Marina A. Zenkova. Artificial Nucleases

Size: px
Start display at page:

Download "Marina A. Zenkova. Artificial Nucleases"

Transcription

1 Marina A. Zenkova Artificial Nucleases

2

3 Introduction 1 DNA Hydrolysis : Mechanism and Reactivity 3 N.H. WILLIAMS 1 Introduction 3 2 The Importance of the Background Reaction 3 3 Mechanism 4 4 Spontaneous Hydrolysis 7 5 C-O Cleavage 8 6 P-O Cleavage 9 7 Base Catalysis 10 8 Acid Catalysis 12 9 Conclusion 1 3 References 1 4 Active Site of Ribonuclease A 1 9 R.T. RAINES 1 Introduction Mechanism of Catalysis Active-Site Residues Histidine 12 and Histidine Lysine Phenylalanine Aspartic Acid Glutamine Catalytic Rate Enhancement Envoi 29 References 29

4 Structural Considerations Concerning Cleavage of RNA 3 3 R. KIERZE K 1 Introduction Facts About the Influence of Oligoribonucleotid e Structure on Cleavage of Phosphodiester Bonds How to Cleave Oligoribonucleotides Cleavage Requires a Single-Stranded Characte r of the Oligoribonucleotide Sequence and Position of the Scissile Phosphodiester Bond Within the Oligomer is Important for Cleavage Oligoribonucleotide Length Affects Cleavag e of Diester Bond The Functional Groups of the Pyrimidine Nucleobase s Flanking the Cleaved Phosphodiester Bond Affect Cleavage The Functional Groups of the Purine Nucleobases Flankin g the Cleaved Phosphodiester Bond Influence Cleavage The C5 Substituents of Uridine Affect the Hydrolysis Rate of the UA Phosphodiester Bond Chimeric DNA/RNA Oligomers Affect the Cleavag e of Phosphodiester Bonds The Motives of RNA Structure are Affected by Spontaneous Cleavage The Effects of Polyamines on the Cleavag e of Oligoribonucleotides Mechanism of Phosphodiester Bond Cleavage 44 4 Conclusions 46 References 46 Cleavage of RNA by Imidazole 49 V.V. VLASSOV and A.V. VLASSOV 1 Introduction 49 2 Imidazole as the Simplest Mimi c of the Ribonuclease Catalytic Structure 50 3 Mechanism of RNA Cleavage by Imidazole Imidazole as a Reagent for Probing RNA Structure 54 5 Conclusions 5 9 References 59

5 Principles of Nucleic Acid Cleavage by Metal Ions 6 1 A. DALLAS, A.V. VLASSOV, and S.A. KAZAKO V 1 Introduction General Mechanisms for the Cleavage of Nucleic Acids Basic Properties of Metal Ions in Solution Metal Ion Binding to Nucleic Acids Transesterification and Hydrolytic Cleavage of Nucleic Acids Catalyzed by Metal Ions Efficacy of Cleavage of Nucleic Acids by Metal Ions Possible Mechanism of Metal Ion Catalysis Nucleic Acid Structure and Specificity of Metal-Catalyzed Cleavage Reactions Oxidative Cleavage of Nucleic Acids Induced by Metal Ions Cleavage Reactions Promoted by Metal Ions in High Oxidation States Cleavage Reactions Involving Metal-Induce d Oxygen Radicals Probing Metal Binding Sites in RNA by Metal-Induced Cleavage 8 1 References 8 3 Allosterically Controlled Ribozymes as Artificial Ribonucleases M. IYo, H. KAWASAKI, M. MIYAGISHI, and K. TAIRA 1 Introduction Maxizymes are Allosterically Controllable Ribozymes Expression of Ribozymes in Cells The Design of Allosterically Controllable Maxizymes Allosteric Control of Ribozyme Activity Selection of Allosterically Controllable Ribozymes in Vitro Maxizymes Truncated Hammerhead Ribozymes that Functio n as Dimers General Design of an Allosterically Controllable Maxizyme The Antitumor Effects of an Allosterically Controllable Maxizyme General Applications of Maxizyme Technology Conclusion 104 References 104

6 Small Ribonuclease Mimics 11 1 I.L. KUZNETSOVA and V.N. SIL'NIKOV 1 Introduction RNA-Cleaving Compounds RNA-Cleaving Compounds Mimickin g Ribonucleases A and Ti Mimics of the Active Center of Nuclease S Design of Active Centers of Natural Enzymes Spatial Organization of RNA-Cleaving Groups in Active Centers of RNases and Nucleases S and Sm RNA-Binding Groups Design of Artificial Ribonucleases Mimicking RNase A Artificial Ribonucleases with Polycycli c RNA-Binding Domains Polycationic RNA-Binding Groups Specificity of RNA Cleavage Effects of Buffer on the Cleavage Mechanism of RNA Cleavage with the Artificial Ribonucleases ABLkCm and nlm Potential Applications of Small Ribonuclease Mimics Conclusions 125 References 126 Copper-Containing Nuclease Mimics : Synthetic Models and Biochemical Applications 129 S. VERMA, S.G. SRIVATSAN, and C. MADHAVAIAH 1 Introduction Model Systems Mechanistic Pathways Copper Complexes with Synthetic Ligands Hydrolysis of Phosphate Diesters Cleavage of Nucleic Acids Copper Complexes of Natural Ligands Outlook 14 5 References 145

7 RNA-Cleaving Oligonucleotide-Peptide Conjugates 15 1 N.L. MIRONOVA, D.V. PYSHNYI, and E.M. IVANOVA 1 Introduction Proteins Displaying Ribonuclease Activity Natural Ribonuclease Small Natural Peptides Synthetic Polypeptides Conjugates of RNA-Cleaving Peptides with Constructs Capable of Binding to RNA Conjugates of Enzymes and Oligonucleotides Conjugates of Short Peptides and Intercalators Oligonucleotide-Peptide Conjugates Displayin g Ribonuclease Activity Influence of Peptide Structure on the Efficacy of RNA Cleavage Site-Directed RNA Hydrolysis by Peptidyloligonucleotides Hydrolysis ofrna by the Conjugate s of Random Oligonucleotides Influence of Oligonucleotide Sequence on the Specificity of RNA Cleavage Cleavage of Short RNA Discussion 16 8 References 170 Sequence Selective Artificial Ribonuclease s Employing Metal Ions as Scissors 17 3 A. KUZUYA, R. MIZOGUCHI, and M. KOMIYAM A 1 Introduction Significance of Artificial Ribonucleases Molecular Design of Artificial Ribonucleases Metal Ion Catalysts for RNA Cleavage Divalent Metal Ions and Their Complexes Trivalent Lanthanide Ions and Their Complexes Sequence-Selective Artificial Ribonuclease s with Covalently Attached Catalysts Attaching the Catalysts to the End of DNA Oligomers [Lanthanide Complex]/DNA Hybrids [Dinuclear Metal Complex]/DNA Hybrids 179

8 3.2 Attaching the Catalysts at an Internal Position Within DNA Oligomers Noncovalent Systems for Sequence-Selective RNA Scission Molecular Design Site-Selective RNA Scission by Lanthanide Ions Requirements for the Sequence-Selective RNA Activation Site-Selective RNA Scission by Non-Lanthanide Ions Mechanism of the Site-Selective Scission Prospect 18 6 References 18 6 Site-Specific Artificial Ribonucleases : Conjugates of Oligonucleotides with Catalytic Groups 18 9 M.A. Zenkova and N.G. Beloglazova 1 Introduction Oligonucleotide Conjugate-Based Artificial Ribonucleases Conjugates of Oligonucleotides and Metal Complexes Conjugates of Oligonucleotide s and RNA-Cleaving Molecules Design of Artificial Ribonucleases for Site-Specifi c RNA Cleavage Synthetic Approaches Effect of the Catalytic Structure Locatio n in the Conjugate Structure RNA Sequences Optimal for Site-Specific Cleavage Site-Specific Cleavage of Cellular RNA Site-Specific RNA Cleavage by Conjugate s of Oligonucleotides with Imidazole-Based Catalytic Groups Mono- and Bis-Imidazole-Containing Conjugates Binary Systems of Oligonucleotide Conjugates Conjugates with Anthracene-Based Linkers Conjugates with Multiple Imidazole Residues in the Catalytic Domain Conclusions 21 6 References 216

9 DNA and RNA Cleavage Mediated by Phenanthroline-Cuprou s Oligonucleotides : From Properties to Applications 22 3 J.C. FRANcOIS, M. FARIA, D. PERRIN, and C. GIOVANNANGEL I 1 Introduction The 1,10-Phenanthroline-Cuprous Complex Background Structural Probes for Nucleic Acid-Containing Complexes Phenanthroline Conjugates Conjugation of Biomolecules to Phenanthroline Neighborhood Sensors Oligonucleotide-Phenanthrolin e as Site-Specific Ribonuclease Oligonucleotide-Phenanthroline Targeted to Double-Stranded DNA Artificial Endonucleases for in Vitro Applications Biological Activities of Oligonucleotide-Phenanthroline Phenanthroline Cleavage Activity Inside Cells Modulation of DNA Metabolism Induced by Oligonucleotide-Phenanthroline Conclusion 23 7 References 23 8 Sequence-Specific Cleavage of Double-Stranded DNA 24 3 A.S. BOUTORINE and P.B. ARIMOND O 1 Introduction DNA Cleavage by Natural Enzymes and Their Conjugates Restriction Endonucleases Conjugates of Nucleases with Oligonucleotides The Achilles Heel Cleavage Method Sequence-Specific Cleavage Using Conjugate d Chemical Reagents Direct Cleavage by Sequence-Specific Conjugates 3.2 of Metal Complexes Alkylating Reagents Conjugate d 24 7 to Sequence-Specific Molecules DNA Photocleavage Photo cleavage by Blue Light-Absorbing Reagents Long-Distance Electron Transfer in Photocleavage Reactions Photocleavage by Red Light-Absorbing Reagents Recruitment of Intracellular Enzyme s for Sequence-Specific DNA Cleavage 255

10 5.1 RecA Protein Recruitment of Topoisomerase s by Conjugated Topoisomerase Inhibitors Application of the Non-Specific Single-Stranded DNA Cleaving Agents for Site-Specific Scissio n of Double-Stranded DNA Conclusions 26 0 References 26 1 Bleomycin-Oligonucleotide Conjugates as Site-Specific Nucleases P.E. VOROBJEV and V.F. ZARYTOVA 1 Introduction Structure and Properties of Bleomycins Conjugates of Bleomycin with Oligonucleotides : Synthesis and Structure Cleavage of Nucleic Acid s by Bleomycin-Oligonucleotide Conjugates Site-Specific Cleavage of Single-Stranded DNA Fragment s by Bleomycin-Oligonucleotide Conjugates Cleavage of RNA by Bleomycin-Oligonucleotide Conjugates Cleavage of Double-Stranded DNA by Triplex-Formin g Bleomycin-oligonucleotide Conjugates Catalytic Degradation of DNA Target b y Oligonucleotide-Bleomycin Conjugate Bleomycin-Oligonucleotide Conjugate s in Tandem Sets with Effectors as Efficient Nucleases Conclusion 284 References 284 Subject Index 289

Chapter 3 Nucleic Acids, Proteins, and Enzymes

Chapter 3 Nucleic Acids, Proteins, and Enzymes 3 Nucleic Acids, Proteins, and Enzymes Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural

More information

Nucleic Acids, Proteins, and Enzymes

Nucleic Acids, Proteins, and Enzymes 3 Nucleic Acids, Proteins, and Enzymes Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural

More information

RNA is a single strand molecule composed of subunits called nucleotides joined by phosphodiester bonds.

RNA is a single strand molecule composed of subunits called nucleotides joined by phosphodiester bonds. The Versatility of RNA Primary structure of RNA RNA is a single strand molecule composed of subunits called nucleotides joined by phosphodiester bonds. Each nucleotide subunit is composed of a ribose sugar,

More information

The Transition to Life!

The Transition to Life! The Transition to Life The Transition to Life Chemical Evolution Biological Evolution? Interacting Chemical Reproduction of Organisms Natural Selection Based on Simplest Life Now: Need: 1. Nucleic Acids

More information

Central Dogma. 1. Human genetic material is represented in the diagram below.

Central Dogma. 1. Human genetic material is represented in the diagram below. Central Dogma 1. Human genetic material is represented in the diagram below. 4. If 15% of a DNA sample is made up of thymine, T, what percentage of the sample is made up of cytosine, C? A) 15% B) 35% C)

More information

Enzymes Part III: regulation I. Dr. Mamoun Ahram Summer, 2017

Enzymes Part III: regulation I. Dr. Mamoun Ahram Summer, 2017 Enzymes Part III: regulation I Dr. Mamoun Ahram Summer, 2017 Mechanisms of regulation Expression of isoenzymes Regulation of enzymatic activity Inhibitors Conformational changes Allostery Modulators Reversible

More information

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 50% midterm, 50% final.

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 50% midterm, 50% final. Nanobiotechnology Place: IOP 1 st Meeting Room Time: 9:30-12:00 Reference: Review Papers Grade: 50% midterm, 50% final Midterm: 5/15 History Atom Earth, Air, Water Fire SEM: 20-40 nm Silver 66.2% Gold

More information

Nucleic Acids. One-letter abbreviation. 1.1* Base / Nucleotide DNA / RNA / Both. 1.2* Base / Nucleotide DNA / RNA / Both

Nucleic Acids. One-letter abbreviation. 1.1* Base / Nucleotide DNA / RNA / Both. 1.2* Base / Nucleotide DNA / RNA / Both Chime 11 Name: Chapter 22 (please print) Nucleic Acids Read and answer each question carefully and thoroughly. Please do not crowd your answers. Use scratch paper to work out each problem and write the

More information

Biochemistry study of the molecular basis of life

Biochemistry study of the molecular basis of life Biochemistry : An Introduction Biochemistry study of the molecular basis of life n Study of the chemistry of living organisms Studies organic molecules & organic reactions in living organisms n Living

More information

Chapter 5: Microbial Metabolism (Part I)

Chapter 5: Microbial Metabolism (Part I) Chapter 5: Microbial Metabolism (Part I) Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living organism. These chemical reactions are generally of two types: Catabolic:

More information

Proteins Amides from Amino Acids

Proteins Amides from Amino Acids Chapter 26 and Chapter 28 Proteins Amides from Amino Acids Amino acids contain a basic amino group and an acidic carboxyl group Joined as amides between the ¾NH 2 of one amino acid and the ¾CO 2 H to the

More information

Combinatorial RNA libraries

Combinatorial RNA libraries SELEX and Artificial Ribozymes Some definitions SELEX: Systematic Evolution of Ligands by EXponential Enrichment (alternatively: in vitro selection, in vitro evolution) Aptamer: nucleic acid ligand (from

More information

Artificial Nucleic Acids -Their Developments and Recent Applications

Artificial Nucleic Acids -Their Developments and Recent Applications Artificial Nucleic Acids -Their Developments and Recent Applications Bioorganic Chemistry Laboratory D2 Kenichiro Ito Organic Seminar 2012/5/7 1 Nucleic acids play central roles in life Replication Transcription

More information

8/21/2014. From Gene to Protein

8/21/2014. From Gene to Protein From Gene to Protein Chapter 17 Objectives Describe the contributions made by Garrod, Beadle, and Tatum to our understanding of the relationship between genes and enzymes Briefly explain how information

More information

Recombinant DNA Technology

Recombinant DNA Technology Recombinant DNA Technology Common General Cloning Strategy Target DNA from donor organism extracted, cut with restriction endonuclease and ligated into a cloning vector cut with compatible restriction

More information

AP Biology Gene Expression/Biotechnology REVIEW

AP Biology Gene Expression/Biotechnology REVIEW AP Biology Gene Expression/Biotechnology REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Gene expression can be a. regulated before transcription.

More information

DNA makes RNA makes Proteins. The Central Dogma

DNA makes RNA makes Proteins. The Central Dogma DNA makes RNA makes Proteins The Central Dogma TRANSCRIPTION DNA RNA transcript RNA polymerase RNA PROCESSING Exon RNA transcript (pre-mrna) Intron Aminoacyl-tRNA synthetase NUCLEUS CYTOPLASM FORMATION

More information

DNA. Is a molecule that encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses.

DNA. Is a molecule that encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses. Is a molecule that encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses. Genetic information is encoded as a sequence of nucleotides (guanine,

More information

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison BIOLOGICAL SCIENCE FIFTH EDITION Freeman Quillin Allison 4 Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge In this chapter you will learn that Nucleic acids store the

More information

Paper : 03 Structure and Function of Biomolecules II Module: 02 Nucleosides, Nucleotides and type of Nucleic Acids

Paper : 03 Structure and Function of Biomolecules II Module: 02 Nucleosides, Nucleotides and type of Nucleic Acids Paper : 03 Structure and Function of Biomolecules II Module: 02 Nucleosides, Nucleotides and type of Nucleic Acids Principal Investigator Paper Coordinators Prof. Sunil Kumar Khare, Professor, Department

More information

Unit 2 Review: DNA, Protein Synthesis & Enzymes

Unit 2 Review: DNA, Protein Synthesis & Enzymes 1. One of the functions of DNA is to A. secrete vacuoles.. make copies of itself.. join amino acids to each other. D. carry genetic information out of the nucleus. 2. Two sugars found in nucleic acids

More information

Transcription in Prokaryotes. Jörg Bungert, PhD Phone:

Transcription in Prokaryotes. Jörg Bungert, PhD Phone: Transcription in Prokaryotes Jörg Bungert, PhD Phone: 352-273-8098 Email: jbungert@ufl.edu Objectives Understand the basic mechanism of transcription. Know the function of promoter elements and associating

More information

The Two-Hybrid System

The Two-Hybrid System Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine The Two-Hybrid System Carolina Vollert & Peter Uetz Institut für Genetik Forschungszentrum Karlsruhe PO Box 3640 D-76021 Karlsruhe

More information

Introduction to Enzymes

Introduction to Enzymes Introduction to Enzymes Enzyme Engineering What is enzymes? Life depends on well-orchestrated series of chemical reactions : E. coli has 4288 proteins, 2656 of which are characterized, and 64% (1701) of

More information

DNA REPLICATION & REPAIR

DNA REPLICATION & REPAIR DNA REPLICATION & REPAIR Table of contents 1. DNA Replication Model 2. DNA Replication Mechanism 3. DNA Repair: Proofreading 1. DNA Replication Model Replication in the cell cycle 3 models of DNA replication

More information

From mechanism to medicne

From mechanism to medicne From mechanism to medicne a look at proteins and drug design Chem 342 δ δ δ+ M 2009 δ+ δ+ δ M Drug Design - an Iterative Approach @ DSU Structural Analysis of Receptor Structural Analysis of Ligand-Receptor

More information

CRISPR/Cas9 Genome Editing: Transfection Methods

CRISPR/Cas9 Genome Editing: Transfection Methods CRISPR/ Genome Editing: Transfection Methods For over 20 years Mirus Bio has developed and manufactured high performance transfection products and technologies. That expertise is now being applied to the

More information

Genetics and Genomics in Medicine Chapter 3. Questions & Answers

Genetics and Genomics in Medicine Chapter 3. Questions & Answers Genetics and Genomics in Medicine Chapter 3 Multiple Choice Questions Questions & Answers Question 3.1 Which of the following statements, if any, is false? a) Amplifying DNA means making many identical

More information

Spring 2006 Biochemistry 302 Exam 2

Spring 2006 Biochemistry 302 Exam 2 Name Spring 2006 Biochemistry 302 Exam 2 Directions: This exam has 45 questions/problems totaling 110 points. Check to make sure you have seven pages. Some questions have multiple parts so read each one

More information

Nucleotides: structure and functions. Prof. Dalė Vieželienė Biochemistry department Room No

Nucleotides: structure and functions. Prof. Dalė Vieželienė Biochemistry department Room No Nucleotides: structure and functions Prof. Dalė Vieželienė Biochemistry department Room No. 229 Email: daleveze@med.kmu.lt Composition of Nucleic Acids Nucleotide structure Two types of nucleic acids:

More information

Nucleic Acids and the RNA World. Pages Chapter 4

Nucleic Acids and the RNA World. Pages Chapter 4 Nucleic Acids and the RNA World Pages 74-89 Chapter 4 RNA vs. Protein Chemical Evolution stated that life evolved from a polymer called a protein. HOWEVER, now many scientists question this. There is currently

More information

What Are the Chemical Structures and Functions of Nucleic Acids?

What Are the Chemical Structures and Functions of Nucleic Acids? THE NUCLEIC ACIDS What Are the Chemical Structures and Functions of Nucleic Acids? Nucleic acids are polymers specialized for the storage, transmission, and use of genetic information. DNA = deoxyribonucleic

More information

The replication of DNA Kornberg 1957 Meselson and Stahl 1958 Cairns 1963 Okazaki 1968 DNA Replication The driving force for DNA synthesis. The addition of a nucleotide to a growing polynucleotide

More information

THE CELLULAR AND MOLECULAR BASIS OF INHERITANCE

THE CELLULAR AND MOLECULAR BASIS OF INHERITANCE Umm AL Qura University THE CELLULAR AND MOLECULAR BASIS OF INHERITANCE Dr. Neda Bogari www.bogari.net EMERY'S ELEMENTS OF MEDICAL GENETICS Peter Turnpenny and Sian Ellard 13 th edition 2008 COURSE SYLLABUS

More information

Case 16 Allosteric Regulation of ATCase

Case 16 Allosteric Regulation of ATCase Case 16 Allosteric Regulation of ATCase Focus concept An enzyme involved in nucleotide synthesis is subject to regulation by a variety of combinations of nucleotides. rerequisites roperties of allosteric

More information

Gene Mutation, DNA Repair, and Transposition

Gene Mutation, DNA Repair, and Transposition Gene Mutation, DNA Repair, and Transposition Mutations Are Classified in Various Ways Spontaneous mutations happen naturally and randomly and are usually linked to normal biological or chemical processes

More information

Chapter 8 Nucleotides & Nucleic Acids

Chapter 8 Nucleotides & Nucleic Acids Chapter 8 Nucleotides & Nucleic Acids We Need Nucleic Acids! RNA rrna DNA RNA mrna Protein Protein Trait Pol trna DNA contains genes, the information needed to synthesize functional proteins and RNAs DNA

More information

Recombinant DNA Technology

Recombinant DNA Technology History of recombinant DNA technology Recombinant DNA Technology (DNA cloning) Majid Mojarrad Recombinant DNA technology is one of the recent advances in biotechnology, which was developed by two scientists

More information

Genetic variations and Gene Rearrangements. Mutation

Genetic variations and Gene Rearrangements. Mutation Genetic variations and Gene Rearrangements Mutation Def.: It is a physical change of one or more nucleotide pairs in the DNA of a cell. The change is inherited by every descendant of the mutant cell. Classification:

More information

Enzyme. Proteins with catalytic properties. A small group of catalytic RNA molecules

Enzyme. Proteins with catalytic properties. A small group of catalytic RNA molecules بسمه تعالی کارشناسی ارشد بیوشیمی و بیولوژي سلول آنزیم ابراهیم قاسمی Enzyme Proteins with catalytic properties A small group of catalytic RNA molecules Catalyze reactions (degrade, conserve and transform

More information

CHEM 4420 Exam I Spring 2013 Page 1 of 6

CHEM 4420 Exam I Spring 2013 Page 1 of 6 CHEM 4420 Exam I Spring 2013 Page 1 of 6 Name Use complete sentences when requested. There are 100 possible points on this exam. The multiple choice questions are worth 2 points each. All other questions

More information

Bioinformatics. ONE Introduction to Biology. Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012

Bioinformatics. ONE Introduction to Biology. Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012 Bioinformatics ONE Introduction to Biology Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012 Biology Review DNA RNA Proteins Central Dogma Transcription Translation

More information

Dr. Jeffrey P. Thompson bio350

Dr. Jeffrey P. Thompson bio350 Chapter 8 Enzymes Green light GFP Blue light Modern day catalysis Catalysis (reaction promotion) may have gotten its beginning g in an RNA- dominated world. Most catalysis today has evolved into using

More information

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide Nucleic Acids Nucleic acids are molecules that store information for cellular growth and reproduction There are two types of nucleic acids: - deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) These

More information

DNA is the genetic material. DNA structure. Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test

DNA is the genetic material. DNA structure. Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test DNA is the genetic material Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test Dr. Amy Rogers Bio 139 General Microbiology Hereditary information is carried by DNA Griffith/Avery

More information

MODIFIED OLIGONUCLEOTIDES: Synthesis and Strategy for Users

MODIFIED OLIGONUCLEOTIDES: Synthesis and Strategy for Users Annu. Rev. Biochem. 1998. 67:99 134 Copyright c 1998 by Annual Reviews. All rights reserved MODIFIED OLIGONUCLEOTIDES: Synthesis and Strategy for Users Sandeep Verma and Fritz Eckstein Max-Planck-Institut

More information

Molecular Genetics Techniques. BIT 220 Chapter 20

Molecular Genetics Techniques. BIT 220 Chapter 20 Molecular Genetics Techniques BIT 220 Chapter 20 What is Cloning? Recombinant DNA technologies 1. Producing Recombinant DNA molecule Incorporate gene of interest into plasmid (cloning vector) 2. Recombinant

More information

SuperScript IV Reverse Transcriptase as a better alternative to AMV-based enzymes

SuperScript IV Reverse Transcriptase as a better alternative to AMV-based enzymes WHITE PAPER SuperScript IV Reverse Transcriptase SuperScript IV Reverse Transcriptase as a better alternative to AMV-based enzymes Abstract Reverse transcriptases (RTs) from avian myeloblastosis virus

More information

RNA metabolism. DNA dependent synthesis of RNA RNA processing RNA dependent synthesis of RNA and DNA.

RNA metabolism. DNA dependent synthesis of RNA RNA processing RNA dependent synthesis of RNA and DNA. RNA metabolism DNA dependent synthesis of RNA RNA processing RNA dependent synthesis of RNA and DNA http://www.youtube.com/watch?v=ovc8nxobxmq DNA dependent synthesis of RNA : production of an RNA molecule

More information

Spring 2006 Biochemistry 302 Exam 1

Spring 2006 Biochemistry 302 Exam 1 1 Name Spring 2006 Biochemistry 302 Exam 1 Directions: This exam has 36 questions/problems totaling 90 points. Check to make sure you have all six pages. Some questions have multiple parts so read each

More information

Module I: Introduction

Module I: Introduction Module I: Introduction 20.109 Lecture 1 3 February, 2011 Introduction to: Module Overview Fundamental concepts and techniques in molecular biology Appreciating nucleic acids (RNA in particular) as more

More information

Proposed Models of DNA Replication. Conservative Model. Semi-Conservative Model. Dispersive model

Proposed Models of DNA Replication. Conservative Model. Semi-Conservative Model. Dispersive model 5.2 DNA Replication Cell Cycle Life cycle of a cell Cells can reproduce Daughter cells receive an exact copy of DNA from parent cell DNA replication happens during the S phase Proposed Models of DNA Replication

More information

Problem: The GC base pairs are more stable than AT base pairs. Why? 5. Triple-stranded DNA was first observed in 1957. Scientists later discovered that the formation of triplestranded DNA involves a type

More information

BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY

BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY Biology Multiple Choice 016074 BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY Test Code: 016074 Directions: Each of the questions or incomplete statements below is followed by five suggested

More information

Purification: Step 1. Protein and Peptide Chemistry. Lecture 11. Big Problem: Crude extract is not the natural environment. Cells: Break them open!

Purification: Step 1. Protein and Peptide Chemistry. Lecture 11. Big Problem: Crude extract is not the natural environment. Cells: Break them open! Lecture 11 Protein and Peptide Chemistry Margaret A. Daugherty Fall 2003 Purification: Step 1 Cells: Break them open! Crude Extract Total contents of cell Big Problem: Crude extract is not the natural

More information

Purification: Step 1. Lecture 11 Protein and Peptide Chemistry. Cells: Break them open! Crude Extract

Purification: Step 1. Lecture 11 Protein and Peptide Chemistry. Cells: Break them open! Crude Extract Purification: Step 1 Lecture 11 Protein and Peptide Chemistry Cells: Break them open! Crude Extract Total contents of cell Margaret A. Daugherty Fall 2003 Big Problem: Crude extract is not the natural

More information

Multiple choice questions (numbers in brackets indicate the number of correct answers)

Multiple choice questions (numbers in brackets indicate the number of correct answers) 1 Multiple choice questions (numbers in brackets indicate the number of correct answers) February 1, 2013 1. Ribose is found in Nucleic acids Proteins Lipids RNA DNA (2) 2. Most RNA in cells is transfer

More information

NCERT. 2. An enzyme catalysing the removal of nucleotides from the ends of DNA is: a. endonuclease b. exonuclease c. DNA ligase d.

NCERT. 2. An enzyme catalysing the removal of nucleotides from the ends of DNA is: a. endonuclease b. exonuclease c. DNA ligase d. BIOTECHNOLOGY PRINCIPLES AND PROCESSES 75 CHAPTER 11 BIOTECHNOLOGY: PRINCIPLES AND PROCESSES 1. Rising of dough is due to: MULTIPLE-CHOICE QUESTIONS a. Multiplication of yeast b. Production of CO 2 c.

More information

DNA Replication. Packet #17 Chapter #16

DNA Replication. Packet #17 Chapter #16 DNA Replication Packet #17 Chapter #16 1 HISTORICAL FACTS ABOUT DNA 2 Historical DNA Discoveries 1928 Frederick Griffith finds a substance in heat-killed bacteria that transforms living bacteria 1944 Oswald

More information

FROM MOLECULES TO LIFE

FROM MOLECULES TO LIFE Chapter 7 (Strickberger) FROM MOLECULES TO LIFE Organisms depended on processes that transformed materials available outside of the cell into metabolic products necessary for cellular life. These processes

More information

RNA Part I: Chemical Structure of RNA

RNA Part I: Chemical Structure of RNA RA Part I: Chemical Structure of RA Structural differences between RA and DA Resistance of phosphate esters to basic hydrolysis The 2 - group of RA facilitates chemical cleavage in aqueous a by forming

More information

CHAPTER 9 DNA Technologies

CHAPTER 9 DNA Technologies CHAPTER 9 DNA Technologies Recombinant DNA Artificially created DNA that combines sequences that do not occur together in the nature Basis of much of the modern molecular biology Molecular cloning of genes

More information

AGENDA for 10/10/13 AGENDA: HOMEWORK: Due end of the period OBJECTIVES: Due Fri, 10-11

AGENDA for 10/10/13 AGENDA: HOMEWORK: Due end of the period OBJECTIVES: Due Fri, 10-11 AGENDA for 10/10/13 AGENDA: 1. 1.2.3 DNA Analysis Analyzing DNA Samples Using Current Forensic Methods OBJECTIVES: 1. Demonstrate the steps of gel electrophoresis 2. Analyze restriction fragment length

More information

RNA : functional role

RNA : functional role RNA : functional role Hamad Yaseen, PhD MLS Department, FAHS Hamad.ali@hsc.edu.kw RNA mrna rrna trna 1 From DNA to Protein -Outline- From DNA to RNA From RNA to Protein From DNA to RNA Transcription: Copying

More information

The following general information is from: "Biochemical Techniques Theory and Practice" by J.F. Robyt and B.J. White, Waveland Press Inc., 1987.

The following general information is from: Biochemical Techniques Theory and Practice by J.F. Robyt and B.J. White, Waveland Press Inc., 1987. Biochemistry Laboratory DNA I (REVISED 4/02 KRD) Purpose: Isolation of DNA from Gambusia liver. The following general information is from: "Biochemical Techniques Theory and Practice" by J.F. Robyt and

More information

Functional Genomics Research Stream. Research Meeting: June 19, 2012 SYBR Green qpcr, Research Update

Functional Genomics Research Stream. Research Meeting: June 19, 2012 SYBR Green qpcr, Research Update Functional Genomics Research Stream Research Meeting: June 19, 2012 SYBR Green qpcr, Research Update Updates Alternate Lab Meeting Fridays 11:30-1:00 WEL 4.224 Welcome to attend either one Lab Log thanks

More information

Τάσος Οικονόµου ιαλεξη 8. Kινηση, λειτουργια, ελεγχος.

Τάσος Οικονόµου ιαλεξη 8. Kινηση, λειτουργια, ελεγχος. Τάσος Οικονόµου ιαλεξη 8 Kινηση, λειτουργια, ελεγχος http://ecoserver.imbb.forth.gr/bio321.htm εν ξεχνω. Cell The peptide bond Polypeptides are stabilized by: 1. Covalent bonds= amide bond 2. Noncovalent,

More information

Chapter 3-II Protein Structure and Function

Chapter 3-II Protein Structure and Function Chapter 3-II Protein Structure and Function GBME, SKKU Molecular & Cell Biology H.F.K. Active site of the enzyme trypsin. Enzymes (proteins or RNAs) catalyze making or breaking substrate covalent bonds.

More information

CHAPTER 22: Nucleic Acids & Protein Synthesis. General, Organic, & Biological Chemistry Janice Gorzynski Smith

CHAPTER 22: Nucleic Acids & Protein Synthesis. General, Organic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 22: Nucleic Acids & Protein Synthesis General, rganic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 22: Nucleic Acids & Protein Synthesis Learning bjectives: q Nucleosides & Nucleo@des:

More information

Enzymes and Coenzymes I. Dr. Sumbul Fatma Clinical Chemistry Unit Department of Pathology

Enzymes and Coenzymes I. Dr. Sumbul Fatma Clinical Chemistry Unit Department of Pathology Enzymes and Coenzymes I Dr. Sumbul Fatma Clinical Chemistry Unit Department of Pathology What are Enzymes? Enzymes are biological catalysts that speed up the rate of a reaction without being changed in

More information

Nucleic Acids: DNA and RNA

Nucleic Acids: DNA and RNA Nucleic Acids: DNA and RNA Living organisms are complex systems. Hundreds of thousands of proteins exist inside each one of us to help carry out our daily functions. These proteins are produced locally,

More information

BCMB Nucleic Acids - Chapter 33. DNA is the genetic component of life

BCMB Nucleic Acids - Chapter 33. DNA is the genetic component of life BCMB 3100 - Nucleic Acids - Chapter 33 Discovery of DNA Nucleotides, nucleosides & bases Polynucleotides DNA as genetic material Structure of double-stranded DNA Chromatin RNA Nucleases 1 DNA is the genetic

More information

BIOCHEMISTRY Nucleic Acids

BIOCHEMISTRY Nucleic Acids BIOCHEMISTRY Nucleic Acids BIOB111 CHEMISTRY & BIOCHEMISTRY Session 17 Session Plan Types of Nucleic Acids Nucleosides Nucleotides Primary Structure of Nucleic Acids DNA Double Helix DNA Replication Types

More information

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning Section A: DNA Cloning 1. DNA technology makes it possible to clone genes for basic research and commercial applications: an overview 2. Restriction enzymes are used to make recombinant DNA 3. Genes can

More information

Biochemistry Eukaryotic Transcription

Biochemistry Eukaryotic Transcription 1 Description of Module Subject Name Paper Name Module Name/Title Dr. Vijaya Khader Dr. MC Varadaraj 2 1. Objectives 1. Understand and have an overview of eucaryotic transcriptional regulation. 2. Explain

More information

Hydroxylamine HCl. (Cat. # BC80) think proteins! think G-Biosciences

Hydroxylamine HCl. (Cat. # BC80) think proteins! think G-Biosciences 532PR 01 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name Hydroxylamine HCl (Cat. # BC80) think proteins! think G-Biosciences www.gbiosciences.com

More information

Scientific Method. Name: NetID: Exam 1 Version 1 September 12, 2017 Dr. A. Pimentel

Scientific Method. Name: NetID: Exam 1 Version 1 September 12, 2017 Dr. A. Pimentel Name: NetID: Exam 1 Version 1 September 12, 2017 Dr. A. Pimentel Each question has a value of 4 points and there is a total of 156 points in the exam. However, the maximum score of this exam will be capped

More information

Chapter 2 Molecules to enzymes - Short answer [72 marks]

Chapter 2 Molecules to enzymes - Short answer [72 marks] Chapter 2 Molecules to enzymes - Short answer [72 marks] 1a. Outline primary and quaternary protein structures. Primary protein structure: Quaternary protein structure: a. (primary structure) is sequence

More information

Self-assembly of oligonucleotides

Self-assembly of oligonucleotides Self-assembly of oligonucleotides Dr. K. Uma Maheswari Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 9 Table of Contents 1 APPLICATIONS

More information

Mimicking the action of ribonucleases: studies on RNase A and design of PNA based artificial enzymes

Mimicking the action of ribonucleases: studies on RNase A and design of PNA based artificial enzymes From DEPARTMENT OF BIOSCIENCES AND NUTRITION Karolinska Institutet, Stockholm, Sweden Mimicking the action of ribonucleases: studies on RNase A and design of PNA based artificial enzymes Alice Ghidini

More information

AGENDA for 10/11/13 AGENDA: HOMEWORK: Due end of the period OBJECTIVES:

AGENDA for 10/11/13 AGENDA: HOMEWORK: Due end of the period OBJECTIVES: AGENDA for 10/11/13 AGENDA: 1. Finish 1.2.3 DNA Analysis Analyzing DNA Samples Using Current Forensic Methods OBJECTIVES: 1. Demonstrate the steps of gel electrophoresis 2. Analyze restriction fragment

More information

DNA metabolism. DNA Replication DNA Repair DNA Recombination

DNA metabolism. DNA Replication DNA Repair DNA Recombination DNA metabolism DNA Replication DNA Repair DNA Recombination Chutima Talabnin Ph.D. School of Biochemistry,Institute of Science, Suranaree University of Technology Central Dogma or Flow of genetic information

More information

Nucleotide Metabolism Biochemistry by Lippincott pp

Nucleotide Metabolism Biochemistry by Lippincott pp Nucleotide Metabolism Biochemistry by Lippincott pp 291-306 Metabolism: CONCEPT Ø Metabolism is the totality of an organism s chemical reactions. Ø A metabolic pathway begins with a specific molecule and

More information

OLIGONUCLEOTIDE ANALOGUES: FROM SUPRAMOLECULAR PRINCIPLES TO BIOLOGICAL PROPERTIES

OLIGONUCLEOTIDE ANALOGUES: FROM SUPRAMOLECULAR PRINCIPLES TO BIOLOGICAL PROPERTIES PL1 Oligonucleotide Analogues 21 OLIGONUCLEOTIDE ANALOGUES: FROM SUPRAMOLECULAR PRINCIPLES TO BIOLOGICAL PROPERTIES Damian ITTIG, Dorte RENNEBERG, David VONLANTHEN, Samuel LUISIER and Christian J. LEUMANN*

More information

PROTEINS & NUCLEIC ACIDS

PROTEINS & NUCLEIC ACIDS Chapter 3 Part 2 The Molecules of Cells PROTEINS & NUCLEIC ACIDS Lecture by Dr. Fernando Prince 3.11 Nucleic Acids are the blueprints of life Proteins are the machines of life We have already learned that

More information

MIDTERM I NAME: Student ID Number: I 32 II 33 III 24 IV 30 V

MIDTERM I NAME: Student ID Number: I 32 II 33 III 24 IV 30 V MIDTERM I NAME: Student ID Number: Question Maximum Points Your Points I 32 II 33 III 24 IV 30 V 31 150 Please write your name/student ID number on each of the following five pages. This exam must be written

More information

Alpha-helices, beta-sheets and U-turns within a protein are stabilized by (hint: two words).

Alpha-helices, beta-sheets and U-turns within a protein are stabilized by (hint: two words). 1 Quiz1 Q1 2011 Alpha-helices, beta-sheets and U-turns within a protein are stabilized by (hint: two words) Value Correct Answer 1 noncovalent interactions 100% Equals hydrogen bonds (100%) Equals H-bonds

More information

BIOTECHNOLOGY OLD BIOTECHNOLOGY (TRADITIONAL BIOTECHNOLOGY) MODERN BIOTECHNOLOGY RECOMBINANT DNA TECHNOLOGY.

BIOTECHNOLOGY OLD BIOTECHNOLOGY (TRADITIONAL BIOTECHNOLOGY) MODERN BIOTECHNOLOGY RECOMBINANT DNA TECHNOLOGY. BIOTECHNOLOGY Biotechnology can be defined as the use of micro-organisms, plant or animal cells or their components or enzymes from organisms to produce products and processes (services) useful to human

More information

translation The building blocks of proteins are? amino acids nitrogen containing bases like A, G, T, C, and U Complementary base pairing links

translation The building blocks of proteins are? amino acids nitrogen containing bases like A, G, T, C, and U Complementary base pairing links The actual process of assembling the proteins on the ribosome is called? translation The building blocks of proteins are? Complementary base pairing links Define and name the Purines amino acids nitrogen

More information

Chapter 5: Nucleic Acids, etc.

Chapter 5: Nucleic Acids, etc. Chapter 5: Nucleic Acids, etc. Voet & Voet: Sections 1 & 3 Pages 82-84 & 88-93 Any introductory Biochemistry textbook will have an introductory chapter on nucleic acids Slide 1 Nucleotides and Derivatives

More information

Structural Bioinformatics (C3210) DNA and RNA Structure

Structural Bioinformatics (C3210) DNA and RNA Structure Structural Bioinformatics (C3210) DNA and RNA Structure Importance of DNA/RNA 3D Structure Nucleic acids are essential materials found in all living organisms. Their main function is to maintain and transmit

More information

AP BIOLOGY RNA, DNA, & Proteins Chapters 16 & 17 Review

AP BIOLOGY RNA, DNA, & Proteins Chapters 16 & 17 Review AP BIOLOGY RNA, DNA, & Proteins Chapters 16 & 17 Review Enzyme that adds nucleotide subunits to an RNA primer during replication DNA polymerase III Another name for protein synthesis translation Sugar

More information

Bi 8 Lecture 7. Ellen Rothenberg 26 January Reading: Ch. 3, pp ; panel 3-1

Bi 8 Lecture 7. Ellen Rothenberg 26 January Reading: Ch. 3, pp ; panel 3-1 Bi 8 Lecture 7 PROTEIN STRUCTURE, Functional analysis, and evolution Ellen Rothenberg 26 January 2016 Reading: Ch. 3, pp. 109-134; panel 3-1 (end with free amine) aromatic, hydrophobic small, hydrophilic

More information

Computational Biology I LSM5191 (2003/4)

Computational Biology I LSM5191 (2003/4) Computational Biology I LSM5191 (2003/4) Aylwin Ng, D.Phil Lecture Notes: Transcriptome: Molecular Biology of Gene Expression I Flow of information: DNA to polypeptide DNA Start Exon1 Intron Exon2 Termination

More information

Product Specifications & Manual

Product Specifications & Manual Product Specifications & Manual Custom Oligo Synthesis, antisense oligos, RNA oligos, chimeric oligos, Fluorescent dye labeled oligos, Molecular Beacons, sirna, phosphonates Affinity Ligands, 2-5 linked

More information

ENZYMES. Unit 3 - Energy

ENZYMES. Unit 3 - Energy ENZYMES Unit 3 - Energy What is an enzyme? What do they do? What is an enzyme? What do they do? Key Things to remember: They are proteins They are catalysts They are reusable - not consumed in reaction

More information

Review of Protein (one or more polypeptide) A polypeptide is a long chain of..

Review of Protein (one or more polypeptide) A polypeptide is a long chain of.. Gene expression Review of Protein (one or more polypeptide) A polypeptide is a long chain of.. In a protein, the sequence of amino acid determines its which determines the protein s A protein with an enzymatic

More information

Genetics Lecture 21 Recombinant DNA

Genetics Lecture 21 Recombinant DNA Genetics Lecture 21 Recombinant DNA Recombinant DNA In 1971, a paper published by Kathleen Danna and Daniel Nathans marked the beginning of the recombinant DNA era. The paper described the isolation of

More information

Hole s Essentials of Human Anatomy & Physiology

Hole s Essentials of Human Anatomy & Physiology Hole s Essentials of Human Anatomy & Physiology David Shier Jackie Butler Ricki Lewis Created by Dr. Melissa Eisenhauer Head Athletic Trainer/Assistant Professor Trevecca Nazarene University Amended by

More information

Lecture Four. Molecular Approaches I: Nucleic Acids

Lecture Four. Molecular Approaches I: Nucleic Acids Lecture Four. Molecular Approaches I: Nucleic Acids I. Recombinant DNA and Gene Cloning Recombinant DNA is DNA that has been created artificially. DNA from two or more sources is incorporated into a single

More information