Electrolytes: Stabilized Zirconia

Size: px
Start display at page:

Download "Electrolytes: Stabilized Zirconia"

Transcription

1 Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali Electrolytes: Stabilized Zirconia Prof. Antonella Glisenti - Dip. Scienze Chimiche - Università degli Studi di Padova

2 Bibliography 1. N.Q. Minh, T. Takahashi: Science and technology of ceramic fuel cells Elsevier O. Yamamoto et al. Ionics, 4 (1998) V.V. Kharton et al. Solid State Ionics 174 (2004) S.P.S. Badwal et al. Solid State Ionics (2000) 91-99

3 Electrolyte: requirements Functions: To conduct ions between the anode and cathode To separate the fuel from the oxidant in the fuel cell Requirements: Stability chemical, morphological, dimensional stability at the dual atmosphere and at the operating and fabrication temperatures Ionic conductivity in the dual atmosphere (at the FC operating temperature) to minimize ohmic losses (negligible electronic conductivity) Compatibility chemical compatibility with the other cell components Thermal expansion must match (from RT to the operating and fabrication temperatures) that of other components; thermal coefficient stable in the dual atmosphere Porosity high density or no connected porosity to prevent gas cross leakage

4 Electrolytes Electrolyte is a solid, non-porous metal oxide (Y 2 O 3 -stablilized 3, 8 or 10% ZrO 2 ). Nernst 1890s = certain perovskites, stabilized zirconias, conducted ions in a certain temperature range. Baur and Preis 1943 = such electrolytes could be used as (oxygen) ion conductors in fuel cells. YSZ = high ionic conductivity at T > 700 C negligible electronic conductivity (above 1500 C it becomes an electronic conductor). FC 250 ma/cm 2 at 1000 C electrolyte = 200 µm thickness, resistance loss = 50 mv. 800 C = electrolyte thickness µm to maintain a similar ohmic loss ZrO 2 = stable in SOFC oxidizing and reducing atmospheres; only under highly reducing conditions (< atm at 1000 C) it is reduced to ZrO 2-δ ZrO 2 is stabilized by direct substitution of divalent or trivalent cations for Zr 4+ ; this substitution creates oxygen vacancies = high oxygen-ion mobility. Y 2 O 3 ZrO 2 2 Y Zr + V O + 3O x O

5 Zirconia and stabilized zirconia ZrO 2 : From RT to 1170 C monoclinic From 1170 C to 2370 C tetragonal From 2370 C to 2680 C (melting point) cubic CaO, Y 2 O 3, MgO, Sc 2 O 3 and certain rare-earth oxides stabilize ZrO 2 in cubic fluorite structure These oxides exhibit a relatively high solubility in ZrO 2 Crystal structure for (ZrO 2 ) 1-x (Ln 2 O 3 ) x

6 Influence of dopant and dopant concentration The conductivity shows a maximum for a narrow range of dopant concentrations: the defect complexes (Y Zr V O and Y V OY Zr Zr ) Variation of ionic conductivity of stabilized ZrO 2 with dopant concentration at 1080 K The conductivity of stabilized ZrO 2 depends on the size of dopant cation ( Nd 3+, Sm 3+, Gd 3+, Y 3+, Yb 3+, Sc 3+ = 0.104, 0.097, 0.092, 0.086, nm Zr 4+ = nm): lattice strain, steric blocking effect

7 Zirconia and stabilized zirconia ZrO 2 Ln 2 O 3 (trivalent rare earths) Y 2 O 3, Sc 2 O 3 ZrO 2 AO (A = divalent alkaline earth metal) corresponding conductivity (processing history and microstructural features): dopant segregation, impurities, kinetically limited phase transitions and formation of ordered microdomains. Dependence of the electrical conductivity of Zr 0.90 R 0.10 O 1.95 ceramics (R = rare earth element) on radii of the cations R 3+ at 1000 C (1) and 800 C (2). (ceramics prepared by coprecipitation of hydroxides + sintering). Maximum ionic conductivity when the concentration of acceptor-type dopant(s) is close to the low stabilization limit Zr 1-x Y x O 2x-2 x= Zr 1-x Sc x O 2x-2 x = conductivity depends on the difference between the host and dopant cation radii

8 Zirconia and stabilized zirconia High conductivity in solid oxide ion conductors = low E att for conduction E att for the conduction depends on the dopant ion radius. > difference between the host and dopant cation radii > association of oxygen vacancies and dopant cations into complex defects of low mobility. The ZrO 2 -MO 2 -Ln 2 O 3 (M = Ce, Hf) ternary systems have been examined to change the ZrO 2 host lattice parameter. CeO 2 was selected to expand the ZrO 2 lattice and HfO 2 to reduce it.

9 Scandia Stabilized Zirconia (SSZ) ZrO 2 Sc 2 O 3 Sc 2 O 3 ZrO > 5.0 mol% Sc 2 O 3 = show tetragonal structure with tetragonality decreasing with increasing Sc 2 O 3 content 9 mol% Sc 2 O 3 = structure is nearly cubic mol% Sc 2 O 3 = Ordered β-phase (Sc 2 Zr 7 O 17 ). depending on the preparation conditions the homogeneity of the material, the thermal history and the temperature of investigation, this phase has been reported in compositions containing much lower level of Sc 2 O 3

10 Compositions with or below 9.5 mol% Sc 2 O 3 content showed the normal behaviour observed for such materials: a continuously changing slope towards lower activation energy with an increase in the measurement temperature. However, both 10.0 and 11.0 mol% Sc 2 O 3 ZrO 2 compositions showed a clear jump in the conductivity curves. Rhombohedralβ-phase (Sc 2 Zr 7 O 17 )

11 Electrolyte: preparation Preparation of fully dense polycrystalline layers 1. Powder technology Involves compaction of ZrO 2 powder into the desired shape (tape casting, tape calendering) and densification at elevated temperatures 2. Deposition procedure Involves the formation of a thin layer (on a substrate or support) by a chemical or physical process Electrochemical vapour deposition (EVD) Chemical vapour deposition (CVD) Rf sputtering Rf ion plating Spray pyrolysis Sol-gel Pulse laser deposition

12 Influence of temperature The conductivity of stabilized ZrO 2 as a function of temperature typically follows Arrhenius-type behaviour. where σ = conductivity, T = temperature, k = Boltzmann constant, A σ = preexponential constant, α and β = positive constants this equation holds for single crystal and polycrystalline YSZ in a certain temperature range, α+βt -1 can be approximated as a constant (= activation energy for conduction, E σ ), and: σt = A σ exp(-e σ /kt) Arrhenius resistivity plots for Y 2 O 3 -doped ZrO 2

13 Influence of atmosphere The conductivity of stabilized ZrO 2 is described by empirical relations; (ZrO 2 ) 0.92 (Y 2 O 3 ) 0.08 between 800 and 1050 C with partial pressures of oxygen (0.21 to atm) Ionic conductivity Electronic conductivity

14 Influence of atmosphere The conductivity of stabilized ZrO 2 is usually independent of oxygen partial pressure over several orders of magnitude Conductivities of stabilized zirconia at 1000 C as a function of oxygen partial pressure Conductivities of (ZrO 2 ) 0.9 (Y 2 O 3 ) 0.10 as a function of oxygen partial pressure only at very low oxygen partial pressure the electronic conductivity becomes significant and the total conductivity starts to increase with decreasing oxygen partial pressure The oxygen partial pressure at which the electronic conductivity becomes significant is higher at higher temperatures

15 Influence of grain boundary Conductivity polycrystalline YSZ = bulk (BC) + grain-boundary (GBC) Equivalent circuits and schematic complex impedance plot of polycrystalline ZrO 2 Complex impedance plot of polycrystalline (ZrO 2 ) 0.9 (Y 2 O 3 ) 0.1 at 800 C in air

16 Influence of grain boundary Conductivity polycrystalline YSZ = bulk (BC) + grain-boundary (GBC) GBC: impurities or second phases introduced via the raw materials or during the fabrication processes SiO 2 and Al 2 O 3 (commonly present as impurities in commercial YSZ powders or added to starting powders as sintering aids). impurity/grain size Small grains (< 2-4 µm) GBC is independent of the grain size and is 100 times lower than that of the bulk Large grains (> 2-4 µm) GBC decreases with increasing grain size impurity level GBC: poor contribution for high-density pure polycrystalline materials; Significant influence at low and intermediate temperatures (< 700 C) (high E att )

17 Influence of time/temperature: aging ρ(t) = A - B 1 exp (-K 1 t) - B 2 exp (-K 2 t) BC GBC ρ= resistivity, t = time, A, B 1, K 1, B 2, and K 2 = constants BC of fully stabilized zirconia = in a short time the steady value is reached (due to the crystal reorganization) BC of partially stabilized zirconia = aging effect due to the precipitation of tetragonal phase from the cubic matrix GBC aging due to the surface segregation of impurities

18 Influence of time/temperature: aging ρ plots as a function of the dopant content both before and after annealing at 850 and 1000 C. ρ change at 850 C in 9.0 mol% SSZ as a function of time and % increase in the ρ per 5000 min. Impedance spectra recorded at 350 C showing the effect of annealing 7.0 and 9.3 mol% Sc 2 O 3 ZrO 2 at 850 and 1000 C (5000 min). Formation of t -phase: a distorted fluorite-type phase Formation of microdomains of ordered phase rich in Sc

19 Chemical interaction YSZ at the FC operating temperature (600 to 1000 C) = little or no chemical interaction with other components. YSZ with LaMnO 3 at higher temperatures: insulating phases (La 2 Zr 2 O 7, as an example) at the interface at T > 1100 C. These phases cause cell performance to degrade significantly!!!

20 Thermal expansion The thermal expansion coefficient of undoped ZrO 2 single crystal is 8.12 x 10-6 cm/cmk in the temperature range of 20 to 1180 C Doped materials typically have higher thermal expansion coefficients TEC of partially stabilized zirconia is very similar to that of fully stabilized and is essentially unaffected by the presence of tetragonal precipitates Thermal expansion coefficients of YSZ Thermal expansion coefficients of YSZ at different temperatures

21 Thermal expansion Without material tailoring or modification significant thermal expansion mismatch can exist YSZ electrolyte is selected as the baseline material TEC of perovskite cathode and interconnect may be adjusted by tailoring the dopant element and concentration TEC of nickel cermet anode may be tailored by modifying the nickel content and ZrO 2 concentration or by using additives. Thermal expansion curves for several stabilized ZrO 2 and perovskite oxide materials

22 Mechanical properties: YSZ YSZ (8% - at RT): bending strength = MPa; Fracture Toughness = 3 MNm 3/2 Mechanical properties depend on the starting powders and fabrication route large agglomerates (up to 100 µm in diameter) = defects in the prepared electrolyte (= poor strength of the component) YSZ sheets produced by tape calendering have superior mechanical properties with a mean strength about 15% higher than that of the material made by tape casting Mechanical properties depend on temperature: mean strength of YSZ at 900 C = 280 MPa (vs 368 MPa at RT); a bending strength of about 225 MPa has been reported for YSZ at 1000 C.

23 Mechanical properties: YSZ Inclusions to improve mechanical properties: Partially stabilized zirconia (30% wt. fracture toughness 2.95 MPam 1/2 = 200% higher than that of YSZ fabricated under similar process conditions, ionic conductivity 0.15 Ω - 1 cm -1 = 17% lower than that of YSZ) Al 2 O 3 (20% wt. bending strength = 323 MPa compared with 235 MPa for YSZ), ionic conductivity 0.10 Ω -1 cm -1 at 1000 C compared with 0.12 Ω -1 cm -1 for YSZ) Variation of the bend strength of YSZ with temperature and Al 2 O 3 content

24 HIGH WORKING TEMPERATURES: ONE OF THE MAJOR DRAWBACK OF ZrO 2 BASED ELECTROLYTES:

Laurea Magistrale in Scienza dei Materiali. Materiali Inorganici Funzionali. Electrolytes: Ceria

Laurea Magistrale in Scienza dei Materiali. Materiali Inorganici Funzionali. Electrolytes: Ceria Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali Electrolytes: Ceria Prof. Antonella Glisenti - Dip. Scienze Chimiche - Università degli Studi di Padova Bibliography 1. N.Q. Minh,

More information

Laurea Magistrale in Scienza dei Materiali. Materiali Inorganici Funzionali. Electrolytes: Stabilized bismuthsesquioxide

Laurea Magistrale in Scienza dei Materiali. Materiali Inorganici Funzionali. Electrolytes: Stabilized bismuthsesquioxide Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali Electrolytes: Stabilized bismuthsesquioxide Prof. Antonella Glisenti - Dip. Scienze Chimiche - Università degli Studi di Padova

More information

Electrical conduction in ceramics

Electrical conduction in ceramics Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali Electrical conduction in ceramics Prof. Antonella Glisenti - Dip. Scienze Chimiche - Università degli Studi di Padova Conductivity

More information

Chapter 4. Ionic conductivity of GDC. electrolyte

Chapter 4. Ionic conductivity of GDC. electrolyte Chapter 4 Ionic conductivity of GDC electrolyte 4.1 Introduction Solid oxides with fluorite structure, such as, ZrO 2 and CeO 2, when doped with aliovalent cations become oxygen ion conductor and are used

More information

Chapter 7. Evaluation of Electrode Performance by. Electrochemical Impedance

Chapter 7. Evaluation of Electrode Performance by. Electrochemical Impedance Chapter 7 Evaluation of Electrode Performance by Electrochemical Impedance Spectroscopy (EIS) 7.1 Introduction A significant fraction of internal resistance of a cell comes from the interfacial polarization

More information

SOFCs Components: anodes

SOFCs Components: anodes Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali SOFCs Components: anodes Prof. Antonella Glisenti - Dip. Scienze Chimiche - Università degli Studi di Padova Bibliography 1. N.Q.

More information

Electrical Property of Thick Film Electrolyte for Solid Oxide Fuel Cell

Electrical Property of Thick Film Electrolyte for Solid Oxide Fuel Cell Journal of Metals, Materials and Minerals, Vol.18 No.2 pp.7-11, 28 Electrical Property of Thick Film Electrolyte for Solid Oxide Fuel Cell Thitimaporn DUANGMANEE 1, Suda WANNAKITTI 2, Rapeepong SUWANWARANGKUL

More information

CHAPTER 8 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

CHAPTER 8 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK CHAPTER 8 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 8.1. Conclusions Referring to the aims of the research project in Chapter 4, the following conclusions can be drawn on the basis of the present work:

More information

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Electrolyzers

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Electrolyzers Laurea in Scienza dei Materiali Materiali Inorganici Funzionali Electrolyzers Prof. Dr. Antonella Glisenti -- Dip. Scienze Chimiche -- Università degli Studi di di Padova H 2 by Electrolysis High purity

More information

High Conductivity Oxides for Solid Oxide Fuel Cells ABEL FERNANDEZ MATERIALS 286G JUNE 2016

High Conductivity Oxides for Solid Oxide Fuel Cells ABEL FERNANDEZ MATERIALS 286G JUNE 2016 High Conductivity Oxides for Solid Oxide Fuel Cells ABEL FERNANDEZ MATERIALS 286G JUNE 2016 How do Solid Oxide Fuel Cells Work? O 2 O 2 O 2 O 2 Cathode Electrolyte O 2- O 2- O 2- Porous cathode reduces

More information

Defects and Diffusion

Defects and Diffusion Defects and Diffusion Goals for the Unit Recognize various imperfections in crystals Point imperfections Impurities Line, surface and bulk imperfections Define various diffusion mechanisms Identify factors

More information

a) The self-diffusion coefficient of a metal with cubic structure can be expressed as

a) The self-diffusion coefficient of a metal with cubic structure can be expressed as EXERCISES KJM5120 Chapter 5; Diffusion 1. Random (self) diffusion a) The self-diffusion coefficient of a metal with cubic structure can be expressed as 1 n D = s 6 t 2 where n/t represents the jump frequency

More information

Ionic Conductivity and Solid Electrolytes II: Materials and Applications

Ionic Conductivity and Solid Electrolytes II: Materials and Applications Ionic Conductivity and Solid Electrolytes II: Materials and Applications Chemistry 754 Solid State Chemistry Lecture #27 June 4, 2003 References A. Manthiram & J. Kim Low Temperature Synthesis of Insertion

More information

Characterization of Nanoscale Electrolytes for Solid Oxide Fuel Cell Membranes

Characterization of Nanoscale Electrolytes for Solid Oxide Fuel Cell Membranes Characterization of Nanoscale Electrolytes for Solid Oxide Fuel Cell Membranes Cynthia N. Ginestra 1 Michael Shandalov 1 Ann F. Marshall 1 Changhyun Ko 2 Shriram Ramanathan 2 Paul C. McIntyre 1 1 Department

More information

PHYSICAL PROPERTIES OF La 0.9 Sr 0.1 Cr 1-X Ni X O 3-δ (X = 0-0.6) SYNTHESIZED VIA CITRATE GEL COMBUSTION

PHYSICAL PROPERTIES OF La 0.9 Sr 0.1 Cr 1-X Ni X O 3-δ (X = 0-0.6) SYNTHESIZED VIA CITRATE GEL COMBUSTION PHYSICAL PROPERTIES OF La 0.9 Sr 0.1 Cr 1-X Ni X O 3-δ (X = 0-0.6) SYNTHESIZED VIA CITRATE GEL COMBUSTION Anuchit Ruangvittayanon * and Sutin Kuharuangrong Received: Sept 29, 2009; Revised: Nov 17, 2009;

More information

The effect of ZnO addition on the phase transformation, microstructure, and ionic conductivity of 8YSZ ceramics

The effect of ZnO addition on the phase transformation, microstructure, and ionic conductivity of 8YSZ ceramics The effect of ZnO addition on the phase transformation, microstructure, and ionic conductivity of 8YSZ ceramics B. Johar 1,*, and Y. Zabar 1 1 School of Materials Engineering, Universiti Malaysia Perlis,

More information

FUEL CELL CHARGE TRANSPORT

FUEL CELL CHARGE TRANSPORT FUEL CELL CHARGE TRANSPORT M. OLIVIER marjorie.olivier@fpms.ac.be 19/05/2008 INTRODUCTION Charge transport completes the circuit in an electrochemical system, moving charges from the electrode where they

More information

Ceramics for Energy Storage and Conversion. Dr. Doreen Edwards Dean of Engineering Prof. of Materials Science & Engineering

Ceramics for Energy Storage and Conversion. Dr. Doreen Edwards Dean of Engineering Prof. of Materials Science & Engineering Ceramics for Energy Storage and Conversion Dr. Doreen Edwards Dean of Engineering Prof. of Materials Science & Engineering Ceramic and Glass Materials are Critical to Energy Storage and Conversion Devices

More information

Influence of Rare Earths on the Sintering of Zirconia-Yttria. Experimental

Influence of Rare Earths on the Sintering of Zirconia-Yttria. Experimental Materials Research, Vol. 2, No. 3, 211-217, 1999. 1999 Influence of Rare Earths on the Sintering of Zirconia-Yttria I.C. Canova a, D.P.F. de Souza a#, N.R. Costa a, M.F. de Souza b a Departamento de Engenharia

More information

Numerical Simulation of Electrolyte- Supported Planar Button Solid Oxide Fuel Cell

Numerical Simulation of Electrolyte- Supported Planar Button Solid Oxide Fuel Cell Numerical Simulation of Electrolyte- Supported Planar Button Solid Oxide Fuel Cell A. Aman, R. Gentile, Y. Chen, X. Huang, Y. Xu, N. Orlovskaya Excerpt from the Proceedings of the 2012 COMSOL Conference

More information

Vibrational And Mechanical Properties Of 10 Mol % Sc2o3-1 Mol % Ceo2- Zro2 Electrolyte Ceramics For Solid Oxide Fuel Cells

Vibrational And Mechanical Properties Of 10 Mol % Sc2o3-1 Mol % Ceo2- Zro2 Electrolyte Ceramics For Solid Oxide Fuel Cells University of Central Florida Electronic Theses and Dissertations Masters Thesis (Open Access) Vibrational And Mechanical Properties Of 10 Mol % Sc2o3-1 Mol % Ceo2- Zro2 Electrolyte Ceramics For Solid

More information

P.C. McIntyre & S. Ramanathan

P.C. McIntyre & S. Ramanathan Metal Oxide Nanotubes and Photo-Excitation Effects New Approaches for Low-Temperature Solid Oxide Fuel Cells for Low GWG-Emission Transportation Start Date: 3/1/07 (Stanford); 9/1/07 (Harvard) PI s: Paul

More information

Development of LSCF: CGO Composite Cathodes for SOFCs by Suspension Spraying and Sintering

Development of LSCF: CGO Composite Cathodes for SOFCs by Suspension Spraying and Sintering Development of LSCF: CGO Composite Cathodes for SOFCs by Suspension Spraying and Sintering R. Costa *, R. Spotorno, Z. Ilhan, A. Ansar German Aerospace Center, Institute of Technical Thermodynamics, Pfaffenwaldring

More information

Development of Intermediate-Temperature Solid Oxide Fuel Cells for Direct Utilization of Hydrocarbon Fuels

Development of Intermediate-Temperature Solid Oxide Fuel Cells for Direct Utilization of Hydrocarbon Fuels University of Pennsylvania ScholarlyCommons Departmental Papers (CBE) Department of Chemical & Biomolecular Engineering November 2004 Development of Intermediate-Temperature Solid Oxide Fuel Cells for

More information

Mechanisms of Diffusion II. Ionic Crystals L5 11/3/03-1-

Mechanisms of Diffusion II. Ionic Crystals L5 11/3/03-1- Mechanisms of Diffusion II. Ionic Crystals 3.05 L5 11/3/03-1- Charges on point imperfections Point imperfections in ionic crystals are generally electrically charged. 3.05 L5 11/3/03 - (a) Unit cell in

More information

Properties of Ceramic Materials

Properties of Ceramic Materials 1-5 Superplasticity: There are two basic types of superplasticity, termed transformation and structural superplasticity respectively. (A third type of superplasticity, termed temperature-cycling superplasticity,

More information

Role of small amount of MgO and ZrO 2 on creep behaviour of high purity Al 2 O 3

Role of small amount of MgO and ZrO 2 on creep behaviour of high purity Al 2 O 3 Bull. Mater. Sci., Vol. 28, No. 3, June 2005, pp. 281 285. Indian Academy of Sciences. Role of small amount of MgO and ZrO 2 on creep behaviour of high purity Al 2 O 3 L N SATAPATHY* and S SWAROOP Ceramic

More information

Gadolinia doped ceria/yttria stabilised zirconia electrolytes for solid oxide fuel cell applications

Gadolinia doped ceria/yttria stabilised zirconia electrolytes for solid oxide fuel cell applications JOURNAL OF MATERIALS SCIENCE 39 (2004) 235 240 Gadolinia doped ceria/yttria stabilised zirconia electrolytes for solid oxide fuel cell applications Abstract J. LUO, R. J. BALL, R. STEVENS Materials Research

More information

Screen-printed La 0.1 Sr 0.9 TiO 3-δ - Ce 1-x Gd x O 2-δ anodes for SOFC application

Screen-printed La 0.1 Sr 0.9 TiO 3-δ - Ce 1-x Gd x O 2-δ anodes for SOFC application Screen-printed La 0.1 Sr 0.9 TiO 3-δ - Ce 1-x Gd x O 2-δ anodes for SOFC application Elisa Mercadelli (1), A.Gondolini (1), G. Constantin (2,3), L. Dessemond (2,3), V. Yurkiv (4), R. Costa (4) and A. Sanson

More information

Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte

Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte Feng HAN 1 *, Robert SEMERAD 2, Patric SZABO 1, Rémi COSTA 1 feng.han@dlr.de

More information

High Thermal Conductivity Silicon Nitride Ceramics

High Thermal Conductivity Silicon Nitride Ceramics Journal of the Korean Ceramic Society Vol. 49, No. 4, pp. 380~384, 2012. http://dx.doi.org/10.4191/kcers.2012.49.4.380 Review High Thermal Conductivity Silicon Nitride Ceramics Kiyoshi Hirao, You Zhou,

More information

Lecture 08 Fracture Toughness and Toughening Mechanisms Ref: Richerson, Modern Ceramic Engineering, Ch17, Marcel Dekker, 1992

Lecture 08 Fracture Toughness and Toughening Mechanisms Ref: Richerson, Modern Ceramic Engineering, Ch17, Marcel Dekker, 1992 MME 467 Ceramics for Advanced Applications Lecture 08 Fracture Toughness and Toughening Mechanisms Ref: Richerson, Modern Ceramic Engineering, Ch17, Marcel Dekker, 1992 Prof. A. K. M. Bazlur Rashid Department

More information

Doping Calcia and Yttria into Zirconia Obtained from by Product of Tin Concentrator to Improve its Ionic Conductivity

Doping Calcia and Yttria into Zirconia Obtained from by Product of Tin Concentrator to Improve its Ionic Conductivity ITB J. Sci., Vol. 43 A, No. 1, 2011, 9-18 9 Doping Calcia and Yttria into Zirconia Obtained from by Product of Tin Concentrator to Improve its Ionic Conductivity Fitria Rahmawati 1, Bambang Prijamboedi

More information

1. Use the Ellingham Diagram (reproduced here as Figure 0.1) to answer the following.

1. Use the Ellingham Diagram (reproduced here as Figure 0.1) to answer the following. 315 Problems 1. Use the Ellingham Diagram (reproduced here as Figure 0.1) to answer the following. (a) Find the temperature and partial pressure of O 2 where Ni(s), Ni(l), and NiO(s) are in equilibrium.

More information

Fuel Cell Research Activities at the University of Leoben Focus: Solid Oxide Fuel Cells. Werner Sitte

Fuel Cell Research Activities at the University of Leoben Focus: Solid Oxide Fuel Cells. Werner Sitte Fuel Cell Research Activities at the University of Leoben Focus: Solid Oxide Fuel Cells Werner Sitte Chair of Physical Chemistry, University of Leoben, Austria IEA Workshop Advanced Fuel Cells, TU Graz,

More information

Imperfections, Defects and Diffusion

Imperfections, Defects and Diffusion Imperfections, Defects and Diffusion Lattice Defects Week5 Material Sciences and Engineering MatE271 1 Goals for the Unit I. Recognize various imperfections in crystals (Chapter 4) - Point imperfections

More information

Some structural aspects of ionic conductivity in zirconia stabilised by yttria and calcia

Some structural aspects of ionic conductivity in zirconia stabilised by yttria and calcia Materials Science-Poland, Vol. 24, No. 1, 2006 Some structural aspects of ionic conductivity in zirconia stabilised by yttria and calcia M. M. BUĆKO * AGH University of Science and Technology, Faculty

More information

SOFCs Components: cathodes

SOFCs Components: cathodes Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali SOFCs Components: cathodes Prof. Antonella Glisenti - Dip. Scienze Chimiche - Università degli Studi di Padova Cathode: requirements

More information

EROSION OF GADOLINIA DOPED EB-PVD TBCs

EROSION OF GADOLINIA DOPED EB-PVD TBCs EROSION OF GADOLINIA DOPED EB-PVD TBCs R. Steenbakker, R.G Wellman and J.R Nicholls School of Industrial and Manufacturing Science Cranfield University, Bedford, MK 43 OAL, UK. Abstract Thermal barrier

More information

Development of Novel Anode Material for Intermediate Temperature SOFC (IT-SOFC)

Development of Novel Anode Material for Intermediate Temperature SOFC (IT-SOFC) Development of Novel Anode Material for Intermediate Temperature SOFC (IT-SOFC) Amit Sinha *, D. N. Miller and J.T.S. Irvine School of Chemistry, University of St Andrews North Haugh, St Andrews KY16 9ST

More information

The characteristics of nano-sized Gd-doped CeO 2 particles prepared by spray pyrolysis

The characteristics of nano-sized Gd-doped CeO 2 particles prepared by spray pyrolysis Journal of Alloys and Compounds 398 (2005) 240 244 The characteristics of nano-sized Gd-doped CeO 2 particles prepared by spray pyrolysis Hee Sang Kang a, Jong Rak Sohn b, Yun Chan Kang c,, Kyeong Youl

More information

CONDUCTIVITY AND STABILITY OF BISMUTH OXIDE-BASED ELECTROLYTES AND THEIR APPLICATIONS FOR IT-SOFCS

CONDUCTIVITY AND STABILITY OF BISMUTH OXIDE-BASED ELECTROLYTES AND THEIR APPLICATIONS FOR IT-SOFCS CONDUCTIVITY AND STABILITY OF BISMUTH OXIDE-BASED ELECTROLYTES AND THEIR APPLICATIONS FOR IT-SOFCS By DOH WON JUNG A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL

More information

All-solid-state Li battery using a light-weight solid electrolyte

All-solid-state Li battery using a light-weight solid electrolyte All-solid-state Li battery using a light-weight solid electrolyte Hitoshi Takamura Department of Materials Science, Graduate School of Engineering, Tohoku University Europe-Japan Symposium, Electrical

More information

Advanced materials for SOFCs

Advanced materials for SOFCs Advanced materials for SOFCs Yoed Tsur Department of Chemical Engineering Technion Outline Intro: why SOFCs are important? Types of SOFCs Hybrid SOFC-something for power generation: NG utilization Materials

More information

26.2, QuXj= GHz, Tf= -57 ppmf'c) and CeO.3SmO (er = 19.7, QuXj= 79450

26.2, QuXj= GHz, Tf= -57 ppmf'c) and CeO.3SmO (er = 19.7, QuXj= 79450 ( Chapter8 ) This chapter features summary of the research work described in this thesis. The significant highlights of the results presented in each chapter are outlined in chronological order. The prospects

More information

to which it is applied. Using this approach temperature drops of up to 170 o C at the metal

to which it is applied. Using this approach temperature drops of up to 170 o C at the metal Chapter 2 Thermal Barrier Coatings 2.1 Overview By attaching an adherent layer of a low thermal conductivity material to the surface of a internally cooled gas turbine blade, a temperature drop can be

More information

Chapter 3. Synthesis and characterization. of GDC electrolyte material

Chapter 3. Synthesis and characterization. of GDC electrolyte material Chapter 3 Synthesis and characterization of GDC electrolyte material 3.1 Introduction Ceria based oxide materials are used as electrolytes for intermediate temperature solid oxide fuel cell (IT-SOFC) applications.

More information

Effect of Co-Doping on High Temperature Phase Stability of Plasma-Sprayed Yttria-Stabilized Zirconia

Effect of Co-Doping on High Temperature Phase Stability of Plasma-Sprayed Yttria-Stabilized Zirconia American Ceramic Society 106 th Annual Meeting Indianapolis, Indiana Effect of Co-Doping on High Temperature Phase Stability of Plasma-Sprayed Yttria-Stabilized Zirconia Zun Chen and Rodney Trice, Ph.D.

More information

PEROVSKITES FOR USE AS SULFUR TOLERANT ANODES. A dissertation submitted to the. Graduate School. Of the University of Cincinnati

PEROVSKITES FOR USE AS SULFUR TOLERANT ANODES. A dissertation submitted to the. Graduate School. Of the University of Cincinnati PEROVSKITES FOR USE AS SULFUR TOLERANT ANODES A dissertation submitted to the Graduate School Of the University of Cincinnati In partial fulfillment on the Requirements for the degree of Doctor of Philosophy

More information

Element diffusion in SOFCs: multi-technique characterization approach

Element diffusion in SOFCs: multi-technique characterization approach Degradation mechanisms and advanced characterization and testing (II) Element diffusion in SOFCs: multi-technique characterization approach M. Morales 1, A. Slodczyk 1, A. Pesce 2, A. Tarancón 1, M. Torrell

More information

Nanostructure, Nanochemistry and Grain Boundary Conductivity of Yttria-doped Zirconia.

Nanostructure, Nanochemistry and Grain Boundary Conductivity of Yttria-doped Zirconia. Solid State Phenomena Vol. 106 (2005) pp 83-86 Online available since 2005/Sep/15 at www.scientific.net (2005) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.106.83 Nanostructure,

More information

Supplementary Materials:

Supplementary Materials: Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is The Royal Society of Chemistry 2014 Supplementary Materials: Materials and Methods: The mixed ion conducting

More information

Metal Oxide Nanotubes and Photo-Excitation Effects: New Approaches for Low Temperature Solid Oxide Fuel Cells

Metal Oxide Nanotubes and Photo-Excitation Effects: New Approaches for Low Temperature Solid Oxide Fuel Cells GCEP Research Symposium Stanford University October 2,2009 Metal Oxide Nanotubes and Photo-Excitation Effects: New Approaches for Low Temperature Solid Oxide Fuel Cells Paul C. McIntyre 1,2 & Shriram Ramanathan

More information

Joint Technology Initiatives Collaborative Project (FCH) FCH-JU WP4 - Development of lab-scale cell components

Joint Technology Initiatives Collaborative Project (FCH) FCH-JU WP4 - Development of lab-scale cell components Joint Technology Initiatives Collaborative Project (FCH) FCH-JU-2010-1 WP4 - Development of lab-scale cell components DELIVERABLE 4.3- Prepared by: HOGANAS Document control data Document ref. : METPROCELL-WP4-

More information

The mechanical and electrical properties of Ni/YSZ anode support for solid oxide fuel cells

The mechanical and electrical properties of Ni/YSZ anode support for solid oxide fuel cells The mechanical and electrical properties of Ni/YSZ anode support for solid oxide fuel cells Changrong He, Tao Chen, Wei Guo Wang Ningbo Institute of Material Technology and Engineering (NIMTE), Chinese

More information

Development of Nano-Structured Solid Oxide Fuel Cell Electrodes

Development of Nano-Structured Solid Oxide Fuel Cell Electrodes Development of Nano-Structured Solid Oxide Fuel Cell Electrodes G. Schiller, S.A. Ansar, M. Müller German Aerospace Center (DLR), Institute of Technical Thermodynamics, Pfaffenwaldring 38-48, D-70569 Stuttgart,

More information

SOFC Powders and Unit Cell Research at NIMTE. Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang

SOFC Powders and Unit Cell Research at NIMTE. Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang 595 10.1149/1.3205571 The Electrochemical Society SOFC Powders and Unit Cell Research at NIMTE Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang Division of Fuel Cell and Energy Technology Ningbo Institute

More information

Fabrication of Calcium Doped PlSZT Ceramics using High Planetary Mill Method

Fabrication of Calcium Doped PlSZT Ceramics using High Planetary Mill Method Journal of Physics: Conference Series PAPER OPEN ACCESS Fabrication of Calcium Doped PlSZT Ceramics using High Planetary Mill Method To cite this article: T.N. I. Tuan Ab Rashid et al 2018 J. Phys.: Conf.

More information

Chapter 7 Conclusions

Chapter 7 Conclusions Conclusions Nowadays, much awareness has been devoted in developing sensors for monitoring the pollutants and hazardous gases in various environments. Considerable development work is being carried out

More information

Characteristics of yttria stabilized tetragonal zirconia powder used in optical fiber connector ferrule

Characteristics of yttria stabilized tetragonal zirconia powder used in optical fiber connector ferrule Ceramics International 31 (2005) 297 303 www.elsevier.com/locate/ceramint Characteristics of yttria stabilized tetragonal zirconia powder used in optical fiber connector ferrule Chih-Liang Yang a, Hsing-I.

More information

ENHANCED IONIC CONDUCTIVITY OF CERIA-BASED COMPOUNDS FOR THE ELECTROLYTE APPLICATION IN SOFCS

ENHANCED IONIC CONDUCTIVITY OF CERIA-BASED COMPOUNDS FOR THE ELECTROLYTE APPLICATION IN SOFCS ENHANCED IONIC CONDUCTIVITY OF CERIA-BASED COMPOUNDS FOR THE ELECTROLYTE APPLICATION IN SOFCS By SHOBIT OMAR A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

More information

Electrical and Ionic Transport Properties. (1) Laboratoire de Recherches sur la Réactivité des Solides

Electrical and Ionic Transport Properties. (1) Laboratoire de Recherches sur la Réactivité des Solides (La 0.8 Sr 0.2 )(Mn 1-y Fe y )O 3±δ Oxides for ITSOFC Cathode Materials? Electrical and Ionic Transport Properties M. Petitjean (1), G. Caboche (1), E. Siebert (2), L. Dessemond (2), L.-C. Dufour (1) (1)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells Sivaprakash Sengodan 1, Sihyuk Choi 1, Areum Jun 1, Tae Ho Shin 2, Young-Wan Ju

More information

SYNTHESIS AND ELECTRICAL PROPERTIES OF Sr 3 NiNb 2 O 9 MATERIALS FOR SOFCs

SYNTHESIS AND ELECTRICAL PROPERTIES OF Sr 3 NiNb 2 O 9 MATERIALS FOR SOFCs Journal of Ovonic Research Vol. 12, No. 2, March April 2016, p. 81-86 SYNTHESIS AND ELECTRICAL PROPERTIES OF MATERIALS FOR SOFCs Q. LI *, Z. P. LIU, R. YAN, L. M. DONG College of Materials Science and

More information

Oxide-ion conductors for fuel cells

Oxide-ion conductors for fuel cells Materials Science-Poland, Vol. 24, No. 1, 2006 Oxide-ion conductors for fuel cells F. KROK 1*, I. ABRAHAMS 2**, W. WROBEL 1, A. KOZANECKA-SZMIGIEL 1, J. R. DYGAS 1 1 Faculty of Physics, Warsaw University

More information

Change in stoichiometry

Change in stoichiometry Measurement of Gas Sensor Performance Gas sensing materials: 1. Sputtered ZnO film (150 nm (Massachusetts Institute of Technology) 2. Sputtered SnO 2 film (60 nm) (Fraunhofer Institute of Physical Measurement

More information

EVALUATION OF ELECTROCHEMICAL PROCESSES OCCURRING IN THE CATHODIC REACTION OF SOFCS

EVALUATION OF ELECTROCHEMICAL PROCESSES OCCURRING IN THE CATHODIC REACTION OF SOFCS EVALUATION OF ELECTROCHEMICAL PROCESSES OCCURRING IN THE CATHODIC REACTION OF SOFCS By JEREMIAH R. SMITH A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

More information

SOLID OXIDE FUEL CELLS (SOFC)

SOLID OXIDE FUEL CELLS (SOFC) SOLID OXIDE FUEL CELLS (SOFC) Customized Solutions Innovation in Environmental Technology and Power Generation Product Overview SOFC SOFC Products Electrolyte Supported Cells Kerafol offers SOFCs with

More information

A0606. Functional SOFC Interfaces Created by Aerosol-Spray Deposition

A0606. Functional SOFC Interfaces Created by Aerosol-Spray Deposition A0606 Functional SOFC Interfaces Created by Aerosol-Spray Deposition Neil Kidner, Kari Riggs, Gene Arkenberg, Matthew Seabaugh, Scott Swartz Nexceris, LLC 404 Enterprise Drive, Lewis Center Tel.: +1-614-842-6606

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION High Electrochemical Activity of the Oxide Phase in Model Ceria- and Ceria-Ni Composite Anodes William C. Chueh 1,, Yong Hao, WooChul Jung, Sossina M. Haile Materials Science, California Institute of Technology,

More information

CHARACTARISTICS OF DAMAGE AND FRACTURE PROCESS OF SOLID OXIDE FUEL CELLS UNDER SIMULATED OPERATING CONDITIONS BY USING AE METHOD

CHARACTARISTICS OF DAMAGE AND FRACTURE PROCESS OF SOLID OXIDE FUEL CELLS UNDER SIMULATED OPERATING CONDITIONS BY USING AE METHOD CHARACTARISTICS OF DAMAGE AND FRACTURE PROCESS OF SOLID OXIDE FUEL CELLS UNDER SIMULATED OPERATING CONDITIONS BY USING AE METHOD KAZUHISA SATO 1), TOSHIYUKI HASHIDA 2), HIROO YUGAMI 3), KEIJI YASHIRO 1),

More information

SOLID OXIDE FUEL CELLS DEVELOPED BY THE SOL-GEL PROCESS FOR OXYGEN GENERATION

SOLID OXIDE FUEL CELLS DEVELOPED BY THE SOL-GEL PROCESS FOR OXYGEN GENERATION SOLID OXIDE FUEL CELLS DEVELOPED BY THE SOL-GEL PROCESS FOR OXYGEN GENERATION BY JOSHUA S. FINCH A Dissertation submitted to the Graduate School - New Brunswick Rutgers, The State University of New Jersey

More information

Design of Higher-k and More Stable Rare Earth Oxides as Gate Dielectrics for Advanced CMOS Devices

Design of Higher-k and More Stable Rare Earth Oxides as Gate Dielectrics for Advanced CMOS Devices Materials 2012, 5, 1413-1438; doi:10.3390/ma5081413 Review OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Design of Higher-k and More Stable Rare Earth Oxides as Gate Dielectrics for

More information

Thermodynamic studies of oxidation and reduction of ceria and ceria mixed oxides

Thermodynamic studies of oxidation and reduction of ceria and ceria mixed oxides Thermodynamic studies of oxidation and reduction of ceria and ceria mixed oxides R. J. Gorte Chemical & Biomolecular Engineering University of Pennsylvania Support: DOE-BES Collaborators: Paolo Fornasiero,

More information

Hot corrosion behaviour of new candidates for thermal barrier coatings application in turbine simulated environments

Hot corrosion behaviour of new candidates for thermal barrier coatings application in turbine simulated environments Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2014 Hot corrosion behaviour of new candidates for thermal barrier coatings application in turbine simulated environments

More information

Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC

Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC Solid State Ionics 177 (2006) 2075 2079 www.elsevier.com/locate/ssi Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC Andreas O. Stoermer a,, Jennifer L.M. Rupp b, Ludwig J. Gauckler

More information

Sintering and conductivity of nano-sized 8 mol% YSZ synthesized by a supercritical CO 2 -assisted sol-gel process

Sintering and conductivity of nano-sized 8 mol% YSZ synthesized by a supercritical CO 2 -assisted sol-gel process Sintering and conductivity of nano-sized 8 mol% YSZ synthesized by a supercritical CO 2 -assisted sol-gel process M. Klotz 1*, D. Marinha 1, C. Guizard 1, A. Addad 2, A. Hertz 3, F. Charton 3 1 Laboratoire

More information

Chapter 2 Fabrication and Investigation of Intermediate-Temperature MS SOFCs

Chapter 2 Fabrication and Investigation of Intermediate-Temperature MS SOFCs Chapter 2 Fabrication and Investigation of Intermediate-Temperature MS SOFCs 2.1 Introduction Metal-supported solid oxide fuel cells (MS SOFCs) offer many advantages like excellent structural robustness

More information

Materials Science &Technology

Materials Science &Technology PAUL SCHERRER INSTITUT Materials Science &Technology NANCER project partners: Rene Tölke, Barbara Scherrer, Henning Galinski, Thomas Ryll, Ludwig Gauckler, Nonmetallic Inorganic Materials, ETH Zurich Thomas

More information

diffusion is not normally subject to observation by noting compositional change, because in pure metals all atoms are alike.

diffusion is not normally subject to observation by noting compositional change, because in pure metals all atoms are alike. 71 CHAPTER 4 DIFFUSION IN SOLIDS 4.1 INTRODUCTION In the previous chapters we learnt that any given atom has a particular lattice site assigned to it. Aside from thermal vibration about its mean position

More information

Journal. Ag Bi 1.5 Y 0.5 O 3 Composite Cathode Materials for BaCe 0.8 Gd 0.2 O 3 -Based Solid Oxide Fuel Cells. Zhonglin Wu* and Meilin Liu*

Journal. Ag Bi 1.5 Y 0.5 O 3 Composite Cathode Materials for BaCe 0.8 Gd 0.2 O 3 -Based Solid Oxide Fuel Cells. Zhonglin Wu* and Meilin Liu* Journal J. Am. Ceram. Soc., 81 [5] 1215 20 (1998) Ag Bi 1.5 Y 0.5 O 3 Composite Cathode Materials for BaCe 0.8 Gd 0.2 O 3 -Based Solid Oxide Fuel Cells Zhonglin Wu* and Meilin Liu* School of Materials

More information

Impedance spectroscopy of CuO-doped Y-TZP ceramics

Impedance spectroscopy of CuO-doped Y-TZP ceramics JOURNAL OF MATERIALS SCIENCE 33 (1998)5103 5110 Impedance spectroscopy of CuO-doped Y-TZP ceramics C. BOWEN School of Materials, University of Leeds, Leeds LS2 9JT, UK S. RAMESH, C. GILL, S. LAWSON School

More information

Engineering 45: Properties of Materials Final Exam May 9, 2012 Name: Student ID number:

Engineering 45: Properties of Materials Final Exam May 9, 2012 Name: Student ID number: Engineering 45: Properties of Materials Final Exam May 9, 2012 Name: Student ID number: Instructions: Answer all questions and show your work. You will not receive partial credit unless you show your work.

More information

Research Article Structural and Electrical Properties of the YSZ/STO/YSZ Heterostructure

Research Article Structural and Electrical Properties of the YSZ/STO/YSZ Heterostructure Nanomaterials, Article ID 783132, 5 pages http://dx.doi.org/10.1155/2014/783132 Research Article Structural and Electrical Properties of the YSZ/STO/YSZ Heterostructure Yue Fan, Wende Liu, Zhenfeng Kang,

More information

R. Costa* 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4

R. Costa* 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4 DLR.de Chart 1 Performances and limitations of metal supported cells with strontium titanate based fuel electrode: a step towards the next generation of solid oxide cells R. Costa* 1, F. Han 1, P. Szabo

More information

Physics and Material Science of Semiconductor Nanostructures

Physics and Material Science of Semiconductor Nanostructures Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: omalis@purdue.edu Today Bulk semiconductor growth Single crystal techniques Nanostructure fabrication Epitaxial

More information

A Thesis Presented to The Academic Faculty. Benjamin H. Rainwater

A Thesis Presented to The Academic Faculty. Benjamin H. Rainwater Electrical Properties of BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3-δ and its application in Intermediate Temperature Solid Oxide Fuel Cells A Thesis Presented to The Academic Faculty by Benjamin H. Rainwater In

More information

Jānis Grabis. Plasma chemical synthesis of multicomponent nanopowders, their characteristics, and processing

Jānis Grabis. Plasma chemical synthesis of multicomponent nanopowders, their characteristics, and processing Jānis Grabis Plasma chemical synthesis of multicomponent nanopowders, their characteristics, and processing Outline Introduction nanoparticles, their preparation methods Experimental synthesis of multicomponent

More information

Carbon Tolerant Ni/ScCeSZ SOFC Anode by Aqueous Tape Casting

Carbon Tolerant Ni/ScCeSZ SOFC Anode by Aqueous Tape Casting Carbon Tolerant Ni/ScCeSZ SOFC Anode by Aqueous Tape Casting Nor Anisa Arifin Supervisors: Prof Tim Button Prof Robert Steinberger-Wilckens Centre for Fuel Cell & Hydrogen Research School of Chemical Engineering

More information

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Huanying Liu, a, b Xuefeng Zhu, a * Mojie Cheng, c You Cong, a Weishen Yang a * a State Key Laboratory of Catalysis,

More information

Ceramic Processing Research

Ceramic Processing Research Journal of Ceramic Processing Research. Vol. 18, No. 4, pp. 336~340 (2017) J O U R N A L O F Ceramic Processing Research Electrochemical properties of Ca 1-x La x TiO 3 anode materials for solid oxide

More information

Electrical characteristics of Gd 2 O 3 thin film deposited on Si substrate

Electrical characteristics of Gd 2 O 3 thin film deposited on Si substrate Electrical characteristics of Gd 2 O 3 thin film deposited on Si substrate Chizuru Ohshima*, Ikumi Kashiwagi*, Shun-ichiro Ohmi** and Hiroshi Iwai* Frontier Collaborative Research Center* Interdisciplinary

More information

8. Oxide ceramics. 8.0 Introduction

8. Oxide ceramics. 8.0 Introduction 8. Oxide ceramics 8.0 Introduction Oxide ceramics, single-phase or multiphase, are commonly understood to be ceramics with a microstructure consisting essentially of simple oxides. They can be desgined

More information

SIZE AND COMPOSITION EFFECTS ON IONIC CONDUCTIVITY: DOPED CERIA BULK CERAMICS AND THIN FILM

SIZE AND COMPOSITION EFFECTS ON IONIC CONDUCTIVITY: DOPED CERIA BULK CERAMICS AND THIN FILM SIZE AND COMPOSITION EFFECTS ON IONIC CONDUCTIVITY: DOPED CERIA BULK CERAMICS AND THIN FILM By ROBERT MARTIN KASSE A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

More information

ELECTRICAL AND THERMAL PROPERTIES OF YTTRIA-STABILISED ZIRCONIA (YSZ)-BASED CERAMIC MATERIALS. Doctor of Philosophy

ELECTRICAL AND THERMAL PROPERTIES OF YTTRIA-STABILISED ZIRCONIA (YSZ)-BASED CERAMIC MATERIALS. Doctor of Philosophy ELECTRICAL AND THERMAL PROPERTIES OF YTTRIA-STABILISED ZIRCONIA (YSZ)-BASED CERAMIC MATERIALS A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of

More information

CHAPTER INTRODUCTION

CHAPTER INTRODUCTION CHAPTER 4 EFFECT OF ALKALINE EARTH METAL AND TRANSITION METAL DOPANTS ON THE STRUCTURAL, OPTICAL AND ELECTRONIC PROPERTIES OF YTTRIUM STABILIZED ZIRCONIA NANOPARTICLES 4.1 INTRODUCTION The tetragonal and

More information

Electrical Properties of Co-Doped Ceria Electrolyte Ce 0.8 x Gd 0.2 Sr x O 2 δ (0.0 x 0.1)

Electrical Properties of Co-Doped Ceria Electrolyte Ce 0.8 x Gd 0.2 Sr x O 2 δ (0.0 x 0.1) Vol. 115 (2009) ACTA PHYSICA POLONICA A No. 5 Electrical Properties of Co-Doped Ceria Electrolyte Ce 0.8 x Gd 0.2 Sr x O 2 δ (0.0 x 0.1) S. Ramesh and C. Vishnuvardhan Reddy Department of Physics, University

More information

Introduction Fuel Cells

Introduction Fuel Cells Introduction Fuel Cells Fuel cell applications PEMFC PowerCell AB, S2 PEMFC, 5-25 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the H2 gas 2. Intermediate

More information

Supplementary Figure 1 X-ray photoelectron spectroscopy profile of Nb and Ta of SCNT at room temperature.

Supplementary Figure 1 X-ray photoelectron spectroscopy profile of Nb and Ta of SCNT at room temperature. Supplementary Figure 1 X-ray photoelectron spectroscopy profile of Nb and Ta of SCNT at room temperature. Supplementary Figure 2 Factors that may affect the area specific resistance of SCNT cathode. (a)

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supplementary Information Flame made nanoparticles permit processing of

More information