SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 SUPPLEMENRY INFORMION doi:.38/nature In vivo nucleosome mapping D4+ Lymphocytes radient-based and I-bead cell sorting D8+ Lymphocytes ranulocytes Lyse the cells Isolate and sequence mononucleosome cores Micrococcal nuclease Supplementary Figure. Schematic depiction of in vivo nucleosome mapping experiment. lood cells were isolated from a human donor blood and sorted into populations representing D4+ -cells, D8+ -cells and granulocytes. Nuclear chromatin was released by crushing the cells, followed by Micrococcal nuclease treatment. Mononucleosome fraction was isolated by gel electrophoresis and sequenced to high depth using SOLiD platform.

2 RESERH SUPPLEMENRY INFORMION nucleosome reconstitution experiment Recombinant purified histones Reconstituted histones Purified nucleosomes H H H3 H4 Dialysis Sheared human DN, (.6-.7 Kb) High salt solution, nuclesome / 85 bps MNase Library DN Unprotected DN is removed Nucleosomes occupy sequence-determined positions Supplementary Figure. Schematic representation of in vitro reconstitution experiment. Recombinant histones were assembled to produce the histone octamer particles. Human genomic DN was sheared to a range of.6-.7 Kb and combined with octamers at a ratio of one octamer per 85 bps of DN. he salt was gradually dialyzed away and unbound DN was removed by Micrococcal nuclease treatment. Nucleosome-bound DN was purified and sequenced on the SOLiD platform.

3 SUPPLEMENRY INFORMION RESERH Distances Reads Distogram calculation + - Phasogram calculation Phases (+) Reads (+) Reads (-) Phases (-) Supplementary Figure 3. Distograms and phasograms. () Schematic depiction of the distogram calculation. lue arcs represent recorded distances between nucleosome reads that map on opposite strands. Distance frequencies are represented as a histogram (distogram, see Fig. - of the main text). Distograms are used to reveal the existence of consistently positioned nucleosomes in the main data. () Schematic depiction of the phasogram calculation. lue arcs represent recorded phases between the nucleosome reads mapping on the same strand of the reference genome. Phase frequencies are represented as a histogram (phasogram, see Fig -D). Phasograms are used to reveal the existance of consistently spaced nucleosomes forming regular arrays. 3

4 RESERH SUPPLEMENRY INFORMION % positioned nucleosomes 5 % positioned nucleosomes ell ell Mapped cores.. Positioning.5 stringency Dyad Dyad.5 Dyad Dyad Supplementary Figure 4. Schematic depiction of the nucleosome positioning stringency metric. t the sites containing perfrectly positioning nucleosomes (panel ) the stringency values are. (% positioning), and at the sites containing two mutually exclusive nucleosome positions which are utilized with 5% frequency across cells (panel ), the stringency values are.5 (5% positioning frequency at each of the two sites). Nucleosome dyad positions are identified as the local maxima of the stringency profile (green arrows). 4

5 SUPPLEMENRY INFORMION RESERH Positioned dyads.8.4. lobal in vivo positioning Difference enomic DN ranulocyte dyads M Positioning stringency Fraction of genome covered Difference enomic DN ranulocyte cores Positioning stringency Positioned dyads 3 M M M lobal in vitro positioning enomic DN dyads Difference Positioning stringency Fraction of genome covered enomic DN cores Difference Positioning stringency Supplementary Figure 5. enome-wide positioning of nucleosomes. () lobal in vivo nucleosome positioning of granulocytes. In both panels, X axis represents a range of positioning stringency cutoffs. In the left panel, Y axis represents the number of positioned dyads at a given positioning stringency cutoff. he red curve represents granulocyte data, the blue curve represents genomic DN control matched to the number of granulocyte reads, the green curve represents the difference curve that provides the number of statistically positioned dyads at a given stringency cutoff. In the right panel, Y axis represents the fraction of the genome covered by 47 bp nucleosome cores centered at the dyad positions exceeding a given stringency. he red curve represents granulocyte nucleosome data, the blue curve represents genomic control matching the granulocyte data read number, and the green curve represents the difference between granulocytes and control curves and gives the fraction of the genome covered by statistically positioned nucleosomes. () lobal in vitro nucleosome positioning. he data are plotted as in () using in vitro data and control matching the read number of the in vitro data set. 5

6 RESERH SUPPLEMENRY INFORMION Normalized nucleosome frequency....9 Nucleosome frequency within genes -..- D4+ -cells ranulocytes ene RPKM bins >5 Supplementary Figure 6. ssociation between transcriptional levels and measured nucleosome occupancy. X axis represents gene expression values binned according to their RPKM values. Y axis represents normalized frequencies of observed nucleosome coverage within the regions occupied by genes in each bin. 6

7 SUPPLEMENRY INFORMION RESERH Oligomer preferences of nucleosome Normalized dyad frequency 3... Elements 3... In vivo Elements Distance from the element, bp Distance from the element, bp Supplementary Figure 7. () Signatures of rotational positioning of in vitro nucleosomes. Shown are preferences relative to most dimers and trimers composed of s and s. X axis represents a distance from a given oligomer to a dyad inferred from mapped sequence reads. Y axis represents the frequency of dyads at a given distance normalized to the expected frequency. bp-spaced peaks represent helical rotational preferences of oligomers relative to nucleosome surface. () Signatures of rotational positioning of in vivo granulocyte nucleosomes against the same panel of oligomers. 7

8 RESERH SUPPLEMENRY INFORMION nucleosome dyad distribution around gene promoters (expression groups from D4+ -cells) Normalized dyad frequency Highly expressed Moderately expressed Low expressed Not expressed 5 5 Distance relative to SS, bps Supplementary Figure 8. Sequence-encoded nucleosome organization around SS. Plotted are frequencies of in vitro nucleosome dyads around promoters of genes binned according to their expression levels in D4+ -cells. X axis represents the distances relative to the SS (left of zero is away from the gene). Y-axis represents frequencies of nucleosome dyads normalized to the genome-wide average. Each of the 4 gene bins is represented by a line of a corresponding color displayed in the legend. 8

9 SUPPLEMENRY INFORMION RESERH Dyad instances, fold enrichment In vivo F ranulocytes D4+ -cells Distance from the F binding site, bp Supplementary Figure 9. Nucleosome organization around F binding sites. () Schematic depiction of nucleosome organization inferred from the data. he blue ovals represent in vivo nucleosome positions, the green square represents binding of F protein which is flanked by two well-positioned nuclesoomes. he orange oval represents preferred position of nucleosomes in vitro. () Dyad frequencies around F binding site. inidng sites were aligned so that position represents coordinate of F binding inferred from F data in D4+ -cells. X-axis represents 4 Kbp window around F binding site, Y-axis represents normlized frequencies of dyads across the regions. he red curve represents smoothed frequency of nucleosome dyads from granulocytes, the blue curve represents smoothed nucleosome dyad frequency in D4+ -cells. () Dyad frequencies in the in vitro reconstitution data around F binding sites. 9

10 kb plus ladder units of MNase 5 bp bp Nucleosomes 5bp ladder kb plus ladder units of MNase D bp bp kb plus ladder ranulocytes kb plus ladder bp bp in vitro nucleosome MNase digested 5bp ladder units of MNase D8+ -cells kb plus ladder D4+ -cells Supplementary Figure kb plus ladder RESERH SUPPLEMENRY INFORMION bp bp Supplementary Figures. Isolation of nucleosome-bound DN. garose gels of nucleosome-bound DN after micrococcal-treatment in D4+ -cells (), D8+ -cells (), ranulocytes (), and in vitro reconstituted nucleosomes (D). ands isolated for sequencing are marked by red rectangles. W W W. N U R E. O M / N U R E

11 SUPPLEMENRY INFORMION RESERH MNase control ranulocytes D4+ -cells D D8+ -cells Pile Pile Pile Pile E F stringency >.5 stringency >.7 Pile Pile Pile Supplementary Figure. Micrococcal nuclease sequence bias anaysis. Shown are Weblogos (rooks et al 4) across sites cleaved by micrococcal nuclease in the control data (), in vivo nucleosome data (-D), and in vitro nucleosome data (E-). We examined sites containing nucleosomes of increasing positioning strength (Pile, sites with or more read starts on the same strand; Pile3, sites with 3 or more read starts; Pile5, sites with 5 or more reads starts). For each subset, we aligned start positions and plotted nucleotide frequency at corresponding sites, with representing the first sequenced base of the fragments. For the sites containing positioned in vitro nucleosomes (stringency >.5 and >.7), we plotted nucleotide frequencies from overlapping nucleosome fragments.

12 RESERH SUPPLEMENRY INFORMION Dyad counts Duke DnaseI (m878) Nucleosome dyads (D4+ -cells) read start counts Distance from F site, bp Supplementary Figure. hromatin structure around F sites. We plotted Dnase I cutting frequency (brown) and dyad frequencies (blue) around F binding sites. Dnase I cleavage frequency is represented by plotting frequency of 5 ends from Dnase I sequence reads using Duke Dnase-seq protocol (Song and rawford, ) in the lymphoblastoid cell line. Peaks of Dnase I are in strong counter-phase with dyads, representing cleavage sites localizing within the nucleosome linker DN. In addition, a strong peak of Dnase I can be seen between the F binding site and the first wel-positioned nuclesome.

13 SUPPLEMENRY INFORMION RESERH Phasograms of nucleosomes from Schones, et al, ell 8 Phase counts 5.4 M 5. M 5. M -cell nucleosomes (resting D4+ -cells) -cell nucleosomes (activated D4+ -cells) 4.7 M 4.5 M 4.8 M 4.3 M Resting D4+ -cells Phase, bp ctivated D4+ -cells Peak coordinate, bp Phase =.9 bp Std. Err = 3. bp djusted R = p-value = 3.8 x Peak coordinate, bp Phase =. bp Std. Err =.8 bp djusted R = p-value =.3 x Peak count Peak count Supplementary Figure 3. Nucleosome spacing in resting and activated -cells. () Phasograms of nucleosomes in resting and activated -cells (Schones et al, 8). Nucleosome spacing was estimated using a linear fit to peak positions in the corresponding phasograms. () Spacing was estimated to be.9 bps in resting -cells, and (). bps in activated -cells. hese results provide independent replication of phasing estimates in D4+ and D8+ cells (Fig. D). 3

Supplementary Figure 1 Strategy for parallel detection of DHSs and adjacent nucleosomes

Supplementary Figure 1 Strategy for parallel detection of DHSs and adjacent nucleosomes Supplementary Figure 1 Strategy for parallel detection of DHSs and adjacent nucleosomes DNase I cleavage DNase I DNase I digestion Sucrose gradient enrichment Small Large F1 F2...... F9 F1 F1 F2 F3 F4

More information

Macmillan Publishers Limited. All rights reserved

Macmillan Publishers Limited. All rights reserved doi:1.138/nature12 Determinants of nucleosome organization in primary human cells Anton Valouev 1, Steven M. Johnson 2, Scott D. Boyd 1, Cheryl L. Smith 1, Andrew Z. Fire 1,3 & Arend Sidow 1,3 Nucleosomes

More information

PIP-seq. Cells. Permanganate ChIP-Seq

PIP-seq. Cells. Permanganate ChIP-Seq PIP-seq ells Formaldehyde Permanganate 5 Harvest Lyse Sonicate First dapter Ligation 3 3 5 hip Elute Reverse rosslinks Piperidine cleavage 5 3 3 5 Primer Extension Second dapter Ligation 5 3 3 5 Deep Sequencing

More information

Supplementary Table 1: Oligo designs. A list of ATAC-seq oligos used for PCR.

Supplementary Table 1: Oligo designs. A list of ATAC-seq oligos used for PCR. Ad1_noMX: Ad2.1_TAAGGCGA Ad2.2_CGTACTAG Ad2.3_AGGCAGAA Ad2.4_TCCTGAGC Ad2.5_GGACTCCT Ad2.6_TAGGCATG Ad2.7_CTCTCTAC Ad2.8_CAGAGAGG Ad2.9_GCTACGCT Ad2.10_CGAGGCTG Ad2.11_AAGAGGCA Ad2.12_GTAGAGGA Ad2.13_GTCGTGAT

More information

SUPPLEMENTAL MATERIALS

SUPPLEMENTAL MATERIALS SUPPLEMENL MERILS Eh-seq: RISPR epitope tagging hip-seq of DN-binding proteins Daniel Savic, E. hristopher Partridge, Kimberly M. Newberry, Sophia. Smith, Sarah K. Meadows, rian S. Roberts, Mark Mackiewicz,

More information

THE ANALYSIS OF CHROMATIN CONDENSATION STATE AND TRANSCRIPTIONAL ACTIVITY USING DNA MICROARRAYS 1. INTRODUCTION

THE ANALYSIS OF CHROMATIN CONDENSATION STATE AND TRANSCRIPTIONAL ACTIVITY USING DNA MICROARRAYS 1. INTRODUCTION JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol.6/2003, ISSN 1642-6037 Piotr WIDŁAK *, Krzysztof FUJAREWICZ ** DNA microarrays, chromatin, transcription THE ANALYSIS OF CHROMATIN CONDENSATION STATE AND

More information

Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition

Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition SUPPLEMENTARY INFORMATION Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition Mari-Liis Visnapuu 1 and Eric C. Greene 1 1 Department of Biochemistry &

More information

Figure S1. Replication initiation sites at efficient ORIs do not coincide with nucleosomedepleted

Figure S1. Replication initiation sites at efficient ORIs do not coincide with nucleosomedepleted Figure S1. Replication initiation sites at efficient ORIs do not coincide with nucleosomedepleted regions in the mouse genome. Typical examples of SNS profiles (Cayrou et al., 11) and nucleosome occupancies

More information

Figure S1. nuclear extracts. HeLa cell nuclear extract. Input IgG IP:ORC2 ORC2 ORC2. MCM4 origin. ORC2 occupancy

Figure S1. nuclear extracts. HeLa cell nuclear extract. Input IgG IP:ORC2 ORC2 ORC2. MCM4 origin. ORC2 occupancy A nuclear extracts B HeLa cell nuclear extract Figure S1 ORC2 (in kda) 21 132 7 ORC2 Input IgG IP:ORC2 32 ORC C D PRKDC ORC2 occupancy Directed against ORC2 C-terminus (sc-272) MCM origin 2 2 1-1 -1kb

More information

Supplemental Figure 1.

Supplemental Figure 1. Supplemental Data. Charron et al. Dynamic landscapes of four histone modifications during de-etiolation in Arabidopsis. Plant Cell (2009). 10.1105/tpc.109.066845 Supplemental Figure 1. Immunodetection

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Origin use and efficiency are similar among WT, rrm3, pif1-m2, and pif1-m2; rrm3 strains. A. Analysis of fork progression around confirmed and likely origins (from cerevisiae.oridb.org).

More information

Molecular Biology (BIOL 4320) Exam #1 March 12, 2002

Molecular Biology (BIOL 4320) Exam #1 March 12, 2002 Molecular Biology (BIOL 4320) Exam #1 March 12, 2002 Name KEY SS# This exam is worth a total of 100 points. The number of points each question is worth is shown in parentheses after the question number.

More information

ChIP. November 21, 2017

ChIP. November 21, 2017 ChIP November 21, 2017 functional signals: is DNA enough? what is the smallest number of letters used by a written language? DNA is only one part of the functional genome DNA is heavily bound by proteins,

More information

Distinct Modes of Regulation by Chromatin Encoded through Nucleosome Positioning Signals

Distinct Modes of Regulation by Chromatin Encoded through Nucleosome Positioning Signals Encoded through Nucleosome Positioning Signals Yair Field 1., Noam Kaplan 1., Yvonne Fondufe-Mittendorf 2., Irene K. Moore 2, Eilon Sharon 1, Yaniv Lubling 1, Jonathan Widom 2 *, Eran Segal 1,3 * 1 Department

More information

2/10/17. Contents. Applications of HMMs in Epigenomics

2/10/17. Contents. Applications of HMMs in Epigenomics 2/10/17 I529: Machine Learning in Bioinformatics (Spring 2017) Contents Applications of HMMs in Epigenomics Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2017 Background:

More information

Nature Genetics: doi: /ng Supplementary Figure 1. ChIP-seq genome browser views of BRM occupancy at previously identified BRM targets.

Nature Genetics: doi: /ng Supplementary Figure 1. ChIP-seq genome browser views of BRM occupancy at previously identified BRM targets. Supplementary Figure 1 ChIP-seq genome browser views of BRM occupancy at previously identified BRM targets. Gene structures are shown underneath each panel. Supplementary Figure 2 pref6::ref6-gfp complements

More information

Nucleosome Positioning and Organization Advanced Topics in Computa8onal Genomics

Nucleosome Positioning and Organization Advanced Topics in Computa8onal Genomics Nucleosome Positioning and Organization 02-715 Advanced Topics in Computa8onal Genomics Nucleosome Core Nucleosome Core and Linker 147 bp DNA wrapping around nucleosome core Varying lengths of linkers

More information

Supplementary Figure Legends. Supplementary Figure 1. Positioning of nucleosomes by different RSSs.

Supplementary Figure Legends. Supplementary Figure 1. Positioning of nucleosomes by different RSSs. Supplementary Figure Legends Supplementary Figure 1. Positioning of nucleosomes by different RSSs. A. Mapping of nucleosomes in the '' and 'END' positions on fragments carrying different RSSs. The RSSs

More information

ChIP-seq/Functional Genomics/Epigenomics. CBSU/3CPG/CVG Next-Gen Sequencing Workshop. Josh Waterfall. March 31, 2010

ChIP-seq/Functional Genomics/Epigenomics. CBSU/3CPG/CVG Next-Gen Sequencing Workshop. Josh Waterfall. March 31, 2010 ChIP-seq/Functional Genomics/Epigenomics CBSU/3CPG/CVG Next-Gen Sequencing Workshop Josh Waterfall March 31, 2010 Outline Introduction to ChIP-seq Control data sets Peak/enriched region identification

More information

Supplemental Figure 1 A

Supplemental Figure 1 A Supplemental Figure A prebleach postbleach 2 min 6 min 3 min mh2a.-gfp mh2a.2-gfp mh2a2-gfp GFP-H2A..9 Relative Intensity.8.7.6.5 mh2a. GFP n=8.4 mh2a.2 GFP n=4.3 mh2a2 GFP n=2.2 GFP H2A n=24. GFP n=7.

More information

ChIP-Seq Data Analysis. J Fass UCD Genome Center Bioinformatics Core Wednesday 15 June 2015

ChIP-Seq Data Analysis. J Fass UCD Genome Center Bioinformatics Core Wednesday 15 June 2015 ChIP-Seq Data Analysis J Fass UCD Genome Center Bioinformatics Core Wednesday 15 June 2015 What s the Question? Where do Transcription Factors (TFs) bind genomic DNA 1? (Where do other things bind DNA

More information

ChIP-Seq Tools. J Fass UCD Genome Center Bioinformatics Core Wednesday September 16, 2015

ChIP-Seq Tools. J Fass UCD Genome Center Bioinformatics Core Wednesday September 16, 2015 ChIP-Seq Tools J Fass UCD Genome Center Bioinformatics Core Wednesday September 16, 2015 What s the Question? Where do Transcription Factors (TFs) bind genomic DNA 1? (Where do other things bind DNA or

More information

ChIP-Seq Data Analysis. J Fass UCD Genome Center Bioinformatics Core Wednesday December 17, 2014

ChIP-Seq Data Analysis. J Fass UCD Genome Center Bioinformatics Core Wednesday December 17, 2014 ChIP-Seq Data Analysis J Fass UCD Genome Center Bioinformatics Core Wednesday December 17, 2014 What s the Question? Where do Transcription Factors (TFs) bind genomic DNA 1? (Where do other things bind

More information

ChIP-seq and RNA-seq. Farhat Habib

ChIP-seq and RNA-seq. Farhat Habib ChIP-seq and RNA-seq Farhat Habib fhabib@iiserpune.ac.in Biological Goals Learn how genomes encode the diverse patterns of gene expression that define each cell type and state. Protein-DNA interactions

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. Pilot CrY2H-seq experiments to confirm strain and plasmid functionality.

Nature Methods: doi: /nmeth Supplementary Figure 1. Pilot CrY2H-seq experiments to confirm strain and plasmid functionality. Supplementary Figure 1 Pilot CrY2H-seq experiments to confirm strain and plasmid functionality. (a) RT-PCR on HIS3 positive diploid cell lysate containing known interaction partners AT3G62420 (bzip53)

More information

Supplementary Figures

Supplementary Figures Supplementary Figures A B Supplementary Figure 1. Examples of discrepancies in predicted and validated breakpoint coordinates. A) Most frequently, predicted breakpoints were shifted relative to those derived

More information

Chromatin Structure. a basic discussion of protein-nucleic acid binding

Chromatin Structure. a basic discussion of protein-nucleic acid binding Chromatin Structure 1 Chromatin DNA packaging g First a basic discussion of protein-nucleic acid binding Questions to answer: How do proteins bind DNA / RNA? How do proteins recognize a specific nucleic

More information

DNA sequence and chromatin structure. Mapping nucleosome positioning using high-throughput sequencing

DNA sequence and chromatin structure. Mapping nucleosome positioning using high-throughput sequencing DNA sequence and chromatin structure Mapping nucleosome positioning using high-throughput sequencing DNA sequence and chromatin structure Higher-order 30 nm fibre Mapping nucleosome positioning using high-throughput

More information

Nature Structural & Molecular Biology: doi: /nsmb.3175

Nature Structural & Molecular Biology: doi: /nsmb.3175 Supplementary Figure 1 Medium- and low-fret groups probably representing varying positions on the DNA show similar changes between H3 and CENP-A nucleosomes with and without CENP-C CD, as does the high-fret

More information

Nature Methods: doi: /nmeth.4396

Nature Methods: doi: /nmeth.4396 Supplementary Figure 1 Comparison of technical replicate consistency between and across the standard ATAC-seq method, DNase-seq, and Omni-ATAC. (a) Heatmap-based representation of ATAC-seq quality control

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature08627 Supplementary Figure 1. DNA sequences used to construct nucleosomes in this work. a, DNA sequences containing the 601 positioning sequence (blue)24 with a PstI restriction site

More information

Supplement to: The Genomic Sequence of the Chinese Hamster Ovary (CHO)-K1 cell line

Supplement to: The Genomic Sequence of the Chinese Hamster Ovary (CHO)-K1 cell line Supplement to: The Genomic Sequence of the Chinese Hamster Ovary (CHO)-K1 cell line Table of Contents SUPPLEMENTARY TEXT:... 2 FILTERING OF RAW READS PRIOR TO ASSEMBLY:... 2 COMPARATIVE ANALYSIS... 2 IMMUNOGENIC

More information

Gene expression analysis. Biosciences 741: Genomics Fall, 2013 Week 5. Gene expression analysis

Gene expression analysis. Biosciences 741: Genomics Fall, 2013 Week 5. Gene expression analysis Gene expression analysis Biosciences 741: Genomics Fall, 2013 Week 5 Gene expression analysis From EST clusters to spotted cdna microarrays Long vs. short oligonucleotide microarrays vs. RT-PCR Methods

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1895 i Core histones CAF-1 v ii Reb1 CAF-1 Fen1 vi Mature Okazaki fragment iii PCNA Reb1 iv vii Mature Okazaki fragment Reb1 Mature Okazaki fragments Figure S1. Model for nucleosome-mediated

More information

Plant Molecular and Cellular Biology Lecture 9: Nuclear Genome Organization: Chromosome Structure, Chromatin, DNA Packaging, Mitosis Gary Peter

Plant Molecular and Cellular Biology Lecture 9: Nuclear Genome Organization: Chromosome Structure, Chromatin, DNA Packaging, Mitosis Gary Peter Plant Molecular and Cellular Biology Lecture 9: Nuclear Genome Organization: Chromosome Structure, Chromatin, DNA Packaging, Mitosis Gary Peter 9/16/2008 1 Learning Objectives 1. List and explain how DNA

More information

ChIP-seq and RNA-seq

ChIP-seq and RNA-seq ChIP-seq and RNA-seq Biological Goals Learn how genomes encode the diverse patterns of gene expression that define each cell type and state. Protein-DNA interactions (ChIPchromatin immunoprecipitation)

More information

Parts of a standard FastQC report

Parts of a standard FastQC report FastQC FastQC, written by Simon Andrews of Babraham Bioinformatics, is a very popular tool used to provide an overview of basic quality control metrics for raw next generation sequencing data. There are

More information

Oligonucleotides were purchased from Eurogentec, purified by denaturing gel electrophoresis

Oligonucleotides were purchased from Eurogentec, purified by denaturing gel electrophoresis SUPPLEMENRY INFORMION Purification of probes and Oligonucleotides sequence Oligonucleotides were purchased from Eurogentec, purified by denaturing gel electrophoresis and recovered by electroelution. Labelling

More information

Nature Biotechnology: doi: /nbt Supplementary Figure 1. Number and length distributions of the inferred fosmids.

Nature Biotechnology: doi: /nbt Supplementary Figure 1. Number and length distributions of the inferred fosmids. Supplementary Figure 1 Number and length distributions of the inferred fosmids. Fosmid were inferred by mapping each pool s sequence reads to hg19. We retained only those reads that mapped to within a

More information

A holistic perspective of gene expression during the E. coli growth cycle. DNA structure and nucleosome placement

A holistic perspective of gene expression during the E. coli growth cycle. DNA structure and nucleosome placement A holistic perspective of gene expression during the E. coli growth cycle. Andrew Travers DNA structure and nucleosome placement Haifa, 13/05/12 1 A/T rich base-steps are more deformable than G/C-rich

More information

Nucleic Acids. Information specifying protein structure

Nucleic Acids. Information specifying protein structure Nucleic Acids Nucleic acids represent the fourth major class of biomolecules (other major classes of biomolecules are proteins, carbohydrates, fats) Genome - the genetic information of an organism Information

More information

Information specifying protein structure. Chapter 19 Nucleic Acids Nucleotides Are the Building Blocks of Nucleic Acids

Information specifying protein structure. Chapter 19 Nucleic Acids Nucleotides Are the Building Blocks of Nucleic Acids Chapter 19 Nucleic Acids Information specifying protein structure Nucleic acids represent the fourth major class of biomolecules (other major classes of biomolecules are proteins, carbohydrates, fats)

More information

Novel methods for RNA and DNA- Seq analysis using SMART Technology. Andrew Farmer, D. Phil. Vice President, R&D Clontech Laboratories, Inc.

Novel methods for RNA and DNA- Seq analysis using SMART Technology. Andrew Farmer, D. Phil. Vice President, R&D Clontech Laboratories, Inc. Novel methods for RNA and DNA- Seq analysis using SMART Technology Andrew Farmer, D. Phil. Vice President, R&D Clontech Laboratories, Inc. Agenda Enabling Single Cell RNA-Seq using SMART Technology SMART

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Endogenous gene tagging to study subcellular localization and chromatin binding. a, b, Schematic of experimental set-up to endogenously tag RNAi factors using the CRISPR Cas9 technology,

More information

Nature Biotechnology: doi: /nbt Supplementary Figure 1. sndrop-seq overview.

Nature Biotechnology: doi: /nbt Supplementary Figure 1. sndrop-seq overview. Supplementary Figure 1 sndrop-seq overview. A. sndrop-seq method showing modifications needed to process nuclei, including bovine serum albumin (BSA) coating and droplet heating to ensure complete nuclear

More information

Supplementary Figure S1 Supplementary Figure S2 Supplementary Figure S3. Supplementary Figure S4

Supplementary Figure S1 Supplementary Figure S2 Supplementary Figure S3. Supplementary Figure S4 Supplementary Figure S1 Supplementary Figure S2 Supplementary Figure S3 Supplementary Figure S4 Supplementary Figure S5 Supplementary Figure S6 Supplementary Figure S7 Supplementary Figure S8 Supplementary

More information

1 Najafabadi, H. S. et al. C2H2 zinc finger proteins greatly expand the human regulatory lexicon. Nat Biotechnol doi: /nbt.3128 (2015).

1 Najafabadi, H. S. et al. C2H2 zinc finger proteins greatly expand the human regulatory lexicon. Nat Biotechnol doi: /nbt.3128 (2015). F op-scoring motif Optimized motifs E Input sequences entral 1 bp region Dinucleotideshuffled seqs B D ll B1H-R predicted motifs Enriched B1H- R predicted motifs L!=!7! L!=!6! L!=5! L!=!4! L!=!3! L!=!2!

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Figure S1 Schematic of expressed protein ligation (EPL). Protein-αthioester is generated by thiolysis of the corresponding recombinant intein fusion protein. A native chemical ligation reaction is performed

More information

Figure S1. Unrearranged locus. Rearranged locus. Concordant read pairs. Region1. Region2. Cluster of discordant read pairs, bundle

Figure S1. Unrearranged locus. Rearranged locus. Concordant read pairs. Region1. Region2. Cluster of discordant read pairs, bundle Figure S1 a Unrearranged locus Rearranged locus Concordant read pairs Region1 Concordant read pairs Cluster of discordant read pairs, bundle Region2 Concordant read pairs b Physical coverage 5 4 3 2 1

More information

Activation of a Floral Homeotic Gene in Arabidopsis

Activation of a Floral Homeotic Gene in Arabidopsis Activation of a Floral Homeotic Gene in Arabidopsis By Maximiliam A. Busch, Kirsten Bomblies, and Detlef Weigel Presentation by Lis Garrett and Andrea Stevenson http://ucsdnews.ucsd.edu/archive/graphics/images/image5.jpg

More information

The ChIP-Seq project. Giovanna Ambrosini, Philipp Bucher. April 19, 2010 Lausanne. EPFL-SV Bucher Group

The ChIP-Seq project. Giovanna Ambrosini, Philipp Bucher. April 19, 2010 Lausanne. EPFL-SV Bucher Group The ChIP-Seq project Giovanna Ambrosini, Philipp Bucher EPFL-SV Bucher Group April 19, 2010 Lausanne Overview Focus on technical aspects Description of applications (C programs) Where to find binaries,

More information

Integrated NGS Sample Preparation Solutions for Limiting Amounts of RNA and DNA. March 2, Steven R. Kain, Ph.D. ABRF 2013

Integrated NGS Sample Preparation Solutions for Limiting Amounts of RNA and DNA. March 2, Steven R. Kain, Ph.D. ABRF 2013 Integrated NGS Sample Preparation Solutions for Limiting Amounts of RNA and DNA March 2, 2013 Steven R. Kain, Ph.D. ABRF 2013 NuGEN s Core Technologies Selective Sequence Priming Nucleic Acid Amplification

More information

Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C

Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C CORRECTION NOTICE Nat. Genet. 47, 598 606 (2015) Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C Borbala Mifsud, Filipe Tavares-Cadete, Alice N Young, Robert Sugar,

More information

Simultaneous profiling of transcriptome and DNA methylome from a single cell

Simultaneous profiling of transcriptome and DNA methylome from a single cell Additional file 1: Supplementary materials Simultaneous profiling of transcriptome and DNA methylome from a single cell Youjin Hu 1, 2, Kevin Huang 1, 3, Qin An 1, Guizhen Du 1, Ganlu Hu 2, Jinfeng Xue

More information

APPLICATION NOTE. Abstract. Introduction

APPLICATION NOTE. Abstract. Introduction From minuscule amounts to magnificent results: reliable ChIP-seq data from 1, cells with the True MicroChIP and the MicroPlex Library Preparation kits Abstract Diagenode has developed groundbreaking solutions

More information

TECH NOTE Ligation-Free ChIP-Seq Library Preparation

TECH NOTE Ligation-Free ChIP-Seq Library Preparation TECH NOTE Ligation-Free ChIP-Seq Library Preparation The DNA SMART ChIP-Seq Kit Ligation-free template switching technology: Minimize sample handling in a single-tube workflow >> Simplified protocol with

More information

Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Supplementary Material

Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Supplementary Material Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions Joshua N. Burton 1, Andrew Adey 1, Rupali P. Patwardhan 1, Ruolan Qiu 1, Jacob O. Kitzman 1, Jay Shendure 1 1 Department

More information

Nucleosome landscape and control of transcription in the human malaria parasite

Nucleosome landscape and control of transcription in the human malaria parasite Supplemental Material to: Nucleosome landscape and control of transcription in the human malaria parasite Nadia Ponts 1,*, Elena Y. Harris 2,*, Jacques Prudhomme 1, Ivan Wick 3, Colleen Eckhardt 3, Glenn

More information

Bi 8 Lecture 4. Ellen Rothenberg 14 January Reading: from Alberts Ch. 8

Bi 8 Lecture 4. Ellen Rothenberg 14 January Reading: from Alberts Ch. 8 Bi 8 Lecture 4 DNA approaches: How we know what we know Ellen Rothenberg 14 January 2016 Reading: from Alberts Ch. 8 Central concept: DNA or RNA polymer length as an identifying feature RNA has intrinsically

More information

Diversity of Eukaryotic DNA Replication Origins Revealed by Genome-Wide Analysis of Chromatin Structure

Diversity of Eukaryotic DNA Replication Origins Revealed by Genome-Wide Analysis of Chromatin Structure Diversity of Eukaryotic DNA Replication Origins Revealed by Genome-Wide Analysis of Chromatin Structure Nicolas M. Berbenetz 1,2, Corey Nislow 1,2 *, Grant W. Brown 2,3 * 1 Department of Molecular Genetics,

More information

MCB 102 University of California, Berkeley August 11 13, Problem Set 8

MCB 102 University of California, Berkeley August 11 13, Problem Set 8 MCB 102 University of California, Berkeley August 11 13, 2009 Isabelle Philipp Handout Problem Set 8 The answer key will be posted by Tuesday August 11. Try to solve the problem sets always first without

More information

Learning a Weighted Sequence Model of the Nucleosome Core and Linker Yields More Accurate Predictions in Saccharomyces cerevisiae and Homo sapiens

Learning a Weighted Sequence Model of the Nucleosome Core and Linker Yields More Accurate Predictions in Saccharomyces cerevisiae and Homo sapiens Learning a Weighted Sequence Model of the Nucleosome Core and Linker Yields More Accurate Predictions in Saccharomyces cerevisiae and Homo sapiens Sheila M. Reynolds 1, Jeff A. Bilmes 1,2, William Stafford

More information

Intracellular receptors specify complex patterns of gene expression that are cell and gene

Intracellular receptors specify complex patterns of gene expression that are cell and gene SUPPLEMENTAL RESULTS AND DISCUSSION Some HPr-1AR ARE-containing Genes Are Unresponsive to Androgen Intracellular receptors specify complex patterns of gene expression that are cell and gene specific. For

More information

Oligonucleotide Sequence Motifs as Nucleosome Positioning Signals

Oligonucleotide Sequence Motifs as Nucleosome Positioning Signals Oligonucleotide Sequence Motifs as Nucleosome Positioning Signals Clayton K. Collings 1, Alfonso G. Fernandez 2, Chad G. Pitschka 1, Troy B. Hawkins 3, John N. Anderson 1 * 1 Department of Biological Sciences,

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. Construction of a sensitive TetR mediated auxotrophic off-switch.

Nature Methods: doi: /nmeth Supplementary Figure 1. Construction of a sensitive TetR mediated auxotrophic off-switch. Supplementary Figure 1 Construction of a sensitive TetR mediated auxotrophic off-switch. A Production of the Tet repressor in yeast when conjugated to either the LexA4 or LexA8 promoter DNA binding sequences.

More information

Performance characteristics of the High Sensitivity DNA kit for the Agilent 2100 Bioanalyzer

Performance characteristics of the High Sensitivity DNA kit for the Agilent 2100 Bioanalyzer Performance characteristics of the High Sensitivity DNA kit for the Agilent 2100 Bioanalyzer Technical Note 10 Measured conc. [ng/µl] 1 Y intercept = 0.09 r 2 = 0.993 0.1 0.1 1 10 Reference concentration

More information

Chromatin immunoprecipitation: five steps to great results

Chromatin immunoprecipitation: five steps to great results Chromatin immunoprecipitation: five steps to great results Introduction The discovery and use of antibodies in life science research has been critical to many advancements across applications, including

More information

Genes - DNA - Chromosome. Chutima Talabnin Ph.D. School of Biochemistry,Institute of Science, Suranaree University of Technology

Genes - DNA - Chromosome. Chutima Talabnin Ph.D. School of Biochemistry,Institute of Science, Suranaree University of Technology Genes - DNA - Chromosome Chutima Talabnin Ph.D. School of Biochemistry,Institute of Science, Suranaree University of Technology DNA Cellular DNA contains genes and intragenic regions both of which may

More information

Systematic evaluation of spliced alignment programs for RNA- seq data

Systematic evaluation of spliced alignment programs for RNA- seq data Systematic evaluation of spliced alignment programs for RNA- seq data Pär G. Engström, Tamara Steijger, Botond Sipos, Gregory R. Grant, André Kahles, RGASP Consortium, Gunnar Rätsch, Nick Goldman, Tim

More information

Digital RNA allelotyping reveals tissue-specific and allelespecific gene expression in human

Digital RNA allelotyping reveals tissue-specific and allelespecific gene expression in human nature methods Digital RNA allelotyping reveals tissue-specific and allelespecific gene expression in human Kun Zhang, Jin Billy Li, Yuan Gao, Dieter Egli, Bin Xie, Jie Deng, Zhe Li, Je-Hyuk Lee, John

More information

Nucleosome Positioning in Saccharomyces cerevisiae

Nucleosome Positioning in Saccharomyces cerevisiae MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, June 2011, p. 301 320 Vol. 75, No. 2 1092-2172/11/$12.00 doi:10.1128/mmbr.00046-10 Copyright 2011, American Society for Microbiology. All Rights Reserved. Nucleosome

More information

XXII DNA cloning and sequencing. Outline

XXII DNA cloning and sequencing. Outline XXII DNA cloning and sequencing 1) Deriving DNA for cloning Outline 2) Vectors; forming recombinant DNA; cloning DNA; and screening for clones containing recombinant DNA [replica plating and autoradiography;

More information

Nature Genetics: doi: /ng Supplementary Figure 1

Nature Genetics: doi: /ng Supplementary Figure 1 Supplementary Figure 1 Processing of mutations and generation of simulated controls. On the left, a diagram illustrates the manner in which covariate-matched simulated mutations were obtained, filtered

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL SUPPLEMENTARY MATERIAL 1 Table 1. Comparison of experimental and theoretical nucleosomal arrangements on selected sequences* Sequence High-affinity 601 synthetic sequence experimental method site-directed

More information

SUREGUIDE CRISPR LIBRARIES

SUREGUIDE CRISPR LIBRARIES SUREGUIDE CRISPR LIBRARIES Fidelity The Agilent Advantage Guide Representation Customization The Agilent Advantage Fidelity What is fidelity? Fidelity in DNA synthesis is simple to understand but can be

More information

XactEdit Cas9 Nuclease with NLS User Manual

XactEdit Cas9 Nuclease with NLS User Manual XactEdit Cas9 Nuclease with NLS User Manual An RNA-guided recombinant endonuclease for efficient targeted DNA cleavage Catalog Numbers CE1000-50K, CE1000-50, CE1000-250, CE1001-250, CE1001-1000 Table of

More information

Library construction for nextgeneration sequencing: Overviews. and challenges

Library construction for nextgeneration sequencing: Overviews. and challenges Library construction for nextgeneration sequencing: Overviews and challenges During this time, as sequencing technologies have improved and evolved, so too have methods for preparing nucleic acids for

More information

Sin Mutations of Histone H3: Influence on Nucleosome Core Structure and Function

Sin Mutations of Histone H3: Influence on Nucleosome Core Structure and Function MOLECULAR AND CELLULAR BIOLOGY, Dec. 1997, p. 6953 6969 Vol. 17, No. 12 0270-7306/97/$04.00 0 Copyright 1997, American Society for Microbiology Sin Mutations of Histone H3: Influence on Nucleosome Core

More information

Recombinant DNA Technology

Recombinant DNA Technology Recombinant DNA Technology Common General Cloning Strategy Target DNA from donor organism extracted, cut with restriction endonuclease and ligated into a cloning vector cut with compatible restriction

More information

SureGuide CRISPR Libraries

SureGuide CRISPR Libraries SureGuide CRISPR Libraries Fidelity The Agilent Advantage Guide Representation Customization Fidelity What is fidelity? Fidelity in DNA synthesis is simple to understand but can be difficult to achieve.

More information

Introduction to ChIP Seq data analyses. Acknowledgement: slides taken from Dr. H

Introduction to ChIP Seq data analyses. Acknowledgement: slides taken from Dr. H Introduction to ChIP Seq data analyses Acknowledgement: slides taken from Dr. H Wu @Emory ChIP seq: Chromatin ImmunoPrecipitation it ti + sequencing Same biological motivation as ChIP chip: measure specific

More information

Data and Metadata Models Recommendations Version 1.2 Developed by the IHEC Metadata Standards Workgroup

Data and Metadata Models Recommendations Version 1.2 Developed by the IHEC Metadata Standards Workgroup Data and Metadata Models Recommendations Version 1.2 Developed by the IHEC Metadata Standards Workgroup 1. Introduction The data produced by IHEC is illustrated in Figure 1. Figure 1. The space of epigenomic

More information

Assay Standards Working Group Nov 2012 Assay Standards Working Group Recommendations, November 2012

Assay Standards Working Group Nov 2012 Assay Standards Working Group Recommendations, November 2012 Assay Standards Working Group Recommendations, November 2012 Contents Assay Standards Working Group Recommendations, August 2012... 1 Contents... 1 Introduction... 2 1: Reference Epigenome Criteria...

More information

SUPPLEMENTARY MATERIAL FOR THE PAPER: RASCAF: IMPROVING GENOME ASSEMBLY WITH RNA-SEQ DATA

SUPPLEMENTARY MATERIAL FOR THE PAPER: RASCAF: IMPROVING GENOME ASSEMBLY WITH RNA-SEQ DATA SUPPLEMENTARY MATERIAL FOR THE PAPER: RASCAF: IMPROVING GENOME ASSEMBLY WITH RNA-SEQ DATA Authors: Li Song, Dhruv S. Shankar, Liliana Florea Table of contents: Figure S1. Methods finding contig connections

More information

SELECTED TECHNIQUES AND APPLICATIONS IN MOLECULAR GENETICS

SELECTED TECHNIQUES AND APPLICATIONS IN MOLECULAR GENETICS SELECTED TECHNIQUES APPLICATIONS IN MOLECULAR GENETICS Restriction Enzymes 15.1.1 The Discovery of Restriction Endonucleases p. 420 2 2, 3, 4, 6, 7, 8 Assigned Reading in Snustad 6th ed. 14.1.1 The Discovery

More information

Chromatin Assembly Kit

Chromatin Assembly Kit Chromatin Assembly Kit (version A) Catalog No. 53500 Active Motif North America 1914 Palomar Oaks Way, Suite 150 Carlsbad, California 92008, USA Toll free: 877 222 9543 Telephone: 760 431 1263 Fax: 760

More information

Mate-pair library data improves genome assembly

Mate-pair library data improves genome assembly De Novo Sequencing on the Ion Torrent PGM APPLICATION NOTE Mate-pair library data improves genome assembly Highly accurate PGM data allows for de Novo Sequencing and Assembly For a draft assembly, generate

More information

Title: Genome-Wide Predictions of Transcription Factor Binding Events using Multi- Dimensional Genomic and Epigenomic Features Background

Title: Genome-Wide Predictions of Transcription Factor Binding Events using Multi- Dimensional Genomic and Epigenomic Features Background Title: Genome-Wide Predictions of Transcription Factor Binding Events using Multi- Dimensional Genomic and Epigenomic Features Team members: David Moskowitz and Emily Tsang Background Transcription factors

More information

Result Tables The Result Table, which indicates chromosomal positions and annotated gene names, promoter regions and CpG islands, is the best way for

Result Tables The Result Table, which indicates chromosomal positions and annotated gene names, promoter regions and CpG islands, is the best way for Result Tables The Result Table, which indicates chromosomal positions and annotated gene names, promoter regions and CpG islands, is the best way for you to discover methylation changes at specific genomic

More information

1. As discussed in class there are three functional elements required for eukaryotic chromosomes.

1. As discussed in class there are three functional elements required for eukaryotic chromosomes. 1. As discussed in class there are three functional elements required for eukaryotic chromosomes. a. What are these three elements? (3 pts) origins of replication, centromeres, telomeres b. These three

More information

Lieberman-Aiden et al. (2009) Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science 326:

Lieberman-Aiden et al. (2009) Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science 326: Lieberman-Aiden et al. (2009) Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science 326: 289-293. : Understanding the 3D conformation of the genome can

More information

Supplementary Material for

Supplementary Material for www.sciencemag.org/cgi/content/full/science.aaa6090/dc1 Supplementary Material for Spatially resolved, highly multiplexed RNA profiling in single cells Kok Hao Chen, Alistair N. Boettiger, Jeffrey R. Moffitt,

More information

BurrH: a new modular DNA binding protein for genome engineering

BurrH: a new modular DNA binding protein for genome engineering Supplementary information for: BurrH: a new modular protein for genome engineering Alexandre Juillerat, Claudia Bertonati, Gwendoline Dubois, Valérie Guyot, Séverine Thomas, Julien Valton, Marine Beurdeley,

More information

Predicting Human Nucleosome Occupancy from Primary Sequence

Predicting Human Nucleosome Occupancy from Primary Sequence from Primary Sequence Shobhit Gupta 1., Jonathan Dennis 2., Robert E. Thurman 3, Robert Kingston 2, John A. Stamatoyannopoulos 1 *, William Stafford Noble 1,4 * 1 Department of Genome Sciences, University

More information

Identifying and mitigating bias in next-generation sequencing methods for chromatin biology

Identifying and mitigating bias in next-generation sequencing methods for chromatin biology STUDY DESIGNS Identifying and mitigating bias in next-generation sequencing methods for chromatin biology Clifford A. Meyer and X. Shirley Liu Abstract Next-generation sequencing (NGS) technologies have

More information

Bi 8 Lecture 5. Ellen Rothenberg 19 January 2016

Bi 8 Lecture 5. Ellen Rothenberg 19 January 2016 Bi 8 Lecture 5 MORE ON HOW WE KNOW WHAT WE KNOW and intro to the protein code Ellen Rothenberg 19 January 2016 SIZE AND PURIFICATION BY SYNTHESIS: BASIS OF EARLY SEQUENCING complex mixture of aborted DNA

More information

Supplementary Figure 1

Supplementary Figure 1 Nucleotide Content E. coli End. Neb. Tr. End. Neb. Tr. Supplementary Figure 1 Fragmentation Site Profiles CRW1 End. Son. Tr. End. Son. Tr. Human PA1 Position Fragmentation site profiles. Nucleotide content

More information

Impact of gdna Integrity on the Outcome of DNA Methylation Studies

Impact of gdna Integrity on the Outcome of DNA Methylation Studies Impact of gdna Integrity on the Outcome of DNA Methylation Studies Application Note Nucleic Acid Analysis Authors Emily Putnam, Keith Booher, and Xueguang Sun Zymo Research Corporation, Irvine, CA, USA

More information