PROCEEDINGS 2017 Crop Pest Management Short Course & Minnesota Crop Production Retailers Association Trade Show

Size: px
Start display at page:

Download "PROCEEDINGS 2017 Crop Pest Management Short Course & Minnesota Crop Production Retailers Association Trade Show"

Transcription

1 PROCEEDINGS 2017 Crop Pest Management Short Course & Minnesota Crop Production Retailers Association Trade Show Institute for Ag Professionals Do not reproduce or redistribute without the written consent of author(s).

2 Using CRISPRs for soybean genetic improvement: moving from promise to application Bob Stupar Department of Agronomy & Plant Genetics University of Minnesota

3 Univ. of Minnesota Saint Paul campus

4 Univ. of Minnesota Saint Paul campus

5 Soybean domestication Domesticated about 3,000-5,000 years ago in central China Glycine soja Glycine max earch/2010/100426masoybean.html Slide courtesy of Ben Campbell

6 Approaches to genetic improvement of crops Conventional breeding Mutation breeding GMOs Gene editing

7 Approaches to genetic improvement of crops Conventional breeding Make crosses, look for best progeny Mutation breeding Induce new mutations, then introgress traits GMOs Add new DNA to the genome to confer a specific trait Gene editing A genetic Swiss army knife; target changes in the DNA of specific genes for specific traits; outcomes can be analogous to either mutation breeding or GMOs

8 Does anyone recognize this cover? What is CRISPR? Why is it on the cover of Time? What does this have to do with agriculture? CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats CRISPR is the newest and most powerful tool used for gene editing (i.e., it can be used to rewrite sections of genetic code)

9 Why use CRISPR? CRISPR opens doors to new possibilities: Identification of gene functions Development of novel traits Information for regulators A promising strategy for crop improvement Academics will use the technology and how" will be determined by regulation

10 Who is using CRISPR? Academics Medical researchers (therapeutic tool) Pharma (drug discovery) Agricultural companies Big and small

11 What types of traits can be made using CRISPR?

12 CRISPR/Cas overview Mutate genes Eliminate function Change genes Modify function Insert genes Add new functions; simplify gene stacking

13 CRISPR/Cas overview Charpentier & Doudna (2013) Nature 495:50 51.

14 CRISPR/Cas overview MIT video: Bozeman Science video:

15 What are some desired outcomes? Bortesi & Fischer (2015) Biotechnology Advances 33:41 52.

16 What are some desired outcomes? Application Most common desired outcomes Similar to Targeted mutagenesis Targeted deletion, duplication, inversion, translocation Loss of function to native gene Loss of function to native gene(s); change of dosage to native gene Irradiation or chemical mutagenesis Irradiation mutagenesis Targeted DNA substitution Change of function to native gene Chemical mutagenesis Targeted small DNA insertion Targeted gene insertion Change of function to native gene Introduce new function with novel function Irradiation or chemical mutagenesis Genetic transformation

17 What are some desired outcomes? Application Most common desired outcomes Similar to Targeted mutagenesis Targeted deletion, duplication, inversion, translocation Loss of function to native gene Loss of function to native gene(s); change of dosage to native gene Irradiation or chemical mutagenesis Irradiation mutagenesis Targeted DNA substitution Change of function to native gene Chemical mutagenesis Targeted small DNA insertion Targeted gene insertion Change of function to native gene Introduce new function with novel function Irradiation or chemical mutagenesis Genetic transformation

18 What are some desired outcomes? Application Most common desired outcomes Similar to Targeted mutagenesis Targeted deletion, duplication, inversion, translocation Loss of function to native gene Loss of function to native gene(s); change of dosage to native gene Irradiation or chemical mutagenesis Irradiation mutagenesis Targeted DNA substitution Change of function to native gene Chemical mutagenesis Targeted small DNA insertion Targeted gene insertion Change of function to native gene Introduce new function with novel function Irradiation or chemical mutagenesis Genetic transformation

19 What are some desired outcomes? Application Most common desired outcomes Similar to Targeted mutagenesis Targeted deletion, duplication, inversion, translocation Loss of function to native gene Loss of function to native gene(s); change of dosage to native gene Irradiation or chemical mutagenesis Irradiation mutagenesis Targeted DNA substitution Change of function to native gene Chemical mutagenesis Targeted small DNA insertion Targeted gene insertion Change of function to native gene Introduce new function with novel function Irradiation or chemical mutagenesis Genetic transformation

20 What are some desired outcomes? Application Most common desired outcomes Similar to Targeted mutagenesis Targeted deletion, duplication, inversion, translocation Loss of function to native gene Loss of function to native gene(s); change of dosage to native gene Irradiation or chemical mutagenesis Irradiation mutagenesis Targeted DNA substitution Change of function to native gene Chemical mutagenesis Targeted small DNA insertion Targeted gene insertion Change of function to native gene Introduce new function with novel function Irradiation or chemical mutagenesis Genetic transformation

21 Systems of engineered nucleases TAL Effector Nucleases (TALENs) Zinc Finger Nucleases (ZFNs) Slide courtesy of Nick Baltes Homing Endonucleases (HEs) CRISPR/Cas9

22 Advantages of CRISPR/Cas compared to other genome editing platforms CRISPR platforms are faster, cheaper and easier to develop High success rate Provide the ability to target multiple targets in a single construct (aka. multiplexing) Question: Does anyone still use ZFNs or TALENs? If so, why would they?

23 Soybean traits of interest: Seed composition Soybean producers need new varieties and germplasm to stay competitive in world markets Slide courtesy of Austin Dobbels

24 Dobbels et al. (2016) G3 7: Fast neutron mutation shows elevated sucrose over five years

25 Dobbels et al. (2016) G3 7: Homozygous Wild-type Homozygous Translocation Heterozygous Translocation

26 The genetic pipeline Soybean plant transformation

27 Typical The soybean genetic transformation pipeline Normal soybean Transformed soybean Gene of interest

28 Typical The soybean genetic transformation pipeline Normal soybean Transformed soybean Gene of interest

29 Transformation/segregation with The genetic pipeline genome editing Normal soybean KASI CRISPR/Cas9 transformed; KASI

30 Transformation/segregation with The genetic pipeline genome editing Normal soybean KASI CRISPR/Cas9 transformed; Mutates KASI KASI

31 Transformation/segregation with The genetic pipeline genome editing Normal soybean KASI CRISPR/Cas9 transformed; Mutates KASI KASI

32 Transformation/segregation with The genetic pipeline genome editing Normal soybean KASI CRISPR/Cas9 transformed; Mutates KASI KASI kas1 KAS1 kas1

33 Transformation/segregation with The genetic pipeline genome editing Normal soybean KASI CRISPR/Cas9 transformed; Mutates KASI KASI kas1 KAS1 kas1

34 Gene editing results for KasI Target site 1 Target site 2 Target site1 WPT# Sequenced clones 677-3_shoot _shoot indels

35 Plant Biotechnology Journal Volume 12, Issue 7, pages , 23 MAY 2014 DOI: /pbi The genetic pipeline An excellent example in soybean Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family

36 The genetic pipeline An excellent example in soybean High oleic is an interesting case study because it has been modified using all four methods: Conventional breeding Mutation breeding GMO breeding (RNAi) Gene editing

37 Conclusions and long-term outlook No tidy conclusions, but products emerging There are many ways to develop traits and the methods are continuously evolving CRISPR offers a powerful tool in the toolbox Knowing the function of genes underlies this power; reminds us about the importance of basic research When, how, and who develops these traits/products will largely be determined by how the technology is regulated Domestic and international markets

38 Thank you!

39 Extra slides

40 Acknowledgments Genetics and Informatics Ben Campbell, Austin Dobbels, Jean-Michel Michno, Tom Kono, Fengli Fu, Suma Sreekanta, Fernanda Rodriguez, Anna Hofstad, Jeff Roessler Transgene/CRISPR group Shaun Curtin, Jun Liu, Kamaldeep Virdi, Adrian Stec, Yer Xiong, Xiaobo Wang, Nicole Mihelich, Daniele Peglow, Samatha Gunapati Collaboratoring labs Dan Voytas, Gary Muehlbauer, Carroll Vance, Seth Naeve, Peter Morrell, Wayne Parrott, Scott Jackson, Gary and Bing Stacey, Tom Clemente, Jamie O Rourke, Francois Belzile, many FN users

41 Resequencing of biotech types Project participants Peter Morrell Bob Stupar Wayne Parrott Scott Jackson

42 Resequencing of biotech types

43 Lps1 candidate gene PF03140: Plant protein of unknown function (DUF247) (IPR004158) Expressed: pod, stem, flowers VIGS silencing Average petiole lengths of the top five leaves (cm) Plants with leaflets removed Slide courtesy of Ben Campbell and Jamie O Rourke 0.0 LPSH_EV Empty Vector LPSH Construct Empty Vector Construct

44 Lps1 candidate gene PF03140: Plant protein of unknown function (DUF247) (IPR004158) High expression in pod, stem, and flowers VIGS silencing shows short petiole Extra Lysine added at position 480 Slide courtesy of Ben Campbell Non-cytoplasmic Domain Transmembrane Domain Cytoplasmic Domain

45 Calyxt traits (Dec 2017) Soybean High Oleic Reduced Trans Fat in Oil Wheat High Fiber Herbicide Tolerant Gluten Reduced Canola Lower Saturated Fat Potato Low Acrylamide

Innovative Trait Development Tools in Plant Breeding will be Crucial for Doubling Global Agricultural Productivity by 2050

Innovative Trait Development Tools in Plant Breeding will be Crucial for Doubling Global Agricultural Productivity by 2050 Innovative Trait Development Tools in Plant Breeding will be Crucial for Doubling Global Agricultural Productivity by 2050 Greg Gocal, Ph.D., Senior Vice President, Research and Development CRISPR Precision

More information

Genome Editing Technology - Principle -

Genome Editing Technology - Principle - Effective Date: 31.10.2017 Doc ID: 20290213 Version: 1.0 Status: Approved Planned Effective Date: 31-Oct-2017 00:00 CET (Server Date) Genome Editing Technology - Principle - Rationale Genome editing is

More information

Precision engineering of the plant genome. Sjef Smeekens Institute of Environmental Biology Utrecht University

Precision engineering of the plant genome. Sjef Smeekens Institute of Environmental Biology Utrecht University Precision engineering of the plant genome Sjef Smeekens Institute of Environmental Biology Utrecht University Mutation breeding Molecular basis of traits, the Zea mays TGA1 example Mutation breeding using

More information

Scientific Advice Mechanism. Scoping paper: New techniques in agricultural biotechnology

Scientific Advice Mechanism. Scoping paper: New techniques in agricultural biotechnology Scientific Advice Mechanism Scoping paper: New techniques in agricultural biotechnology 25 November, 2016 Policy context New techniques in agricultural biotechnology During the past decade a number of

More information

Genome editing. Knock-ins

Genome editing. Knock-ins Genome editing Knock-ins Experiment design? Should we even do it? In mouse or rat, the HR-mediated knock-in of homologous fragments derived from a donor vector functions well. However, HR-dependent knock-in

More information

Challenges for biosafety in the rapid changing field of biotechnology

Challenges for biosafety in the rapid changing field of biotechnology Challenges for biosafety in the rapid changing field of biotechnology Gijsbert van Willigen, PhD Coordinator CBRN Safety & Security LEIDEN UNIVERSITY MEDICAL HOSPITAL 1Insert > Header & footer 14-Apr-17

More information

CRISPR/Cas9 Genome Editing: Transfection Methods

CRISPR/Cas9 Genome Editing: Transfection Methods CRISPR/ Genome Editing: Transfection Methods For over 20 years Mirus Bio has developed and manufactured high performance transfection products and technologies. That expertise is now being applied to the

More information

Genome Editing Deals in Agriculture

Genome Editing Deals in Agriculture Genome Editing Deals in Agriculture Key Issues and Potential Pitfalls John R. Therien, J.D. October 24, 2017 Genome Editing Deals in Ag Licensing and R&D collaborations based on GE tools for applications

More information

What are Genetically Modified Crops and how are they made? Professor Idah Sithole-Niang Department of Biochemistry, UZ GMASSURE - UZ

What are Genetically Modified Crops and how are they made? Professor Idah Sithole-Niang Department of Biochemistry, UZ GMASSURE - UZ What are Genetically Modified Crops and how are they made? Professor Idah Sithole-Niang Department of Biochemistry, UZ GMASSURE - UZ Outline Definitions Concept of Genetic Modification Agricultural context

More information

Plant Genome Modification Technologies and Applications Amitabh Mohanty DuPont Pioneer

Plant Genome Modification Technologies and Applications Amitabh Mohanty DuPont Pioneer Plant Genome Modification Technologies and Applications Amitabh Mohanty DuPont Pioneer International Conference on New Plant Breeding Molecular Technologies Technology Development And Regulation, Oct 9-,

More information

Use of Gene Editing Technologies in Rodents. Carlisle P. Landel, Ph.D.

Use of Gene Editing Technologies in Rodents. Carlisle P. Landel, Ph.D. Use of Gene Editing Technologies in Rodents Carlisle P. Landel, Ph.D. The Mouse as A Model Mammal Small, easy to maintain, fecund Well understood genetics Similarity to humans >90% Availability of inbred

More information

Regulation of New Plant Breeding Techniques in Canada and the United States

Regulation of New Plant Breeding Techniques in Canada and the United States Regulation of New Plant Breeding Techniques in Canada and the United States New Breeding Techniques RNA interference Cisgenesis and intragenesis Oligonucleotide directed mutagenesis Grafting (on transgenic

More information

New Plant Breeding Techniques. March 2015, Singapore

New Plant Breeding Techniques. March 2015, Singapore New Plant Breeding Techniques March 2015, Singapore IGTC Business Plan 2015-2018 Main topics : Grain as a hazardous product Development of a standard for the International Movement of Grain Global Low

More information

Biotechnology. Chapter 17 section 1 (only)

Biotechnology. Chapter 17 section 1 (only) Biotechnology Chapter 17 section 1 (only) 5-16-16 Learning Goals for Today: Explain how DNA profiling can identify individuals Interpret data from DNA electrophoresis Discuss genetically modified organisms

More information

Groups of new plant breeding techniques

Groups of new plant breeding techniques WORKSHOP COMPERATIVE SITUATION OF NEW PLANT BREEDING TECHNIQUES 12-13 SEPTEMBER 2011 SEVILLE, SPAIN Groups of new plant breeding techniques Maria Lusser Joint Research Centre, European Commission Workshop

More information

evaluate risk / benefit implications ascertain applicability of existing legislation

evaluate risk / benefit implications ascertain applicability of existing legislation 1 Scope & purpose Regulatory implications of NBTs evaluate risk / benefit implications ascertain applicability of existing legislation assess robustness of current regulatory framework and risk analysis

More information

GMO Answers: Get to Know GMOs

GMO Answers: Get to Know GMOs GMO Answers: Get to Know GMOs Introducing GMO Answers Answering Consumers Questions Social Media Social Media Resources: Materials, Visuals & Videos Visit GMOAnswers.com/educational-resources to download,

More information

Molecular assessment of GMOs Ilona Kryspin Sørensen PhD DTU Food Division for Risk Assessment and Nutrition

Molecular assessment of GMOs Ilona Kryspin Sørensen PhD DTU Food Division for Risk Assessment and Nutrition Molecular assessment of GMOs Ilona Kryspin Sørensen PhD DTU Food Division for Risk Assessment and Nutrition Objective : to assess the level of documentation necessary for the evaluation of the insertion

More information

Cibus. Harnessing the Power of Bio-Diversity. Cibus Rapid Trait Development system (RTDS ) is an environmentally friendly smart breeding tool.

Cibus. Harnessing the Power of Bio-Diversity. Cibus Rapid Trait Development system (RTDS ) is an environmentally friendly smart breeding tool. Cibus Harnessing the Power of Bio-Diversity Cibus Rapid Trait Development system (RTDS ) is an environmentally friendly smart breeding tool. 1. Cibus Development stage company with offices located in San

More information

2020 Outlook: The GM crops global pipeline and New Plant Breeding Techniques

2020 Outlook: The GM crops global pipeline and New Plant Breeding Techniques 2020 Outlook: The GM crops global pipeline and New Plant Breeding Techniques Claudia PARISI EC-JRC-IPTS www.jrc.ec.europa.eu Serving society Stimulating innovation Supporting legislation Int. Workshop

More information

Genetic Engineering in Plants and the New Breeding Techniques (NBTs) Inherent risks and the need to regulate. Dr. Ricarda A.

Genetic Engineering in Plants and the New Breeding Techniques (NBTs) Inherent risks and the need to regulate. Dr. Ricarda A. info@econexus.info www.econexus.info Briefing December 2015 Genetic Engineering in Plants and the New Breeding Techniques (NBTs) Inherent risks and the need to regulate Dr. Ricarda A. Steinbrecher Summary

More information

CHAPTER 9: GENETIC ENGINEERING DR. BERTOLOTTI

CHAPTER 9: GENETIC ENGINEERING DR. BERTOLOTTI CHAPTER 9: GENETIC ENGINEERING DR. BERTOLOTTI Essential Question How and why do scientists manipulate DNA in living cells? 1 What is selective breeding used for? Application of Genetic Engineering Video:

More information

Why Biotech Solutions are Needed to Address Forest Health. Steve Strauss Oregon State University / USA

Why Biotech Solutions are Needed to Address Forest Health. Steve Strauss Oregon State University / USA Why Biotech Solutions are Needed to Address Forest Health Steve Strauss Oregon State University / USA Why advocate for recdna tech? Science rdna starts from nature Innovation Builds on nature to enhance

More information

Lectures 28 and 29 applications of recombinant technology I. Manipulate gene of interest

Lectures 28 and 29 applications of recombinant technology I. Manipulate gene of interest Lectures 28 and 29 applications of recombinant technology I. Manipulate gene of interest C A. site-directed mutagenesis A C A T A DNA B. in vitro mutagenesis by PCR T A 1. anneal primer 1 C A 1. fill in

More information

Regulation of Agricultural Biotechnology in the United States: Overview

Regulation of Agricultural Biotechnology in the United States: Overview Regulation of Agricultural Biotechnology in the United States: Overview Webinar for: National Agricultural Law Center July 15, 2015 Michael J. Firko, Ph.D. APHIS Deputy Administrator (BRS) History of Plant

More information

World Congress on Industrial Biotechnology May, 2014

World Congress on Industrial Biotechnology May, 2014 World Congress on Industrial Biotechnology May, 2014 1 The Value Proposition Leader in precision gene editing RTDS Non transgenic, non GMO platform RTDS Broadly applicable across many organisms Significant

More information

What is Genetic Engineering?

What is Genetic Engineering? Selective Breeding Selective Breeding is when someone (humans) breed organisms with specific traits in order to produce offspring having those same traits. This is also called artificial selection, the

More information

New techniques for genetic modification of plants

New techniques for genetic modification of plants New techniques for genetic modification of plants Connor T March 2010 An internal report prepared for: The New Zealand Institute for Plant & Food Research Limited Connor T Plant & Food Research, Lincoln

More information

GET TO KNOW GMOS A RESOURCE FOR YOU

GET TO KNOW GMOS A RESOURCE FOR YOU GET TO KNOW GMOS GMO Answers was created to do a better job of answering consumers questions no matter what they are about GMOs. Our goal is to make information about GMOs in food and agriculture easier

More information

The GMO pipeline evolving biotechnologies but same old GM crops. In Memory of Dr Mae-wan Ho

The GMO pipeline evolving biotechnologies but same old GM crops. In Memory of Dr Mae-wan Ho The GMO pipeline evolving biotechnologies but same old GM crops In Memory of Dr Mae-wan Ho Overview of presentation Status of first generation GMOs after 20 years of commercialisation failure to live up

More information

SINGAPORE SCIENTISTS DEVELOP DNA-ALTERING TECHNOLOGY TO TACKLE DISEASES Finding could lead to new therapeutics for diseases

SINGAPORE SCIENTISTS DEVELOP DNA-ALTERING TECHNOLOGY TO TACKLE DISEASES Finding could lead to new therapeutics for diseases MEDIA RELEASE FOR IMMEDIATE RELEASE 13 SEPTEMBER 2016 SINGAPORE SCIENTISTS DEVELOP DNA-ALTERING TECHNOLOGY TO TACKLE DISEASES Finding could lead to new therapeutics for diseases SINGAPORE Researchers in

More information

Genome Editing & Engineering Conference

Genome Editing & Engineering Conference Choosing the right gene editing technology February 18-19, 2016, San Diego-CA, The Genome Editing & Engineering Congress brings together the key industry leaders and researchers to address the concepts,

More information

Jerome Peribere President and CEO Dow AgroSciences

Jerome Peribere President and CEO Dow AgroSciences Jerome Peribere President and CEO Dow AgroSciences Goldman Sachs Agricultural Conference February 12, 2008 Dow AgroSciences Delivers Outstanding Year $Billion Sales $Billion EBIT* 3.8 0.6 3.6 0.4 3.4 0.2

More information

TALENs and CRISPR/Cas9 for Rice-Genome Editing

TALENs and CRISPR/Cas9 for Rice-Genome Editing TALENs and CRISPR/Cas9 for Rice-Genome Editing Bing Yang Iowa State University Ames, Iowa byang@iastate.edu Rice, Oryza sativa L., is an important staple crop that feeds more than half of the world s population.

More information

BIOHAZARD RISK ASSESSMENT

BIOHAZARD RISK ASSESSMENT BIOHAZARD RISK ASSESSMENT NAME: DATE: TITLE OF ACTIVITY OR PROJECT: BRIEF DESCRIPTION OF THE BIOLOGICAL AND ITS TREATMENT: DURATION OF ACTIVITY OR PROJECT: FACILITY TO BE USED (Campus, Building and Room

More information

Highly efficient genome engineering in flowering plants ~ Development of a rapid method to knockout genes in Arabidopsis thaliana ~

Highly efficient genome engineering in flowering plants ~ Development of a rapid method to knockout genes in Arabidopsis thaliana ~ Highly efficient genome engineering in flowering plants ~ Development of a rapid method to knockout genes in Arabidopsis thaliana ~ December 5, 2016 Plant biologists at ITbM, Nagoya University have developed

More information

Mouse Engineering Technology. Musculoskeletal Research Center 2016 Summer Educational Series David M. Ornitz Department of Developmental Biology

Mouse Engineering Technology. Musculoskeletal Research Center 2016 Summer Educational Series David M. Ornitz Department of Developmental Biology Mouse Engineering Technology Musculoskeletal Research Center 2016 Summer Educational Series David M. Ornitz Department of Developmental Biology Core service and new technologies Mouse ES core Discussions

More information

1 Introduction 2 BASF Crop Protection 3 BASF Plant Biotechnology Dr. Peter Eckes President, BASF Plant Science

1 Introduction 2 BASF Crop Protection 3 BASF Plant Biotechnology Dr. Peter Eckes President, BASF Plant Science 1 1 Introduction 2 BASF Crop Protection 3 BASF Plant Biotechnology Dr. Peter Eckes President, BASF Plant Science The GM success story continues Global GM crop area in million hectares; 1 ha = 2.47 acres

More information

Genome research in eukaryotes

Genome research in eukaryotes Functional Genomics Genome and EST sequencing can tell us how many POTENTIAL genes are present in the genome Proteomics can tell us about proteins and their interactions The goal of functional genomics

More information

Chapter 9. Biotechnology and DNA Technology

Chapter 9. Biotechnology and DNA Technology Chapter 9 Biotechnology and DNA Technology SLOs Compare and contrast biotechnology, recombinant DNA technology, and genetic engineering. Identify the roles of a clone and a vector in making recombined

More information

CRISPR/Cas9: Tools and Applications for Eukaryotic Genome Editing

CRISPR/Cas9: Tools and Applications for Eukaryotic Genome Editing CRISPR/Cas9: Tools and Applications for Eukaryotic Genome Editing Fei Ann Ran Broad Institute Cambridge, Massachusetts ran@fas.harvard.edu I will provide some background on the CRISPR/Cas9 technology,

More information

Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms

Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms No. 1 of 10 1. The mouse gene knockout is based on. (A) Homologous recombination (B) Site-specific recombination

More information

Genetic Engineering RESTRICTION ENDONUCLEASES

Genetic Engineering RESTRICTION ENDONUCLEASES Genetic Engineering 1977 Frederick Sanger discovered the complete base sequence for one type of virus, identified all 9 of its genes, and became the first to do so. This opened up a whole new world for

More information

Special event on the risk assessment of new plant breeding techniques

Special event on the risk assessment of new plant breeding techniques Special event on the risk assessment of new plant breeding techniques Summary Authors: Anita Greiter 1 Marion Dolezel 1 Michael Eckerstorfer 1 Alexandra Ribarits 2 Walter Stepanek 2 Markus Wögerbauer 2

More information

Defining the Activities and Specificities of CRISPR Nucleases in Human Cells

Defining the Activities and Specificities of CRISPR Nucleases in Human Cells Defining the Activities and Specificities of CRISPR Nucleases in Human Cells CRISPR Congress Ben Kleinstiver Joung Lab Massachusetts General Hospital Harvard Medical School February 21 st, 2017 Areas of

More information

2 Gene Technologies in Our Lives

2 Gene Technologies in Our Lives CHAPTER 15 2 Gene Technologies in Our Lives SECTION Gene Technologies and Human Applications KEY IDEAS As you read this section, keep these questions in mind: For what purposes are genes and proteins manipulated?

More information

ALLERGAN ENTERS STRATEGIC R&D ALLIANCE WITH EDITAS MEDICINE TO DISCOVER AND DEVELOP CRISPR GENE EDITING PROGRAMS FOR OCULAR DISEASES

ALLERGAN ENTERS STRATEGIC R&D ALLIANCE WITH EDITAS MEDICINE TO DISCOVER AND DEVELOP CRISPR GENE EDITING PROGRAMS FOR OCULAR DISEASES ALLERGAN ENTERS STRATEGIC R&D ALLIANCE WITH EDITAS MEDICINE TO DISCOVER AND DEVELOP CRISPR GENE EDITING PROGRAMS FOR OCULAR DISEASES Novel Development Programs for Potential Treatments of Serious Ocular

More information

Genetically Modified Foods: Are They Safe?

Genetically Modified Foods: Are They Safe? Genetically Modified Foods: Are They Safe? W.F. Kee Industry Analyst Technical Insights Group AGRI-FOOD SAFETY AND STANDARDS SEMINAR 2010 Berjaya Times Square Hotel & Convention Centre, Kuala Lumpur January

More information

The Challenges of [high-throughput] Phenotyping

The Challenges of [high-throughput] Phenotyping The Challenges of [high-throughput] Phenotyping Mount Hood - sept 2008 Topics Introducing BASF Plant Science Phenotyping, for what purposes? What are the challenges? High-throughput phenotyping The TraitMill

More information

Eradicating hunger & malnutrition

Eradicating hunger & malnutrition Eradicating hunger & malnutrition The biggest challenge of our time Agricultural biodiversity is a prerequisite for sustainable agriculture and food security 2 Agriculture Facing its biggest challenge

More information

Identifying GM crops for cultivation in the EU through a Delphi forecasting exercise

Identifying GM crops for cultivation in the EU through a Delphi forecasting exercise Identifying GM crops for cultivation in the EU through a Delphi forecasting exercise Ian McFarlane School of Agriculture, Policy and Development University of Reading i.d.mcfarlane@reading.ac.uk Philip

More information

CRISPR/Cas9 Mouse Production

CRISPR/Cas9 Mouse Production CRISPR/Cas9 Mouse Production Emory Transgenic and Gene Targeting Core http://cores.emory.edu/tmc Tamara Caspary, Ph.D. Scientific Director Teresa Quackenbush --- Lab Operations and Communications Coordinator

More information

Next steps towards durable disease resistance

Next steps towards durable disease resistance Next steps towards durable disease resistance Prof. Dr. Richard G.F. Visser, Wageningen UR Plant Breeding One day conference 3 September 2015: Novel approaches to achieve durable disease resistance Late

More information

Controlling DNA. Ethical guidelines for the use of DNA technology. Module Type: Discussion, literature review, and debate

Controlling DNA. Ethical guidelines for the use of DNA technology. Module Type: Discussion, literature review, and debate Ethical guidelines for the use of DNA technology Author: Tara Cornelisse, Ph.D. Candidate, Environmental Studies, University of California Santa Cruz. Field-tested with: 11 th -12 th grade students in

More information

Gene editing in cereals

Gene editing in cereals University of Minnesota Gene editing in cereals Mick Ayliffe The importance of cereals in Australian agriculture VALUE OF AGRICULTURAL COMMODITIES PRODUCED IN Australia (year ended 30 June 2016) Gene editing

More information

Student s Guide. minipcr TM GMO Learning Lab: Heart-Shaped Bananas

Student s Guide. minipcr TM GMO Learning Lab: Heart-Shaped Bananas minipcr TM GMO Learning Lab: Heart-Shaped Bananas Newly-engineered GMO bananas can produce ß-carotene, an essential nutrient and the primary dietary source of provitamin A especially needed by children.

More information

Welcome to the Webinar! Human Genome Editing: Latest Developments and Advancements

Welcome to the Webinar! Human Genome Editing: Latest Developments and Advancements Welcome to the Webinar! Human Genome Editing: Latest Developments and Advancements Thursday, February 22, 2018 at 10:30am PT/1:30pm ET Co-hosted by: The National Academy of Sciences (NAS) and the National

More information

August Green Biotechnology Peter Oakley Member of the Board of Executive Directors

August Green Biotechnology Peter Oakley Member of the Board of Executive Directors August 2005 Green Biotechnology Peter Oakley Member of the Board of Executive Directors 1 Biotechnology & Markets 2 Focus of BASF Strategy 3 Research Platform 4 Business Model 5 Pipeline 6 Beyond Green

More information

GMO Crops, Trade Wars, and a New Site Specific Mutagensis System. A. Lawrence Christy, Ph.D.

GMO Crops, Trade Wars, and a New Site Specific Mutagensis System. A. Lawrence Christy, Ph.D. GMO Crops, Trade Wars, and a New Site Specific Mutagensis System A. Lawrence Christy, Ph.D. Background PhD in Plant Physiology from Ohio State University 12 years with Monsanto R&D in PGR s and herbicides

More information

Evolution of GM crop development from the 1990s to today; Future challenges: Pipeline products; Next generation GMOs and impacts on seed testing

Evolution of GM crop development from the 1990s to today; Future challenges: Pipeline products; Next generation GMOs and impacts on seed testing Evolution of GM crop development from the 1990s to today; Future challenges: Pipeline products; Next generation GMOs and impacts on seed testing ISTA meeting, Montevideo, 2015 Dr. Ray Shillito, Bayer CropScience,

More information

Biotechnology: Genomics: field that compares the entire DNA content of different organisms

Biotechnology: Genomics: field that compares the entire DNA content of different organisms Biotechnology: New Terms Today: Genome Genetic engineering, transgenic organisms, GM food, Reproductive and therapeutic cloning Stem cells, plouripotent, totipotent Gene therapy Genomics: field that compares

More information

Biotechnology Biotechnology is the application of a technological process, invention or method to living organisms

Biotechnology Biotechnology is the application of a technological process, invention or method to living organisms Biotechnology Biotechnology is the application of a technological process, invention or method to living organisms Cloning A clone is an organism that has exactly the same genes as the organism from which

More information

STUDY GUIDE ARE GMOS GOOD OR BAD? KEY TERMS: genes DNA genetically-modified

STUDY GUIDE ARE GMOS GOOD OR BAD? KEY TERMS: genes DNA genetically-modified STUDY GUIDE ARE GMOS GOOD OR BAD? KEY TERMS: NOTE-TAKING COLUMN: Complete this section during the video. Include definitions and key terms. genes DNA genetically-modified seeds Monsanto How long have humans

More information

CRISPR-Cas - introduction. John van der Oost

CRISPR-Cas - introduction. John van der Oost CRISPR-Cas - introduction John van der Oost CRISPR-Cas 2 classes cas operon leader CRISPR CRISPR clustered regularly interspaced palindromic repeats Cas CRISPR-associated genes & proteins present in genomes

More information

Guide-it Indel Identification Kit User Manual

Guide-it Indel Identification Kit User Manual Clontech Laboratories, Inc. Guide-it Indel Identification Kit User Manual Cat. No. 631444 (120114) Clontech Laboratories, Inc. A Takara Bio Company 1290 Terra Bella Avenue, Mountain View, CA 94043, USA

More information

The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation

The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation Plant Biotechnology Journal (2014), pp. 1 11 doi: 10.1111/pbi.12200 The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation Hui Zhang 1, Jinshan Zhang 1,2,

More information

The tomato genome re-seq project

The tomato genome re-seq project The tomato genome re-seq project http://www.tomatogenome.net 5 February 2013, Richard Finkers & Sjaak van Heusden Rationale Genetic diversity in commercial tomato germplasm relatively narrow Unexploited

More information

Q. Importing better varieties of plants from outside and acclimatizing i them to local l environment is 1. Selection 2. Cloning 3. Introduction 4. Het

Q. Importing better varieties of plants from outside and acclimatizing i them to local l environment is 1. Selection 2. Cloning 3. Introduction 4. Het CET BIOLOGY BIOTECHNOLOGY II Q. Importing better varieties of plants from outside and acclimatizing i them to local l environment is 1. Selection 2. Cloning 3. Introduction 4. Heterosis Q. Bagging is done

More information

AGRICULTURE (CODE NO. 01) PAPER - I

AGRICULTURE (CODE NO. 01) PAPER - I AGRICULTURE (CODE NO. 01) PAPER - I There will be two parts PART I, Compulsory for all the candidates. PART II, There will be two optional sections (A & B) Candidate will have to answer all the questions

More information

PCR Methods and Analytical Strategies for GMO Testing. E. Pearce Smith Eurofins GeneScan

PCR Methods and Analytical Strategies for GMO Testing. E. Pearce Smith Eurofins GeneScan PCR Methods and Analytical Strategies for GMO Testing E. Pearce Smith Eurofins GeneScan 1 Genetically Modified Organisms Viruses Bacteria Fungi Plants Animals 2 Examples of Tests for Biotech Corn and Soy

More information

Genetics and Biotechnology Chapter 13

Genetics and Biotechnology Chapter 13 1 Genetics and Biotechnology Chapter 13 Selective breeding is used to produce organisms with desired traits. I. Applied Genetics A. Selective Breeding 1. Definedthe process by which desired traits of certain

More information

At the crossroadswhat future for plant breeding innovation in Europe?

At the crossroadswhat future for plant breeding innovation in Europe? At the crossroadswhat future for plant breeding innovation in Europe? THE EUROPEAN SEED SECTOR Diverse > 7.000 companies > 90% micro enterprises & SMEs Competitive leading innovator leading exporter Innovative

More information

CompoZr Transporter Knockout Cell Lines

CompoZr Transporter Knockout Cell Lines biotransport CompoZr Transporter Knockout Cell Lines Assessment of Substrates with Functionally Knocked Out Transporters MDR1, BCRP and MRP2 biotransport CompoZr Transporter Knockout Cell Lines The Increasing

More information

What is Biotechnology?

What is Biotechnology? What is Biotechnology? Biotechnology is a modern technology that makes use of organisms (or parts thereof) to: make or modify products; improve and develop microorganisms, plants or animals; or develop

More information

Rethinking Realizing Value from Genetic Resources

Rethinking Realizing Value from Genetic Resources Rethinking Realizing Value from Genetic Resources Philip G. Pardey University of Minnesota Funding the CGIAR Genebanks Side Meeting to the CGIAR System Council Meeting, 9 May 2017 Royal Tropical Institute,

More information

Orflo Application Brief 3 /2017 GFP Transfection Efficiency Monitoring with Orflo s Moxi GO Next Generation Flow Cytometer. Introduction/Background

Orflo Application Brief 3 /2017 GFP Transfection Efficiency Monitoring with Orflo s Moxi GO Next Generation Flow Cytometer. Introduction/Background Introduction/Background Cell transfection and transduction refer to an array of techniques used to introduce foreign genetic material, or cloning vectors, into cell genomes. The application of these methods

More information

Bioinformatics, in general, deals with the following important biological data:

Bioinformatics, in general, deals with the following important biological data: Pocket K No. 23 Bioinformatics for Plant Biotechnology Introduction As of July 30, 2006, scientists around the world are pursuing a total of 2,126 genome projects. There are 405 published complete genomes,

More information

Lecture 2-3: Using Mutants to study Biological processes

Lecture 2-3: Using Mutants to study Biological processes Lecture 2-3: Using Mutants to study Biological processes Objectives: 1. Why use mutants? 2. How are mutants isolated? 3. What important genetic analyses must be done immediately after a genetic screen

More information

CRISPR-mediated Genome Editing in Rice and Maize

CRISPR-mediated Genome Editing in Rice and Maize CRISPR-mediated Genome Editing in Rice and Maize Bing Yang Department of Genetics, Development and Cell Biology Iowa State University byang@iastate.edu Nov. 30, 2017 A. Zinc finger nuclease B. TAL effector

More information

EASAC Statement on New Breeding Techniques

EASAC Statement on New Breeding Techniques EASAC Statement on New Breeding Techniques Summary New Breeding Techniques are emerging rapidly from advances in genomic research, for application in crop improvement. They enable precise, targeted, reliable

More information

[ 2 ] [ 3 ] WHAT IS BIOTECHNOLOGY? HOW IS BIOTECHNOLOGY DIFFERENT FROM THE TRADITIONAL WAY OF IMPROVING CROPS?

[ 2 ] [ 3 ] WHAT IS BIOTECHNOLOGY? HOW IS BIOTECHNOLOGY DIFFERENT FROM THE TRADITIONAL WAY OF IMPROVING CROPS? WHAT IS BIOTECHNOLOGY? Biotechnology is a modern technology that makes use of organisms (or parts thereof) to make or modify products; improve and develop microorganisms, plants or animals; or develop

More information

RNAi and genome editing for modifying reproductive traits in forest trees Beijing, China. Steve Strauss Oregon State University / USA

RNAi and genome editing for modifying reproductive traits in forest trees Beijing, China. Steve Strauss Oregon State University / USA RNAi and genome editing for modifying reproductive traits in forest trees Beijing, China Steve Strauss Oregon State University / USA Why reproductive modification? Goals are diverse Containment: Regulatory

More information

CRISPR/Cas9 and Targeted Genome Editing: A New Era in Molecular Biology. Tips for Planning Your CRISPR/Cas9 Experiments

CRISPR/Cas9 and Targeted Genome Editing: A New Era in Molecular Biology. Tips for Planning Your CRISPR/Cas9 Experiments CRISPR/Cas9 and Targeted Genome Editing: A New Era in Molecular Biology Tips for Planning Your CRISPR/Cas9 Experiments feature article CRISPR/Cas9 and Targeted Genome Editing: A New Era in Molecular Biology

More information

Recently developed genomic editing

Recently developed genomic editing doi:10.1038/mt.2015.54 Genome Editing Technologies: Defining a Path to Clinic Genomic Editing: Establishing Preclinical Toxicology Standards Bethesda, Maryland 10 June 2014 Jacqueline Corrigan-Curay 1,

More information

New Plant Breeding Techniques

New Plant Breeding Techniques New Plant Breeding Techniques What future for breeding innovation in Europe? Garlich v. Essen ; GMCC ; Amsterdam; 18.11.2015 THE EUROPEAN SEED SECTOR Diverse > 7.000 companies > 90% micro enterprises &

More information

number Done by Corrected by Doctor Hamed Al Zoubi

number Done by Corrected by Doctor Hamed Al Zoubi number 3 Done by Neda a Baniata Corrected by Waseem Abu Obeida Doctor Hamed Al Zoubi Note: it is important to refer to slides. Bacterial genetics *The main concepts we will talk about in this lecture:

More information

IPs on sequences. Sunil Archak

IPs on sequences. Sunil Archak IPs on sequences Sunil Archak Need to ensure conducting research without infringing upon others IP rights Need to defend own IP rights against other users Justify the substantial costs involved in research

More information

GM Crops and Biodiversity is this solely a GM issue?

GM Crops and Biodiversity is this solely a GM issue? GM Crops and Biodiversity is this solely a GM issue? Brian Johnson Former Head of Biotechnology Unit English Nature Why does farmland biodiversity matter? A high proportion of our natural biodiversity

More information

Adding CRISPR to Your Bio-ARROW Protocol

Adding CRISPR to Your Bio-ARROW Protocol Adding CRISPR to Your Bio-ARROW Protocol Table of Contents Work Covered by this Guidance Document... 2 Background... 2 VI. Materials and Activities... 3 VI. Materials and Activities - Recombinant Materials...

More information

Structural variation. Marta Puig Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona

Structural variation. Marta Puig Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona Structural variation Marta Puig Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona Genetic variation How much genetic variation is there between individuals? What type of variants

More information

The Role of Biotechnology to Enhance Agricultural Productivity, Production and Farmer Incomes.

The Role of Biotechnology to Enhance Agricultural Productivity, Production and Farmer Incomes. The Role of Biotechnology to Enhance Agricultural Productivity, Production and Farmer Incomes. SACAU Policy Conference 16-17 May 2011 Enock Chikava AFSTA President Agenda 1. AFSTA and position on Biotechnology.

More information

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech )

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech ) NOTES - CH 15 (and 14.3): DNA Technology ( Biotech ) Vocabulary Genetic Engineering Gene Recombinant DNA Transgenic Restriction Enzymes Vectors Plasmids Cloning Key Concepts What is genetic engineering?

More information

DELIVERING A SYSTEM FOR HIGHER YIELD IN CANOLA

DELIVERING A SYSTEM FOR HIGHER YIELD IN CANOLA DELIVERING A SYSTEM FOR HIGHER YIELD IN CANOLA System of Solutions Come Together in Our Pipeline Development Process Monsanto s R&D Pipeline Designed to Address Farmers Challenges Increase Yield Impact

More information

Exploiting knowledge of Phytophthora infestans to develop durable late blight disease resistance. Prof Paul Birch

Exploiting knowledge of Phytophthora infestans to develop durable late blight disease resistance. Prof Paul Birch Exploiting knowledge of Phytophthora infestans to develop durable late blight disease resistance Prof Paul Birch To meet projected global food requirements by 2050, the Food and Agriculture Organisation

More information

The 150+ Tomato Genome (re-)sequence Project; Lessons Learned and Potential

The 150+ Tomato Genome (re-)sequence Project; Lessons Learned and Potential The 150+ Tomato Genome (re-)sequence Project; Lessons Learned and Potential Applications Richard Finkers Researcher Plant Breeding, Wageningen UR Plant Breeding, P.O. Box 16, 6700 AA, Wageningen, The Netherlands,

More information

Enhancers mutations that make the original mutant phenotype more extreme. Suppressors mutations that make the original mutant phenotype less extreme

Enhancers mutations that make the original mutant phenotype more extreme. Suppressors mutations that make the original mutant phenotype less extreme Interactomics and Proteomics 1. Interactomics The field of interactomics is concerned with interactions between genes or proteins. They can be genetic interactions, in which two genes are involved in the

More information

Manipulation of Purified DNA

Manipulation of Purified DNA Manipulation of Purified DNA To produce the recombinant DNA molecule, the vector, as well as the DNA to be cloned, must be cut at specific points and then joined together in a controlled manner by DNA

More information

Canada s Seed System. A Summary Description

Canada s Seed System. A Summary Description Canada s Seed System A Summary Description Developed as part of the Seed Synergy Collaboration Project January 2017 1 Executive Summary Canada s Seed System A Summary Description New and improved varieties

More information

Chapter 14: Genes in Action

Chapter 14: Genes in Action Chapter 14: Genes in Action Section 1: Mutation and Genetic Change Mutation: Nondisjuction: a failure of homologous chromosomes to separate during meiosis I or the failure of sister chromatids to separate

More information

DNA and DNA Replication

DNA and DNA Replication Name Period PreAP Biology QCA 2 Review Your EOS exam is approximately 70 MC questions. This review, coupled with your QCA 1 review you received in October should lead you back through the important concepts

More information