Chip and system-level integration technologies for silicon photonics

Size: px
Start display at page:

Download "Chip and system-level integration technologies for silicon photonics"

Transcription

1 Chip and system-level integration technologies for silicon photonics Bert Jan Offrein 5th International Symposium for Optical Interconnect in Data Centres

2 Outline The need for integration at component and system level CMOS silicon photonics with embedded III-V materials High channel count silicon photonics packaging Summary 2

3 Communication between two processors Electrical laser V Optical driver modulator V amplifier Optical communication: 1000 x Larger bandwidth 1000 x Lower loss 100 x Larger distance Scalability & Power efficiency!!! Optical communication requires many more components and assembly steps!!! 3

4 Photonics technologies for system-level integration 1 Chip-level: CMOS silicon photonics + Active photonics devices Si photonics provides all required buliding blocks (except lasers) on chip-level: - Modulators - Drivers - Detectors - Amplifiers - WDM filters + CMOS electronics 2 System-level: Scalable chip-to-fiber connectivity One step mating of numerous optical interfaces Provide electrical and optical signal routing capability Enable a simultaneous interfacing of electrical and optical connections

5 Photonics technologies for system-level integration 1 Chip-level: CMOS silicon photonics + Active photonics devices Si photonics provides all required buliding blocks (except lasers) on chip-level: - Modulators - Drivers - Detectors - Amplifiers - WDM filters + CMOS electronics 2 System-level: Scalable chip-to-fiber connectivity One step mating of numerous optical interfaces Provide electrical and optical signal routing capability Enable a simultaneous interfacing of electrical and optical connections

6 FEOL BEOL IBM Research - Zurich CMOS Embedded III-V on silicon technology SiO 2 Electrical contacts Front-end III-V Si SiO 2 Si wafer CMOS Si Photonics + III-V functionality Ultra-thin III-V layer stack (300 nm) enables embedding in between FEOL and BEOL Integration of III-V functionality in the CMOS processing flow Power efficient lasers for silicon photonics by high modal overlap concept Flexible design, on-chip control and cost-effective source integration 6

7 Challenges for III-V laser integration in CMOS III-V mesa Si waveguide Adiabatic taper top view III-V to silicon optical coupler Current confinement Silicon photonics Oxide cladding + CMP Contact resistvity ( cm 2 ) 1E-4 1E-5 1E-6 1E-7 T Doping Level Without Au With Au IBM Au-free v1 IBM Au-free v2 III-V pattering + BEOL Bonding of III-V epi wafer Optimized process flow CMOS-compatible Ohmic contacts on n and p-inp

8 Processing scheme SiO 2 epi layer 5 InAlGaAs quantum wells (MOCVD) III-V epi layer SiO 2 SiPh wafer Feedback grating Wafer bonding SiPh wafer SiO 2 SiO 2 Substrate removal III-V structuring MQW section SiO 2 8 Metallization

9 Optically pumped ring laser Measured FSR: nm Estimated FSR from ring: nm Estimated FSR from III-V: nm Lasing with feedback from silicon photonics Directional coupler output Gain section 9

10 Electrically pumped LED p-ingaas/p-inp V-I measurement InAlGaAs Voltage (V) Cross-section SEM IR camera photograph n-inp Current density (A/cm2) DuT LED test-device for process optimization Good V-I characteristic Electro-luminescence emission visible with IR-camera S G Electrical probe 10

11 Electrically pumped lasers Optical spectrum at 100 K 5000 Lasing modes Counts (a.u.) Spontaneous emission Wavelength (nm) Laser devices: 10 db optical loss at room temperature Cooling down increases gain Increased gain can overcome loss Pulsed electrical pumping Work in progress! 11

12 H2020 EU project L3MATRIX Integration: SiPh optical interconnect (8x16) with 16nm CMOS switching ASIC Scaling chip I/O towards Pb/s Silicon photonics (single-mode) Increased reach Reducing network layers: less latency, more servers & memory more throughput High level of integration: Need on-chip lasers 12

13 H2020 EU project DIMENSION 13

14 Photonics technologies for system-level integration 1 Chip-level: CMOS silicon photonics + Active photonics devices Si photonics provides all required buliding blocks (except lasers) on chip-level: - Modulators - Drivers - Detectors - Amplifiers - WDM filters + CMOS electronics 2 System-level: Scalable chip-to-fiber connectivity One step mating of numerous optical interfaces Provide electrical and optical signal routing capability Enable a simultaneous interfacing of electrical and optical connections

15 Adiabatic optical coupling using polymer waveguides Principle: Contact between the silicon waveguide taper and the polymer waveguide (PWG), achieved by flip-chip bonding, enables adiabatic optical coupling Schematic view of Si- photonics chip assembled by flip-chip bonding Compatible with established electrical assembly Simultaneous E/O interfacing Scalable to many optical channels - J. Shu, et al. "Efficient coupler between chip-level and board-level optical waveguides." Optics letters (2011): I. M. Soganci, et al. "Flip-chip optical couplers with scalable I/O count for silicon photonics." Optics express (2013): T. Barwicz, et al. "Low-cost interfacing of fibers to nanophotonic waveguides: design for fabrication and assembly tolerances., Photonics Journal, IEEE 6.4 (2014):

16 Wafer- size SM waveguide Panel-size Chip-size IBM Research - Zurich Single-mode polymer waveguide technology SM polymer waveguides on chips (e.g. Si photonics chips) SM polymer waveguides on panel-size flexible substrates SM polymer waveguides on wafer-size flexible substrates 50 mm R. Dangel, et al. Optics Express,

17 Insertion loss characterization (1) Insertion loss measurement: Wavelength sweep over O-band Full path vs ref. PWG path Wavelength dependency mainly in the PWG IL/2 of reference PWG (db) TE, L PWG = 3.0 cm TM, L PWG = 3.0 cm Wavelength (nm) 5 4 TE, L C = 1.5 mm TM, L C = 1.5 mm IL/facet (db) 3 2 Schematic view of Siphotonics chip assembled by flip-chip bonding Wavelength (nm) 17

18 Adiabatic coupler loss characterization Coupler loss measurement: Direct-process vs Flip-chip bonding approach For L c 1.0 mm: Coupler loss < 1.5 db, PDL 0.7 db Operating in the O and C-band 18 Polymer waveguides processed on chip Polymer waveguides attached by flip-chip bonding

19 H2020 EU project ICT-STREAMS 19

20 From Si photonics transceivers to chip-level assembly Today Next integration step Silicon photonics co-packaging with the ASIC chip Less components and assembly steps Improved electrical signal path, reduce # interfaces and length High density, scalable optical IO Minimum overhead, lowest cost Ultra-short electrical line. Overcome CDR and FEC 20 50% reduction of total link power anticipated

21 Summary Miniaturized Photonic Packaging Chip level integration CMOS+Passive+Active photonics System-level integration Adiabatic optical coupling as a scalable, efficient, broadband and polarization independent fiber-to-chip interfacing solution Path towards high level of electro-optical integration & scalability 21

22 Acknowledgements Collaborators in IBM Marc Seifried, Herwig Hahn, Gustavo Villares, Lukas Czornomaz, Folkert Horst, Daniele Caimi, Charles Caer, Yannick Baumgartner Daniel Jubin, Norbert Meier, Roger Dangel, Antonio La Porta, Jonas Weiss, Jean Fompeyrine, Ute Drechsler And many others Co-funded by the European Union Horizon 2020 Programme and the Swiss National Secretariat for Education, Research and Innovation (SERI) The opinion expressed and arguments employed herein do not necessarily reflect the official views of the Swiss Government. Agreement No Agreement No Agreement No Contract No Contract No Contract No Agreement No Contract No

23 Thank you for your attention Bert Jan Offrein 23

Hybrid III-V/Si DFB laser integration on a 200 mm fully CMOS-compatible silicon photonics platform

Hybrid III-V/Si DFB laser integration on a 200 mm fully CMOS-compatible silicon photonics platform Hybrid III-V/Si DFB laser integration on a 200 mm fully CMOS-compatible silicon photonics platform B. Szelag 1, K. Hassan 1, L. Adelmini 1, E. Ghegin 1,2, Ph. Rodriguez 1, S. Bensalem 1, F. Nemouchi 1,

More information

Automated High-Throughput Assembly for Photonic Packaging

Automated High-Throughput Assembly for Photonic Packaging Automated High-Throughput Assembly for Photonic Packaging IBM Assembly and Test - Bromont IBM Research - Watson / TRL P. Fortier N. Boyer A. Janta-Polczynski E. Cyr R. Langlois Y. Yoshi H. Numata T. Barwicz

More information

PROJECT PERIODIC REPORT

PROJECT PERIODIC REPORT PROJECT PERIODIC REPORT Grant Agreement number: 619456 Project acronym: SITOGA Project title: Silicon CMOS compatible transition metal oxide technology for boosting highly integrated photonic devices with

More information

Published in: Proceedings of the 19th Annual Symposium of the IEEE Photonics Benelux Chapter, 3-4 November 2014, Enschede, The Netherlands

Published in: Proceedings of the 19th Annual Symposium of the IEEE Photonics Benelux Chapter, 3-4 November 2014, Enschede, The Netherlands Characterization of Ge/Ag ohmic contacts for InP based nanophotonic devices Shen, L.; Wullems, C.W.H.A.; Veldhoven, van, P.J.; Dolores Calzadilla, V.M.; Heiss, D.; van der Tol, J.J.G.M.; Smit, M.K.; Ambrosius,

More information

Assembly of Mechanically Compliant Interfaces between Optical Fibers and Nanophotonic Chips

Assembly of Mechanically Compliant Interfaces between Optical Fibers and Nanophotonic Chips Assembly of Mechanically Compliant Interfaces between Optical Fibers and Nanophotonic Chips T. Barwicz, Y. Taira, H. Numata, N. Boyer, S. Harel, S. Kamlapurkar, S. Takenobu, S. Laflamme, S. Engelmann,

More information

nanosilicon Nanophotonics

nanosilicon Nanophotonics nanosilicon Nanophotonics Lorenzo Pavesi Universita di Trento Italy Outline Silicon Photonics NanoSilicon photonics Silicon Nanophotonics NanoSilicon Nanophotonics Conclusion Outline Silicon Photonics

More information

First Electrically Pumped Hybrid Silicon Laser

First Electrically Pumped Hybrid Silicon Laser First Electrically Pumped Hybrid Silicon Laser UCSB Engineering Insights Oct 18 th 2006 Mario Paniccia Intel Corporation 1 Sept 18 th 2006 What We are Announcing Research Breakthrough: 1st Electrically

More information

Compact hybrid plasmonic-si waveguide structures utilizing Albanova E-beam lithography system

Compact hybrid plasmonic-si waveguide structures utilizing Albanova E-beam lithography system Compact hybrid plasmonic-si waveguide structures utilizing Albanova E-beam lithography system Introduction Xu Sun Laboratory of Photonics and Microwave Engineering, Royal Institute of Technology (KTH),

More information

Building the 21 st Century Integrated Silicon Photonics Ecosystem

Building the 21 st Century Integrated Silicon Photonics Ecosystem Building the 21 st Century Integrated Silicon Photonics Ecosystem Integrated Photonics is about data and sensing VISION Establish technology, business, and education framework for industry, government,

More information

1. Photonic crystal band-edge lasers

1. Photonic crystal band-edge lasers TIGP Nanoscience A Part 1: Photonic Crystals 1. Photonic crystal band-edge lasers 2. Photonic crystal defect lasers 3. Electrically-pumped photonic crystal lasers 1. Photonic crystal band-edge lasers Min-Hsiung

More information

Ching-Fuh Lin*, Shih-Che Hung, Shu-Chia Shiu, and Jiun-

Ching-Fuh Lin*, Shih-Che Hung, Shu-Chia Shiu, and Jiun- Fabrication of circular Si waveguides on bulk Si substrate by KrF Excimer Laser System for Optical Interconnect Ching-Fuh Lin*, Shih-Che Hung, Shu-Chia Shiu, and Jiun- Jie Chao Graduate Institute of Photonics

More information

Electrical, Optical and Fluidic Through-Silicon Vias for Silicon Interposer Applications

Electrical, Optical and Fluidic Through-Silicon Vias for Silicon Interposer Applications Electrical, Optical and Fluidic Through-Silicon Vias for Silicon Interposer Applications Mahavir S. Parekh, Paragkumar A. Thadesar and Muhannad S. Bakir Georgia Institute of Technology, 791 Atlantic Drive,

More information

Tackling the optical interconnection challenge for the Integrated Photonics Revolution

Tackling the optical interconnection challenge for the Integrated Photonics Revolution Tackling the optical interconnection challenge for the Integrated Photonics Revolution Dr. Ir. TU Delft, Precision and Microsystems Engineering m.tichem@tudelft.nl Microfabrication and MEMS Si microfabrication

More information

2-D Array Wavelength Demultiplexing by Hybrid Waveguide and Free-Space Optics

2-D Array Wavelength Demultiplexing by Hybrid Waveguide and Free-Space Optics 2-D Array Wavelength Demultiplexing by Hybrid Waveguide and Free-Space Optics Trevor K. Chan, Maxim Abashin and Joseph E. Ford UCSD Jacobs School of Engineering Photonics Systems Integration Lab: PSI-Lab

More information

Fiber Bragg grating sensor based on external cavity laser

Fiber Bragg grating sensor based on external cavity laser Dolores Calzadilla, V.M.; Pustakhod, D.; Leijtens, X.J.M.; Smit, M.K. Published in: Proceedings of the 20th Annual Symposium of the IEEE Photonics Benelux Chapter, 26-27 November 2015, Brussels, Belgium

More information

Electrical and Fluidic Microbumps and Interconnects for 3D-IC and Silicon Interposer

Electrical and Fluidic Microbumps and Interconnects for 3D-IC and Silicon Interposer Electrical and Fluidic Microbumps and Interconnects for 3D-IC and Silicon Interposer Li Zheng, Student Member, IEEE, and Muhannad S. Bakir, Senior Member, IEEE Georgia Institute of Technology Atlanta,

More information

High Gain Coefficient Phosphate Glass Fiber Amplifier

High Gain Coefficient Phosphate Glass Fiber Amplifier High Gain Coefficient Phosphate Glass Fiber Amplifier Michael R. Lange, Eddy Bryant Harris Corp. Government Communications Systems Division P.O. Box 37 (MS: 13-9116) Melbourne, FL 3292 Michael J. Myers,

More information

Photonics Technology for Optical Access Networks

Photonics Technology for Optical Access Networks Photonics Technology for Optical Access Networks Rajeev J. Ram and Randy Kirchain Center for Integrated Photonic Systems Massachusetts Institute of Technology http://cips.mit.edu Outline Key Points from

More information

Micro/nanophotonics at VTT

Micro/nanophotonics at VTT Micro/nanophotonics at VTT Timo Aalto (timo.aalto@vtt.fi) VTT Technical Research Centre of Finland Micro and nanotechnology seminar, St Petersburg, 16 th Nov 2010 2 Outline Overview of micro and nanophotonics

More information

3.46 OPTICAL AND OPTOELECTRONIC MATERIALS

3.46 OPTICAL AND OPTOELECTRONIC MATERIALS Badgap Engineering: Precise Control of Emission Wavelength Wavelength Division Multiplexing Fiber Transmission Window Optical Amplification Spectrum Design and Fabrication of emitters and detectors Composition

More information

Direct growth of III-V quantum dot materials on silicon

Direct growth of III-V quantum dot materials on silicon Direct growth of III-V quantum dot materials on silicon John Bowers, Alan Liu, Art Gossard Director, Institute for Energy Efficiency University of California, Santa Barbara http://optoelectronics.ece.ucsb.edu/

More information

Progress in Monolithic III-V/Si and towards processing III-V Devices in Silicon Manufacturing. E.A. (Gene) Fitzgerald

Progress in Monolithic III-V/Si and towards processing III-V Devices in Silicon Manufacturing. E.A. (Gene) Fitzgerald Progress in Monolithic III-V/Si and towards processing III-V Devices in Silicon Manufacturing E.A. (Gene) Fitzgerald M.J. Mori, C.L.Dohrman, K. Chilukuri MIT Cambridge, MA USA Funding: MARCO IFC and Army

More information

TEPZZ 5 Z 6A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2012/46

TEPZZ 5 Z 6A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2012/46 (19) (12) EUROPEAN PATENT APPLICATION TEPZZ 5 Z 6A_T (11) EP 2 523 026 A1 (43) Date of publication: 14.11.2012 Bulletin 2012/46 (21) Application number: 12167332.1 (51) Int Cl.: G02B 6/12 (2006.01) G02B

More information

ADOPT Winter School Merging silicon photonics and plasmonics

ADOPT Winter School Merging silicon photonics and plasmonics ADOPT Winter School 2014 Merging silicon photonics and plasmonics Prof. Min Qiu Optics and Photonics, Royal Institute of Technology, Sweden and Optical Engineering, Zhejiang University, China Contents

More information

Monolithic Microphotonic Optical Isolator

Monolithic Microphotonic Optical Isolator Monolithic Microphotonic Optical Isolator Lei Bi, Juejun Hu, Dong Hun Kim, Peng Jiang, Gerald F Dionne, Caroline A Ross, L.C. Kimerling Dept. of Materials Science and Engineering Massachusetts Institute

More information

Near- and mid- infrared group IV photonics

Near- and mid- infrared group IV photonics Near- and mid- infrared group IV photonics C. G. Littlejohns 1,2, M. Saïd Rouifed 1, H. Qiu 1, T. Guo Xin 1, T. Hu 1, T. Dominguez Bucio 2, M. Nedeljkovic 2, G. Z. Mashanovich 2, G. T. Reed 2, F. Y. Gardes

More information

Challenges and Solutions for Cost Effective Next Generation Advanced Packaging. H.P. Wirtz, Ph.D. MiNaPAD Conference, Grenoble April 2012

Challenges and Solutions for Cost Effective Next Generation Advanced Packaging. H.P. Wirtz, Ph.D. MiNaPAD Conference, Grenoble April 2012 Challenges and Solutions for Cost Effective Next Generation Advanced Packaging H.P. Wirtz, Ph.D. MiNaPAD Conference, Grenoble April 2012 Outline Next Generation Package Requirements ewlb (Fan-Out Wafer

More information

Utilizations of two-stage erbium amplifier and saturable-absorber filter for tunable and stable power-equalized fiber laser

Utilizations of two-stage erbium amplifier and saturable-absorber filter for tunable and stable power-equalized fiber laser Utilizations of two-stage erbium amplifier and saturable-absorber filter for tunable and stable power-equalized fiber laser References Chien-Hung Yeh* * Information and Communications Research Laboratories,

More information

Standard fiber offering.

Standard fiber offering. Standard fiber offering. Stress Corrosion Factor Strength Chart www.nufern.com C-Band Erbium Doped Fiber Single-Mode Fiber Nufern s high performance C-Band Erbium-Doped 980-HP Fibers (EDFC-980-HP and EDFC-980C-HP-80)

More information

3D technologies for integration of MEMS

3D technologies for integration of MEMS 3D technologies for integration of MEMS, Fraunhofer Institute for Electronic Nano Systems Folie 1 Outlook Introduction 3D Processes Process integration Characterization Sample Applications Conclusion Folie

More information

Confocal Microscopy of Electronic Devices. James Saczuk. Consumer Optical Electronics EE594 02/22/2000

Confocal Microscopy of Electronic Devices. James Saczuk. Consumer Optical Electronics EE594 02/22/2000 Confocal Microscopy of Electronic Devices James Saczuk Consumer Optical Electronics EE594 02/22/2000 Introduction! Review of confocal principles! Why is CM used to examine electronics?! Several methods

More information

Polymer-based optical interconnects using nano-imprint lithography

Polymer-based optical interconnects using nano-imprint lithography Polymer-based optical interconnects using nano-imprint lithography Arjen Boersma,Sjoukje Wiegersma Bert Jan Offrein, Jeroen Duis, Jos Delis, Markus Ortsiefer, Geert van Steenberge, MikkoKarppinen, Alfons

More information

Anis Rahman, Ph.D. Applied Research & Photonics, Inc. 470 Friendship Road, Suite 10, Harrisburg, PA arphotonics.

Anis Rahman, Ph.D. Applied Research & Photonics, Inc. 470 Friendship Road, Suite 10, Harrisburg, PA arphotonics. nanophotonic Integrated Circuit (npic( npic) Anis Rahman, Ph.D. Applied Research & Photonics, Inc. 470 Friendship Road, Suite 10, Harrisburg, PA 17111 http://arphotonics.net arphotonics.net/ 7th International

More information

, DTIC_ \IUIUIIIII. EImHaIII, oo3 0- AD-A S Novel Optoelectronic Devices based on combining GaAs and InP on Si

, DTIC_ \IUIUIIIII. EImHaIII, oo3 0- AD-A S Novel Optoelectronic Devices based on combining GaAs and InP on Si AD-A253 781 EImHaIII, 5-5 - oo3 0- Novel Optoelectronic Devices based on combining GaAs and InP on Si, DTIC_ $S LECTE f JL 23 1992. A Interim report 6 -.. by P. Demeester 1. Introduction In the last 6

More information

Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics. Chris Nadovich

Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics. Chris Nadovich Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics Chris Nadovich Research Objective The novel combination of a forked holographic grating with a Bragg coupler structure to create

More information

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio Plasmonics using Metal Nanoparticles Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio April 1, 2007 Motivation Why study plasmonics? Miniaturization of optics and photonics to subwavelength scales

More information

Properties of Inverse Opal Photonic Crystals Grown By Atomic Layer Deposition

Properties of Inverse Opal Photonic Crystals Grown By Atomic Layer Deposition Properties of Inverse Opal Photonic Crystals Grown By Atomic Layer Deposition J.S. King 1, C. W. Neff 1, W. Park 2, D. Morton 3, E. Forsythe 3, S. Blomquist 3, and C. J. Summers 1 (1) School of Materials

More information

Chapter 7 NANOIMPRINTED CIRCULAR GRATING DISTRIBUTED FEEDBACK DYE LASER

Chapter 7 NANOIMPRINTED CIRCULAR GRATING DISTRIBUTED FEEDBACK DYE LASER Chapter 7 66 NANOIMPRINTED CIRCULAR GRATING DISTRIBUTED FEEDBACK DYE LASER 7.1 Introduction In recent years, polymer dye lasers have attracted much attention due to their low-cost processing, wide choice

More information

SPP waveguides. Introduction Size Mismatch between Scaled CMOS Electronics and Planar Photonics. dielectric waveguide ~ 10.

SPP waveguides. Introduction Size Mismatch between Scaled CMOS Electronics and Planar Photonics. dielectric waveguide ~ 10. SPP waveguides Introduction Size Mismatch between Scaled CMOS Electronics and Planar Photonics CMOS transistor: Medium-sized molecule dielectric waveguide ~ 10 Silicon Photonics? Could such an Architecture

More information

Optical fibers. Laboratory of optical fibers. Institute of Photonics and Electronics AS CR, v.v.i.

Optical fibers. Laboratory of optical fibers. Institute of Photonics and Electronics AS CR, v.v.i. Optical fibers Laboratory of optical fibers Institute of Photonics and Electronics AS CR, v.v.i. http://www.ufe.cz/en/laboratory-optical-fibres n 1 n 1 > n 2 Waveguiding principle optical fiber W. Snell

More information

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda:

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda: EEL6935 Advanced MEMS (Spring 2005) Instructor: Dr. Huikai Xie SOI Micromachining Agenda: SOI Micromachining SOI MUMPs Multi-level structures Lecture 5 Silicon-on-Insulator Microstructures Single-crystal

More information

5. Packaging Technologies Trends

5. Packaging Technologies Trends 5. Packaging Technologies Trends Electronic products and microsystems continue to find new applications in personal, healthcare, home, automotive, environmental and security systems. Advancements in packaging

More information

Challenges for Embedded Device Technologies for Package Level Integration

Challenges for Embedded Device Technologies for Package Level Integration Challenges for Embedded Device Technologies for Package Level Integration Kevin Cannon, Steve Riches Tribus-D Ltd Guangbin Dou, Andrew Holmes Imperial College London Embedded Die Technology IMAPS-UK/NMI

More information

FRAUNHOFER INSTITUTE FOR PHOTONIC MICROSYSTEMS IPMS SMART MATERIALS

FRAUNHOFER INSTITUTE FOR PHOTONIC MICROSYSTEMS IPMS SMART MATERIALS FRAUNHOFER INSTITUTE FOR PHOTONIC MICROSYSTEMS IPMS SMART MATERIALS 1 ELECTRO-ACTIVE ORGANIC MATERIALS At Fraunhofer IPMS electro-active organic materials are implemented in the design of new and smarter

More information

Grundlagen der LED Technik

Grundlagen der LED Technik www.osram-os.com Grundlagen der LED Technik Dr. Berthold Hahn 8.3.14 Ilmenau 1 Dateienname ORG CODE Initiale Titel/Veranstaltung TT/MM/JJJJ Grundlagen der LED Technik 1. Einführung 2. Lichterzeugung im

More information

Low-optical-loss, low-resistance Ag/Ge based ohmic contacts to n-type InP for membrane based waveguide devices

Low-optical-loss, low-resistance Ag/Ge based ohmic contacts to n-type InP for membrane based waveguide devices Low-optical-loss, low-resistance Ag/Ge based ohmic contacts to n-type InP for membrane based waveguide devices L. Shen, 1, V. Dolores-Calzadilla, 1 C.W.H.A. Wullems, 1 Y. Jiao, 1 A. Millan-Mejia, 1 A.

More information

High-efficiency broad-bandwidth sub-wavelength grating based fibrechip coupler in SOI

High-efficiency broad-bandwidth sub-wavelength grating based fibrechip coupler in SOI High-efficiency broad-bandwidth sub-wavelength grating based fibrechip coupler in SOI Siddharth Nambiar a, Shankar K Selvaraja* a a Center for Nanoscience and Engineering (CeNSE), Indian Institute of Science

More information

Bridging the Gap Between Nanophotonic Waveguide Circuits and Single Mode Optical Fibers Using Diffractive Grating Structures

Bridging the Gap Between Nanophotonic Waveguide Circuits and Single Mode Optical Fibers Using Diffractive Grating Structures Copyright 2010 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoscience and Nanotechnology Vol. 10, 1551 1562, 2010 Bridging the Gap Between Nanophotonic

More information

Nanophotonics: principle and application. Khai Q. Le Lecture 11 Optical biosensors

Nanophotonics: principle and application. Khai Q. Le Lecture 11 Optical biosensors Nanophotonics: principle and application Khai Q. Le Lecture 11 Optical biosensors Outline Biosensors: Introduction Optical Biosensors Label-Free Biosensor: Ringresonator Theory Measurements: Bulk sensing

More information

Within-Tier Cooling and Thermal Isolation Technologies for Heterogeneous 3D ICs

Within-Tier Cooling and Thermal Isolation Technologies for Heterogeneous 3D ICs 1 Within-Tier Cooling and Thermal Isolation Technologies for Heterogeneous 3D ICs Yue Zhang, Hanju Oh, and Muhannad S. Bakir School of Electrical & Computer Engineering, Georgia Institute of Technology,

More information

Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides

Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides Stijn Scheerlinck, Jonathan Schrauwen, Frederik Van Laere, Dirk Taillaert, Dries Van Thourhout and Roel Baets

More information

DETECTION OF LASER ULTRASONIC SURFACE DISPLACEMENT BY WIDE APERTURE FIBER OPTIC AMPLIFIER M.L. Rizzi and F. Corbani CESI, Milano, Italy

DETECTION OF LASER ULTRASONIC SURFACE DISPLACEMENT BY WIDE APERTURE FIBER OPTIC AMPLIFIER M.L. Rizzi and F. Corbani CESI, Milano, Italy DETECTION OF LASER ULTRASONIC SURFACE DISPLACEMENT BY WIDE APERTURE FIBER OPTIC AMPLIFIER M.L. Rizzi and F. Corbani CESI, Milano, Italy Abstract: In the frame of the European Project INCA, CESI is in charge

More information

Effects of active fiber length on the tunability of erbium-doped fiber ring lasers

Effects of active fiber length on the tunability of erbium-doped fiber ring lasers Effects of active fiber length on the tunability of erbium-doped fiber ring lasers Xinyong Dong, P. Shum, N. Q. Ngo, and C. C. Chan School of Electrical & Electronics Engineering, Nanyang Technological

More information

Transfer Printing for Silicon Photonics

Transfer Printing for Silicon Photonics CHAPTER THREE Transfer Printing for Silicon Photonics Brian Corbett*,1, Ruggero Loi*, James O Callaghan*, Gunther Roelkens *Tyndall National Institute, University College Cork, Cork, Ireland Ghent University-Imec,

More information

UV15: For Fabrication of Polymer Optical Waveguides

UV15: For Fabrication of Polymer Optical Waveguides CASE STUDY UV15: For Fabrication of Polymer Optical Waveguides Master Bond Inc. 154 Hobart Street, Hackensack, NJ 07601 USA Phone +1.201.343.8983 Fax +1.201.343.2132 main@masterbond.com CASE STUDY UV15:

More information

Amplifiers for the Masses: EDFA, EDWA, and SOA Amplets for Metro and Access Applications

Amplifiers for the Masses: EDFA, EDWA, and SOA Amplets for Metro and Access Applications Amplifiers for the Masses: EDFA, EDWA, and SOA Amplets for Metro and Access Applications Introduction Kathy Nguyen OPTI 521 Synopsis Fall 2011 The demand for quality bandwidth is increasing with the rise

More information

Enabling Technology in Thin Wafer Dicing

Enabling Technology in Thin Wafer Dicing Enabling Technology in Thin Wafer Dicing Jeroen van Borkulo, Rogier Evertsen, Rene Hendriks, ALSI, platinawerf 2G, 6641TL Beuningen Netherlands Abstract Driven by IC packaging and performance requirements,

More information

Published in: Proceedings of the 20th Annual Symposium of the IEEE Photonics Benelux Chapter, November 2015, Brussels, Belgium

Published in: Proceedings of the 20th Annual Symposium of the IEEE Photonics Benelux Chapter, November 2015, Brussels, Belgium Low optical loss n-type ohmic contacts for InP-based membrane devices Shen, L.; Veldhoven, van, P.J.; Jiao, Y.; Dolores Calzadilla, V.M.; van der Tol, J.J.G.M.; Roelkens, G.; Smit, M.K. Published in: Proceedings

More information

Amorphous silicon waveguides for microphotonics

Amorphous silicon waveguides for microphotonics 4 Amorphous silicon waveguides for microphotonics Amorphous silicon a-si was made by ion irradiation of crystalline silicon with 1 10 15 Xe ions cm 2 at 77 K in the 1 4 MeV energy range. Thermal relaxation

More information

Red luminescence from Si quantum dots embedded in SiO x films grown with controlled stoichiometry

Red luminescence from Si quantum dots embedded in SiO x films grown with controlled stoichiometry Red luminescence from Si quantum dots embedded in films grown with controlled stoichiometry Zhitao Kang, Brannon Arnold, Christopher Summers, Brent Wagner Georgia Institute of Technology, Atlanta, GA 30332

More information

Whispering gallery modes at 800 nm and 1550 nm in concentric Si-nc/Er:SiO 2 microdisks

Whispering gallery modes at 800 nm and 1550 nm in concentric Si-nc/Er:SiO 2 microdisks Whispering gallery modes at 800 nm and 1550 nm in concentric Si-nc/Er:SiO 2 microdisks Elton Marchena Brandon Redding Tim Creazzo Shouyuan Shi Dennis W. Prather Journal of Nanophotonics, Vol. 4, 049501

More information

Silicon photonics biosensing: different packaging platforms and applications ABSTRACT 1. REACTION TUBES AS A PLATFORM FOR RING RESONATOR SENSORS.

Silicon photonics biosensing: different packaging platforms and applications ABSTRACT 1. REACTION TUBES AS A PLATFORM FOR RING RESONATOR SENSORS. Silicon photonics biosensing: different packaging platforms and applications C. Lerma Arce a,b, E. Hallynck a,b, S. Werquin a,b, J.W. Hoste a,b, D. Martens a,b, P. Bienstman a,b,* a Photonics Research

More information

TEMPERATURE-DEPENDENT REFRACTIVE INDICES OF OPTICAL PLANAR WAVEGUIDES

TEMPERATURE-DEPENDENT REFRACTIVE INDICES OF OPTICAL PLANAR WAVEGUIDES TEMPERATURE-DEPENDENT REFRACTIVE INDICES OF OPTICAL PLANAR WAVEGUIDES Aiman Kassir a, Abang Annuar Ehsan b, Noraspalelawati Razali b, Mohd Kamil Abd Rahman a and Sahbudin Shaari b Faculty of Applied Sciences,

More information

Rare Earth Doped Fibers for Use in Fiber Lasers and Amplifiers

Rare Earth Doped Fibers for Use in Fiber Lasers and Amplifiers Photonics Media Webinar: 4 th Nov 2013 Rare Earth Doped Fibers for Use in Fiber Lasers and Amplifiers George Oulundsen, Fiber Product Line Manager Bryce Samson, VP Business Development 1 Outline Introduction

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:.38/nphoton..7 Supplementary Information On-chip optical isolation in monolithically integrated nonreciprocal optical resonators Lei Bi *, Juejun Hu, Peng Jiang, Dong Hun

More information

TSV Processing and Wafer Stacking. Kathy Cook and Maggie Zoberbier, 3D Business Development

TSV Processing and Wafer Stacking. Kathy Cook and Maggie Zoberbier, 3D Business Development TSV Processing and Wafer Stacking Kathy Cook and Maggie Zoberbier, 3D Business Development Outline Why 3D Integration? TSV Process Variations Lithography Process Results Stacking Technology Wafer Bonding

More information

Technical Viability of Stacked Silicon Interconnect Technology

Technical Viability of Stacked Silicon Interconnect Technology Technical Viability of Stacked Silicon Interconnect Technology Dr. Handel H. Jones Founder and CEO, IBS Inc. Los Gatos, California October 2010 TECHNICAL VIABILITY OF STACKED SILICON INTERCONNECT TECHNOLOGY

More information

Fiber Bragg Gratings. Research, Design, Fabrication, and Volume Production. All capabilities within one company

Fiber Bragg Gratings. Research, Design, Fabrication, and Volume Production. All capabilities within one company Your Optical Fiber Solutions Partner Fiber Bragg Gratings Research, Design, Fabrication, and Volume Production OFS Fiber and Cable Division All capabilities within one company OFS Specialty Photonics Division

More information

Photonics West 2017: ixblue Photonics raises the bar on power and performance once again with release of brand new range of products

Photonics West 2017: ixblue Photonics raises the bar on power and performance once again with release of brand new range of products Photonics West 2017: ixblue Photonics raises the bar on power and performance once again with release of brand new range of products On the occasion of the Photonics West global trade exhibition, ixblue

More information

Thin Wafers Bonding & Processing

Thin Wafers Bonding & Processing Thin Wafers Bonding & Processing A market perspective 2012 Why New Handling Technologies Consumer electronics is today a big driver for smaller, higher performing & lower cost device configurations. These

More information

OPTICS th International Conference on Optical Communications Systems

OPTICS th International Conference on Optical Communications Systems OPTICS 2019-10th International Conference on Optical Communications Systems OPTICS is part of ICETE, the 16th International Joint Conference on e-business and Telecommunications. Registration to OPTICS

More information

Development and Characterization of 300mm Large Panel ewlb (embedded Wafer Level BGA)

Development and Characterization of 300mm Large Panel ewlb (embedded Wafer Level BGA) Development and Characterization of 300mm Large Panel ewlb (embedded Wafer Level BGA) Seung Wook Yoon, Yaojian Lin and Pandi C. Marimuthu STATS ChipPAC Ltd. 5 Yishun Street 23, Singapore 768442 E-mail

More information

Metallizing High Aspect Ratio TSVs For MEMS Challenges and Capabilities. Vincent Mevellec, PhD

Metallizing High Aspect Ratio TSVs For MEMS Challenges and Capabilities. Vincent Mevellec, PhD Metallizing High Aspect Ratio TSVs For MEMS Challenges and Capabilities Vincent Mevellec, PhD Agenda Introduction MEMS and sensors market TSV integration schemes Process flows for TSV Metallization aveni

More information

Photonic Crystals Quantum Cascade Lasers in THz regime

Photonic Crystals Quantum Cascade Lasers in THz regime Photonic Crystals Quantum Cascade Lasers in THz regime Speaker: Roland Cerna EPFL Doctoral course 2009 Photonic Crystals Lecturer: Dr. Romuald Houdé Outline Motivation Introduction Quantum cascade laser

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

Silicon-on-insulator (SOI) was developed in the

Silicon-on-insulator (SOI) was developed in the 66 Silicon-on-insulator substrates for compound semiconductor applications Mike Cooke reports on research developments reaching towards high-power electronics and infrared optical communications. Silicon-on-insulator

More information

Experimental observation of the post-annealing effect on the dark current of InGaAs waveguide photodiodes

Experimental observation of the post-annealing effect on the dark current of InGaAs waveguide photodiodes Solid-State Electronics 50 (2006) 1546 1550 www.elsevier.com/locate/sse Experimental observation of the post-annealing effect on the dark current of InGaAs waveguide photodiodes Hansung Joo a, Su Chang

More information

9/4/2008 GMU, ECE 680 Physical VLSI Design

9/4/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI Design Chapter II CMOS Manufacturing Process 1 Dual-Well Trench-Isolated CMOS Process gate-oxide TiSi 2 AlCu Tungsten SiO 2 p-well poly n-well SiO 2 n+ p-epi p+ p+ 2 Schematic Layout

More information

Optimization of optical performances in submicron silicon-on-insulator rib and strip waveguides by H 2 thermal annealing

Optimization of optical performances in submicron silicon-on-insulator rib and strip waveguides by H 2 thermal annealing I N S T I T U T D E R E C H E R C H E T E C H N O L O G I Q U E Optimization of optical performances in submicron silicon-on-insulator rib and strip waveguides by H thermal annealing Erwine Pargon 1, Cyril

More information

Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1

Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1 Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1 Auburn University *yzw0040@auburn.edu Abstract: A diffraction grating coupled

More information

Mobile Device Passive Integration from Wafer Process

Mobile Device Passive Integration from Wafer Process Mobile Device Passive Integration from Wafer Process Kai Liu, YongTaek Lee, HyunTai Kim, and MaPhooPwint Hlaing STATS ChipPAC, Inc. 1711 West Greentree, Suite 117, Tempe, Arizona 85284, USA Tel: 48-222-17

More information

Photonic integrated circuits in biochemical food analysis

Photonic integrated circuits in biochemical food analysis Photonic integrated circuits in biochemical food analysis What is Photonics? Page 2 Photonics is the physical science of light generation, detection, and manipulation through e.g. transmission, modulation,

More information

Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots

Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots Francesco Meinardi*, Hunter Mc Daniel, Francesco Carulli, Annalisa Colombo, Kirill A.

More information

Challenges and Future Directions of Laser Fuse Processing in Memory Repair

Challenges and Future Directions of Laser Fuse Processing in Memory Repair Challenges and Future Directions of Laser Fuse Processing in Memory Repair Bo Gu, * T. Coughlin, B. Maxwell, J. Griffiths, J. Lee, J. Cordingley, S. Johnson, E. Karagiannis, J. Ehrmann GSI Lumonics, Inc.

More information

Oxidized Silicon-On-Insulator (OxSOI) from bulk silicon: a new photonic platform

Oxidized Silicon-On-Insulator (OxSOI) from bulk silicon: a new photonic platform Oxidized Silicon-On-Insulator (OxSOI) from bulk silicon: a new photonic platform Nicolás Sherwood-Droz*, Alexander Gondarenko and Michal Lipson School of Electrical and Computer Engineering, Cornell University,

More information

Introduction of FETI. Laboratory Introduction INTRODUCTION SIMULATION GROUP

Introduction of FETI. Laboratory Introduction INTRODUCTION SIMULATION GROUP Laboratory Introduction Introduction of FETI 1. 1. INTRODUCTION 2. 2. SIMULATION GROUP Furukawa Electric Technológiai Intézet Kft., Budapest, Hungary (FETI), supports the research and development activities

More information

2.1 µm CW Raman Laser in GeO 2 Fiber

2.1 µm CW Raman Laser in GeO 2 Fiber 2.1 µm CW Raman Laser in GeO 2 Fiber B. A. Cumberland, S. V. Popov and J. R. Taylor Femtosecond Optics Group, Imperial College London, SW7 2AZ, United Kingdom O. I. Medvedkov, S. A. Vasiliev, E. M. Dianov

More information

FIBRE-COUPLED HIGH-INDEX PECVD SILICON- OXYNITRIDE WAVEGUIDES ON SILICON

FIBRE-COUPLED HIGH-INDEX PECVD SILICON- OXYNITRIDE WAVEGUIDES ON SILICON FIBRE-COUPLED HIGH-INDEX PECVD SILICON- OXYNITRIDE WAVEGUIDES ON SILICON Maxim Fadel and Edgar Voges University of Dortmund, High Frequency Institute, Friedrich-Woehler Weg 4, 44227 Dortmund, Germany ABSTRACT

More information

Future electronics: Photonics and plasmonics at the nanoscale

Future electronics: Photonics and plasmonics at the nanoscale Future electronics: Photonics and plasmonics at the nanoscale Robert Magnusson Texas Instruments Distinguished University Chair in Nanoelectronics Professor of Electrical Engineering Department of Electrical

More information

Preface Preface to First Edition

Preface Preface to First Edition Contents Foreword Preface Preface to First Edition xiii xv xix CHAPTER 1 MEMS: A Technology from Lilliput 1 The Promise of Technology 1 What Are MEMS or MST? 2 What Is Micromachining? 3 Applications and

More information

Efficiency of Output Power in Ring Cavity of Erbium Doped Fiber Laser

Efficiency of Output Power in Ring Cavity of Erbium Doped Fiber Laser Efficiency of Output Power in Ring Cavity of Erbium Doped Fiber Laser St. Majidah binti Iskandar and Nabilah Kasim* Physics Department, Universiti Teknologi Malaysia, JohorBahru, Malaysia. Abstract -The

More information

Organic Semiconductor Lasers I.D.W. Samuel, Y. Yang, Y. Wang, G.A. Turnbull

Organic Semiconductor Lasers I.D.W. Samuel, Y. Yang, Y. Wang, G.A. Turnbull Organic Semiconductor Lasers I.D.W. Samuel, Y. Yang, Y. Wang, G.A. Turnbull Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, UK Outline Introduction - Polymer

More information

3DIC Integration with TSV Current Progress and Future Outlook

3DIC Integration with TSV Current Progress and Future Outlook 3DIC Integration with TSV Current Progress and Future Outlook Shan Gao, Dim-Lee Kwong Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research) Singapore 9 September, 2010 1 Overview

More information

GSMBE growth of GaInAsP/InP 1.3 mm-tm-lasers for monolithic integration with optical waveguide isolator

GSMBE growth of GaInAsP/InP 1.3 mm-tm-lasers for monolithic integration with optical waveguide isolator Journal of Crystal Growth 278 (25) 79 713 www.elsevier.com/locate/jcrysgro GSMBE growth of GaInAsP/InP 1.3 mm-tm-lasers for monolithic integration with optical waveguide isolator F. Lelarge a,, B. Dagens

More information

3D & 2½D Test Challenges Getting to Known Good Die & Known Good Stack

3D & 2½D Test Challenges Getting to Known Good Die & Known Good Stack 1 3D & 2½D Test Challenges Getting to Known Good Die & Known Good Stack Advantest Corporation 2 The final yield Any Multi-die Product Must Consider the Accumulated Yield Assume Test Can Provide 99% Die

More information

Lab-on-a-Chip (LOC) Miniaturization on micro- and nanoscale.

Lab-on-a-Chip (LOC) Miniaturization on micro- and nanoscale. Lab-on-a-Chip (LOC) Miniaturization on micro- and nanoscale http://nanob2a.cin2.es/publication/articles/integrated-optical-devices-for-lab-on-a-chip-biosensing-applications, downloaded 14.04.16 www.kit.edu

More information

Die Thickness Effects in RF Front-End Module Stack-Die Assemblies

Die Thickness Effects in RF Front-End Module Stack-Die Assemblies Die Thickness Effects in RF Front-End Module Stack-Die Assemblies By Kai Liu*, YongTaek Lee, HyunTai Kim, Gwang Kim, Robert Frye**, Hlaing Ma Phoo Pwint***, and Billy Ahn * STATS ChipPAC, Inc. 1711 West

More information

Next Generation High-Q Compact Size IPD Diplexer for RF Frond End SiP

Next Generation High-Q Compact Size IPD Diplexer for RF Frond End SiP 2017 IEEE 67th Electronic Components and Technology Conference Next Generation High-Q Compact Size IPD Diplexer for RF Frond End SiP Sheng-Chi Hsieh, Pao-Nan Lee, Hsu-Chiang Shih, Chen-Chao Wang, Teck

More information

3D technologies for More Efficient Product Development

3D technologies for More Efficient Product Development 3D technologies for More Efficient Product Development H. Ribot, D. Bloch, S. Cheramy, Y. Lamy, P. Leduc, T. Signamarcheix, G. Simon Semicon Europa, TechArena II, 09 October 2013 Photonics in Product development:

More information

980nm Optilock Pump. Superb power and wavelength stability over a wide range of operating powers and temperatures

980nm Optilock Pump. Superb power and wavelength stability over a wide range of operating powers and temperatures 980nm Fiber Bragg Grating Stabilized Pump Laser Rev. 2 Updated 01/18/02 Corning Lasertron Up to 300mW kink-free power Superb power and wavelength stability over a wide range of operating powers and temperatures

More information