY Dr. M. Sayuti, ST.,M.Sc JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS MALIKUSSALEH 1- INTRODUCTION Powder metallurgy is the name given to the process by which fine powdered materials

More information

Analysis of Surface Properties of Al 2 O 3 Coating over Mild Steel Using Plasma Spray Process

Analysis of Surface Properties of Al 2 O 3 Coating over Mild Steel Using Plasma Spray Process Analysis of Surface Properties of Al 2 O 3 Coating over Mild Steel Using Plasma Spray Process I Arul raj 1, S Ramachandran 2 Research scholar, Faculty of Mechanical Engineering, Sathyabama University,

More information

PULSED LASER WELDING

PULSED LASER WELDING PULSED LASER WELDING Girish P. Kelkar, Ph.D. Girish Kelkar, Ph.D, WJM Technologies, Cerritos, CA 90703, USA Laser welding is finding growing acceptance in field of manufacturing as price of lasers have

More information

ADDITIVE MANUFACTURING OF TITANIUM ALLOYS

ADDITIVE MANUFACTURING OF TITANIUM ALLOYS ADDITIVE MANUFACTURING OF TITANIUM ALLOYS F.H. (Sam) Froes Consultant to the Titanium Industry Based on a paper by B. Dutta and F.H. (Sam) Froes which appeared in AM&P Feb. 2014 pp. 18-23 OUTLINE Cost

More information

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding Fusion Consumable Electrode SMAW Shielded Metal Arc Welding GMAW Gas Metal Arc Welding SAW Submerged Arc Welding Non-Consumable Electrode GTAW Gas Tungsten Arc Welding PAW Plasma Arc Welding High Energy

More information

Scanning space analysis in Selective Laser Melting for CoCrMo powder

Scanning space analysis in Selective Laser Melting for CoCrMo powder Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 63 ( 213 ) 37 378 The Manufacturing Engineering Society International Conference, MESIC 213 Scanning space analysis in Selective

More information

ADVANCED ELECTRON BEAM FREE FORM FABRICATION METHODS & TECHNOLOGY

ADVANCED ELECTRON BEAM FREE FORM FABRICATION METHODS & TECHNOLOGY ADVANCED ELECTRON BEAM FREE FORM FABRICATION METHODS & TECHNOLOGY S. Stecker, K.W. Lachenberg, H. Wang and R.C. Salo Sciaky Incorporated, Chicago, Illinois, USA Abstract Electron Beam Additive Manufacturing

More information

Copyright 1999 Society of Manufacturing Engineers FUNDAMENTAL MANUFACTURING PROCESSES Welding NARRATION (VO):

Copyright 1999 Society of Manufacturing Engineers FUNDAMENTAL MANUFACTURING PROCESSES Welding NARRATION (VO): Copyright 1999 Society of Manufacturing Engineers --- 1 --- FUNDAMENTAL MANUFACTURING PROCESSES Welding SCENE 1. CG: Fusion Welding Processes white text centered on black SCENE 2. tape 528, 14:18:33-14:18:52

More information

STUDY OF SHAPE DEPOSITION MANUFACTURING

STUDY OF SHAPE DEPOSITION MANUFACTURING STUDY OF SHAPE DEPOSITION MANUFACTURING 1 Ashish Bhorkade, 2 Chetan Bharambe, 3 Suraj Bhangale 4 Pankaj Patil 1,2,3 B.E.Scholar BVCOE&RI Nashik 4 Assistant Professor Mechanical Dept. BVCOE&RI Nashik ABSTRACT

More information

COAXIAL LASER CLADDING OF STELLITE: ANYLYSIS OF PROCESS PARAMETERS. Marek VOSTŘÁK, Matěj HRUŠKA, Šárka HOUDKOVÁ, Eva SMAZALOVÁ

COAXIAL LASER CLADDING OF STELLITE: ANYLYSIS OF PROCESS PARAMETERS. Marek VOSTŘÁK, Matěj HRUŠKA, Šárka HOUDKOVÁ, Eva SMAZALOVÁ COAXIAL LASER CLADDING OF STELLITE: ANYLYSIS OF PROCESS PARAMETERS Marek VOSTŘÁK, Matěj HRUŠKA, Šárka HOUDKOVÁ, Eva SMAZALOVÁ University of West Bohemia, New Technology Research Centre, Univerzitní 8,

More information

Metal Additive Technology 101 Technology Choices and Applications

Metal Additive Technology 101 Technology Choices and Applications Metal Additive Technology 101 Technology Choices and Applications Jeff Crandall Additive Manufacturing Research & Applications Senior Engineer Connecticut Center for Advanced Technology Advanced Manufacturing

More information

Fabrication additive par procédé CLAD : principes, performance et exemples d applications

Fabrication additive par procédé CLAD : principes, performance et exemples d applications Fabrication additive par procédé CLAD : principes, performance et exemples d applications Additive Manufacturing with CLAD process: principles, performances and application examples. Didier BOISSELIER

More information

The Many Facets and Complexities of 316L and the Effect on Properties

The Many Facets and Complexities of 316L and the Effect on Properties The Many Facets and Complexities of 316L and the Effect on Properties Ingrid Hauer Miller Höganäs AB, Höganäs, Sweden state and country Ingrid.hauer@hoganas.com, +46702066244 Abstract One of the most widely

More information

Additive Manufacturing a Specialty Metals Perspective. Credit Suisse Additive Manufacturing Symposium May 10, 2018

Additive Manufacturing a Specialty Metals Perspective. Credit Suisse Additive Manufacturing Symposium May 10, 2018 Additive Manufacturing a Specialty Metals Perspective Credit Suisse Additive Manufacturing Symposium May 10, 2018 Cautionary Statement Forward-Looking Statements This presentation contains forward-looking

More information

Development and Characterization of Functionally Graded Materials Using Hybrid Layered Manufacturing

Development and Characterization of Functionally Graded Materials Using Hybrid Layered Manufacturing 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Development and Characterization of Functionally

More information

8-1 Yoshima Kogyo Danchi Iwaki, Fukushima, JAPAN 1,5

8-1 Yoshima Kogyo Danchi Iwaki, Fukushima, JAPAN 1,5 Materials Science Forum Online: 2007-01-15 ISSN: 1662-9752, Vols. 534-536, pp 269-272 doi:10.4028/www.scientific.net/msf.534-536.269 2007 Trans Tech Publications, Switzerland Development of Optical Device

More information

Influence of Parameters of Gas Metal Arc Welding on Macrostructures and Mechanical Properties of Austenitic Stainless Steels

Influence of Parameters of Gas Metal Arc Welding on Macrostructures and Mechanical Properties of Austenitic Stainless Steels 6th WSEAS International Conference on SYSTEM SCIENCE and SIMULATION in ENGINEERING, Venice, Italy, November 21-23, 2007 144 Influence of Parameters of Gas Metal Arc Welding on Macrostructures and Mechanical

More information

Numerical Simulation of the Temperature Distribution and Microstructure Evolution in the LENS Process

Numerical Simulation of the Temperature Distribution and Microstructure Evolution in the LENS Process The Seventeenth Solid Freeform Fabrication Symposium Aug 14-16, 2006, Austin, Texas Numerical Simulation of the Temperature Distribution and Microstructure Evolution in the LENS Process L. Wang 1, S. Felicelli

More information

PRODUCING OF BIMETAL JOINTS BY LASER WELDING WITH FULL PENETRATION

PRODUCING OF BIMETAL JOINTS BY LASER WELDING WITH FULL PENETRATION PRODUCING OF BIMETAL JOINTS BY LASER WELDING WITH FULL PENETRATION M. SCHMIDT 1 and S.V. KURYNTSEV 2 1 Fridrich-Aleksandr University, Erlangen, Germany 2 A.N. Tupolev Kazan National Research Technical

More information

Ceramic and glass technology

Ceramic and glass technology 1 Row materials preperation Plastic Raw materials preperation Solid raw materials preperation Aging wet milling mastication Mixing seving Grain size reduction Milling Crushing Very fine milling Fine milling

More information

INTERESTS OF 5 AXIS TOOLPATHS GENERATION FOR WIRE ARC ADDITIVE MANUFACTURING OF ALUMINUM ALLOYS 1. INTRODUCTION

INTERESTS OF 5 AXIS TOOLPATHS GENERATION FOR WIRE ARC ADDITIVE MANUFACTURING OF ALUMINUM ALLOYS 1. INTRODUCTION Journal of Machine Engineering, Vol. 17, No. 3, 2017 Received: 24 January 2017 / Accepted: 05 June 2017 / Published online: 28 September 2017 additive manufacturing, 5 axis manufacturing, WAAM Jean-Yves

More information

Blown Powder Laser Cladding with Novel Processing Parameters for Isotropic Material Properties. Abstract

Blown Powder Laser Cladding with Novel Processing Parameters for Isotropic Material Properties. Abstract Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference 28th Annual International Solid Freeform Fabrication

More information

Direct metal laser deposition of titanium powder Ti-6Al-4V

Direct metal laser deposition of titanium powder Ti-6Al-4V Journal of Physics: Conference Series PAPER OPEN ACCESS Direct metal laser deposition of titanium powder Ti-6Al-4V To cite this article: D P Bykovskiy et al 2017 J. Phys.: Conf. Ser. 941 012031 View the

More information

Monitoring of Lack of Bond in a Cladded (Alloy 825) Carbon Steel Vessel by Ultrasonic Phased Array Longitudinal Waves.

Monitoring of Lack of Bond in a Cladded (Alloy 825) Carbon Steel Vessel by Ultrasonic Phased Array Longitudinal Waves. More Info at Open Access Database www.ndt.net/?id=15153 Monitoring of Lack of Bond in a Cladded (Alloy 825) Carbon Steel Vessel by Ultrasonic Phased Array Longitudinal Waves. Santanu Saha 1, Amaresh Majumder,2

More information

Advanced Robotic Laser Cladding The Oerlikon MetcoClad System. July 2015

Advanced Robotic Laser Cladding The Oerlikon MetcoClad System. July 2015 Advanced Robotic Laser Cladding The Oerlikon MetcoClad System July 2015 Laser Cladding is a welding technology Laser Cladding (LC) means laser build-up welding, also known as Laser Metal Forming (LMF),

More information

The principle Of Tungsten Inert Gas (TIG) Welding Process

The principle Of Tungsten Inert Gas (TIG) Welding Process The principle Of Tungsten Inert Gas (TIG) Welding Process This chapter presents the principle of tungsten inert gas (TIG) welding process besides important components of TIG welding system and their role.

More information

Challenges for Metallic 3D-Printed Parts. Do we want to print a plane?

Challenges for Metallic 3D-Printed Parts. Do we want to print a plane? Challenges for Metallic 3D-Printed Parts Do we want to print a plane? by Emiel Amsterdam, Gerrit Kool Aerospace Vehicles Division, Department Gas turbines & Structural Integrity Forum on Tracking Detector

More information

Segmented 8% YSZ thermal barrier coating solutions using cascaded arc gun technology

Segmented 8% YSZ thermal barrier coating solutions using cascaded arc gun technology Segmented 8% YSZ thermal barrier coating solutions using cascaded arc gun technology Robust thermal protection for the hot section of gas turbine engines continues to develop as engine thermal efficiency

More information

5-AXIS SLICING METHODS FOR ADDITIVE MANUFACTURING PROCESS

5-AXIS SLICING METHODS FOR ADDITIVE MANUFACTURING PROCESS Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper 5-AXIS SLICING METHODS FOR ADDITIVE

More information

3D Printing Park Hong-Seok. Laboratory for Production Engineering School of Mechanical and Automotive Engineering University of ULSAN

3D Printing Park Hong-Seok. Laboratory for Production Engineering School of Mechanical and Automotive Engineering University of ULSAN 3D Printing 2016. 05. 25 Park Hong-Seok Laboratory for Production Engineering School of Mechanical and Automotive Engineering University of ULSAN http://lpe.ulsan.ac.kr Why Do We Need 3d Printing? Complexity

More information

Hot Cracking Susceptibility in the TIG Joint of AZ31 Mg-Alloy Plates Produced by the TRC Process with and without Intensive Melt Shearing

Hot Cracking Susceptibility in the TIG Joint of AZ31 Mg-Alloy Plates Produced by the TRC Process with and without Intensive Melt Shearing Materials Science Forum Vol. 765 (2013) pp 756-760 (2013) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/msf.765.756 Hot Cracking Susceptibility in the TIG Joint of AZ31 Mg-Alloy Plates

More information

Additive manufacturing of CERAMICS technology overview. 3D Printing Materials Conference

Additive manufacturing of CERAMICS technology overview. 3D Printing Materials Conference Additive manufacturing of CERAMICS technology overview 3D Printing Materials Conference Maastricht, January 27, 2015 Increase the competitiveness of companies through technological innovations Sirris 25

More information

Laser welding study for further development in essential power plant part repairs

Laser welding study for further development in essential power plant part repairs Songklanakarin J. Sci. Technol. 37 (3), 361-367, May-Jun. 2015 http://www.sjst.psu.ac.th Original Article Laser welding study for further development in essential power plant part repairs Isarawit Chaopanich*,

More information

Manufacturing Process-I Prof. Dr. D.K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee

Manufacturing Process-I Prof. Dr. D.K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Manufacturing Process-I Prof. Dr. D.K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Module - 03 Lecture - 02 Welding Process Classification Welcome

More information

Experimental Study of Tensile Test in Resistance Spot Welding Process

Experimental Study of Tensile Test in Resistance Spot Welding Process 1228 Experimental Study of Tensile Test in Resistance Spot Welding Process Abstract Resistance spot welding (RSW) is a widely used joining process for fabricating sheet metal assemblies in automobile industry.in

More information

Additive Manufacturing at GE Aviation

Additive Manufacturing at GE Aviation Additive Manufacturing at GE Aviation TRAM 2012 Chicago, Il Definition: ADDITIVE MANUFACTURING (AM), n process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed

More information

A STRATEGY FOR FABRICATING COMPLEX STRUCTURES VIA A HYBRID MANUFACTURING PROCESS

A STRATEGY FOR FABRICATING COMPLEX STRUCTURES VIA A HYBRID MANUFACTURING PROCESS A STRATEGY FOR FABRICATING COMPLEX STRUCTURES VIA A HYBRID MANUFACTURING PROCESS Tarak A. Amine, Todd E. Sparks and Frank Liou Missouri University of Science and Technology Rolla, Missouri, United States

More information

High Quality Ceramic Coatings Sprayed by High Efficiency Hypersonic Plasma Spraying Gun Sheng Zhu, Binshi Xu and JiuKun Yao

High Quality Ceramic Coatings Sprayed by High Efficiency Hypersonic Plasma Spraying Gun Sheng Zhu, Binshi Xu and JiuKun Yao Materials Science Forum Online: 2005-01-15 ISSN: 1662-9752, Vols. 475-479, pp 3981-3984 doi:10.4028/www.scientific.net/msf.475-479.3981 2005 Trans Tech Publications, Switzerland High Quality Ceramic Coatings

More information

Introduction to Additive Manufacturing

Introduction to Additive Manufacturing Introduction to Additive Manufacturing Aberdeen, May 2017 www.voestalpine.com Don t try to use AM for parts which are dedicated to other manufacturing technologies! AM is only economically if you can add

More information

Laser Surface Melting Want to melt the surface locally Melt & rapid solidification get fine homogeneous structures (recrystallize) Little thermal

Laser Surface Melting Want to melt the surface locally Melt & rapid solidification get fine homogeneous structures (recrystallize) Little thermal Laser Surface Melting Want to melt the surface locally Melt & rapid solidification get fine homogeneous structures (recrystallize) Little thermal penetration thus small thermal distortion for sensitive

More information

Reviewed, accepted September 14, 2006

Reviewed, accepted September 14, 2006 Evaluation of Mechanical Properties and Microstructure for Laser Deposition Process and Welding Process Yaxin Bao 1, Jianzhong Ruan 1, Todd E. Sparks 1, Jambunathan Anand 2, Joseph Newkirk 2, Frank Liou

More information

Thermal Durability and Abradability of Plasma Sprayed Al-Si-Polyimide Seal Coatings p. 85

Thermal Durability and Abradability of Plasma Sprayed Al-Si-Polyimide Seal Coatings p. 85 Trends in Automotive Applications of Thermal Spray Technology in Japan p. 1 Production Plasma in the Automotive Industry: A European Viewpoint p. 7 The Effect of Microstructure on the Wear Behavior of

More information

Laser Diodes System for Flexible Manufacturing Authors: John M. Haake, Crystal M. Cook and Mark S. Zediker

Laser Diodes System for Flexible Manufacturing Authors: John M. Haake, Crystal M. Cook and Mark S. Zediker Laser Diodes System for Flexible Manufacturing Authors: John M. Haake, Crystal M. Cook and Mark S. Zediker Introduction Industrial laser systems based on high power laser diodes are now available with

More information

Materials & Processes in Manufacturing

Materials & Processes in Manufacturing 2003 Bill Young Materials & Processes in Manufacturing ME 151 Chapter 37 Arc Processes Chapter 38 Resistance Welding Chapter 39 Brazing and Soldering 1 Introduction Arc welding processes produce fusion

More information