Long-range gene regulation

Size: px
Start display at page:

Download "Long-range gene regulation"

Transcription

1 Long-range gene regulation Short Course in Medical Genetics Melbourne, June 2011

2 Question Why should long-range regulation of gene expression be of interest to Clinical Scientists and Pathologists interested in providing genetic diagnostic testing services? Intrinsically interesting and important area New technologies Array/ NGS are going to reveal novel genomic variants, some of which will be disease-causing as a result of disruption to distant regulatory elements rather than to transcriptional units. We need to be able to deliver on the expectation that we can recognise a disease-causing genomic variant when we see one

3 Regulation of gene expression Labile regulation Moment-to-moment control by transcriptional activators and repressors Control exerted by nuclear concentrations, covalent modifications, subunit associations, etc. Epigenetic regulation Has sufficient stability to be transmitted from parental cell to daughter cells Involves alterations to the structure of chromatin, including covalent modification of DNA and histones

4 Labile gene expression Is controlled by regulatory elements that can be located far away along the chromosome In some instances, regulatory elements may be on other chromosomes

5 Promoters for eukaryotic genes encoding polypeptides CG box CAAT box TATA box B-globin gene promoter region Glucocorticoid receptor gene

6 Assembling the basal transcription apparatus onto the promoter Basal transcription apparatus comprises 27 polypeptides

7 Transcription factors may be either upstream or downstream of the transcription start site

8 Distal regulatory elements Enhancers Silencers Insulators Locus control regions

9

10

11 Fractal globule No knots!

12 Chromosome A hierarchically coiled single DNA molecule Chromosomal loops

13 Enhancers Silencers

14 Chromatin loops

15 Characterising long-range gene regulation In a small but significant number of patients the molecular lesions do not directly disrupt the transcribed region of the gene Instead, demonstrated interference with transcriptional regulation of the gene Clinical cases provided the first indications that long-range effects regulated expression of genes

16 Absence of the iris Aniridia

17

18 Aniridia Arises from heterozygous loss-of-function mutations within the PAX6 gene on chromosome 11 Some cases demonstrated absence of a PAX6 mutation Cases with chromosomal translocations with breakpoints up to 125 kb downstream of the last PAX6 exon - Demonstrating the presence of distant control elements

19 PAX6 enhancers Positioned within the intron of a neighbouring unrelated gene (ELP4) Some cases demonstrated absence of a PAX6 mutation

20 Holoprosencephaly Malformation of the forebrain arising from failed or incomplete forebrain division

21 Pre-axial polydactyly

22 Acheiropodia

23 SHH Gene Specifies the signaling protein Sonic Hedgehog, which acts to establish the body plan in embryogenesis SHH loss of function holoprosencephaly SHH regulatory lesions preaxial polydactyly acheiropodia

24 SHH Gene

25

26

27 SHH Gene

28

29

30 Genetic diseases triggered by aberrant gene transcription can occur in several ways - Separation of cis-regulatory elements and promoters by chromosomal translocations or inversions Deletion of long range cis-elements Deleterious mutations within cis-elements Disturbing the normal interactions of promoters and cisacting enhancers through appearance of a new promoter Interfering with local chromatin structure by disturbing antisense transcripts regulating more global chromatin structures

31 ENCODE project National Human Genome Research Institute (NHGRI) Goal: To define all the functional DNA sequence elements in the human genome

32 ENCODE pilot study Studied 44 genomic regions encompassing 30Mb (1% of the human genome) Most genomic regions were transcribed, at least in some cells and at some developmental stage Multiple novel transcripts non-coding some previously unknown exons of known genes extra exons were often kb upstream of TSS (some 200 kb upstream). evidence of transcripts containing exons from more than one gene

33 An example of ENCODE data

34 Array Genomic Scanning (Molecular Karyotyping) Use of arrays to detect constitutional aneuploidy in lieu of cytogenetic analysis of chromosomes - diagnostic assessment of infants and children developmental delay pervasive developmental disorders birth defects - miscarried products of conception and stillborn fetuses - likely utility for classification and staging of cancer - emerging use in prenatal diagnosis

35

36 Interpretive assessment of array data Clinical interpretation is heavily weighted by - CNV population frequencies (databases; literature) Gene content gene deserts Empirically determined reporting thresholds based on genomic length - around kb for deletions kb for duplications.

37 Gene desert Sometimes contain highly conserved sequences evolutionary protection from chromosomal rearrangements Should we be considering neighbouring upstream and downstream regions? There are instances where the process of checking beyond array coordinates has yielded clinically relevant information

38 Summary Long-range regulation of gene expression - is interesting! - has growing relevance for clinical scientists and pathologists offering genetic diagnostic testing services

39

40 "a rough or fragmented geometric shape that can be split into parts, each of which is a reduced-size copy of the whole Fractal globule No knots!

41 ENCODE study tools Multiple techniques used to identify all functional sequence elements - Intensive transcriptome analysis Concerted efforts to identify both cis-acting regulatory DNA elements and their respective trans-acting regulatory proteins Efforts to define chromatin structure and some of its epigenetic regulation

42 Clinical relevance of long-range gene regulation In a small but significant number of patients the molecular lesions do not directly disrupt the transcribed region of the gene Instead, demonstrated interference with transcriptional regulation of the gene Clinical cases provided the first indications that long-range effects regulated expression of genes Treasure the exceptional case!

Chapter 17 Lecture. Concepts of Genetics. Tenth Edition. Regulation of Gene Expression in Eukaryotes

Chapter 17 Lecture. Concepts of Genetics. Tenth Edition. Regulation of Gene Expression in Eukaryotes Chapter 17 Lecture Concepts of Genetics Tenth Edition Regulation of Gene Expression in Eukaryotes Chapter Contents 17.1 Eukaryotic Gene Regulation Can Occur at Any of the Steps Leading from DNA to Protein

More information

Chapter 24: Promoters and Enhancers

Chapter 24: Promoters and Enhancers Chapter 24: Promoters and Enhancers A typical gene transcribed by RNA polymerase II has a promoter that usually extends upstream from the site where transcription is initiated the (#1) of transcription

More information

BIOLOGY - CLUTCH CH.17 - GENE EXPRESSION.

BIOLOGY - CLUTCH CH.17 - GENE EXPRESSION. !! www.clutchprep.com CONCEPT: GENES Beadle and Tatum develop the one gene one enzyme hypothesis through their work with Neurospora (bread mold). This idea was later revised as the one gene one polypeptide

More information

Genetics Biology 331 Exam 3B Spring 2015

Genetics Biology 331 Exam 3B Spring 2015 Genetics Biology 331 Exam 3B Spring 2015 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) DNA methylation may be a significant mode of genetic regulation

More information

Control of Eukaryotic Gene Expression (Learning Objectives)

Control of Eukaryotic Gene Expression (Learning Objectives) Control of Eukaryotic Gene Expression (Learning Objectives) 1. Compare and contrast chromatin and chromosome: composition, proteins involved and level of packing. Explain the structure and function of

More information

SEQUENCING. M Ataei, PhD. Feb 2016

SEQUENCING. M Ataei, PhD. Feb 2016 CLINICAL NEXT GENERATION SEQUENCING M Ataei, PhD Tehran Medical Genetics Laboratory Feb 2016 Overview 2 Background NGS in non-invasive prenatal diagnosis (NIPD) 3 Background Background 4 In the 1970s,

More information

Section C: The Control of Gene Expression

Section C: The Control of Gene Expression Section C: The Control of Gene Expression 1. Each cell of a multicellular eukaryote expresses only a small fraction of its genes 2. The control of gene expression can occur at any step in the pathway from

More information

Molecular Cell Biology - Problem Drill 06: Genes and Chromosomes

Molecular Cell Biology - Problem Drill 06: Genes and Chromosomes Molecular Cell Biology - Problem Drill 06: Genes and Chromosomes Question No. 1 of 10 1. Which of the following statements about genes is correct? Question #1 (A) Genes carry the information for protein

More information

Chromosomal Mutations. 2. Gene Mutations

Chromosomal Mutations. 2. Gene Mutations 12-4 12-4 1. Chromosomal 3. NOT! 2. Gene A genetic mutation is any change in the DNA nucleotide sequence. Mutation is caused by mistakes during DNA replication, as well as mutagens, like certain chemicals

More information

Structural variation. Marta Puig Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona

Structural variation. Marta Puig Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona Structural variation Marta Puig Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona Genetic variation How much genetic variation is there between individuals? What type of variants

More information

Differential Gene Expression

Differential Gene Expression Biology 4361 Developmental Biology Differential Gene Expression September 28, 2006 Chromatin Structure ~140 bp ~60 bp Transcriptional Regulation: 1. Packing prevents access CH 3 2. Acetylation ( C O )

More information

AP Biology. The BIG Questions. Chapter 19. Prokaryote vs. eukaryote genome. Prokaryote vs. eukaryote genome. Why turn genes on & off?

AP Biology. The BIG Questions. Chapter 19. Prokaryote vs. eukaryote genome. Prokaryote vs. eukaryote genome. Why turn genes on & off? The BIG Questions Chapter 19. Control of Eukaryotic Genome How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different, specialized functions?

More information

Unit 6 DNA ppt 3 Gene Expression and Mutations Chapter 8.6 & 8.7 pg

Unit 6 DNA ppt 3 Gene Expression and Mutations Chapter 8.6 & 8.7 pg Unit 6 DNA ppt 3 Gene Expression and Mutations Chapter 8.6 & 8.7 pg 248-255 Which genes are transcribed on the chromosomes are carefully regulated at many points. Watch this! https://www.youtube.com/watch?v=oewozs_jtgk

More information

17.5 Eukaryotic Transcription Initiation Is Regulated by Transcription Factors That Bind to Cis-Acting Sites

17.5 Eukaryotic Transcription Initiation Is Regulated by Transcription Factors That Bind to Cis-Acting Sites 17.5 Eukaryotic Transcription Initiation Is Regulated by Transcription Factors That Bind to Cis-Acting Sites 1 Section 17.5 Transcription regulatory proteins, transcription factors, target cis-acting sites

More information

Differences between prokaryotes & eukaryotes. Gene function

Differences between prokaryotes & eukaryotes. Gene function GENE REGULATION Differences between prokaryotes & eukaryotes Gene function Description of Prokaryotic Chromosome and E.coli Review Differences between Prokaryotic & Eukaryotic Chromosomes Four differences

More information

Gene Regulation Biology

Gene Regulation Biology Gene Regulation Biology Potential and Limitations of Cell Re-programming in Cancer Research Eric Blanc KCL April 13, 2010 Eric Blanc (KCL) Gene Regulation Biology April 13, 2010 1 / 21 Outline 1 The Central

More information

Themes: RNA and RNA Processing. Messenger RNA (mrna) What is a gene? RNA is very versatile! RNA-RNA interactions are very important!

Themes: RNA and RNA Processing. Messenger RNA (mrna) What is a gene? RNA is very versatile! RNA-RNA interactions are very important! Themes: RNA is very versatile! RNA and RNA Processing Chapter 14 RNA-RNA interactions are very important! Prokaryotes and Eukaryotes have many important differences. Messenger RNA (mrna) Carries genetic

More information

Transcriptomics. Marta Puig Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona

Transcriptomics. Marta Puig Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona Transcriptomics Marta Puig Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona Central dogma of molecular biology Central dogma of molecular biology Genome Complete DNA content of

More information

What is RNA? Another type of nucleic acid A working copy of DNA Does not matter if it is damaged or destroyed

What is RNA? Another type of nucleic acid A working copy of DNA Does not matter if it is damaged or destroyed RNA Section 3.1 What is RNA? Another type of nucleic acid A working copy of DNA Does not matter if it is damaged or destroyed Used to direct the production of proteins that determines an organisms characteristics

More information

Year III Pharm.D Dr. V. Chitra

Year III Pharm.D Dr. V. Chitra Year III Pharm.D Dr. V. Chitra 1 Genome entire genetic material of an individual Transcriptome set of transcribed sequences Proteome set of proteins encoded by the genome 2 Only one strand of DNA serves

More information

Lecture 2: Biology Basics Continued. Fall 2018 August 23, 2018

Lecture 2: Biology Basics Continued. Fall 2018 August 23, 2018 Lecture 2: Biology Basics Continued Fall 2018 August 23, 2018 Genetic Material for Life Central Dogma DNA: The Code of Life The structure and the four genomic letters code for all living organisms Adenine,

More information

Chapter 18: Regulation of Gene Expression. 1. Gene Regulation in Bacteria 2. Gene Regulation in Eukaryotes 3. Gene Regulation & Cancer

Chapter 18: Regulation of Gene Expression. 1. Gene Regulation in Bacteria 2. Gene Regulation in Eukaryotes 3. Gene Regulation & Cancer Chapter 18: Regulation of Gene Expression 1. Gene Regulation in Bacteria 2. Gene Regulation in Eukaryotes 3. Gene Regulation & Cancer Gene Regulation Gene regulation refers to all aspects of controlling

More information

You are genetically unique

You are genetically unique BNF 5106 - Lecture 1 Genetics, Genes, Genetic codes, and Mutations You are genetically unique Since each parent has 23 pairs of chromosomes, the probability that each parent gives twice the same chromosomes

More information

Computational Biology I LSM5191 (2003/4)

Computational Biology I LSM5191 (2003/4) Computational Biology I LSM5191 (2003/4) Aylwin Ng, D.Phil Lecture Notes: Transcriptome: Molecular Biology of Gene Expression I Flow of information: DNA to polypeptide DNA Start Exon1 Intron Exon2 Termination

More information

CHAPTER 13 LECTURE SLIDES

CHAPTER 13 LECTURE SLIDES CHAPTER 13 LECTURE SLIDES Prepared by Brenda Leady University of Toledo To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off.

More information

MRC-Holland MLPA. Description version 07;

MRC-Holland MLPA. Description version 07; SALSA MLPA probemix P267-A3 Dandy-Walker Malformation Lot A3-0813. As compared to the previous lot A2-0209, two reference probes have been replaced and one added. Also, the control fragments have been

More information

Developmental Biology BY1101 P. Murphy

Developmental Biology BY1101 P. Murphy Developmental Biology BY1101 P. Murphy Lecture 7 Cellular differentiation and the regulation of gene expression. In this lecture we looked at two main questions: How is gene expression regulated? (revision

More information

Transcription in Eukaryotes

Transcription in Eukaryotes Transcription in Eukaryotes Biology I Hayder A Giha Transcription Transcription is a DNA-directed synthesis of RNA, which is the first step in gene expression. Gene expression, is transformation of the

More information

Lesson 8. DNA: The Molecule of Heredity. Gene Expression and Regulation. Introduction to Life Processes - SCI 102 1

Lesson 8. DNA: The Molecule of Heredity. Gene Expression and Regulation. Introduction to Life Processes - SCI 102 1 Lesson 8 DNA: The Molecule of Heredity Gene Expression and Regulation Introduction to Life Processes - SCI 102 1 Genes and DNA Hereditary information is found in discrete units called genes Genes are segments

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

This is a closed book, closed note exam. No calculators, phones or any electronic device are allowed.

This is a closed book, closed note exam. No calculators, phones or any electronic device are allowed. MCB 104 MIDTERM #2 October 23, 2013 ***IMPORTANT REMINDERS*** Print your name and ID# on every page of the exam. You will lose 0.5 point/page if you forget to do this. Name KEY If you need more space than

More information

Enzyme that uses RNA as a template to synthesize a complementary DNA

Enzyme that uses RNA as a template to synthesize a complementary DNA Biology 105: Introduction to Genetics PRACTICE FINAL EXAM 2006 Part I: Definitions Homology: Comparison of two or more protein or DNA sequence to ascertain similarities in sequences. If two genes have

More information

Chapter 19 Genetic Regulation of the Eukaryotic Genome. A. Bergeron AP Biology PCHS

Chapter 19 Genetic Regulation of the Eukaryotic Genome. A. Bergeron AP Biology PCHS Chapter 19 Genetic Regulation of the Eukaryotic Genome A. Bergeron AP Biology PCHS 2 Do Now - Eukaryotic Transcription Regulation The diagram below shows five genes (with their enhancers) from the genome

More information

SALSA MLPA probemix P267-A3 Dandy-Walker Malformation Lot A3-0317, Lot A

SALSA MLPA probemix P267-A3 Dandy-Walker Malformation Lot A3-0317, Lot A SALSA MLPA probemix P267-A3 Dandy-Walker Malformation Lot A3-0317, Lot A3-0813. Dandy-Walker malformation (DWM) is characterised by cerebellar hypoplasia and upward rotation of the cerebellar vermis, cystic

More information

Chapter 19. Control of Eukaryotic Genome. AP Biology

Chapter 19. Control of Eukaryotic Genome. AP Biology Chapter 19. Control of Eukaryotic Genome The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different, specialized functions?

More information

Lecture 2: Biology Basics Continued

Lecture 2: Biology Basics Continued Lecture 2: Biology Basics Continued Central Dogma DNA: The Code of Life The structure and the four genomic letters code for all living organisms Adenine, Guanine, Thymine, and Cytosine which pair A-T and

More information

Furthermore, 8 reference probes are included in this probemix, detecting several different autosomal chromosomal locations.

Furthermore, 8 reference probes are included in this probemix, detecting several different autosomal chromosomal locations. SALSA MLPA mix P328-A2 EYS Lot A2-0217. As compared to version A1, two reference s have been replaced and one length has been adjusted. Retinitis Pigmentosa-25 (RP25) is characterised by progressive peripheral

More information

Unit 7. Genetic Regulation, Development, and Biotechnology. AP Biology

Unit 7. Genetic Regulation, Development, and Biotechnology. AP Biology Unit 7 Genetic Regulation, Development, and Biotechnology The BIG Questions How are genes turned on & off in eukaryotes and prokaryotes? How do cells with the same genes differentiate to perform completely

More information

From Gene to Protein transcription, messenger RNA (mrna) translation, RNA processing triplet code, template strand, codons,

From Gene to Protein transcription, messenger RNA (mrna) translation, RNA processing triplet code, template strand, codons, From Gene to Protein I. Transcription and translation are the two main processes linking gene to protein. A. RNA is chemically similar to DNA, except that it contains ribose as its sugar and substitutes

More information

Eukaryotic gene expression

Eukaryotic gene expression Eukaryotic gene expression a hurdle-race through chromatin Eukaryotic gene expression a hurdle-race through chromatin In my previous article Histone chaperones: the builders of chromatin in the August

More information

From DNA to Protein: Genotype to Phenotype

From DNA to Protein: Genotype to Phenotype 12 From DNA to Protein: Genotype to Phenotype 12.1 What Is the Evidence that Genes Code for Proteins? The gene-enzyme relationship is one-gene, one-polypeptide relationship. Example: In hemoglobin, each

More information

Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology

Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology - The central dogma (principle) of molecular biology: Information from DNA are transcribed to mrna which will be further translated to synthesize

More information

Chapter 2. An Introduction to Genes and Genomes

Chapter 2. An Introduction to Genes and Genomes PowerPoint Lectures for Introduction to Biotechnology, Second Edition William J.Thieman and Michael A.Palladino Chapter 2 An Introduction to Genes and Genomes Lectures by Lara Dowland Chapter Contents

More information

MRC-Holland MLPA. Description version 11; 20 November 2015

MRC-Holland MLPA. Description version 11; 20 November 2015 SALSA MLPA probemix P310-B2 TCOF1 Lot B2-0614, B2-0511. As compared to version B1 (lot B1-0110), the 88 and 96 nt control fragments have been replaced (QDX2). Treacher Collins-Franceschetti 1 syndrome

More information

From DNA to Protein: Genotype to Phenotype

From DNA to Protein: Genotype to Phenotype 12 From DNA to Protein: Genotype to Phenotype 12.1 What Is the Evidence that Genes Code for Proteins? The gene-enzyme relationship is one-gene, one-polypeptide relationship. Example: In hemoglobin, each

More information

(c) 2014 Dr. Alice Heicklen & Dr. Deborah Mowshowitz, Columbia University, New York, NY. Last update 02/26/ :57 PM

(c) 2014 Dr. Alice Heicklen & Dr. Deborah Mowshowitz, Columbia University, New York, NY. Last update 02/26/ :57 PM C2006/F2402 '14 OUTLINE OF LECTURE #11 (c) 2014 Dr. Alice Heicklen & Dr. Deborah Mowshowitz, Columbia University, New York, NY. Last update 02/26/2014 12:57 PM Handouts: 10C -- Typical Eukaryotic Gene,

More information

INTRODUCTION TO MOLECULAR GENETICS. Andrew McQuillin Molecular Psychiatry Laboratory UCL Division of Psychiatry 22 Sept 2017

INTRODUCTION TO MOLECULAR GENETICS. Andrew McQuillin Molecular Psychiatry Laboratory UCL Division of Psychiatry 22 Sept 2017 INTRODUCTION TO MOLECULAR GENETICS Andrew McQuillin Molecular Psychiatry Laboratory UCL Division of Psychiatry 22 Sept 2017 Learning Objectives Understand: The distinction between Quantitative Genetic

More information

Branches of Genetics

Branches of Genetics Branches of Genetics 1. Transmission genetics Classical genetics or Mendelian genetics 2. Molecular genetics chromosomes, DNA, regulation of gene expression recombinant DNA, biotechnology, bioinformatics,

More information

Chapter 8: DNA and RNA

Chapter 8: DNA and RNA Chapter 8: DNA and RNA Lecture Outline Enger, E. D., Ross, F. C., & Bailey, D. B. (2012). Concepts in biology (14th ed.). New York: McGraw- Hill. 1 8-1 DNA and the Importance of Proteins Proteins play

More information

Integrated Course of HUMAN AND MEDICAL GENETICS

Integrated Course of HUMAN AND MEDICAL GENETICS Integrated Course of HUMAN AND MEDICAL GENETICS Scientific Fields: MEDICAL GENETICS (MED/03) APPLIED BIOLOGY (BIO/13) European Credit Transfer and Accumulation System = 7 Coordinator: Prof. BRUNELLA FRANCO,

More information

Gene Expression: Transcription, Translation, RNAs and the Genetic Code

Gene Expression: Transcription, Translation, RNAs and the Genetic Code Lecture 28-29 Gene Expression: Transcription, Translation, RNAs and the Genetic Code Central dogma of molecular biology During transcription, the information in a DNA sequence (a gene) is copied into a

More information

Differential Gene Expression

Differential Gene Expression Biology 4361 Developmental Biology Differential Gene Expression June 19, 2008 Differential Gene Expression Overview Chromatin structure Gene anatomy RNA processing and protein production Initiating transcription:

More information

B. Incorrect! Centromeric DNA is largely heterochromatin, which is inactive DNA.

B. Incorrect! Centromeric DNA is largely heterochromatin, which is inactive DNA. MCAT Biology - Problem Drill 06: Molecular Biology of Eukaryotes Question No. 1 of 10 1. Which type of DNA would have the highest level of expression? Question #01 (A) Heterochromatin. (B) Centromeric

More information

Protein Synthesis

Protein Synthesis HEBISD Student Expectations: Identify that RNA Is a nucleic acid with a single strand of nucleotides Contains the 5-carbon sugar ribose Contains the nitrogen bases A, G, C and U instead of T. The U is

More information

NUCLEOTIDE RESOLUTION STRUCTURAL VARIATION DETECTION USING NEXT- GENERATION WHOLE GENOME RESEQUENCING

NUCLEOTIDE RESOLUTION STRUCTURAL VARIATION DETECTION USING NEXT- GENERATION WHOLE GENOME RESEQUENCING NUCLEOTIDE RESOLUTION STRUCTURAL VARIATION DETECTION USING NEXT- GENERATION WHOLE GENOME RESEQUENCING Ken Chen, Ph.D. kchen@genome.wustl.edu The Genome Center, Washington University in St. Louis The path

More information

CELL BIOLOGY - CLUTCH CH. 7 - GENE EXPRESSION.

CELL BIOLOGY - CLUTCH CH. 7 - GENE EXPRESSION. !! www.clutchprep.com CONCEPT: CONTROL OF GENE EXPRESSION BASICS Gene expression is the process through which cells selectively to express some genes and not others Every cell in an organism is a clone

More information

GENETICS - CLUTCH CH.10 TRANSCRIPTION.

GENETICS - CLUTCH CH.10 TRANSCRIPTION. !! www.clutchprep.com CONCEPT: OVERVIEW OF TRANSCRIPTION Transcription is the process of using DNA as a template to RNA RNA polymerase is the enzyme that transcribes DNA - There are many different types

More information

Differential Gene Expression

Differential Gene Expression Biology 4361 - Developmental Biology Differential Gene Expression June 18, 2009 Differential Gene Expression Overview Chromatin structure Gene anatomy RNA processing and protein production Initiating transcription:

More information

How does the human genome stack up? Genomic Size. Genome Size. Number of Genes. Eukaryotic genomes are generally larger.

How does the human genome stack up? Genomic Size. Genome Size. Number of Genes. Eukaryotic genomes are generally larger. How does the human genome stack up? Organism Human (Homo sapiens) Laboratory mouse (M. musculus) Mustard weed (A. thaliana) Roundworm (C. elegans) Fruit fly (D. melanogaster) Yeast (S. cerevisiae) Bacterium

More information

Lecture 9. Eukaryotic gene regulation: DNA METHYLATION

Lecture 9. Eukaryotic gene regulation: DNA METHYLATION Lecture 9 Eukaryotic gene regulation: DNA METHYLATION Recap.. Eukaryotic RNA polymerases Core promoter elements General transcription factors Enhancers and upstream activation sequences Transcriptional

More information

MRC-Holland MLPA. Description version 09; 28 April 2016

MRC-Holland MLPA. Description version 09; 28 April 2016 SALSA MLPA probemix P244-C1 AIP-MEN1-CDKN1B Lot C1-0815, C1-1112. Note that the name of the product has been changed to P244 AIP-MEN1-CDKN1B (from lot C1-1112 onwards). Multiple endocrine neoplasia (MEN)

More information

Related SALSA MLPA kits P190 CHEK2: Breast cancer susceptibility, genes included: CHEK2, ATM, BRCA1&2, PTEN, TP53

Related SALSA MLPA kits P190 CHEK2: Breast cancer susceptibility, genes included: CHEK2, ATM, BRCA1&2, PTEN, TP53 SALSA MLPA KIT P056-A2 TP53 Lot 1108. One reference probe has been replaced, five probes have a small change in length (but no change in sequence detected) and four extra control fragments at 88-96-100-105

More information

Agilent NGS Solutions : Addressing Today s Challenges

Agilent NGS Solutions : Addressing Today s Challenges Agilent NGS Solutions : Addressing Today s Challenges Charmian Cher, Ph.D Director, Global Marketing Programs 1 10 years of Next-Gen Sequencing 2003 Completion of the Human Genome Project 2004 Pyrosequencing

More information

The gene. Fig. 1. The general structure of gene

The gene. Fig. 1. The general structure of gene The gene is the basic unit of heredity and carries the genetic information for a given protein and/or RNA molecule. In biochemical terms a gene represents a fragment of deoxyribonucleic acid (DNA), which

More information

Degenerate site - twofold degenerate site - fourfold degenerate site

Degenerate site - twofold degenerate site - fourfold degenerate site Genetic code Codon: triple base pairs defining each amino acid. Why genetic code is triple? double code represents 4 2 = 16 different information triple code: 4 3 = 64 (two much to represent 20 amino acids)

More information

SALSA MLPA probemix P074-A3 Androgen Receptor (AR) Lot A Compared to previous lot A2-0712, three reference probes have been replaced.

SALSA MLPA probemix P074-A3 Androgen Receptor (AR) Lot A Compared to previous lot A2-0712, three reference probes have been replaced. SALSA MLPA probemix P074-A3 Androgen Receptor (AR) Lot A3-0814. Compared to previous lot A2-0712, three reference probes have been replaced. The androgen insensitivity syndrome (AIS), formerly known as

More information

Transcription Eukaryotic Cells

Transcription Eukaryotic Cells Transcription Eukaryotic Cells Packet #20 1 Introduction Transcription is the process in which genetic information, stored in a strand of DNA (gene), is copied into a strand of RNA. Protein-encoding genes

More information

The Nature of Genes. The Nature of Genes. The Nature of Genes. The Nature of Genes. The Nature of Genes. The Genetic Code. Genes and How They Work

The Nature of Genes. The Nature of Genes. The Nature of Genes. The Nature of Genes. The Nature of Genes. The Genetic Code. Genes and How They Work Genes and How They Work Chapter 15 Early ideas to explain how genes work came from studying human diseases. Archibald Garrod studied alkaptonuria, 1902 Garrod recognized that the disease is inherited via

More information

Outline. General principles of clonal sequencing Analysis principles Applications CNV analysis Genome architecture

Outline. General principles of clonal sequencing Analysis principles Applications CNV analysis Genome architecture The use of new sequencing technologies for genome analysis Chris Mattocks National Genetics Reference Laboratory (Wessex) NGRL (Wessex) 2008 Outline General principles of clonal sequencing Analysis principles

More information

MRC-Holland MLPA. Description version 08;

MRC-Holland MLPA. Description version 08; SALSA MLPA mix P075-B1 TCF4-FOXG1 Lot B1-0614: As compared to version A1 (lot A1-0510), seven target specific s have been replaced and eight new s have been included. Furthermore, three reference s have

More information

Molecular Genetics of Disease and the Human Genome Project

Molecular Genetics of Disease and the Human Genome Project 9 Molecular Genetics of Disease and the Human Genome Project Fig. 1. The 23 chromosomes in the human genome. There are 22 autosomes (chromosomes 1 to 22) and two sex chromosomes (X and Y). Females inherit

More information

Name Class Date. Practice Test

Name Class Date. Practice Test Name Class Date 12 DNA Practice Test Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. What do bacteriophages infect? a. mice. c. viruses.

More information

Problem Set 2B Name and Lab Section:

Problem Set 2B Name and Lab Section: Problem Set 2B 9-26-06 Name and Lab Section: 1. Define each of the following rearrangements (mutations) (use one phrase or sentence for each). Then describe what kind of chromosomal structure you might

More information

From Gene to Protein. Chapter 17

From Gene to Protein. Chapter 17 From Gene to Protein Chapter 17 What you need to know: The key terms: gene expression, transcription, and translation. The major events of transcription. How eukaryotic cells modify RNA after transcription.

More information

12 1 DNA. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall:

12 1 DNA. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall: 12 1 DNA 1 of 37 http://www.biologyjunction.com/powerpoints_dragonfly_book_prent.htm 12 1 DNA Griffith and Transformation Griffith and Transformation In 1928, Fredrick Griffith was trying to learn how

More information

Bio11 Announcements. Ch 21: DNA Biology and Technology. DNA Functions. DNA and RNA Structure. How do DNA and RNA differ? What are genes?

Bio11 Announcements. Ch 21: DNA Biology and Technology. DNA Functions. DNA and RNA Structure. How do DNA and RNA differ? What are genes? Bio11 Announcements TODAY Genetics (review) and quiz (CP #4) Structure and function of DNA Extra credit due today Next week in lab: Case study presentations Following week: Lab Quiz 2 Ch 21: DNA Biology

More information

CHAPTER 5 Principle of Genetics Review

CHAPTER 5 Principle of Genetics Review CHAPTER 5 Principle of Genetics Review I. Mendel s Investigations Gregor Johann Mendel Hybridized peas 1856-1864 Formulated Principles of Heredity published in 1866 II. Chromosomal Basis of Inheritance

More information

Chapter 18. Regulation of Gene Expression

Chapter 18. Regulation of Gene Expression Chapter 18 Regulation of Gene Expression 2007-2008 Control of Prokaryotic (Bacterial) Genes 2007- Bacterial metabolism Bacteria need to respond quickly to changes in their environment STOP GO if they have

More information

CS273B: Deep Learning in Genomics and Biomedicine. Recitation 1 30/9/2016

CS273B: Deep Learning in Genomics and Biomedicine. Recitation 1 30/9/2016 CS273B: Deep Learning in Genomics and Biomedicine. Recitation 1 30/9/2016 Topics Genetic variation Population structure Linkage disequilibrium Natural disease variants Genome Wide Association Studies Gene

More information

Gene expression DNA RNA. Protein DNA. Replication. Initiation Elongation Processing Export. DNA RNA Protein. Transcription. Degradation.

Gene expression DNA RNA. Protein DNA. Replication. Initiation Elongation Processing Export. DNA RNA Protein. Transcription. Degradation. Gene expression DNA RNA Protein DNA DNA Degradation RNA Degradation Protein Replication Transcription Translation Initiation Elongation Processing Export Initiation Elongation Processing Targeting Chapter

More information

MRC-Holland MLPA. Description version 10; 03 August 2015

MRC-Holland MLPA. Description version 10; 03 August 2015 SALSA MLPA probemix P278-C1 PCCA Lot C1-0712. As compared to lot B2-0409, five reference probes have been replaced and two reference probes have been removed. Also, QDX2 control fragments have been added

More information

TRANSCRIPTION AND PROCESSING OF RNA

TRANSCRIPTION AND PROCESSING OF RNA TRANSCRIPTION AND PROCESSING OF RNA 1. The steps of gene expression. 2. General characterization of transcription: steps, components of transcription apparatus. 3. Transcription of eukaryotic structural

More information

DNA Evolution of knowledge about gene. Contains information about RNAs and proteins. Polynucleotide chains; Double stranded molecule;

DNA Evolution of knowledge about gene. Contains information about RNAs and proteins. Polynucleotide chains; Double stranded molecule; Evolution of knowledge about gene G. Mendel Hereditary factors W.Johannsen, 1909 G.W.Beadle, E.L.Tatum, 1945 Ingram, 1957 Actual concepts The gene hereditary unit located in chromosomes Hypotheses One

More information

American Board of Medical Genetics and Genomics

American Board of Medical Genetics and Genomics American Board of Medical Genetics and Genomics Logbook Guidelines for Certification in Laboratory Genetics and Genomics for the 2019 Examination as of 11/10/2016 Purpose: The purpose of the logbook is

More information

Practice Exam A. Briefly describe how IL-25 treatment might be able to help this responder subgroup of liver cancer patients.

Practice Exam A. Briefly describe how IL-25 treatment might be able to help this responder subgroup of liver cancer patients. Practice Exam 2007 1. A special JAK-STAT signaling system (JAK5-STAT5) was recently identified in which a gene called TS5 becomes selectively transcribed and expressed in the liver upon induction by a

More information

Delve AP Biology Lecture 7: 10/30/11 Melissa Ko and Anne Huang

Delve AP Biology Lecture 7: 10/30/11 Melissa Ko and Anne Huang Today s Agenda: I. DNA Structure II. DNA Replication III. DNA Proofreading and Repair IV. The Central Dogma V. Transcription VI. Post-transcriptional Modifications Delve AP Biology Lecture 7: 10/30/11

More information

الحمد هلل رب العالميه الذي هداوا لهذا وما كىا لىهتدي لىال أن هداوا اهلل والصالة والسالم على أشزف األوبياء. 222Cell Biolgy 1

الحمد هلل رب العالميه الذي هداوا لهذا وما كىا لىهتدي لىال أن هداوا اهلل والصالة والسالم على أشزف األوبياء. 222Cell Biolgy 1 الحمد هلل رب العالميه الذي هداوا لهذا وما كىا لىهتدي لىال أن هداوا اهلل والصالة والسالم على أشزف األوبياء 222Cell Biolgy 1 Lecture 13 222Cell Biolgy 2 Nucleosome Nucleosomes form the fundamental repeating

More information

Complementary Technologies for Precision Genetic Analysis

Complementary Technologies for Precision Genetic Analysis Complementary NGS, CGH and Workflow Featured Publication Zhu, J. et al. Duplication of C7orf58, WNT16 and FAM3C in an obese female with a t(7;22)(q32.1;q11.2) chromosomal translocation and clinical features

More information

MRC-Holland MLPA. Description version 10; 17 November 2016

MRC-Holland MLPA. Description version 10; 17 November 2016 SALSA MLPA probemix P058-A3 IGHMBP2 Lot A3-1016. As compared to the previous lot A2-0412, one reference probe has been removed and one replaced. In addition, one probe length has been adjusted. Spinal

More information

CHAPTER 18 LECTURE NOTES: CONTROL OF GENE EXPRESSION PART B: CONTROL IN EUKARYOTES

CHAPTER 18 LECTURE NOTES: CONTROL OF GENE EXPRESSION PART B: CONTROL IN EUKARYOTES CHAPTER 18 LECTURE NOTES: CONTROL OF GENE EXPRESSION PART B: CONTROL IN EUKARYOTES I. Introduction A. No operon structures in eukaryotes B. Regulation of gene expression is frequently tissue specific.

More information

How to Use This Presentation

How to Use This Presentation How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

Genetics BOE approved April 15, 2010

Genetics BOE approved April 15, 2010 Genetics BOE approved April 15, 2010 Learner Objective: Cells go through a natural progression of events to produce new cells. A. Cellular organelles work together to perform a specific function. B. The

More information

SALSA MLPA probemix P350-B2 CLCN1-KCNJ2 Lot B As compared to version B1-0711, one reference probe has been removed.

SALSA MLPA probemix P350-B2 CLCN1-KCNJ2 Lot B As compared to version B1-0711, one reference probe has been removed. SALSA MLPA probemix P350-B2 CLCN1-KCNJ2 Lot B2-1015. As compared to version B1-0711, one reference probe has been removed. Myotonia congenita is characterised by muscle stiffness and delayed relaxation

More information

CELL BIOLOGY: DNA. Generalized nucleotide structure: NUCLEOTIDES: Each nucleotide monomer is made up of three linked molecules:

CELL BIOLOGY: DNA. Generalized nucleotide structure: NUCLEOTIDES: Each nucleotide monomer is made up of three linked molecules: BIOLOGY 12 CELL BIOLOGY: DNA NAME: IMPORTANT FACTS: Nucleic acids are organic compounds found in all living cells and viruses. Two classes of nucleic acids: 1. DNA = ; found in the nucleus only. 2. RNA

More information

In addition, 10 reference probes are included in this probemix, detecting several different autosomal chromosomal locations.

In addition, 10 reference probes are included in this probemix, detecting several different autosomal chromosomal locations. SALSA MLPA probemix P179-B1 Limb Malformations-1 Lot B1-1014, B1-0611. As compared to the previous lot A2 (lot A2-0311), one GLI3 and three ROR2 probes have been replaced. Four extra GLI3 probes and one

More information

Unit 1: DNA and the Genome. Sub-Topic (1.3) Gene Expression

Unit 1: DNA and the Genome. Sub-Topic (1.3) Gene Expression Unit 1: DNA and the Genome Sub-Topic (1.3) Gene Expression Unit 1: DNA and the Genome Sub-Topic (1.3) Gene Expression On completion of this subtopic I will be able to State the meanings of the terms genotype,

More information

BIOLOGY. Chapter 16 GenesExpression

BIOLOGY. Chapter 16 GenesExpression BIOLOGY Chapter 16 GenesExpression CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 18 Gene Expression 2014 Pearson Education, Inc. Figure 16.1 Differential Gene Expression results

More information

Fig Ch 17: From Gene to Protein

Fig Ch 17: From Gene to Protein Fig. 17-1 Ch 17: From Gene to Protein Basic Principles of Transcription and Translation RNA is the intermediate between genes and the proteins for which they code Transcription is the synthesis of RNA

More information

Exome Sequencing Exome sequencing is a technique that is used to examine all of the protein-coding regions of the genome.

Exome Sequencing Exome sequencing is a technique that is used to examine all of the protein-coding regions of the genome. Glossary of Terms Genetics is a term that refers to the study of genes and their role in inheritance the way certain traits are passed down from one generation to another. Genomics is the study of all

More information

Genome Architecture Structural Subdivisons

Genome Architecture Structural Subdivisons Lecture 4 Hierarchical Organization of the Genome by John R. Finnerty Genome Architecture Structural Subdivisons 1. Nucleotide : monomer building block of DNA 2. DNA : polymer string of nucleotides 3.

More information