Materials Science. Introduce fundamental concepts in Materials Science

Size: px
Start display at page:

Download "Materials Science. Introduce fundamental concepts in Materials Science"

Transcription

1 Materials Science Course Objective... Introduce fundamental concepts in Materials Science You will learn about: material structure how structure dictates properties how processing can change structure This course will help you to: use materials properly realize new design opportunities with materials 1

2 LECTURES Lecturer: Choi, Hae-Jin ( 최해진 ) hjchoi@cau.ac.kr Time: TUE (14:00-14:50), THU (13:00-14:50) Location: Bobst hall 431 Activities: Present new material Announce reading and homework Take quizzes, midterms, and final 2

3 TEACHING ASSISTANTS Name To be announced Office Bobst 122 Teaching Assistants will participate in recitation sessions in English, have office hours to help you with course material and problem sets. 3

4 THU:3pm-5pm** Office Hours **Contact professors for special arrangements by Activities: Discuss homework, quizzes, exams Discuss lectures, book Pick up missed handouts 4

5 COURSE MATERIALS Required text: Materials Science and Engineering, W.D. Callister, Jr. and D.G. Rethwisch, 8th Edition, John Wiley and Sons, Inc. (2011). Optional Material: Foundations of Materials Science and Engineering, W. F. Smith, J. Hashemi, 5 th edition, McGraw Hill, (2011). 5

6 COURSE WEBSITES Course Website: Syllabus Lecture notes Homework Text Website: Additional discipline specific web modules Additional homework problems Complete solutions to selected problems Links to other web resources Extended learning objectives Self-assessment exercises 6

7 GRADING In-lecture quizzes 20% Based on reading assignment and core homework problems Midterm: 30% Tentatively scheduled for: Material covered: Final : 40% Tentatively scheduled for: Material covered: Continuous Assessment: 10% Attendance, activities in class 7

8 READING SCHEDULE Reading schedule is based on the syllabus Read the learning topic before joining in the class For example Next week (2 nd ) Reading assignment: Atomic Structures Pop-up quiz on the reading assignment 8

9 Introduction What is materials science? Why should we know about it? Materials drive our society Stone Age Bronze Age Iron Age Now? Silicon Age? Polymer Age? 9

10 Example Hip Implant With age or certain illnesses joints deteriorate. Particularly those with large loads (such as hip). Adapted from Fig , Callister 7e. 10

11 Example Hip Implant Requirements mechanical strength (many cycles) good lubricity biocompatibility Adapted from Fig , Callister 7e. 11

12 Example Hip Implant Adapted from Fig , Callister 7e. 12

13 Hip Implant Key problems to overcome fixation agent to hold acetabular cup cup lubrication material femoral stem fixing agent ( glue ) must avoid any debris in cup Ball Acetabular Cup and Liner Femoral Stem Adapted from chapter-opening photograph, Chapter 22, Callister 7e. 13

14 Example Develop New Types of Polymers Commodity plastics large volume ca. $0.50 / lb Ex. Polyethylene Polypropylene Polystyrene etc. Engineering Resins small volume > $1.00 / lb Ex. Polycarbonate Nylon Polysulfone etc. Can polypropylene be upgraded to properties (and price) near those of engineering resins? 14

15 Hardness (BHN) Structure, Processing, & Properties Properties depend on structure ex: hardness vs structure of steel (a) 30 mm (b) 30 mm (c) 4 mm Cooling Rate (ºC/s) Processing can change structure ex: structure vs cooling rate of steel (d) 30 mm Data obtained from Figs (a) and with 4 wt% C composition, and from Fig and associated discussion, Callister & Rethwisch 3e. Micrographs adapted from (a) Fig ; (b) Fig ;(c) Fig ; and (d) Fig , Callister & Rethwisch 3e. 15

16 Types of Materials Metals: Strong, ductile High thermal & electrical conductivity Opaque, reflective. Polymers/plastics: Covalent bonding sharing of e s Soft, ductile, low strength, low density Thermal & electrical insulators Optically translucent or transparent. Ceramics: ionic bonding (refractory) compounds of metallic & non-metallic elements (oxides, carbides, nitrides, sulfides) Brittle, glassy, elastic Non-conducting (insulators) 16

17 The Materials Selection Process 1. Pick Application Determine required Properties Properties: mechanical, electrical, thermal, magnetic, optical, deteriorative. 2. Properties Identify candidate Material(s) Material: structure, composition. 3. Material Identify required Processing Processing: changes structure and overall shape ex: casting, sintering, vapor deposition, doping forming, joining, annealing. 17

18 Resistivity, r (10-8 Ohm-m) ELECTRICAL Electrical Resistivity of Copper: Adapted from Fig. 12.8, Callister & Rethwisch 3e. (Fig adapted from: J.O. Linde, Ann Physik 5, 219 (1932); and C.A. Wert and R.M. Thomson, Physics of Solids, 2nd edition, McGraw-Hill Company, New York, 1970.) T ( C) Adding impurity atoms to Cu increases resistivity. Deforming Cu increases resistivity. 18

19 Thermal Conductivity (W/m-K) Space Shuttle Tiles: -- Silica fiber insulation offers low heat conduction. THERMAL Adapted from chapteropening photograph, Chapter 17, Callister & Rethwisch 3e. (Courtesy of Lockheed Missiles and Space Company, Inc.) Thermal Conductivity of Copper: -- It decreases when you add zinc! Composition (wt% Zinc) 100mm Adapted from Fig. 19.4W, Callister 6e. (Courtesy of Lockheed Aerospace Ceramics Systems, Sunnyvale, CA) (Note: "W" denotes fig. is on CD-ROM.) Adapted from Fig. 17.4, Callister & Rethwisch 3e. (Fig is adapted from Metals Handbook: Properties and Selection: Nonferrous alloys and Pure Metals, Vol. 2, 9th ed., H. Baker, (Managing Editor), American Society for Metals, 1979, p. 315.) 19

20 Magnetization Magnetic Storage: -- Recording medium is magnetized by recording head. MAGNETIC Magnetic Permeability vs. Composition: -- Adding 3 atomic % Si makes Fe a better recording medium! Fe+3%Si Fe Fig , Callister & Rethwisch 3e. (Fig is from J.U. Lemke, MRS Bulletin, Vol. XV, No. 3, p. 31, 1990.) Magnetic Field Adapted from C.R. Barrett, W.D. Nix, and A.S. Tetelman, The Principles of Engineering Materials, Fig. 1-7(a), p. 9, Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey. 20

21 OPTICAL Transmittance: -- Aluminum oxide may be transparent, translucent, or opaque depending on the material structure. single crystal polycrystal: low porosity polycrystal: high porosity Adapted from Fig. 1.2, Callister & Rethwisch 3e. (Specimen preparation, P.A. Lessing; photo by S. Tanner.) 21

22 crack speed (m/s) Stress & Saltwater causes cracks! DETERIORATIVE Heat treatment: slows crack speed in salt water! Adapted from chapter-opening photograph, Chapter 16, Callister & Rethwisch 3e. (from Marine Corrosion, Causes, and Prevention, John Wiley and Sons, Inc., 1975.) Adapted from Fig (b), R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials" (4th ed.), p. 505, John Wiley and Sons, (Original source: Markus O. Speidel, Brown Boveri Co.) -- material: 7150-T651 Al "alloy" (Zn,Cu,Mg,Zr) as-is held at 160ºC for 1 hr before testing Alloy 7178 tested in saturated aqueous NaCl solution at 23ºC increasing load 4 mm Adapted from chapter-opening photograph, Chapter 11, Callister & Rethwisch 3e. (Provided courtesy of G.H. Narayanan and A.G. Miller, Boeing Commercial Airplane Company.) 22

23 Course Goals: SUMMARY Use the right material for the job. Understand the relation between properties, structure, and processing. Recognize new design opportunities offered by materials selection. 23

ME 206: Materials Science

ME 206: Materials Science ME 206: Materials Science Course Objective... Introduce fundamental concepts in Materials Science You will learn about: material structure how structure dictates properties how processing can change structure

More information

Chapter 1 - Introduction

Chapter 1 - Introduction Chapter 1 - Introduction What is materials science? Why should we know about it? Materials drive our society Stone Age Bronze Age Iron Age Now? Silicon Age? Polymer Age? Chapter 1-1 Chapter 1-2 Hardness

More information

What is Materials Science and Engineering??

What is Materials Science and Engineering?? Materials Science and Engineering What is Materials Science and Engineering?? Engineering is Doing? Engineers use science and math to design new products and services Engineers solve problems They make

More information

Introduction to Materials Science & Engineering

Introduction to Materials Science & Engineering Introduction to Materials Science & Engineering Course Objective... Introduce fundamental concepts in Materials Science You will learn about: material structure how structure dictates properties how processing

More information

Chapter 18: Electrical Properties

Chapter 18: Electrical Properties Chapter 18: Electrical Properties ISSUES TO ADDRESS... How are electrical conductance and resistance characterized? What are the physical phenomena that distinguish conductors, semiconductors, and insulators?

More information

EMA 3012C Experimental Techniques in Mechanics and Materials Spring Semester 2005

EMA 3012C Experimental Techniques in Mechanics and Materials Spring Semester 2005 Mechanical, Materials & Aerospace Engineering Department EMA 3012C Experimental Techniques in Mechanics and Materials Spring Semester 2005 INSTRUCTOR: Dr. Samar Jyoti Kalita ( Dr. Samar ) Assistant Professor

More information

Introduction to Engineering Materials ENGR2000 Chapter 19: Thermal Properties. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 19: Thermal Properties. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 19: Thermal Properties Dr. Coates Chapter 19: Thermal Properties ISSUES TO ADDRESS... How do materials respond to the application of heat? How do

More information

CIV203 MATERIALS SCIENCE PART_1

CIV203 MATERIALS SCIENCE PART_1 CIV203 MATERIALS SCIENCE PART_1 Asst.Prof.Dr. Mert Yücel YARDIMCI Gediz University Deparment of Civil Engineering 1 CIV203 MATERIALS SCIENCE 2014-2015/Fall Instructor : Assist Prof.Dr. Mert Yücel YARDIMCI

More information

Materials of Engineering ENGR 151 ELECTRCIAL PROPERTIES

Materials of Engineering ENGR 151 ELECTRCIAL PROPERTIES Materials of Engineering ENGR 151 ELECTRCIAL PROPERTIES ELECTRON ENERGY BAND STRUCTURES Atomic states split to form energy bands Adapted from Fig. 18.2, Callister & Rethwisch 9e. 2 BAND STRUCTURE REPRESENTATION

More information

Chapter 8: Deformation & Strengthening Mechanisms. School of Mechanical Engineering Choi, Hae-Jin ISSUES TO ADDRESS

Chapter 8: Deformation & Strengthening Mechanisms. School of Mechanical Engineering Choi, Hae-Jin ISSUES TO ADDRESS Chapter 8: Deformation & Strengthening Mechanisms School of Mechanical Engineering Choi, Hae-Jin Materials Science - Prof. Choi, Hae-Jin Chapter 8-1 ISSUES TO ADDRESS Why are the number of dislocations

More information

Announcements. Chapter 19-1

Announcements. Chapter 19-1 Announcements Quiz in lecture on Wednesday Chapter 18 Electrical Properties Chapter 19 Thermal Properties Also an anonymous end-of-term survey Also on Wednesday Hand out a study guide for the final exam

More information

Electrical conductivity

Electrical conductivity Electrical conductivity Ohm's Law: voltage drop (volts = J/C) C = Coulomb A (cross sect. area) ΔV = I R Resistivity, ρ and Conductivity, σ: -- geometry-independent forms of Ohm's Law resistance (Ohms)

More information

Engineering Materials & Minerals

Engineering Materials & Minerals Course Book Engineering Materials & Minerals Lecturer: Dr.Payman Suhbat Ahmed E-mail: payman.suhbat@koyauniversity.org Coordinator: Nawzat Rashad Ismail E-mail: nawzat.rashad@koyauniversity.org 2 nd Stage

More information

Chapter 19: Thermal Properties

Chapter 19: Thermal Properties Chapter 19: Thermal Properties One type of thermostat a device that is used to regulate temperature utilizes the phenomenon of thermal expansion. The heart of this thermostat is a bimetallic strip strips

More information

Electrical conductivity

Electrical conductivity Electrical conductivity Ohm's Law: voltage drop (volts = J/C) C = Coulomb A (cross sect. area) ΔV = I R Resistivity, ρ and Conductivity, σ: -- geometry-independent forms of Ohm's Law resistance (Ohms)

More information

PROPERTIES OF MATERIALS PART HARDNESS

PROPERTIES OF MATERIALS PART HARDNESS CHAPTER 3 PROPERTIES OF MATERIALS PART 2 30.07.2007 3.1.10 HARDNESS A Resistance to permanently indenting the surface Large hardness means resistance to plastic deformation or cracking In compression,

More information

01 Introduction to the Course. Introduction to Metallurgy and Materials. Welcome to MME131: January 2018 Term

01 Introduction to the Course. Introduction to Metallurgy and Materials. Welcome to MME131: January 2018 Term Welcome to MME131: Introduction to Metallurgy and Materials January 2018 Term A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka 01 Introduction to the Course Topics to Cover Why study materials

More information

Price and Availability

Price and Availability Price and Availability Outline Introduction Relative cost of materials Example MECH 321 Mech. Eng. Dept. - Concordia University lecture 21/1 Current Prices on the web (a) : - Short term trends: fluctuations

More information

Materials of Engineering ENGR 151 CHARACTERISTICS, APPLICATIONS AND PROCESSING OF POLYMERS

Materials of Engineering ENGR 151 CHARACTERISTICS, APPLICATIONS AND PROCESSING OF POLYMERS Materials of Engineering ENGR 151 CHARACTERISTICS, APPLICATIONS AND PROCESSING OF POLYMERS POLYMER CRYSTALLINITY Crystalline regions thin platelets with chain folds at faces Chain folded structure Fig.

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

MATERIALS SCIENCE AND ENGINEERING

MATERIALS SCIENCE AND ENGINEERING MATERIALS SCIENCE AND ENGINEERING materials science - the discipline that involves investigating the relationships that exist between the structures and properties of materials materials engineering -

More information

Crystallinity in Polymers. Polymers. Polymer Crystallinity. Outline. Crystallinity in Polymers. Introduction. % crystallinity 100

Crystallinity in Polymers. Polymers. Polymer Crystallinity. Outline. Crystallinity in Polymers. Introduction. % crystallinity 100 Outline Polymers Introduction Crystallinity Stress relaxation Advanced polymers - applications Crystallinity in Polymers Although it may at first seem surprising, polymers can form crystal structures (all

More information

The University of Jordan School of Engineering Chemical Engineering Department

The University of Jordan School of Engineering Chemical Engineering Department The University of Jordan School of Engineering Chemical Engineering Department 0905351 Engineering Materials Science Second Semester 2016/2017 Course Catalog 3 Credit hours.all engineering structures and

More information

Chapter 11: Applications and Processing of Metal Alloys

Chapter 11: Applications and Processing of Metal Alloys Chapter 11: Applications and Processing of Metal Alloys ISSUES TO ADDRESS... What are some of the common fabrication techniques for metals? What heat treatment procedures are used to improve the mechanical

More information

Dislocations & Materials Classes. Dislocation Motion. Dislocation Motion. Lectures 9 and 10

Dislocations & Materials Classes. Dislocation Motion. Dislocation Motion. Lectures 9 and 10 Lectures 9 and 10 Chapter 7: Dislocations & Strengthening Mechanisms Dislocations & Materials Classes Metals: Disl. motion easier. -non-directional bonding -close-packed directions for slip. electron cloud

More information

City University of Hong Kong. Course Syllabus. offered by Department of Materials Science and Engineering with effect from Semester A 2018 / 19

City University of Hong Kong. Course Syllabus. offered by Department of Materials Science and Engineering with effect from Semester A 2018 / 19 City University of Hong Kong offered by Department of Materials Science and Engineering with effect from Semester A 2018 / 19 Part I Course Overview Course Title: Introduction to Materials Science and

More information

Materials of Engineering ENGR 151 CHARACTERISTICS, APPLICATIONS AND PROCESSING OF POLYMERS

Materials of Engineering ENGR 151 CHARACTERISTICS, APPLICATIONS AND PROCESSING OF POLYMERS Materials of Engineering ENGR 151 CHARACTERISTICS, APPLICATIONS AND PROCESSING OF POLYMERS POLYMER FORMATION Synthesis of large (polymer) molecules is called polymerization. There are two types of polymerization

More information

Material Properties 3

Material Properties 3 Material Properties 3 Real Stress and Strain True M Corrected Stress M Engineering Strain Several Alloys Material n MPa psi Low-carbon steel 0.26 530 77,000 (annealed) Alloy steel 0.15 640 93,000 (Type

More information

Chapter 9: Dislocations & Strengthening Mechanisms. Why are the number of dislocations present greatest in metals?

Chapter 9: Dislocations & Strengthening Mechanisms. Why are the number of dislocations present greatest in metals? Chapter 9: Dislocations & Strengthening Mechanisms ISSUES TO ADDRESS... Why are the number of dislocations present greatest in metals? How are strength and dislocation motion related? Why does heating

More information

EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites by Zhe Cheng

EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites by Zhe Cheng EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites 2017 by Zhe Cheng Expectations on Chapter 11 Chapter 11 Understand metals are generally categorized as ferrous alloys and non-ferrous alloys

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Introduction to Material Science

Introduction to Material Science Introduction to Material Science Materials are very important in the development of human civilization. Historians have identified civilization by the name of most used material. Thus, we have: Stone Age,

More information

Chapter 12: Structures & Properties of Ceramics

Chapter 12: Structures & Properties of Ceramics Chapter 12: Structures & Properties of Ceramics ISSUES TO ADDRESS... Review of structures for ceramics How are impurities accommodated in the ceramic lattice? In what ways are ceramic phase diagrams similar

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Demonstrating The Effects Of Processing On Structure And Properties Via The Annealing And Strain Hardening Of Copper: Part One - Microstructure

Demonstrating The Effects Of Processing On Structure And Properties Via The Annealing And Strain Hardening Of Copper: Part One - Microstructure Demonstrating The Effects Of Processing On Structure And Properties Via The Annealing And Strain Hardening Of Copper: Part One - Microstructure Angela Leimkuhler Moran, Lloyd Brown and Michelle G. Koul

More information

Chapter 15-2: Processing of Polymers

Chapter 15-2: Processing of Polymers Chapter 15-2: Processing of Polymers ISSUES TO ADDRESS... Other issues in polymers What are the primary polymer processing methods? Chapter 15-1 Polymer Synthesis Reactions There are two types of polymerization

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain Elastic behavior: When loads are small, how much reversible deformation occurs? What material resist reversible deformation better? Plastic behavior: At what point

More information

ASE324: Aerospace Materials Laboratory

ASE324: Aerospace Materials Laboratory ASE324: Aerospace Materials Laboratory Instructor: Rui Huang Dept of Aerospace Engineering and Engineering Mechanics The University of Texas at Austin Fall 2003 Lecture 3 September 4, 2003 Iron and Steels

More information

1-Materials Science & Materials Engineering

1-Materials Science & Materials Engineering 1-Materials Science & Materials Engineering 1-1-Structure & Properties Relationship (Materials Science or Materials Engineering) Processing Structure Properties Performance Sub Atomic Atomic Sub Atomic

More information

Materials of Engineering ENGR 151 CORROSION ELECTRICAL PROPERTIES

Materials of Engineering ENGR 151 CORROSION ELECTRICAL PROPERTIES Materials of Engineering ENGR 151 CORROSION ELECTRICAL PROPERTIES more anodic (active) more cathodic (inert) GALVANIC SERIES Ranking of the reactivity of metals/alloys in seawater Platinum Gold Graphite

More information

Chapter 15: Characteristics, Applications & Processing of Polymers

Chapter 15: Characteristics, Applications & Processing of Polymers Chapter 15: Characteristics, Applications & Processing of Polymers Study: 15.1-15.14 Read: 15.15-15.24 What are the tensile properties of polymers and how are they affected by basic microstructural features?

More information

Materials Science and Engineering: An Introduction

Materials Science and Engineering: An Introduction Materials Science and Engineering: An Introduction Callister, William D. ISBN-13: 9780470419977 Table of Contents List of Symbols. 1 Introduction. 1.1 Historical Perspective. 1.2 Materials Science and

More information

Metals are generally ductile because the structure consists of close-packed layers of

Metals are generally ductile because the structure consists of close-packed layers of Chapter 10 Why are metals ductile and ceramics brittle? Metals are generally ductile because the structure consists of close-packed layers of atoms that allow for low energy dislocation movement. Slip

More information

Chapter 11: Phase Diagrams

Chapter 11: Phase Diagrams Chapter 11: Phase Diagrams ISSUES TO ADDRESS... When we combine two elements... what is the resulting equilibrium state? In particular, if we specify... -- the composition (e.g., wt% Cu - wt% Ni), and

More information

Chapter 8: Mechanical Properties of Metals. Elastic Deformation

Chapter 8: Mechanical Properties of Metals. Elastic Deformation Chapter 8: Mechanical Properties of Metals ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much

More information

ISSUES TO ADDRESS...

ISSUES TO ADDRESS... Chapter 7: Mechanical Properties School of Mechanical Engineering Choi, Hae-Jin Materials Science - Prof. Choi, Hae-Jin Chapter 7-1 ISSUES TO ADDRESS... Stress and strain: What are they and why are they

More information

Chapter 13: Properties and Applications of Metals

Chapter 13: Properties and Applications of Metals Chapter 13: Properties and Applications of Metals ISSUES TO ADDRESS... How are metal alloys classified and what are their common applications? What are the microstructure and general characteristics of

More information

Corrosion of Metals. Industrial Metallurgists, LLC Northbrook, IL Copyright 2013 Industrial Metallurgists, LLC

Corrosion of Metals. Industrial Metallurgists, LLC Northbrook, IL Copyright 2013 Industrial Metallurgists, LLC Corrosion of Metals Industrial Metallurgists, LLC Northbrook, IL 60062 847.528.3467 www.imetllc.com Copyright 2013 Industrial Metallurgists, LLC Course structure Learning modules 1. Introduction to corrosion

More information

Mechanical failures 1

Mechanical failures 1 Mechanical failures 1 Mechanical failure ISSUES TO ADDRESS... How do flaws in a material initiate failure? How is fracture resistance quantified; how do different material classes compare? How do we estimate

More information

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2 AERO 214 Introduction to Aerospace Mechanics of Materials Lecture 2 Materials for Aerospace Structures Aluminum Titanium Composites: Ceramic Fiber-Reinforced Polymer Matrix Composites High Temperature

More information

Structure-Property Correlation [1] Structure-processing-properties-performance relation

Structure-Property Correlation [1] Structure-processing-properties-performance relation MME 297: Lecture 04 Structure-Property Correlation [1] Structure-processing-properties-performance relation Dr. A. K. M. Bazlur Rashid Professor, Department of MME BUET, Dhaka Topics to discuss today...

More information

Chapter 11: Phase Diagrams. Phase Equilibria: Solubility Limit

Chapter 11: Phase Diagrams. Phase Equilibria: Solubility Limit Temperature ( C) Water ugar 217/1/4 Chapter 11: Phase Diagrams IUE TO ADDRE... When we combine two elements... what is the resulting equilibrium state? In particular, if we specify... -- the composition

More information

Chapter 15: Characteristics, Applications & Processing of Polymers (1)

Chapter 15: Characteristics, Applications & Processing of Polymers (1) Chapter 15: Characteristics, Applications & Processing of Polymers (1) ISSUES TO ADDRESS... What are the tensile properties of polymers and how are they affected by basic microstructural features? Hardening,

More information

Engineering Materials

Engineering Materials Engineering Materials Lecture 2 MEL120: Manufacturing Practices 1 Selection of Material A particular material is selected is on the basis of following considerations 1. Properties of material 1. Properties

More information

Selection of Engineering Materials

Selection of Engineering Materials Selection of Engineering IM 515E Dr Yehia M. Youssef 1 Textbook: Budinski, K.G. and Budinski, M.K., Engineering : Properties and selection, 8 th ed., Prentice Hall, 2005. Other References: 1) Ashby, M.,

More information

Atomic structure, arrangement, and movement Introduction to Materials Introduction Types of Materials Structure-Property-Processing Relationship

Atomic structure, arrangement, and movement Introduction to Materials Introduction Types of Materials Structure-Property-Processing Relationship Atomic structure, arrangement, and movement to Materials Types of Materials Structure-Property-Processing Relationship Environmental Effects on Material Behavior Materials Design and Selection Atomic Structure

More information

MSE 170 Spring

MSE 170 Spring MSE 170 Spring 2007 http://courses.washington.edu/mse170/ Instructor: Prof. Miqin Zhang mzhang@u.washington.edu, (206) 616-9356, http://faculty.washington.edu/mzhang Lecture Section A: 8:30-9:20am Mueller

More information

Lecture 5. Chapter 7. Range of Mechanical Properties for Polymers. The University of New Mexico. The University of New Mexico TABLE 7.

Lecture 5. Chapter 7. Range of Mechanical Properties for Polymers. The University of New Mexico. The University of New Mexico TABLE 7. Lecture 5 Chapter 7 Range of Mechanical Properties for Polymers TABLE 7.1 Material UTS (MPa) E (GPa) ABS 28 55 1.4 2.8 ABS, reinforced 100 7.5 Acetal 55 70 1.4 3.5 Acetal, reinforced 135 10 Acrylic 40

More information

Dr. M. Medraj Mech. Eng. Dept. - Concordia University MECH 221 lecture 22/2

Dr. M. Medraj Mech. Eng. Dept. - Concordia University MECH 221 lecture 22/2 THERMAL PROPERTIES In this lecture we shall answer the following questions How does a material respond to heat? How do we define and measure... - heat capacity - coefficient of thermal expansion - thermal

More information

Introduction to Material Science and Engineering

Introduction to Material Science and Engineering Introduction to Material Science and Engineering Introduction What is materials engineering? the understanding and modification of the structure and properties of materials to improve the performance and

More information

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties بسم الله الرحمن الرحیم Materials Science Chapter 7 Mechanical Properties 1 Mechanical Properties Can be characterized using some quantities: 1. Strength, resistance of materials to (elastic+plastic) deformation;

More information

Introduction to Properties of Metals

Introduction to Properties of Metals Introduction to Properties of Metals Thomas G Stoebe University of Washington 425-890-4652 Stoebe@uw.edu Copyright Edmonds Community College 2016 This material may be used and reproduced for educational

More information

Lecture Outline. Mechanical Properties of Ceramics. Mechanical properties of ceramics. Mechanical properties of ceramics

Lecture Outline. Mechanical Properties of Ceramics. Mechanical properties of ceramics. Mechanical properties of ceramics Mechanical properties of ceramics Lecture Outline Mechanical properties of ceramics Applications of ceramics abrication of Glasses Glass properties Processing of Ceramics Dr. M. Medraj Mech. Eng. Dept.

More information

CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS...

CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS... CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

MAES-M5O02 - Structural Materials

MAES-M5O02 - Structural Materials Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 340 - EPSEVG - Vilanova i la Geltrú School of Engineering 702 - CMEM - Department of Materials Science and Metallurgy BACHELOR'S

More information

CHAPTER INTRODUCTION

CHAPTER INTRODUCTION 1 CHAPTER-1 1.0 INTRODUCTION Contents 1.0 Introduction 1 1.1 Aluminium alloys 2 1.2 Aluminium alloy classification 2 1.2.1 Aluminium alloys (Wrought) 3 1.2.2 Heat treatable alloys (Wrought). 3 1.2.3 Aluminum

More information

Visualizing Material Properties in the Classroom

Visualizing Material Properties in the Classroom Visualizing Material Properties in the Classroom Compiled by Elisabeth Kahlmeyer and Claes Fredriksson from slides created by Mike Ashby M. F. Ashby, 2015 For reproduction guidance see back page This lecture

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties Elastic behavior: When loads are small, how much deformation occurs? What materials deform least? Stress and strain: What are they and why are they used instead of load

More information

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Mechanical Engineering

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Mechanical Engineering BME403-INDUSTRIAL METALLURGY Academic Course Description BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Mechanical Engineering BME403-INDUSTRIAL METALLURGY Fourth Semester, 2015-16

More information

Materials Engineering PTT 110

Materials Engineering PTT 110 By: Pn. Nurul Ain Harmiza Abdullah Materials Engineering PTT 110 SEMESTER 1 (2013/2014) PowerPoint Lecture Slides for Foundations of Materials Science and Engineering Fifth Edition William F. Smith Javad

More information

Chapter 15: Characteristics, Applications & Processing of Polymers

Chapter 15: Characteristics, Applications & Processing of Polymers Chapter 15: Characteristics, Applications & Processing of Polymers What are the tensile properties of polymers and how are they affected by basic microstructural features? Hardening, anisotropy, and annealing

More information

ME 624 : MECHANICS OF COMPOSITE MATERIALS

ME 624 : MECHANICS OF COMPOSITE MATERIALS ME 624 : MECHANICS OF COMPOSITE MATERIALS This course is offered as an elective technical course for graduating seniors or as a graduate course for ME students. The course is intended to cover the basics

More information

COURSE OUTLINE. Page : 1 of 6. Revision Date of issue Last Amendment Edition. Lecturers Room No. Phone No.

COURSE OUTLINE. Page : 1 of 6. Revision Date of issue Last Amendment Edition. Lecturers  Room No. Phone No. Page 1 of 6 25 th July 2011 17 th February 2015 1 PRE-REQUISITE SKMM 1613 EQUIVALENCE LECTURE HOURS 3 Hours Lecture Lecturers E-Mail Room No. Phone No. DR. ENGKU MOHD NAZIM ENGKU ABU BAKAR nazim@mail.fkm.utm.my

More information

ISSUES TO ADDRESS...

ISSUES TO ADDRESS... Chapter 11: Phase Transformations School of Mechanical Engineering Choi, Hae-Jin Materials Science - Prof. Choi, Hae-Jin 1 ISSUES TO DDRESS... Transforming one phase into another takes time. Fe C FCC Eutectoid

More information

EDEXCEL NATIONALS UNIT 10 - PROPETIES AND APPLICATIONS OF ENGINEERING MATERIALS ASSIGNMENT 5 - END OF MODULE ASSIGNMENT

EDEXCEL NATIONALS UNIT 10 - PROPETIES AND APPLICATIONS OF ENGINEERING MATERIALS ASSIGNMENT 5 - END OF MODULE ASSIGNMENT EDEXCEL NATIONALS UNIT 10 - PROPETIES AND APPLICATIONS OF ENGINEERING MATERIALS ASSIGNMENT 5 - END OF MODULE ASSIGNMENT NAME: Date Issued Time allowed 4 weeks I agree to the assessment as contained in

More information

Chapter 8: Mechanical Failure

Chapter 8: Mechanical Failure Chapter 8: Mechanical Failure ISSUES TO ADDRESS... How do cracks that lead to failure form? How is fracture resistance quantified? How do the fracture resistances of the different material classes compare?

More information

Electrical Conductivity of Selected Materials

Electrical Conductivity of Selected Materials APPENDIX 8 Electrical Conductivity of Selected Materials Resistivities and conductivities are the numerical inverses of one another, unless both are listed, indicating two separate sources for the information.

More information

MSE 170B Fall MSE 170B Fall 2008

MSE 170B Fall MSE 170B Fall 2008 MSE 170B Fall 2008 http://courses.washington.edu/mse170/index.shtml Instructor: Prof. Miqin Zhang mzhang@u.washington.edu, (206) 616-9356, http://faculty.washington.edu/mzhang Lecture Section B: 12:30-1:20pm

More information

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India Material Science Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 India Chapter 1. Introduction 1.1 Historical Perspective and Materials

More information

Issues to address. Why Mechanical Test?? Mechanical Properties. Why mechanical properties?

Issues to address. Why Mechanical Test?? Mechanical Properties. Why mechanical properties? Mechanical Properties Why mechanical properties? Folsom Dam Gate Failure, July 1995 Need to design materials that can withstand applied load e.g. materials used in building bridges that can hold up automobiles,

More information

Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore

Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore Greek word Keramikos which means Burnt Stuff indicating that desired properties of these materials are normally achieved through a

More information

Chapter 8: Mechanical Failure ISSUES TO ADDRESS...

Chapter 8: Mechanical Failure ISSUES TO ADDRESS... Chapter 8: Mechanical Failure ISSUES TO ADDRESS... What are the common modes of mechanical failures? How do micro-cracks lead to failure? How do the fracture resistances of the different materials compare?

More information

Chapter 15: Characteristics, Applications & Processing of Polymers

Chapter 15: Characteristics, Applications & Processing of Polymers Chapter 15: Characteristics, Applications & Processing of Polymers ISSUES TO ADDRESS... What are the tensile properties of polymers and how are they affected by basic microstructural features? Hardening,

More information

Steps in Failure Analysis

Steps in Failure Analysis 1 Course Materials 1. W.D. Callister, Jr., D.G. Rethwisch, Materials Science and Engineering: An Introduction, 8th Ed, John Wiley and Sons, 2010. 2. G.E. Dieter, Mechanical Metallurgy (SI Metric Edition),

More information

Chapter 7: Mechanical Properties

Chapter 7: Mechanical Properties Chapter 7: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Mechanical Properties of Metals. Goals of this unit

Mechanical Properties of Metals. Goals of this unit Mechanical Properties of Metals Instructor: Joshua U. Otaigbe Iowa State University Goals of this unit Quick survey of important metal systems Detailed coverage of basic mechanical properties, especially

More information

CHAPTER8. Failure Analysis and Prevention

CHAPTER8. Failure Analysis and Prevention CHAPTER8 Failure Analysis and Prevention The repetitive loading of engineering materials opens up additional opportunities for structural failure. Shown here is a mechanical testing machine, introduced

More information

BMM3643 Manufacturing Processes Powder Metallurgy Process

BMM3643 Manufacturing Processes Powder Metallurgy Process BMM3643 Manufacturing Processes Powder Metallurgy Process by Dr Mas Ayu Bt Hassan Faculty of Mechanical Engineering masszee@ump.edu.my Chapter Synopsis This chapter will expose students to the sequence

More information

Contents. PREFACE TO THE FOURTH EDITION... xiii ACKNOWLEDGEMENTS...xv GENERAL INTRODUCTION... xvii

Contents. PREFACE TO THE FOURTH EDITION... xiii ACKNOWLEDGEMENTS...xv GENERAL INTRODUCTION... xvii Contents PREFACE TO THE FOURTH EDITION... xiii ACKNOWLEDGEMENTS...xv GENERAL INTRODUCTION... xvii Part A Metals CHAPTER 1 Metals...3 1.1 Introduction... 3 1.2 Metals for a Model Steam Engine... 3 1.3 Metals

More information

12. What material is considered the more expensive cousin to steel? Why?

12. What material is considered the more expensive cousin to steel? Why? MEEN 3344 001 Material Science Spring 2003 EXAM 2 Name (1) Closed book, calculator, and brain. Budget your time! Definitions: (10 terms, each definition is worth 1.5 points, 15 total) Match each term up

More information

MSE 102 MATERIALS SCIENCE AND ENGINEERING ORIENTATION

MSE 102 MATERIALS SCIENCE AND ENGINEERING ORIENTATION MSE 102 MATERIALS SCIENCE AND ENGINEERING ORIENTATION Ceramics and Glasses Materials Science and Engineering Çankaya University Previous Lecture Processing single crystal polycrystal: low porosity polycrystal:

More information

Processes and Equipment; Heat Treatment

Processes and Equipment; Heat Treatment 4 4 6. 3 0 5 A M A N U F A C T U R I N G P R O C E S S E S Chapter 5. Metal-Casting Processes and Equipment; Heat Treatment Sung-Hoon Ahn School of Mechanical and Aerospace Engineering Seoul National University

More information

Why are dislocations observed primarily in metals CHAPTER 8: DEFORMATION AND STRENGTHENING MECHANISMS

Why are dislocations observed primarily in metals CHAPTER 8: DEFORMATION AND STRENGTHENING MECHANISMS Why are dislocations observed primarily in metals CHAPTER 8: and alloys? DEFORMATION AND STRENGTHENING MECHANISMS How are strength and dislocation motion related? How do we manipulate properties? Strengthening

More information

Equilibria in Materials

Equilibria in Materials 2009 fall Advanced Physical Metallurgy Phase Equilibria in Materials 09.01.2009 Eun Soo Park Office: 33-316 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment 1 Text: A. PRINCE,

More information

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity?

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity? Electrical Good conductors of heat & electricity Create semiconductors Oxides are basic ionic solids Aqueous cations (positive charge, Lewis acids) Reactivity increases downwards in family Mechanical Lustrous

More information

The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram

The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram Steels: alloys of Iron (Fe) and Carbon (C). Fe-C phase diagram is complex. Will only consider the steel part of the diagram, up to around 7% Carbon. University

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK Course Name METALLURGY AND MATERIAL SCIENCE Course Code AME005 Class III Semester

More information

Chapter 2. Ans: e (<100nm size materials are called nanomaterials)

Chapter 2. Ans: e (<100nm size materials are called nanomaterials) Chapter 2 1. Materials science and engineering include (s) the study of: (a) metals (b) polymers (c) ceramics (d) composites (e) nanomaterials (f) all of the above Ans: f 2. Which one of the following

More information

MSE 352 Engineering Ceramics II

MSE 352 Engineering Ceramics II Kwame Nkrumah University of Science & Technology, Kumasi, Ghana MSE 352 Engineering Ceramics II 3 Credit Hours Ing. Anthony Andrews (PhD) Department of Materials Engineering Faculty of Mechanical and Chemical

More information

Mechanical Behaviour of Materials Chapter 10 Fracture morpholgy

Mechanical Behaviour of Materials Chapter 10 Fracture morpholgy Mechanical Behaviour of Materials Chapter 10 Fracture morpholgy Dr.-Ing. 郭瑞昭 Example of fracture Classification of fracture processes: Deformation behavior of materials elastic Linear-elastic fracture

More information