RNA metabolism. DNA dependent synthesis of RNA RNA processing RNA dependent synthesis of RNA and DNA.

Size: px
Start display at page:

Download "RNA metabolism. DNA dependent synthesis of RNA RNA processing RNA dependent synthesis of RNA and DNA."

Transcription

1 RNA metabolism DNA dependent synthesis of RNA RNA processing RNA dependent synthesis of RNA and DNA

2 DNA dependent synthesis of RNA : production of an RNA molecule transcribes from a DNA template, so that process called Transcription RNA polymerase (DNA-dependent RNA polymerase) RNA polymerase requires DNA template, all four ribonucleotide 5 -triphophate as precursor of nucleotide units of RNA, and Mg 2+ but not require a primer to initiate synthesis. (NMP)n + NTP RNA RNA polymerase (NMP) n+1 + PPi Lengthened RNA RNA polymerase in E. coli is a large, complex enzyme with five core subunits ( 2 ) and a sixth subunit, sigma subunit, ( ) which bind directly to specific binding site on DNA. These six subunits called RNA polymerase holoenzyme

3 Which strand of DNA act as a template for transcription? Template strand 3 ---> 5 = antisense strand = Non-coding stand Non template strand = sense strand = Coding strand

4 Transcription in E.coli Initiation step Elongation step Termination step 5 3 Coding strand Template strand TGTTGACA -35 region Promoter TATAAT -10 region Transcription start site 3 RNA +1 5 RNA synthesis begins at Promoter Promoter locate between -70 and +30 which contain two short consensus sequences centered about positions -10 (TATAAT : Pribnow box) -35 (TTGACA) from transcriptional start site. Promoter is important interaction site for 70 subunit of RNA polymerase holoenzyme. The sigma subunit conveys promoter specificity to RNA polymerase; that is, it is responsible for telling RNA polymerase where to bind Variation in the consensus sequence affect the efficiency of RNA polymerase binding and transcription initiation

5 Initiation step 5 3 Coding strand Template strand 5 3 Rifampicin bind to sigma factor Elongation step actinomycin D intercalate in between G C pairing 5 3

6 Termination step Rho ( ) dependent Rho protein consists of 6 unit or hexamer. It will bind to growing RNA from 5 end and moving itself to termination site on 3 end. Once RNA polymerase reach to termination site. It can not go on and them stop the process of transcription because Rho protein are ATP-dependemt RNA-DNA helicases which catalyze by separation between RNA and DNA complex

7 Termination step Rho ( ) independent At 3 end of growing RNA contains sequence with high G and C (G-C rich region) about nuclotides G-C rich region can form loop called Hairpin structure Following G-C rich region have also special sequence which contain repeating of Uracil Once RNA polymerase reach to Hairpin structure and poly U. It can not go on and them stop the process of transcription. It lead to break the complex of RNA polymerase and newly RNA-DNA.

8 RNA polymerase Transcription in Eukaryote RNA polymerase I (Pol I) > pre ribosomal RNA (rrna) RNA polymerase II (Pol II) > mesenger RNA (mrna) and microrna (mirna) RNA polymerase III (Pol III) > transfer RNA (trna) and 5s rrna mrna Transcription Initiation step Elongation step Termination step Transcription start site 5 3 Enhancer sequnece -5,000 Upstream promoter Core promoter TATAAAA (TATA box) -30 region Coding strand Inr Template strand +1 RNA 3 5 In eukaryotes, the "core" promoter for a gene transcribed by RNA pol II is most often found immediately upstream (5 ) of the start site of the gene which have a TATA box (consensus sequence TATTAA) 25 to 35 bases upstream of the initiation site Eukaryotic RNA polymerases use a number of essential cofactors (collectively called general transcription factors), and one of these, TATA binding protein (TBP), recognizes the TATA box and ensures that the correct start site is used.

9 mrna Transcription Initiation step Enhancer sequences control gene activation by binding with activator proteins and altering the 3-D structure of the DNA to help "attract" RNA pol II, thus regulating transcription Because eukaryotic DNA is tightly packaged as chromatin, transcription also requires a number of specialized proteins that help make the coding strand accessible.

10 A COMPREHENSIVE MODEL OF REGULATION OF RNA POLYMERASE II TRANSCRIPTION: Although they are cis-acting, the enhancers and silencers can be strung out across kilobases (thousands of base pairs) of DNA upstream. Some signals can even be downstream of the coding gene, or even found within introns (!) How can this be possible? Long regions of the DNA can loop over to enable the regulatory connections.

11 Post transcriptional RNA processing of mrna RNA processing (primary transcript ----> Mature RNA) Adding 5 Cap (Methylgaunine) Adding 3 poly (A) tail ( bp) RNA splicing Posttranscriptional modifications apparently protect eukaryotic mrna molecules from degradation and to give them longer lifetimes than bacterial mrna In prokaryote, trna has gone through on this processes.

12 5 Cap (7-methyguanosine) GTP is added in at 5 end of primary transcript with 5-5 triphosphate linkage at early transcription RNA GTP is subsequently methylated at N7 position of purine ring of guanine to form 7-methylguanosine 5 5 triphosphate linkage RNA 5 Cap help to protect mrna from ribonuclease and also help binds to specific cap binding complex for promoting binding between mrna and ribosome in initiation step of translation

13 3 Poly (A) tail Poly A tail is added by multistep process On primary transcript contain cleavage site which is 5 AAUAAA3, nucleotide on the 5 side Cleavage generate 3 hydroxy group by endonuclease. It produce end of mrna which A residues are immediately added by Polyadenylate polymerase 3 poly A tail help to protect mrna from enzymatic s destruction

14 RNA splicing Both Intron (Non coding sequence) and Exon (coding sequence) are transcribed from DNA into RNA

15 Types of Intron Group I introns are found in some nuclear rrnas, mrna and trna. Group II intron are generally found in the primary transcripts of mitochondria or chloroplast mrna. Group I and II are self-splicing meaning no protein enzyme to catalyze in splicing processes. Group I introns Group II introns

16 Transesterification reaction RNA catalyzes the splicing intron. 3 OH of Guanosine molecule acts as nucleophile which subsequently break phosphodiester bond 16

17 Group III or Spliceosomal introns found in nuclear mrna primary transcript in Eukaryote AG GU YNYYRAY AG G RNA sequence begins with the dinucleotide GU at its 5 end, and another ends with AG at its 3 end. These consensus sequences are known to be critical, because changing one of the conserved nucleotides results in inhibition of splicing. Spliceosomal intron also contain important sequence which is Branch point sequence located anywhere from 18 to 40 nucleotides upstream from the 3 end of an intron. The branch point always contains an adenine, but it is otherwise loosely conserved. A typical sequence is YNYYRAY, where Y indicates a pyrimidine, N denotes any nucleotide, R denotes any purine

18 Spliceosome Splicing occurs in several steps and is catalyzed by Spliceosome which contain small nuclear ribonucleoproteins (snrnps, commonly pronounced "snurps") snrnp U1, U2, U4, U5. U6 BBP = Branch point binding protein U2AF = Helper protein Each snrnps contain eukaryotic RNA (small nuclear RNA: snrna) and protein. The snrna have a sequence which is complementary to cleavage site of intron

19 pre-mrna is cleaved at the 5 end of the intron - attachment of a snrnp called U1 to its complementary sequence within the intron at 5 end. BBP and U2AF attached to A residue of branch point Inactive splicesome (U1-6) - snrnps U2 appear and replace itself on A residue instead of BBP and U2AF - Remaining snrnps U4 and U6 form a U4/U6 complex and U5 bind to form inactive spliceosome and then form a loop structure known as a lariant Transesterification # 1 (A GU of intron) Transesterification # 2 (3 OH of Exon splice site) - Internal rearrangement convert this inactive to active spliceosome by pairing U6 with U5 and U2. - The bonding of the guanine and adenine bases takes place via a chemical reaction known as transesterification, in which a hydroxyl (OH) group on a carbon atom of the adenine "attacks" the bond of the guanine nucleotide at the splice site. The guanine residue is thus cleaved from the RNA strand and forms a new bond with the adenine. - OH group at the 3 end of the exon attacks the phosphodiester bond at the 3 splice site (AG) by Transesterification.

20 Alternative RNA splicing A gene can give rise to multiple products by differential RNA processing Most eukaryotic mrna transcript produce only mature RNA and one corresponding polypeptide????? Complex transcript can have either more than one site for cleavage and polyadenylation Poly A site

21 Alternative processing of the calcitonin gene into Calcitonin protein at Thyroid and Calcitoningene-related peptide (CGRP) at Brain

22 Ribosomal RNA and trna also undergo Processing Post transcriptional processing is not limited to mrna. Ribosomal RNA (rrna) of both prokaryotic and eukaryotic cells are made from longer precursors called Preribosomal RNAs (pre-rrna) Prokaryote Eukaryote

23 Processing of trna Exonuclease Rnase D Endonuclease Rnase P mg = methylgaunosine D = Dihydrouridine I = Inosine T =Ribothymidine A = Isopenenyladenosine = Pseudouridine

24 RNA Editing Occasionally researches encounter a gene with a sequence of nucleotides that does not match exactly that in its RNA product RNA editing occurs by two distinct mechanisms: 1. Substitution Editing: chemical alteration of individual nucleotides These alterations are catalyzed by enzymes that recognize a specific target sequence of nucleotides Cytidine deaminases (Cytosine to uracil) Adenosine deaminases (Adenine to Inosine), which the ribosome translates as a G. CAG codon (for Gln) can be converted to a (CIG) CGG codon (for Arg)

25 RNA Editing 2. Insertion/Deletion Editing: insertion or deletion of nucleotides in the RNA. These alterations are mediated by guide RNA molecules that base-pair as best they can with the RNA to be edited and serve as a template for the addition (or removal) of nucleotides in the target

26 Cellular mrna are degraded at different rate mrna Degradation pathway ensure that mrna do not build up in the cell and direct the synthesis of unnecessary protein Average half life of mrna in Prokaryotic cells 1.5 min and Eukaryotic cell about 3 hrs Shortening the poly A tail Decapping the 5 end Degrading the RNA strand Mechanisms of deadenylation dependent decay

27 Reverse Transcriptase (RNA-directed DNA polymerase) from Retrovirus which have RNA as genetic material RNA replicase (RNA-directed RNA polymerase) from Bacteriophage which is a virus infecting bacterial. This virus contain RNA as genetic material

28 Reverse Transcription in Retrovirus 28

29 Human Immunodeficiency Virus (HIV) ----> AIDS Zidovudine (ZDV), formerly called Azidothymidine (AZT) 29

30 Reverse Transcription in Eukaryote Telomerase is a specialized reverse transcriptase in Eukaryotic cell Telomere is the structure at the end of linear eukaryotic chromosome. It contain tandem copies of short oligonucleotide sequence T X G Y TG strand is longer than its complement. 5 GACGCATCGATTTTGGGGGTTGGGTTGGGTTGGGTT 3 3 CTGCGTAGCTAAAACC 5 Telomeres are not readily replicate by DNA polymerase Chromosome end would be short end in every time of cell division 30

31 Reverse Transcription in Eukaryote Telomerase solve the problem by adding telomere to chromosome end (3 end) Telomerase contain RNA and protein components RNA component is about 150 nts and contain about 1.5 copies of C X A Y telomere repeat (CCCAA) using as a template for synthesis of TG strand 31

GENETICS - CLUTCH CH.10 TRANSCRIPTION.

GENETICS - CLUTCH CH.10 TRANSCRIPTION. !! www.clutchprep.com CONCEPT: OVERVIEW OF TRANSCRIPTION Transcription is the process of using DNA as a template to RNA RNA polymerase is the enzyme that transcribes DNA - There are many different types

More information

Gene Expression: Transcription, Translation, RNAs and the Genetic Code

Gene Expression: Transcription, Translation, RNAs and the Genetic Code Lecture 28-29 Gene Expression: Transcription, Translation, RNAs and the Genetic Code Central dogma of molecular biology During transcription, the information in a DNA sequence (a gene) is copied into a

More information

Feedback D. Incorrect! No, although this is a correct characteristic of RNA, this is not the best response to the questions.

Feedback D. Incorrect! No, although this is a correct characteristic of RNA, this is not the best response to the questions. Biochemistry - Problem Drill 23: RNA No. 1 of 10 1. Which of the following statements best describes the structural highlights of RNA? (A) RNA can be single or double stranded. (B) G-C pairs have 3 hydrogen

More information

Transcription. By : Lucia Dhiantika Witasari M.Biotech., Apt

Transcription. By : Lucia Dhiantika Witasari M.Biotech., Apt Transcription By : Lucia Dhiantika Witasari M.Biotech., Apt REGULATION OF GENE EXPRESSION 11/26/2010 2 RNA Messenger RNAs (mrnas) encode the amino acid sequence of one or more polypeptides specified by

More information

There are four major types of introns. Group I introns, found in some rrna genes, are self-splicing: they can catalyze their own removal.

There are four major types of introns. Group I introns, found in some rrna genes, are self-splicing: they can catalyze their own removal. 1 2 Continuous genes - Intron: Many eukaryotic genes contain coding regions called exons and noncoding regions called intervening sequences or introns. The average human gene contains from eight to nine

More information

Transcription. The sugar molecule found in RNA is ribose, rather than the deoxyribose found in DNA.

Transcription. The sugar molecule found in RNA is ribose, rather than the deoxyribose found in DNA. Transcription RNA (ribonucleic acid) is a key intermediary between a DNA sequence and a polypeptide. RNA is an informational polynucleotide similar to DNA, but it differs from DNA in three ways: RNA generally

More information

Transcription in Eukaryotes

Transcription in Eukaryotes Transcription in Eukaryotes Biology I Hayder A Giha Transcription Transcription is a DNA-directed synthesis of RNA, which is the first step in gene expression. Gene expression, is transformation of the

More information

Lecture Summary: Regulation of transcription. General mechanisms-what are the major regulatory points?

Lecture Summary: Regulation of transcription. General mechanisms-what are the major regulatory points? BCH 401G Lecture 37 Andres Lecture Summary: Regulation of transcription. General mechanisms-what are the major regulatory points? RNA processing: Capping, polyadenylation, splicing. Why process mammalian

More information

Transcription and Post Transcript Modification

Transcription and Post Transcript Modification Transcription and Post Transcript Modification You Should Be Able To 1. Describe transcription. 2. Compare and contrast eukaryotic + prokaryotic transcription. 3. Explain mrna processing in eukaryotes.

More information

Biochemistry Eukaryotic Transcription

Biochemistry Eukaryotic Transcription 1 Description of Module Subject Name Paper Name Module Name/Title Dr. Vijaya Khader Dr. MC Varadaraj 2 1. Objectives 1. Understand and have an overview of eucaryotic transcriptional regulation. 2. Explain

More information

TRANSCRIPTION AND PROCESSING OF RNA

TRANSCRIPTION AND PROCESSING OF RNA TRANSCRIPTION AND PROCESSING OF RNA 1. The steps of gene expression. 2. General characterization of transcription: steps, components of transcription apparatus. 3. Transcription of eukaryotic structural

More information

BIOLOGY - CLUTCH CH.17 - GENE EXPRESSION.

BIOLOGY - CLUTCH CH.17 - GENE EXPRESSION. !! www.clutchprep.com CONCEPT: GENES Beadle and Tatum develop the one gene one enzyme hypothesis through their work with Neurospora (bread mold). This idea was later revised as the one gene one polypeptide

More information

The 5' cap (red) is added before synthesis of the primary transcript is complete. A non coding sequence following the last exon is shown in orange.

The 5' cap (red) is added before synthesis of the primary transcript is complete. A non coding sequence following the last exon is shown in orange. RNA PROCESSING The 5' cap (red) is added before synthesis of the primary transcript is complete. A non coding sequence following the last exon is shown in orange. Splicing can occur either before or after

More information

The discovery of the role of RNA RNA structure, synthesis and function

The discovery of the role of RNA RNA structure, synthesis and function Central Dogma The discovery of the role of RNA RNA structure, synthesis and function! Fundamental observations in genetics!! Genes are located in nuclei (in eukaryotes)!! Polypeptides are synthesised in

More information

Expression of the genome. Books: 1. Molecular biology of the gene: Watson et al 2. Genetics: Peter J. Russell

Expression of the genome. Books: 1. Molecular biology of the gene: Watson et al 2. Genetics: Peter J. Russell Expression of the genome Books: 1. Molecular biology of the gene: Watson et al 2. Genetics: Peter J. Russell 1 Transcription 1. Francis Crick (1956) named the flow of information from DNA RNA protein the

More information

Transcription Eukaryotic Cells

Transcription Eukaryotic Cells Transcription Eukaryotic Cells Packet #20 1 Introduction Transcription is the process in which genetic information, stored in a strand of DNA (gene), is copied into a strand of RNA. Protein-encoding genes

More information

Chapter 11. Transcription. The biochemistry and molecular biology department of CMU

Chapter 11. Transcription. The biochemistry and molecular biology department of CMU Chapter 11 Transcription The biochemistry and molecular biology department of CMU Transcription The synthesis of RNA molecules using DNA strands as the templates so that the genetic information can be

More information

DNA Transcription. Dr Aliwaini

DNA Transcription. Dr Aliwaini DNA Transcription 1 DNA Transcription-Introduction The synthesis of an RNA molecule from DNA is called Transcription. All eukaryotic cells have five major classes of RNA: ribosomal RNA (rrna), messenger

More information

Transcription & RNA Processing

Transcription & RNA Processing Chapter 10. Transcription & RNA Processing 1. Transfer of Genetic Information: the Central Dogma 2. The Process of Gene Expression 3. Transcription & RNA Processing in Eukaryotes 4. Interrupted Genes in

More information

Chapters 31-32: Ribonucleic Acid (RNA)

Chapters 31-32: Ribonucleic Acid (RNA) Chapters 31-32: Ribonucleic Acid (RNA) Short segments from the transcription, processing and translation sections of each chapter Slide 1 RNA In comparison with DNA RNA utilizes uracil in place of thymine

More information

30 Gene expression: Transcription

30 Gene expression: Transcription 30 Gene expression: Transcription Gene structure. o Exons coding region of DNA. o Introns non-coding region of DNA. o Introns are interspersed between exons of a single gene. o Promoter region helps enzymes

More information

Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology

Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology - The central dogma (principle) of molecular biology: Information from DNA are transcribed to mrna which will be further translated to synthesize

More information

DNA makes RNA makes Proteins. The Central Dogma

DNA makes RNA makes Proteins. The Central Dogma DNA makes RNA makes Proteins The Central Dogma TRANSCRIPTION DNA RNA transcript RNA polymerase RNA PROCESSING Exon RNA transcript (pre-mrna) Intron Aminoacyl-tRNA synthetase NUCLEUS CYTOPLASM FORMATION

More information

Transcription & post transcriptional modification

Transcription & post transcriptional modification Transcription & post transcriptional modification Transcription The synthesis of RNA molecules using DNA strands as the templates so that the genetic information can be transferred from DNA to RNA Similarity

More information

Chapter 12: Molecular Biology of the Gene

Chapter 12: Molecular Biology of the Gene Biology Textbook Notes Chapter 12: Molecular Biology of the Gene p. 214-219 The Genetic Material (12.1) - Genetic Material must: 1. Be able to store information that pertains to the development, structure,

More information

RNA Expression of the information in a gene generally involves production of an RNA molecule transcribed from a DNA template. RNA differs from DNA

RNA Expression of the information in a gene generally involves production of an RNA molecule transcribed from a DNA template. RNA differs from DNA RNA Expression of the information in a gene generally involves production of an RNA molecule transcribed from a DNA template. RNA differs from DNA that it has a hydroxyl group at the 2 position of the

More information

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 12 Transcription

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 12 Transcription BIOCHEMISTRY REVIEW Overview of Biomolecules Chapter 12 Transcription 2 3 4 5 Are You Getting It?? Which are general characteristics of transcription? (multiple answers) a) An entire DNA molecule is transcribed

More information

SIBC504: TRANSCRIPTION & RNA PROCESSING Assistant Professor Dr. Chatchawan Srisawat

SIBC504: TRANSCRIPTION & RNA PROCESSING Assistant Professor Dr. Chatchawan Srisawat SIBC504: TRANSCRIPTION & RNA PROCESSING Assistant Professor Dr. Chatchawan Srisawat TRANSCRIPTION: AN OVERVIEW Transcription: the synthesis of a single-stranded RNA from a doublestranded DNA template.

More information

DNA Replication and Repair

DNA Replication and Repair DNA Replication and Repair http://hyperphysics.phy-astr.gsu.edu/hbase/organic/imgorg/cendog.gif Overview of DNA Replication SWYK CNs 1, 2, 30 Explain how specific base pairing enables existing DNA strands

More information

CH 17 :From Gene to Protein

CH 17 :From Gene to Protein CH 17 :From Gene to Protein Defining a gene gene gene Defining a gene is problematic because one gene can code for several protein products, some genes code only for RNA, two genes can overlap, and there

More information

I. Gene Expression Figure 1: Central Dogma of Molecular Biology

I. Gene Expression Figure 1: Central Dogma of Molecular Biology I. Gene Expression Figure 1: Central Dogma of Molecular Biology Central Dogma: Gene Expression: RNA Structure RNA nucleotides contain the pentose sugar Ribose instead of deoxyribose. Contain the bases

More information

Chapter 13. From DNA to Protein

Chapter 13. From DNA to Protein Chapter 13 From DNA to Protein Proteins All proteins consist of polypeptide chains A linear sequence of amino acids Each chain corresponds to the nucleotide base sequenceof a gene The Path From Genes to

More information

Transcription is the first stage of gene expression

Transcription is the first stage of gene expression Transcription is the first stage of gene expression RNA synthesis is catalyzed by RNA polymerase, which pries the DNA strands apart and hooks together the RNA nucleotides The RNA is complementary to the

More information

Themes: RNA and RNA Processing. Messenger RNA (mrna) What is a gene? RNA is very versatile! RNA-RNA interactions are very important!

Themes: RNA and RNA Processing. Messenger RNA (mrna) What is a gene? RNA is very versatile! RNA-RNA interactions are very important! Themes: RNA is very versatile! RNA and RNA Processing Chapter 14 RNA-RNA interactions are very important! Prokaryotes and Eukaryotes have many important differences. Messenger RNA (mrna) Carries genetic

More information

DNA REPLICATION. DNA structure. Semiconservative replication. DNA structure. Origin of replication. Replication bubbles and forks.

DNA REPLICATION. DNA structure. Semiconservative replication. DNA structure. Origin of replication. Replication bubbles and forks. DNA REPLICATION 5 4 Phosphate 3 DNA structure Nitrogenous base 1 Deoxyribose 2 Nucleotide DNA strand = DNA polynucleotide 2004 Biology Olympiad Preparation Program 2 2004 Biology Olympiad Preparation Program

More information

Proofreading, post-replication modification of DNA. Mitesh Shrestha

Proofreading, post-replication modification of DNA. Mitesh Shrestha Proofreading, post-replication modification of DNA Mitesh Shrestha Proofreading During DNA replication (copying), most DNA polymerases can check their work with each base that they add. This process is

More information

Chapter 3. DNA, RNA, and Protein Synthesis

Chapter 3. DNA, RNA, and Protein Synthesis Chapter 3. DNA, RNA, and Protein Synthesis 4. Transcription Gene Expression Regulatory region (promoter) 5 flanking region Upstream region Coding region 3 flanking region Downstream region Transcription

More information

DNA. Is a molecule that encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses.

DNA. Is a molecule that encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses. Is a molecule that encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses. Genetic information is encoded as a sequence of nucleotides (guanine,

More information

From Gene to Protein. Chapter 17

From Gene to Protein. Chapter 17 From Gene to Protein Chapter 17 What you need to know: The key terms: gene expression, transcription, and translation. The major events of transcription. How eukaryotic cells modify RNA after transcription.

More information

Lecture 11. Initiation of RNA Pol II transcription. Transcription Initiation Complex

Lecture 11. Initiation of RNA Pol II transcription. Transcription Initiation Complex Lecture 11 *Eukaryotic Transcription Gene Organization RNA Processing 5 cap 3 polyadenylation splicing Translation Initiation of RNA Pol II transcription Consensus sequence of promoter TATA Transcription

More information

Computational Biology I LSM5191 (2003/4)

Computational Biology I LSM5191 (2003/4) Computational Biology I LSM5191 (2003/4) Aylwin Ng, D.Phil Lecture Notes: Transcriptome: Molecular Biology of Gene Expression I Flow of information: DNA to polypeptide DNA Start Exon1 Intron Exon2 Termination

More information

Review of Protein (one or more polypeptide) A polypeptide is a long chain of..

Review of Protein (one or more polypeptide) A polypeptide is a long chain of.. Gene expression Review of Protein (one or more polypeptide) A polypeptide is a long chain of.. In a protein, the sequence of amino acid determines its which determines the protein s A protein with an enzymatic

More information

DNA Transcription. Visualizing Transcription. The Transcription Process

DNA Transcription. Visualizing Transcription. The Transcription Process DNA Transcription By: Suzanne Clancy, Ph.D. 2008 Nature Education Citation: Clancy, S. (2008) DNA transcription. Nature Education 1(1) If DNA is a book, then how is it read? Learn more about the DNA transcription

More information

Unit II Problem 3 Genetics: Summary of Basic Concepts in Molecular Biology

Unit II Problem 3 Genetics: Summary of Basic Concepts in Molecular Biology Unit II Problem 3 Genetics: Summary of Basic Concepts in Molecular Biology - The central dogma (principle) of molecular biology: Information from DNA are transcribed to mrna which will be further translated

More information

Chapter 2. An Introduction to Genes and Genomes

Chapter 2. An Introduction to Genes and Genomes PowerPoint Lectures for Introduction to Biotechnology, Second Edition William J.Thieman and Michael A.Palladino Chapter 2 An Introduction to Genes and Genomes Lectures by Lara Dowland Chapter Contents

More information

The Flow of Genetic Information

The Flow of Genetic Information Chapter 17 The Flow of Genetic Information The DNA inherited by an organism leads to specific traits by dictating the synthesis of proteins and of RNA molecules involved in protein synthesis. Proteins

More information

Gene function at the level of traits Gene function at the molecular level

Gene function at the level of traits Gene function at the molecular level Gene expression Gene function at the level of traits Gene function at the molecular level Two levels tied together since the molecular level affects the structure and function of cells which determines

More information

RNA Metabolism Chap 26, part I

RNA Metabolism Chap 26, part I RNA Metabolism Chap 26, part I mrna (selective and regulated) trna rrna other (specialized) RNAs (eukaryotes!!!) processing transcriptome (Surprisingly, much of your genome is transcribed!) RNA is the

More information

Exam 2 Key - Spring 2008 A#: Please see us if you have any questions!

Exam 2 Key - Spring 2008 A#: Please see us if you have any questions! Page 1 of 5 Exam 2 Key - Spring 2008 A#: Please see us if you have any questions! 1. A mutation in which parts of two nonhomologous chromosomes change places is called a(n) A. translocation. B. transition.

More information

Chapter 17. From Gene to Protein

Chapter 17. From Gene to Protein Chapter 17 From Gene to Protein One Gene One Enzyme Hypothesis Archibald Garrod 1 st to suggest that genes dictate phenotypes through enzymes that catalyze specific chemical reactions ; alkaptonuria Beadle

More information

FROM GENE TO PROTEIN. One Gene One Enzyme Hypothesis 3/12/2013. Basic Principles of Transcription & Translation

FROM GENE TO PROTEIN. One Gene One Enzyme Hypothesis 3/12/2013. Basic Principles of Transcription & Translation One Gene One Enzyme Hypothesis FROM GENE TO PROTEIN C H A P T E R 1 7 Archibald Garrod 1 st to suggest that genes dictate phenotypes through enzymes that catalyze specific chemical reactions ; alkaptonuria

More information

Genes and How They Work. Chapter 15

Genes and How They Work. Chapter 15 Genes and How They Work Chapter 15 The Nature of Genes They proposed the one gene one enzyme hypothesis. Today we know this as the one gene one polypeptide hypothesis. 2 The Nature of Genes The central

More information

Molecular Cell Biology - Problem Drill 08: Transcription, Translation and the Genetic Code

Molecular Cell Biology - Problem Drill 08: Transcription, Translation and the Genetic Code Molecular Cell Biology - Problem Drill 08: Transcription, Translation and the Genetic Code Question No. 1 of 10 1. Which of the following statements about how genes function is correct? Question #1 (A)

More information

RNA synthesis/transcription I Biochemistry 302. February 6, 2004 Bob Kelm

RNA synthesis/transcription I Biochemistry 302. February 6, 2004 Bob Kelm RNA synthesis/transcription I Biochemistry 302 February 6, 2004 Bob Kelm Overview of RNA classes Messenger RNA (mrna) Encodes protein Relatively short half-life ( 3 min in E. coli, 30 min in eukaryotic

More information

We can now identify three major pathways of information flow in the cell (in replication, information passes from one DNA molecule to other DNA

We can now identify three major pathways of information flow in the cell (in replication, information passes from one DNA molecule to other DNA 1 We can now identify three major pathways of information flow in the cell (in replication, information passes from one DNA molecule to other DNA molecules; in transcription, information passes from DNA

More information

Chapter 6: Transcription and RNA Processing in Eukaryotes

Chapter 6: Transcription and RNA Processing in Eukaryotes 3. Basic Genetics Plant Molecular Biology Chapter 6: Transcription and RNA Processing in Eukaryotes - Genetic organization in eukaryote - Transcription in eukaryote - - RNA processing in eukaryote - Translation

More information

Basi s c i Fea e tu t re r s s of f R NA N Sy S nth t esi s s i s

Basi s c i Fea e tu t re r s s of f R NA N Sy S nth t esi s s i s Transcription Dr.H.B.Mahesha, Yuvaraja s College, University of Mysore, Mysuru. It is the process of transcribing or making a copy of Genetic information stored in a DNA strand into a Complementary strand

More information

Rapid Learning Center Presents. Teach Yourself High School Biology in 24 Hours. and Functions

Rapid Learning Center Presents. Teach Yourself High School Biology in 24 Hours. and Functions Rapid Learning Center Chemistry :: Biology :: Physics :: Math Rapid Learning Center Presents Teach Yourself High School Biology in 24 Hours Gene e Structures and Functions High School Biology Rapid Learning

More information

TRANSCRIPTION COMPARISON OF DNA & RNA TRANSCRIPTION. Umm AL Qura University. Sugar Ribose Deoxyribose. Bases AUCG ATCG. Strand length Short Long

TRANSCRIPTION COMPARISON OF DNA & RNA TRANSCRIPTION. Umm AL Qura University. Sugar Ribose Deoxyribose. Bases AUCG ATCG. Strand length Short Long Umm AL Qura University TRANSCRIPTION Dr Neda Bogari TRANSCRIPTION COMPARISON OF DNA & RNA RNA DNA Sugar Ribose Deoxyribose Bases AUCG ATCG Strand length Short Long No. strands One Two Helix Single Double

More information

Lecture for Wednesday. Dr. Prince BIOL 1408

Lecture for Wednesday. Dr. Prince BIOL 1408 Lecture for Wednesday Dr. Prince BIOL 1408 THE FLOW OF GENETIC INFORMATION FROM DNA TO RNA TO PROTEIN Copyright 2009 Pearson Education, Inc. Genes are expressed as proteins A gene is a segment of DNA that

More information

Chapter 3 Expression of Genes

Chapter 3 Expression of Genes Part I Relationship between Cells and Genetic Information A protein gene is a piece of DNA that determines the amino acid sequence of a protein, and the synthesis of a protein based on genetic information

More information

Bio 366: Biological Chemistry II Test #3, 100 points

Bio 366: Biological Chemistry II Test #3, 100 points Bio 366: Biological Chemistry II Test #3, 100 points READ THIS: Take a numbered test and sit in the seat with that number on it. Remove the numbered sticker from the desk, and stick it on the back of the

More information

Chapter 11 Part A: Metabolism: The synthesis of nucleic acids and proteins

Chapter 11 Part A: Metabolism: The synthesis of nucleic acids and proteins Chapter 11 Part A: Metabolism: The synthesis of nucleic acids and proteins I. Synthesis of DNA = REPLICATION A. Components of DNA (Fig. 11-1) 1. Composed of 4 different nucleotides that are joined by the

More information

The Nature of Genes. The Nature of Genes. Genes and How They Work. Chapter 15/16

The Nature of Genes. The Nature of Genes. Genes and How They Work. Chapter 15/16 Genes and How They Work Chapter 15/16 The Nature of Genes Beadle and Tatum proposed the one gene one enzyme hypothesis. Today we know this as the one gene one polypeptide hypothesis. 2 The Nature of Genes

More information

Big Idea 3C Basic Review

Big Idea 3C Basic Review Big Idea 3C Basic Review 1. A gene is a. A sequence of DNA that codes for a protein. b. A sequence of amino acids that codes for a protein. c. A sequence of codons that code for nucleic acids. d. The end

More information

RNA : functional role

RNA : functional role RNA : functional role Hamad Yaseen, PhD MLS Department, FAHS Hamad.ali@hsc.edu.kw RNA mrna rrna trna 1 From DNA to Protein -Outline- From DNA to RNA From RNA to Protein From DNA to RNA Transcription: Copying

More information

Chapter 26 RNA Metabolism

Chapter 26 RNA Metabolism Chapter 26 RNA Metabolism 1. How is RNA synthesized using DNA templates (transcription 转录 )? 2. How is newly synthesized primary RNA transcripts further processed to make functional RNA molecules (RNA

More information

Biochemistry 302. Exam 2. March 10, Answer Key

Biochemistry 302. Exam 2. March 10, Answer Key 1 Biochemistry 302 Exam 2 March 10, 2004 Answer Key 2 Biochemistry 302, Spring 2004 Exam 2 (100 points) Name I. Short answer 1. Identify the 5 end, 3 end, amino acid acceptor nucleoside, and bases comprising

More information

Transcription. DNA to RNA

Transcription. DNA to RNA Transcription from DNA to RNA The Central Dogma of Molecular Biology replication DNA RNA Protein transcription translation Why call it transcription and translation? transcription is such a direct copy

More information

Information Readout: Transcription and Post-transcriptional Processing Translation

Information Readout: Transcription and Post-transcriptional Processing Translation Information Readout: Transcription and Post-transcriptional Processing Translation Copyright 2013 Pearson Canada Inc. 27-1 DNA as the Template for RNA Synthesis Enzymology of RNA Synthesis: RNA Polymerase

More information

Ch. 10 From DNA to Protein. AP Biology

Ch. 10 From DNA to Protein. AP Biology Ch. 10 From DNA to Protein Protein Synthesis Metabolism and Gene Expression n Inheritance of metabolic diseases suggests that genes coded for enzymes n Diseases (phenotypes) caused by non-functional gene

More information

Fig Ch 17: From Gene to Protein

Fig Ch 17: From Gene to Protein Fig. 17-1 Ch 17: From Gene to Protein Basic Principles of Transcription and Translation RNA is the intermediate between genes and the proteins for which they code Transcription is the synthesis of RNA

More information

BIO 311C Spring Lecture 36 Wednesday 28 Apr.

BIO 311C Spring Lecture 36 Wednesday 28 Apr. BIO 311C Spring 2010 1 Lecture 36 Wednesday 28 Apr. Synthesis of a Polypeptide Chain 5 direction of ribosome movement along the mrna 3 ribosome mrna NH 2 polypeptide chain direction of mrna movement through

More information

Transcription steps. Transcription steps. Eukaryote RNA processing

Transcription steps. Transcription steps. Eukaryote RNA processing Transcription steps Initiation at 5 end of gene binding of RNA polymerase to promoter unwinding of DNA Elongation addition of nucleotides to 3 end rules of base pairing requires Mg 2+ energy from NTP substrates

More information

BCH 4054 Fall 2000 Chapter 31 Lecture Notes

BCH 4054 Fall 2000 Chapter 31 Lecture Notes BCH 4054 Fall 2000 Chapter 31 Lecture Notes 1 Chapter 31 Transcription and Regulation of Gene Expression 2 Messenger RNA Central Dogma (Francis Crick, 1958) DNA RNA Protein (Fig 31.1) Jacob-Monod Hypothesis:

More information

DNA Function: Information Transmission

DNA Function: Information Transmission DNA Function: Information Transmission DNA is called the code of life. What does it code for? *the information ( code ) to make proteins! Why are proteins so important? Nearly every function of a living

More information

Make the protein through the genetic dogma process.

Make the protein through the genetic dogma process. Make the protein through the genetic dogma process. Coding Strand 5 AGCAATCATGGATTGGGTACATTTGTAACTGT 3 Template Strand mrna Protein Complete the table. DNA strand DNA s strand G mrna A C U G T A T Amino

More information

Biotechnology Unit 3: DNA to Proteins. From DNA to RNA

Biotechnology Unit 3: DNA to Proteins. From DNA to RNA From DNA to RNA Biotechnology Unit 3: DNA to Proteins I. After the discovery of the structure of DNA, the major question remaining was how does the stored in the 4 letter code of DNA direct the and of

More information

Nucleic Acids and the Encoding of Biological Information. Chapter 3

Nucleic Acids and the Encoding of Biological Information. Chapter 3 Nucleic Acids and the Encoding of Biological Information Chapter 3 GRIFFITH S EXPERIMENT ON THE NATURE OF THE GENETIC MATERIAL In 1928, Frederick Griffith demonstrated that molecules can transfer genetic

More information

M1 - Biochemistry. Nucleic Acid Structure II/Transcription I

M1 - Biochemistry. Nucleic Acid Structure II/Transcription I M1 - Biochemistry Nucleic Acid Structure II/Transcription I PH Ratz, PhD (Resources: Lehninger et al., 5th ed., Chapters 8, 24 & 26) 1 Nucleic Acid Structure II/Transcription I Learning Objectives: 1.

More information

Gene Expression: Transcription

Gene Expression: Transcription Gene Expression: Transcription The majority of genes are expressed as the proteins they encode. The process occurs in two steps: Transcription = DNA RNA Translation = RNA protein Taken together, they make

More information

Hershey and Chase. The accumulation of evidence: Key Experiments in the Discovery of DNA: Griffith s Transformation Experiment (1928)

Hershey and Chase. The accumulation of evidence: Key Experiments in the Discovery of DNA: Griffith s Transformation Experiment (1928) Today: Key Experiments in the Discovery of DNA: Griffith s Transformation Experiment (1928) Reviewing Mitosis/ Exploring the Function of Taxol Structure and Function of DNA! What do we learn about the

More information

Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL

Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL Name: Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL Part A: Multiple Choice (15 marks) Circle the letter of choice that best completes the statement or answers the question. One mark for each correct

More information

The Central Dogma. DNA makes RNA makes Proteins

The Central Dogma. DNA makes RNA makes Proteins The Central Dogma DNA makes RNA makes Proteins TRANSCRIPTION DNA RNA transcript RNA polymerase RNA PROCESSING Exon RNA transcript (pre-) Intron Aminoacyl-tRNA synthetase NUCLEUS CYTOPLASM FORMATION OF

More information

RNA: Structure & Synthesis. Amr S. Moustafa, M.D.; Ph.D.

RNA: Structure & Synthesis. Amr S. Moustafa, M.D.; Ph.D. RNA: Structure & Synthesis By Amr S. Moustafa, M.D.; Ph.D. Objectives The differences between DNA and RNA The structure and functions of RNAs RNA synthesis (Transcription) Post-transcriptional events (modifications)

More information

From Gene to Protein transcription, messenger RNA (mrna) translation, RNA processing triplet code, template strand, codons,

From Gene to Protein transcription, messenger RNA (mrna) translation, RNA processing triplet code, template strand, codons, From Gene to Protein I. Transcription and translation are the two main processes linking gene to protein. A. RNA is chemically similar to DNA, except that it contains ribose as its sugar and substitutes

More information

The Nature of Genes. The Nature of Genes. The Nature of Genes. The Nature of Genes. The Nature of Genes. The Genetic Code. Genes and How They Work

The Nature of Genes. The Nature of Genes. The Nature of Genes. The Nature of Genes. The Nature of Genes. The Genetic Code. Genes and How They Work Genes and How They Work Chapter 15 Early ideas to explain how genes work came from studying human diseases. Archibald Garrod studied alkaptonuria, 1902 Garrod recognized that the disease is inherited via

More information

Chapter 14: From DNA to Protein

Chapter 14: From DNA to Protein Chapter 14: From DNA to Protein Steps from DNA to Proteins Same two steps produce all proteins: 1) DNA is transcribed to form RNA Occurs in the nucleus RNA moves into cytoplasm 2) RNA is translated in

More information

Transcription and Translation

Transcription and Translation Transcription and Translation Central Dogma of Molecular The flow of information in the cell starts at DNA, which replicates to form more DNA. Information is then transcribed into RNA, and then it is translated

More information

Ch 10 Molecular Biology of the Gene

Ch 10 Molecular Biology of the Gene Ch 10 Molecular Biology of the Gene For Next Week Lab -Hand in questions from 4 and 5 by TUES in my mailbox (Biology Office) -Do questions for Lab 6 for next week -Lab practical next week Lecture Read

More information

Wednesday, November 22, 17. Exons and Introns

Wednesday, November 22, 17. Exons and Introns Exons and Introns Introns and Exons Exons: coded regions of DNA that get transcribed and translated into proteins make up 5% of the genome Introns and Exons Introns: non-coded regions of DNA Must be removed

More information

BEADLE & TATUM EXPERIMENT

BEADLE & TATUM EXPERIMENT FROM DNA TO PROTEINS: gene expression Chapter 14 LECTURE OBJECTIVES What Is the Evidence that Genes Code for Proteins? How Does Information Flow from Genes to Proteins? How Is the Information Content in

More information

From DNA to Protein: Genotype to Phenotype

From DNA to Protein: Genotype to Phenotype 12 From DNA to Protein: Genotype to Phenotype 12.1 What Is the Evidence that Genes Code for Proteins? The gene-enzyme relationship is one-gene, one-polypeptide relationship. Example: In hemoglobin, each

More information

Figure A summary of spontaneous alterations likely to require DNA repair.

Figure A summary of spontaneous alterations likely to require DNA repair. DNA Damage Figure 5-46. A summary of spontaneous alterations likely to require DNA repair. The sites on each nucleotide that are known to be modified by spontaneous oxidative damage (red arrows), hydrolytic

More information

Biology A: Chapter 9 Annotating Notes Protein Synthesis

Biology A: Chapter 9 Annotating Notes Protein Synthesis Name: Pd: Biology A: Chapter 9 Annotating Notes Protein Synthesis -As you read your textbook, please fill out these notes. -Read each paragraph state the big/main idea on the left side. -On the right side

More information

Transcription of DNA to RNA

Transcription of DNA to RNA Transcription of DNA to RNA Prokaryotic VS Eukaryotic Two step process described as DNA makes RNA makes protein, the first step, transcription, results in synthesis of mrnas and noncoding RNAs, and the

More information

DNA Replication and Transcription: Biosynthesis of DNA and RNA 阮雪芬

DNA Replication and Transcription: Biosynthesis of DNA and RNA 阮雪芬 DNA Replication and Transcription: Biosynthesis of DNA and RNA 阮雪芬 2004/05/21 @NTU Outline Introduction Replication of DNA Action of DNA Polymerases DNA Damage and Repair Synthesis of RNA Post-transcriptional

More information

From DNA to Protein: Genotype to Phenotype

From DNA to Protein: Genotype to Phenotype 12 From DNA to Protein: Genotype to Phenotype 12.1 What Is the Evidence that Genes Code for Proteins? The gene-enzyme relationship is one-gene, one-polypeptide relationship. Example: In hemoglobin, each

More information

Transcription: Synthesis of RNA

Transcription: Synthesis of RNA Transcription: Synthesis of RNA The flow of information in the cells (the central dogma of molecular biology): Transcription = RNA synthesis on a DNA template. The mrna will provide the information for

More information

5. Which of the following enzymes catalyze the attachment of an amino acid to trna in the formation of aminoacyl trna?

5. Which of the following enzymes catalyze the attachment of an amino acid to trna in the formation of aminoacyl trna? Sample Examination Questions for Exam 3 Material Biology 3300 / Dr. Jerald Hendrix Warning! These questions are posted solely to provide examples of past test questions. There is no guarantee that any

More information