DNA Replication and Transcription: Biosynthesis of DNA and RNA 阮雪芬

Size: px
Start display at page:

Download "DNA Replication and Transcription: Biosynthesis of DNA and RNA 阮雪芬"

Transcription

1 DNA Replication and Transcription: Biosynthesis of DNA and RNA 阮雪芬

2 Outline Introduction Replication of DNA Action of DNA Polymerases DNA Damage and Repair Synthesis of RNA Post-transcriptional Modification of RNA Base Sequences in DNA

3 Outline Introduction Replication of DNA Action of DNA Polymerases DNA Damage and Repair Synthesis of RNA Post-transcriptional Modification of RNA Base Sequences in DNA

4 Introduction Replication Templates Repair

5 Outline Introduction Replication of DNA Action of DNA Polymerases DNA Damage and Repair Synthesis of RNA Post-transcriptional Modification of RNA Base Sequences in DNA

6 Characteristics of the Replication Process DNA Replication is Semiconservative Replication Begins at a Discrete Point on DNA

7 Two Possible Models for DNA Replication X

8 Density Gradient Centrifugation Matthew Meselson and Franklin Stahl

9 Preliminary Experiment

10 Actual Experiment

11 Replication Begins at a Discrete John Cairns, 1950 Point on DNA Replication fork Replication fork

12 The Theta Model for Replication of a Circular DNA Molecule In prokaryotes

13 Proposed Pathway fro Replication of Eukaryotic DNA

14 Outline Introduction Replication of DNA Action of DNA Polymerases DNA Damage and Repair Synthesis of RNA Post-transcriptional Modification of RNA Base Sequences in DNA

15 DNA Polymerase I Was isolated from E. coli, in 1957 dntp + (dnmp) n d(ntp ) n+1 + PPi

16 The Action of DNA Polymerase

17

18 Exonuclease Activity of DNA Acts as a proofreading and repair enzyme by catalyzing hydrolytic removal of mismatched bases. Polymerase I

19 5 3 Exonuclease Activity

20 Okazaki Fragments

21 Complete Scheme Showing Sequential Steps of Replication Helicase Process DNA gyrase: topoisomerase Formation of Replication fork

22 Single-stranded DNA Binding Proteins

23 Initiation of DNA Synthesis Primase

24 DNA Polymerase III

25 DNA Polymerase I

26 DNA Ligase

27 DNA Ligase

28

29 Eukaryotic Chromosomes and Telomeres Telomere: The repeating sequence AGGGTT Telomerase: catalyzes the synthesis of these DNA ends Telomerase becomes activated in human cancer cells

30 Outline Introduction Replication of DNA Action of DNA Polymerases DNA Damage and Repair Synthesis of RNA Post-transcriptional Modification of RNA Base Sequences in DNA

31 Mutations Spontaneous mutations Induced mutations

32 Spontaneous mutations Those changes that occur during normal genetic and metabolic functions in the cell. Two major types: Mismatching of base pairs: one for every base pairs incorporated Base modifications caused by hydrolytic reactions

33 Spontaneous mutations Are favorable in that they confer a selective advantage to an organism. The causes of evolutionary processes Replication errors are of three types Substitution Insertion Deletion

34 The Basic Repair Mechanism for Mismatched Base Pairs in E. coli

35 Mutagenic Damage to DNA Caused by Spontaneous Processes DNA glycosidases

36 Induced mutations Mutagens Ionizing radiation Chemicals Heterocyclic base analogs Reactive chemical mutagens Intercalating agents

37 Ionizing radiation: Hydroxyl Radical

38 Chemical Mutagens Heterocyclic base analogs

39 Alkylating Agents

40 Alkylating Agents

41 Intercalating Agents

42 Binding of Intercalating Agents to Ames test DNA

43 Outline Introduction Replication of DNA Action of DNA Polymerases DNA Damage and Repair Synthesis of RNA Post-transcriptional Modification of RNA Base Sequences in DNA

44 Transcription

45 Initiation of Transcription

46 Elongation of the RNA Chain in Transcription

47 Termination of Transcription

48 Hairpin Loop

49 Inhibitors of Transcription

50 RNA-directed RNA Synthesis RNA replicase No editing, proofreading, or repair activities

51 Outline Introduction Replication of DNA Action of DNA Polymerases DNA Damage and Repair Synthesis of RNA Post-transcriptional Modification of RNA Base Sequences in DNA

52 Post-transcriptional Modification of trna in E. coli

53 mrna Processing Capping Poly A addition Splicing coding sequences

54 Capping Reactions

55 Poly A Addition 20 ~250 n Catalyzed by polyadenylate polymerase Increasing resistance to cellular nucleases

56 Splicing Coding Sequences

57 Outline Introduction Replication of DNA Action of DNA Polymerases DNA Damage and Repair Synthesis of RNA Post-transcriptional Modification of RNA Base Sequences in DNA

58 2, 3 -Dideoxyribonucleoside Triphosphates

59 Sanger Chain-termination Method

60 Exercises 11.1 a, c, d, f, k, l, m, n, s

DNA replication: Enzymes link the aligned nucleotides by phosphodiester bonds to form a continuous strand.

DNA replication: Enzymes link the aligned nucleotides by phosphodiester bonds to form a continuous strand. DNA replication: Copying genetic information for transmission to the next generation Occurs in S phase of cell cycle Process of DNA duplicating itself Begins with the unwinding of the double helix to expose

More information

Proposed Models of DNA Replication. Conservative Model. Semi-Conservative Model. Dispersive model

Proposed Models of DNA Replication. Conservative Model. Semi-Conservative Model. Dispersive model 5.2 DNA Replication Cell Cycle Life cycle of a cell Cells can reproduce Daughter cells receive an exact copy of DNA from parent cell DNA replication happens during the S phase Proposed Models of DNA Replication

More information

BCMB Chapters 34 & 35 DNA Replication and Repair

BCMB Chapters 34 & 35 DNA Replication and Repair BCMB 3100 - Chapters 34 & 35 DNA Replication and Repair Semi-conservative DNA replication DNA polymerase DNA replication Replication fork; Okazaki fragments Sanger method for DNA sequencing DNA repair

More information

DNA REPLICATION & REPAIR

DNA REPLICATION & REPAIR DNA REPLICATION & REPAIR Table of contents 1. DNA Replication Model 2. DNA Replication Mechanism 3. DNA Repair: Proofreading 1. DNA Replication Model Replication in the cell cycle 3 models of DNA replication

More information

DNA Replication semiconservative replication conservative replication dispersive replication DNA polymerase

DNA Replication semiconservative replication conservative replication dispersive replication DNA polymerase DNA Replication DNA Strands are templates for DNA synthesis: Watson and Crick suggested that the existing strands of DNA served as a template for the producing of new strands, with bases being added to

More information

DNA Replication and Repair

DNA Replication and Repair DNA Replication and Repair http://hyperphysics.phy-astr.gsu.edu/hbase/organic/imgorg/cendog.gif Overview of DNA Replication SWYK CNs 1, 2, 30 Explain how specific base pairing enables existing DNA strands

More information

Chapter Twelve: DNA Replication and Recombination

Chapter Twelve: DNA Replication and Recombination This is a document I found online that is based off of the fourth version of your book. Not everything will apply to the upcoming exam so you ll have to pick out what you thing is important and applicable.

More information

4) separates the DNA strands during replication a. A b. B c. C d. D e. E. 5) covalently connects segments of DNA a. A b. B c. C d. D e.

4) separates the DNA strands during replication a. A b. B c. C d. D e. E. 5) covalently connects segments of DNA a. A b. B c. C d. D e. 1) Chargaff's analysis of the relative base composition of DNA was significant because he was able to show that a. the relative proportion of each of the four bases differs from species to species. b.

More information

Replication. Obaidur Rahman

Replication. Obaidur Rahman Replication Obaidur Rahman DIRCTION OF DNA SYNTHESIS How many reactions can a DNA polymerase catalyze? So how many reactions can it catalyze? So 4 is one answer, right, 1 for each nucleotide. But what

More information

DNA Replication. Back ground.. Single celled zygote goes from being single celled to 100 trillion more cells in over 240 days in humans! Wow!

DNA Replication. Back ground.. Single celled zygote goes from being single celled to 100 trillion more cells in over 240 days in humans! Wow! DNA Replication Back ground.. Single celled zygote goes from being single celled to 100 trillion more cells in over 240 days in humans! Wow! Must be fast! six billion base pairs in a single human cell

More information

DNA replication. - proteins for initiation of replication; - proteins for polymerization of nucleotides.

DNA replication. - proteins for initiation of replication; - proteins for polymerization of nucleotides. DNA replication Replication represents the duplication of the genetic information encoded in DNA that is the crucial step in the reproduction of living organisms and the growth of multicellular organisms.

More information

Fig. 16-7a. 5 end Hydrogen bond 3 end. 1 nm. 3.4 nm nm

Fig. 16-7a. 5 end Hydrogen bond 3 end. 1 nm. 3.4 nm nm Fig. 16-7a end Hydrogen bond end 1 nm 3.4 nm 0.34 nm (a) Key features of DNA structure end (b) Partial chemical structure end Fig. 16-8 Adenine (A) Thymine (T) Guanine (G) Cytosine (C) Concept 16.2: Many

More information

DNA Replication I Biochemistry 302. Bob Kelm January 24, 2005

DNA Replication I Biochemistry 302. Bob Kelm January 24, 2005 DNA Replication I Biochemistry 302 Bob Kelm January 24, 2005 Watson Crick prediction: Each stand of parent DNA serves as a template for synthesis of a new complementary daughter strand Fig. 4.12 Proof

More information

DNA REPLICATION. Anna Onofri Liceo «I.Versari»

DNA REPLICATION. Anna Onofri Liceo «I.Versari» DNA REPLICATION Anna Onofri Liceo «I.Versari» Learning objectives 1. Understand the basic rules governing DNA replication 2. Understand the function of key proteins involved in a generalised replication

More information

Covalently bonded sugar-phosphate backbone with relatively strong bonds keeps the nucleotides in the backbone connected in the correct sequence.

Covalently bonded sugar-phosphate backbone with relatively strong bonds keeps the nucleotides in the backbone connected in the correct sequence. Unit 14: DNA Replication Study Guide U7.1.1: DNA structure suggested a mechanism for DNA replication (Oxford Biology Course Companion page 347). 1. Outline the features of DNA structure that suggested

More information

DNA is the genetic material. DNA structure. Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test

DNA is the genetic material. DNA structure. Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test DNA is the genetic material Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test Dr. Amy Rogers Bio 139 General Microbiology Hereditary information is carried by DNA Griffith/Avery

More information

DNA and Its Role in Heredity. DNA and Its Role in Heredity. A. DNA: The Genetic Material. A. DNA: The Genetic Material.

DNA and Its Role in Heredity. DNA and Its Role in Heredity. A. DNA: The Genetic Material. A. DNA: The Genetic Material. DNA and Its Role in Heredity A. DNA: The Genetic Material Lecture Series 8 DNA and Its Role in Heredity B. The Structure of DNA C. DNA E. DNA Proofreading and Repair F. Practical Applications of DNA A.

More information

AP BIOLOGY RNA, DNA, & Proteins Chapters 16 & 17 Review

AP BIOLOGY RNA, DNA, & Proteins Chapters 16 & 17 Review AP BIOLOGY RNA, DNA, & Proteins Chapters 16 & 17 Review Enzyme that adds nucleotide subunits to an RNA primer during replication DNA polymerase III Another name for protein synthesis translation Sugar

More information

Genetic material must be able to:

Genetic material must be able to: Genetic material must be able to: Contain the information necessary to construct an entire organism Pass from parent to offspring and from cell to cell during cell division Be accurately copied Account

More information

DNA metabolism. DNA Replication DNA Repair DNA Recombination

DNA metabolism. DNA Replication DNA Repair DNA Recombination DNA metabolism DNA Replication DNA Repair DNA Recombination Chutima Talabnin Ph.D. School of Biochemistry,Institute of Science, Suranaree University of Technology Central Dogma or Flow of genetic information

More information

8/21/2014. From Gene to Protein

8/21/2014. From Gene to Protein From Gene to Protein Chapter 17 Objectives Describe the contributions made by Garrod, Beadle, and Tatum to our understanding of the relationship between genes and enzymes Briefly explain how information

More information

DNA is a functional genetic material as it:

DNA is a functional genetic material as it: DNA DNA is a functional genetic material as it: varies between species and individuals can store information remains constant within a species Replicates undergoes mutations 1 `It has not escaped our notice

More information

Overview: Life s Operating Instructions Concept 16.1: DNA is the genetic material The Search for the Genetic Material: Scientific Inquiry

Overview: Life s Operating Instructions Concept 16.1: DNA is the genetic material The Search for the Genetic Material: Scientific Inquiry Overview: Life s Operating Instructions In 1953, James Watson and Francis Crick introduced an elegant double-helical model for the structure of deoxyribonucleic acid, or DNA DNA, the substance of inheritance,

More information

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION Chapter 7 Microbial Genetics Lecture prepared by Mindy Miller-Kittrell, University of Tennessee, Knoxville The Structure and Replication

More information

DNA Replication. Packet #17 Chapter #16

DNA Replication. Packet #17 Chapter #16 DNA Replication Packet #17 Chapter #16 1 HISTORICAL FACTS ABOUT DNA 2 Historical DNA Discoveries 1928 Frederick Griffith finds a substance in heat-killed bacteria that transforms living bacteria 1944 Oswald

More information

Chapter 30. Replication. Meselson Stahl Experiment. BCH 4054 Chapter 30 Lecture Notes. Slide 1. Slide 2 Conceptual Mechanism of.

Chapter 30. Replication. Meselson Stahl Experiment. BCH 4054 Chapter 30 Lecture Notes. Slide 1. Slide 2 Conceptual Mechanism of. BCH 4054 Chapter 30 Lecture Notes 1 Chapter 30 DNA Replication and Repair 2 Conceptual Mechanism of Replication Strand separation, with copying of each strand by Watson-Crick base pairing Fig 30.2 Three

More information

DNA replication. Begins at specific sites on a double helix. Proceeds in both directions. Is initiated at many points in eukaryotic chromosomes.

DNA replication. Begins at specific sites on a double helix. Proceeds in both directions. Is initiated at many points in eukaryotic chromosomes. DNA replication Begins at specific sites on a double helix. Proceeds in both directions. Is initiated at many points in eukaryotic chromosomes. Figure 10.8 http://www.hhmi.org/biointeractive/media/ DNAi_replication_schematic-lg.mov

More information

Chapter 13. From DNA to Protein

Chapter 13. From DNA to Protein Chapter 13 From DNA to Protein Proteins All proteins consist of polypeptide chains A linear sequence of amino acids Each chain corresponds to the nucleotide base sequenceof a gene The Path From Genes to

More information

Storage and Expression of Genetic Information

Storage and Expression of Genetic Information Storage and Expression of Genetic Information 29. DNA structure, Replication and Repair ->Ch 25. DNA metabolism 30. RNA Structure, Synthesis and Processing ->Ch 26. RNA metabolism 31. Protein Synthesis

More information

CHAPTER 16 MOLECULAR BASIS OF INHERITANCE

CHAPTER 16 MOLECULAR BASIS OF INHERITANCE CHAPTER 16 MOLECULAR BASIS OF INHERITANCE DNA as genetic material? Deducted that DNA is the genetic material Initially worked by studying bacteria & the viruses that infected them 1928 Frederick Griffiths

More information

Brief History. Many people contributed to our understanding of DNA

Brief History. Many people contributed to our understanding of DNA DNA (Ch. 16) Brief History Many people contributed to our understanding of DNA T.H. Morgan (1908) Frederick Griffith (1928) Avery, McCarty & MacLeod (1944) Erwin Chargaff (1947) Hershey & Chase (1952)

More information

Ch 10 Molecular Biology of the Gene

Ch 10 Molecular Biology of the Gene Ch 10 Molecular Biology of the Gene For Next Week Lab -Hand in questions from 4 and 5 by TUES in my mailbox (Biology Office) -Do questions for Lab 6 for next week -Lab practical next week Lecture Read

More information

Lecture for Wednesday. Dr. Prince BIOL 1408

Lecture for Wednesday. Dr. Prince BIOL 1408 Lecture for Wednesday Dr. Prince BIOL 1408 THE FLOW OF GENETIC INFORMATION FROM DNA TO RNA TO PROTEIN Copyright 2009 Pearson Education, Inc. Genes are expressed as proteins A gene is a segment of DNA that

More information

BIOSYNTHESIS OF DNA AND RNA: REPLICATION AND TRANSCRIPTION

BIOSYNTHESIS OF DNA AND RNA: REPLICATION AND TRANSCRIPTION BIOSYNTHESIS OF DNA AND RNA: REPLICATION AND TRANSCRIPTION HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University 1 Nucleic Acids are important for their

More information

Hershey & Chase Avery, MacLeod, & McCarty DNA: The Genetic Material

Hershey & Chase Avery, MacLeod, & McCarty DNA: The Genetic Material DA: The Genetic Material Chapter 14 Griffith s experiment with Streptococcus pneumoniae Live S strain cells killed the mice Live R strain cells did not kill the mice eat-killed S strain cells did not kill

More information

Bio11 Announcements. Ch 21: DNA Biology and Technology. DNA Functions. DNA and RNA Structure. How do DNA and RNA differ? What are genes?

Bio11 Announcements. Ch 21: DNA Biology and Technology. DNA Functions. DNA and RNA Structure. How do DNA and RNA differ? What are genes? Bio11 Announcements TODAY Genetics (review) and quiz (CP #4) Structure and function of DNA Extra credit due today Next week in lab: Case study presentations Following week: Lab Quiz 2 Ch 21: DNA Biology

More information

MOLECULAR BASIS OF INHERITANCE

MOLECULAR BASIS OF INHERITANCE MOLECULAR BASIS OF INHERITANCE C H A P T E R 1 6 as genetic material? Deducted that is the genetic material Initially worked by studying bacteria & the viruses that infected them 1928 Frederick Griffiths

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance The Molecular Basis of Inheritance Chapter 16 Objectives Describe the contributions of the following people: Griffith; Avery, McCary, and MacLeod; Hershey and Chase; Chargaff; Watson and Crick; Franklin;

More information

DNA Replication AP Biology

DNA Replication AP Biology DNA Replication 2007-2008 Double helix structure of DNA It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.

More information

BIO303, Genetics Study Guide II for Spring 2007 Semester

BIO303, Genetics Study Guide II for Spring 2007 Semester BIO303, Genetics Study Guide II for Spring 2007 Semester 1 Questions from F05 1. Tryptophan (Trp) is encoded by the codon UGG. Suppose that a cell was treated with high levels of 5- Bromouracil such that

More information

AP2013-DNAPacket-II. Use the list of choices below for the following questions:

AP2013-DNAPacket-II. Use the list of choices below for the following questions: Class: Date: AP2013-DNAPacket-II Multiple Choice Identify the choice that best completes the statement or answers the question. Use the list of choices below for the following questions: I. helicase II.

More information

DNA Replication AP Biology

DNA Replication AP Biology DNA Replication 2007-2008 Watson and Crick 1953 article in Nature Double helix structure of DNA It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible

More information

DNA Topoisomerases relieve the supercoiling stress ahead of the fork

DNA Topoisomerases relieve the supercoiling stress ahead of the fork DNA Topoisomerases relieve the supercoiling stress ahead of the fork Tw 1) T w : # of turns around the central axis 2) W r : # of times the double helix crosses itself 3) Linking Number: L k = T w + W

More information

Unit 6: Molecular Genetics & DNA Technology Guided Reading Questions (100 pts total)

Unit 6: Molecular Genetics & DNA Technology Guided Reading Questions (100 pts total) AP Biology Biology, Campbell and Reece, 10th Edition Adapted from chapter reading guides originally created by Lynn Miriello Name: Chapter 16 The Molecular Basis of Inheritance Concept 16.1 DNA is the

More information

Molecular Biology, Lecture 3 DNA Replication

Molecular Biology, Lecture 3 DNA Replication Molecular Biology, Lecture 3 DNA Replication We will continue talking about DNA replication. We have previously t discussed the structure of DNA. DNA replication is the copying of the whole DNA content

More information

Friday, April 17 th. Crash Course: DNA, Transcription and Translation. AP Biology

Friday, April 17 th. Crash Course: DNA, Transcription and Translation. AP Biology Friday, April 17 th Crash Course: DNA, Transcription and Translation Today I will 1. Review the component parts of a DNA molecule. 2. Describe the process of transformation. 3. Explain what is meant by

More information

NUCLEIC ACIDS Genetic material of all known organisms DNA: deoxyribonucleic acid RNA: ribonucleic acid (e.g., some viruses)

NUCLEIC ACIDS Genetic material of all known organisms DNA: deoxyribonucleic acid RNA: ribonucleic acid (e.g., some viruses) NUCLEIC ACIDS Genetic material of all known organisms DNA: deoxyribonucleic acid RNA: ribonucleic acid (e.g., some viruses) Consist of chemically linked sequences of nucleotides Nitrogenous base Pentose-

More information

Unit 6: Molecular Genetics & DNA Technology Guided Reading Questions (100 pts total)

Unit 6: Molecular Genetics & DNA Technology Guided Reading Questions (100 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 16 The Molecular Basis of Inheritance Unit 6: Molecular Genetics

More information

Chromosomes. Chromosomes. Genes. Strands of DNA that contain all of the genes an organism needs to survive and reproduce

Chromosomes. Chromosomes. Genes. Strands of DNA that contain all of the genes an organism needs to survive and reproduce Chromosomes Chromosomes Strands of DNA that contain all of the genes an organism needs to survive and reproduce Genes Segments of DNA that specify how to build a protein genes may specify more than one

More information

Adv Biology: DNA and RNA Study Guide

Adv Biology: DNA and RNA Study Guide Adv Biology: DNA and RNA Study Guide Chapter 12 Vocabulary -Notes What experiments led up to the discovery of DNA being the hereditary material? o The discovery that DNA is the genetic code involved many

More information

produces an RNA copy of the coding region of a gene

produces an RNA copy of the coding region of a gene 1. Transcription Gene Expression The expression of a gene into a protein occurs by: 1) Transcription of a gene into RNA produces an RNA copy of the coding region of a gene the RNA transcript may be the

More information

Bundle 5 Test Review

Bundle 5 Test Review Bundle 5 Test Review DNA vs. RNA DNA Replication Gene Mutations- Protein Synthesis 1. Label the different components and complete the complimentary base pairing. What is this molecule called? _Nucleic

More information

Flow of Genetic Information

Flow of Genetic Information Flow of Genetic Information DNA Replication Links to the Next Generation Standards Scientific and Engineering Practices: Asking Questions (for science) and Defining Problems (for engineering) Developing

More information

DNA Function: Information Transmission

DNA Function: Information Transmission DNA Function: Information Transmission DNA is called the code of life. What does it code for? *the information ( code ) to make proteins! Why are proteins so important? Nearly every function of a living

More information

Chapter 16: The Molecular Basis of Inheritance

Chapter 16: The Molecular Basis of Inheritance AP Biology Reading Guide Name Chapter 16: The Molecular Basis of Inheritance Concept 16.1 DNA is the genetic material 1. What are the two chemical components of chromosomes? 2. The search for identifying

More information

DNA: The Genetic Material. Chapter 14

DNA: The Genetic Material. Chapter 14 DNA: The Genetic Material hapter 14 1 Frederick Griffith 1928 Studied Streptococcus pneumoniae, a pathogenic bacterium causing pneumonia 2 strains of Streptococcus S strain is virulent R strain is nonvirulent

More information

The replication of DNA Kornberg 1957 Meselson and Stahl 1958 Cairns 1963 Okazaki 1968 DNA Replication The driving force for DNA synthesis. The addition of a nucleotide to a growing polynucleotide

More information

DNA The Genetic Material

DNA The Genetic Material DNA The Genetic Material 2006-2007 Chromosomes related to phenotype T.H. Morgan working with Drosophila fruit flies associated phenotype with specific chromosome white-eyed male had specific X chromosome

More information

DNA is the genetic material [2].

DNA is the genetic material [2]. GUIDED READING - Ch. 16 MOLECULAR BASIS OF INHERITANCE NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper will not

More information

14 DNA STRUCTURE, REPLICATION, AND ORGANIZATION

14 DNA STRUCTURE, REPLICATION, AND ORGANIZATION 14 DNA STRUCTURE, REPLICATION, AND ORGANIZATION Chapter Outline 14.1 ESTABLISHING DNA AS THE HEREDITARY MOLECULE Experiments began when Griffith found a substance that could genetically transform pneumonia

More information

Double helix structure of DNA

Double helix structure of DNA Replication Double helix structure of It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material. Watson & Crick

More information

Fig Ch 17: From Gene to Protein

Fig Ch 17: From Gene to Protein Fig. 17-1 Ch 17: From Gene to Protein Basic Principles of Transcription and Translation RNA is the intermediate between genes and the proteins for which they code Transcription is the synthesis of RNA

More information

DNA vs. RNA DNA: deoxyribonucleic acid (double stranded) RNA: ribonucleic acid (single stranded) Both found in most bacterial and eukaryotic cells RNA

DNA vs. RNA DNA: deoxyribonucleic acid (double stranded) RNA: ribonucleic acid (single stranded) Both found in most bacterial and eukaryotic cells RNA DNA Replication DNA vs. RNA DNA: deoxyribonucleic acid (double stranded) RNA: ribonucleic acid (single stranded) Both found in most bacterial and eukaryotic cells RNA molecule can assume different structures

More information

The replication forks Summarising what we know:

The replication forks Summarising what we know: When does replication occur? MBLG1001 lecture 10 Replication the once in a lifetime event! Full blown replication only occurs once, just before cell division BUT the DNA template is constantly being repaired.

More information

Active Learning Exercise 9. The Hereditary Material: DNA

Active Learning Exercise 9. The Hereditary Material: DNA Name Biol 211 - Group Number Active Learning Exercise 9. The Hereditary Material: DNA Reference: Chapter 16 (Biology by Campbell/Reece, 8 th ed.) 1. a.) What is a nucleotide? b.) What is a nitrogen base?

More information

DNA Replication. The Organization of DNA. Recall:

DNA Replication. The Organization of DNA. Recall: Recall: The Organization of DNA DNA Replication Chromosomal form appears only during mitosis, and is used in karyotypes. folded back upon itself (chromosomes) coiled around itself (chromatin) wrapped around

More information

DNA Replication in Prokaryotes and Eukaryotes

DNA Replication in Prokaryotes and Eukaryotes DNA Replication in Prokaryotes and Eukaryotes 1. Overall mechanism 2. Roles of Polymerases & other proteins 3. More mechanism: Initiation and Termination 4. Mitochondrial DNA replication DNA replication

More information

Unit 6: Gene Activity and Biotechnology

Unit 6: Gene Activity and Biotechnology Chapter 16 Outline The Molecular Basis of Inheritance Level 1 Items students should be able to: 1. Recognize scientists and the experiments that lead to the understanding of the molecular basis of inheritance.

More information

5 -GAC-3 5 -GTC-3 5 -CAG Which of these are NOT important for RNA Polymerase interacting with DNA?

5 -GAC-3 5 -GTC-3 5 -CAG Which of these are NOT important for RNA Polymerase interacting with DNA? Name This exam is schedule for 75 minutes and I anticipate it to take the full time allotted. You are free to leave if you finish. The exam is split into two sections. Part 1 is multiple choice select

More information

DNA Structure and Replication, and Virus Structure and Replication Test Review

DNA Structure and Replication, and Virus Structure and Replication Test Review DNA Structure and Replication, and Virus Structure and Replication Test Review What does DNA stand for? Deoxyribonucleic Acid DNA is what type of macromolecule? DNA is a nucleic acid The building blocks

More information

Wednesday, November 22, 17. Exons and Introns

Wednesday, November 22, 17. Exons and Introns Exons and Introns Introns and Exons Exons: coded regions of DNA that get transcribed and translated into proteins make up 5% of the genome Introns and Exons Introns: non-coded regions of DNA Must be removed

More information

DNA, RNA, protein synthesis. Sections , , and

DNA, RNA, protein synthesis. Sections , , and DNA, RNA, protein synthesis Sections 14.1 14.5, 15.1 15.5, and 16.4 16.6 05-09-16 Today s class Extra-credit essay Activity on mitosis, meiosis, and inheritance Lecture and activities on the lecture Extra-credit

More information

IDTutorial: DNA Replication

IDTutorial: DNA Replication IDTutorial: DNA Replication Introduction In their report announcing the structure of the DNA molecule, Watson and Crick (Nature, 171: 737-738, 1953) observe, It has not escaped our notice that the specific

More information

Chapter 13 Active Reading Guide The Molecular Basis of Inheritance

Chapter 13 Active Reading Guide The Molecular Basis of Inheritance Name: AP Biology Mr. Croft Chapter 13 Active Reading Guide The Molecular Basis of Inheritance Section 1 1. What are the two chemical components of chromosomes? 2. Why did researchers originally think that

More information

CHAPTER 22: Nucleic Acids & Protein Synthesis. General, Organic, & Biological Chemistry Janice Gorzynski Smith

CHAPTER 22: Nucleic Acids & Protein Synthesis. General, Organic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 22: Nucleic Acids & Protein Synthesis General, rganic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 22: Nucleic Acids & Protein Synthesis Learning bjectives: q Nucleosides & Nucleo@des:

More information

Wednesday, April 9 th. DNA The Genetic Material Replication. Chapter 16

Wednesday, April 9 th. DNA The Genetic Material Replication. Chapter 16 Wednesday, April 9 th DNA The Genetic Material Replication Chapter 16 Modified from Kim Foglia Scientific History The march to understanding that DNA is the genetic material T.H. Morgan (1908) Frederick

More information

DNA Replication in Eukaryotes

DNA Replication in Eukaryotes OpenStax-CNX module: m44517 1 DNA Replication in Eukaryotes OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL

Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL Name: Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL Part A: Multiple Choice (15 marks) Circle the letter of choice that best completes the statement or answers the question. One mark for each correct

More information

Lecture #18 10/17/01 Dr. Wormington

Lecture #18 10/17/01 Dr. Wormington Lecture #18 10/17/01 Dr. Wormington DNA Replication The Story So Far Semiconservative Hydrolysis of 5' dntp 3' HO N 4 pn 3 pn 2 pn 1 p5'... + PP i 2P i Provides Energy for Phosphodiester Bond Formation

More information

Chapter 13 Section 2: DNA Replication

Chapter 13 Section 2: DNA Replication Chapter 13 Section 2: DNA Replication Opening Activity DNA is considered to be a relatively stable molecule. What gives it this stability, even though the hydrogen bonds between the nitrogen bases are

More information

NCERT MULTIPLE-CHOICE QUESTIONS

NCERT MULTIPLE-CHOICE QUESTIONS 36 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 6 MOLECULAR BASIS OF INHERITANCE MULTIPLE-CHOICE QUESTIONS 1. In a DNA strand the nucleotides are linked together by: a. glycosidic bonds b. phosphodiester bonds c.

More information

Transcription Eukaryotic Cells

Transcription Eukaryotic Cells Transcription Eukaryotic Cells Packet #20 1 Introduction Transcription is the process in which genetic information, stored in a strand of DNA (gene), is copied into a strand of RNA. Protein-encoding genes

More information

DNA STRUCTURE AND REPLICATION

DNA STRUCTURE AND REPLICATION AP BIOLOGY EVOLUTION/HEREDITY UNIT Unit 1 Part 2 Chapter 16 Activity #2 BUILDING BLOCKS OF DNA: Nucleotides: NAME DATE PERIOD DNA STRUCTURE AND REPLICATION 1. 5 carbon sugar (deoxyribose) 2. Nitrogenous

More information

The Molecul Chapter ar Basis 16: The M of olecular Inheritance Basis of Inheritance Fig. 16-1

The Molecul Chapter ar Basis 16: The M of olecular Inheritance Basis of Inheritance Fig. 16-1 he Chapter Molecular 16: he Basis Molecular of Inheritance Basis of Inheritance Fig. 16-1 dditional Evidence hat DN Is the Genetic Material It was known that DN is a polymer of nucleotides, each consisting

More information

Chapter 4: How Cells Work

Chapter 4: How Cells Work Chapter 4: How Cells Work David Shonnard Department of Chemical Engineering 1 Presentation Outline: l l l l l Introduction : Central Dogma DNA Replication: Preserving and Propagating DNA Transcription:

More information

STUDY GUIDE SECTION 10-1 Discovery of DNA

STUDY GUIDE SECTION 10-1 Discovery of DNA STUDY GUIDE SECTION 10-1 Discovery of DNA Name Period Date Multiple Choice-Write the correct letter in the blank. 1. The virulent strain of the bacterium S. pneumoniae causes disease because it a. has

More information

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication.

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication. Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication. The difference between replication, transcription, and translation. How

More information

Molecular Genetics I DNA

Molecular Genetics I DNA Molecular Genetics I DNA Deoxyribonucleic acid is the molecule that encodes the characteristics of living things. It is the molecule that is passed from a mother cell to daughter cells, and the molecule

More information

Chapter 12 Packet DNA 1. What did Griffith conclude from his experiment? 2. Describe the process of transformation.

Chapter 12 Packet DNA 1. What did Griffith conclude from his experiment? 2. Describe the process of transformation. Chapter 12 Packet DNA and RNA Name Period California State Standards covered by this chapter: Cell Biology 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance Lecture Outline Overview In April 1953, James Watson and Francis Crick shook the scientific world with an elegant double-helical model for the structure of

More information

2012 GENERAL [5 points]

2012 GENERAL [5 points] GENERAL [5 points] 2012 Mark all processes that are part of the 'standard dogma of molecular' [ ] DNA replication [ ] transcription [ ] translation [ ] reverse transposition [ ] DNA restriction [ ] DNA

More information

Bundle 6 Test Review

Bundle 6 Test Review Bundle 6 Test Review DNA vs. RNA DNA Replication Gene Mutations- Protein Synthesis 1. Label the different components and complete the complimentary base pairing. What is this molecule called? Deoxyribonucleic

More information

DNA Replication II Biochemistry 302. Bob Kelm January 26, 2005

DNA Replication II Biochemistry 302. Bob Kelm January 26, 2005 DNA Replication II Biochemistry 302 Bob Kelm January 26, 2005 Following in Dad s footsteps Original A. Kornberg E. coli DNA Pol I is a lousy replicative enzyme. 400 molecules/cell but ~2 replication forks/cell

More information

RNA metabolism. DNA dependent synthesis of RNA RNA processing RNA dependent synthesis of RNA and DNA.

RNA metabolism. DNA dependent synthesis of RNA RNA processing RNA dependent synthesis of RNA and DNA. RNA metabolism DNA dependent synthesis of RNA RNA processing RNA dependent synthesis of RNA and DNA http://www.youtube.com/watch?v=ovc8nxobxmq DNA dependent synthesis of RNA : production of an RNA molecule

More information

Syllabus for GUTS Lecture on DNA and Nucleotides

Syllabus for GUTS Lecture on DNA and Nucleotides Syllabus for GUTS Lecture on DNA and Nucleotides I. Introduction. DNA is the instruction manual for how to build a living organism here on earth. The instructions in DNA are propagated to future generations

More information

Chapter 10 - Molecular Biology of the Gene

Chapter 10 - Molecular Biology of the Gene Bio 100 - Molecular Genetics 1 A. Bacterial Transformation Chapter 10 - Molecular Biology of the Gene Researchers found that they could transfer an inherited characteristic (e.g. the ability to cause pneumonia),

More information

Spring 2006 Biochemistry 302 Exam 1

Spring 2006 Biochemistry 302 Exam 1 1 Name Spring 2006 Biochemistry 302 Exam 1 Directions: This exam has 36 questions/problems totaling 90 points. Check to make sure you have all six pages. Some questions have multiple parts so read each

More information

Part IV => DNA and RNA. 4.4 DNA Replication 4.4a DNA Replisome 4.4b DNA Damage and Repair

Part IV => DNA and RNA. 4.4 DNA Replication 4.4a DNA Replisome 4.4b DNA Damage and Repair Part IV => DNA and RNA 4.4 DNA Replication 4.4a DNA Replisome 4.4b DNA Damage and Repair Section 4.4a: DNA Replisome (Eukaryotic) Synopsis 4.4a - DNA replication involves making copies or replicas of DNA

More information

Hello! Outline. Cell Biology: RNA and Protein synthesis. In all living cells, DNA molecules are the storehouses of information. 6.

Hello! Outline. Cell Biology: RNA and Protein synthesis. In all living cells, DNA molecules are the storehouses of information. 6. Cell Biology: RNA and Protein synthesis In all living cells, DNA molecules are the storehouses of information Hello! Outline u 1. Key concepts u 2. Central Dogma u 3. RNA Types u 4. RNA (Ribonucleic Acid)

More information

From DNA to Protein: Genotype to Phenotype

From DNA to Protein: Genotype to Phenotype 12 From DNA to Protein: Genotype to Phenotype 12.1 What Is the Evidence that Genes Code for Proteins? The gene-enzyme relationship is one-gene, one-polypeptide relationship. Example: In hemoglobin, each

More information