Case History: Anaerobic and Aerobic Treatment of Textile Wastes at South Carolina Textile Plants. Introduction

Size: px
Start display at page:

Download "Case History: Anaerobic and Aerobic Treatment of Textile Wastes at South Carolina Textile Plants. Introduction"

Transcription

1 Case History: Anaerobic and Aerobic Treatment of Textile Wastes at South Carolina Textile Plants Charles C. Ross, P.E. Environmental Treatment Systems, Inc. Atlanta, Georgia John S. Cox, P.E. John S. Cox and Associates, Inc. Pickens, South Carolina William A. Dunn, P.E. Dunn and Associates, Inc. Easley, South Carolina Introduction Bleaching and dyeing operations at textile facilities produce significant amounts of wastewater that can be fairly high in biochemical oxygen demand (BOD,,, chemical oxygen demand (COD), oil and grease (O&G) and total suspended solids (TSS). Wastewater metals concentrations can also be high depending on the type of dyes used. This is especially true for dyes containing copper. Over the years, many textile facilities have had to install wastewater pretreatment systems to reduce their load on municipal wastewater treatment plants or treatment systems for direct discharge to a receiving stream. In many cases, the primary objective is the removal of BOD, andor COD. As illustrated in Table 1, there are a number of sources of wastewater BOD, within a textile facility. Wastewater BOD, and COD concentrations obviously will vary with the types of processes employed, the amount of waster used and the amount of fabric processed. From a pretreatment design point-of-view, this wastewater presents some significant challenges: The high wastewater ph often requires neutralization for most treatment processes. Lint and fiber particles can create clogging problems for pumps and piping. A significant amount of the BOD, or COD is in a soluble form which typically requires biological treatment for removal. A typically low BOD,/COD ratio creates problems for many biological systems. The wastewater typically is nutrient deficient which also creates problems for many biological systems. The wastewater is often quite hot which can create problems with pumping and oxygen transfer in aerobic systems. i

2 Table ' Process Lb. BOD, per 100 Lb. Fabric cesses Desize (woven only) Enzyme/starch StarcWCMC mix PVOH or CMC only Scouring Bleaching Peroxide Hyperchlori te Mercerizing No caustic recovery With caustic recovery Heat setting (synthetic only) I Needless to say, these wastewater characteristics present a challenge to anyone considering the design of a textile wastewater treatment system. This paper provides information on the design and installation of the wastewater pretreatment systems for two different South Carolina textile plants: one an existing aerobic treatment system in operation since 1990 (Case Study I) and the othaa soon to be completed anaerobic treatment system (Case Study 11). Case Study I: Aerobic Pretreatment of a Bleaching and Dyeing Wastewater Background In this case study, the facility is a manufacturer of Schiffli machine-embroidered textiles which results in the generation of wastewater from a number of processes: jet dye, embroidery tenter, fabric tenter, bleach range and singer. In 1990, the facility was required to install a pretreatment system because of the problems the high strength wastewater caused at the local municipal wastewater treatment plant. By 1994, the plant's wastewater had increased in strength resulting in a 30% increase in COD loading on the system and the resulting failure to meet pretreatment requirements. This resulted in an upgrade of the facility which is in operation today. The design 2

3 "-,, parameters of this facility in 1994 are shown in Table 2. Flow, gpd Parameter BOD,, mg/l TSS, mg/l COD, mg/l PH, su Influent Effluent Design Permit' 100, ,000 3, , '3.- System Design In 1 990, the pretreatment system included ph adjustment, screening, flow equalization, aerobic treatment (biotower/roughing filter), clarification, aerobic treatment (activated sludge system with internal clarifier), aerobic sludge digestion and sludge dewatering. In 1994, the facility was upgraded to include a 41'-0" circular clarifier added to the end of the process stream for improving biological solids removal. A description of the existing pretreatment facility is provided in Figure 1 and detailed in Table 3. The ph adjustment system consists of a diffused air mixing system in a 12,000 gallon tank. Sulfuric acid is dosed via a metering pump based on the control signal from a ph controller with an electrode in the tank. The neutralized wastewater is pumped through a lint screen and on into a 60,000 equalization tank. The equalization tank is mixed and aerated using a diffused air system and a recycle line from the pumps transferring wastewater to the biotower. The recycle line has an air eductor in-line for additional aeration prior to the biotower. Phosphoric acid is also added to the equalization tank to provide phosphorous for biomass growth in the aerobic systems downstream. The biotower (roughing filter) consists of a 48'-0" dia. X 22'-0'' high tank shell containing 36,000 ft? of NSW Sessil media for aerobic biomass attachment. Wastewater is distributed through a circular rotary distributor which evenly spreads the wastewater over the media bed below. The media consists of bundled strands of reinforced polyethylene strips which serve to improve wastewater distribution and biomass attachment as the wastewater trickles down from the top of the biotower. Treated wastewater and sloughing biomass from the media collects in the bottom of the biotower and gravity flows through a splitter box and on to a circular clarifier. The splitter box serves to return wastewater back to the equalization tank so that the biotower is in continuous operation even during periods of low plant flow. The clarifier serves to remove biosolids from the wastewater prior to entry into the activated sludge system. J 3

4 - ph Adjustment Lint screening Equalization Process Aerobic treatment- Biotower/roughing filter Description 12,000 gallon tank with diffused air mixing; ph electrode and controller to control sulfuric acid metering pump stainless steel basket strainer 60,000 gallon basin, diffused air mixing, nutrient (phosphoric acid) addition 48'-0'' dia. X 22'-0" high biotower with 36,000 ft3 of NSW Sessil media and rotary distributor I Clarification I 13'-0" dia. circular mechanical clarifier I Activated sludge I Clarification I Aerobic sludge digestion 1 - Sludge dewatering 100,000 gallon extended aeration plant (500 scfin) with three hopper clarifiers 4 1 '-0" dia. circular mechanical clarifier two 50,000 gallon aerobic digesters (250 scfm each) sludge conditioning tank with 30 ft3 plate and frame filter press "\ I The activated sludge system consists of a recycled 100,000 gallon extended aeration plant with 500 scfin of blower capacity. The unit has three internal hopper clarifiers for some biological solids removal for recycle or wasting. The wastewater passes through the activated sludge system and on to a 4 1'-0'' circular clarifier which was added in 1994 to improve biosolids recovery. After clarification, the treated wastewater is discharged to the local municipal sewer. All of the recovered solids from either the activated sludge clarifier hoppers and the last clarifier are either returned to the activated sludge system to maintain the mixed liquor suspended solids concentrations or are wasted to one of two 50,000 gallon aerobic digesters. The clarified sludge from the first clarifier (after the biotower) is also wasted to the digesters. Wasted activated sludge (WAS) in the digesters is stabilized after several days of aeration within the digesters. The digested sludge is wasted every shift and dewatered using a plate-in-frame filter press using a metal salt and cationic polymer to improve separation. Supernatant from the digesters and fitrate from the filter press is returned to the equalization tank. Performance Since 1994, the system has met the discharge requirements of the municipal sewer district as illustrated in the effluent values in Table 4 compared to the permit limits in Table 2. Removals for BOD, were fairly high at 84% followed by COD and TSS removals of 69.7 and 60.0%, respectively. 4

5 1;; :..., i 1:....,,... lit... I:, 1... i k. 5!I.... P E 2 T ci J

6 Influent Effluent Parameter Actual' Actual' Flow, gpd 82,330 82,330 BOD5, mg/l 2, TSS, mg1l COD, mg/l 8, 026 2,433 PH, su unknown Removal % N/A NIA The plant reports that the operating cost for the system is in the range of $5.OO per 1,000 gallons treated which includes all electrical, labor, chemical and sludge management costs. The facility generates roughly 40 tons of dewatered solids (1 8% TS) each week for disposal. Operational problems have been minimized over the last three years with the exception of sludge disposal and the ability to maintain high dissolved oxygen levels throughout the system due to the high COD concentrations in the wastewater. Case Study II: Anaerobic Pretreatment of a Bleaching and Dyeing Wastewater Background A new South Carolina textile facility to be built for the bleaching and dyeing of woven fabrics was required by the local regulatory authority to install a pretreatment system so that it would meet certain pretreatment limits (Table 5) soon after it began operation. Because most of the wastewater BOD, and COD was expected to be in a soluble form, the facility evaluated a number of biological treatment technologies including activated sludge and anaerobic treatment to meet these requirements. Since the facility was under construction and not generating wastewater, wastewater from a similar facility was used for anaerobic treatability testing. As indicated in Table 6 and Figure 2, the series of batch anaerobic tests confirmed that anaerobic treatment was a technically viable option with COD removals of 80% and anticipated BOD, removals of >85%. 6

7 Parameter Influent Design Influent Actual' Effluent Permit2 Flow, gpd 125,000 BOD,, msn, 4,500 TSS, mg/l 2,500 COD, mg/l 15, , ,000 1, ,210 NIA :I.- $35 E30 U U =20 n Y cn"10 0 Figure 2. Anaerobic Treatability Test Gas Production t... CUMMULATIVE GAS PRODUCTION 33.5ML... 1 fc ,'.....I ML... t ML... --F-T 2.OML 0 5 IO TIME, DAYS I + REACTOR 1 -c REACTOR 2 i '. -E- REACTOR 6 + REACTOR 1- REACTOR 1 7

8 Fintex none 5.64 na na na 2 na Glucose na na na 33.5 na The anaerobic process was selected for primarily three reasons: 1) High COD loading rates. The wastewater COD concentrations were expected to be as high as 15,000 mg/l which are more conducive to anaerobic treatment when compared to aerobic treatment. The anaerobic process would accommodate higher organic loadings while producing less sludge and requiring lower energy and nutrient inputs. Low sludge production. An anaerobic process will typically generate roughly 10% of the biosolids mass that an aerobic system would under similar conditions. Sludge dewatering and disposal can be a significant portion of the operating cost for a treatment system. 3) Energy costs. Since an anaerobic process does not require aeration, the electrical operating costs would be significantly lower. Furthermore, the wastewater was predicted to be discharged at a temperature of F which is an optimal temperature range for mesophillic anaerobic treatment. Methane gas production from the anaerobic degradation of the wastewater organics would also generate roughly 60,000 cubic feet of methane per day (2.5 million BTUH) which could be used by the plant for an energy source. Design A hybrid anaerobic lagoon (HAL) process was designed and the system contracted for installation based on the following: 1) Loading requirements. The design was based on the results of the treatability tests which indicated most of the treatment would take place within 5 days of contact in 8

9 the lagoon (Figure 2 and Table 6). This indicated that a lagoon with a minimum 10 day HRT would provide ample time for treatment. Based on a design COD concentration of 15,000 mg/l, this would translate into an organic loading rate of 1.5 kg COD per m3 of lagoon volume per day. This loading rate is within the traditional design loadings of an ambient temperature anaerobic lagoon (0.5 to 2.0 kg COD/m3-d) and well within the acceptable range of loading rates for a mesophilic temperature system (>80"F). 2) Solids concentration. The wastewater TSS concentrations were expected to be as high as 4,000 mg/l which could be a problem for high rate anaerobic processes employing fixed film or sludge bed designs due to fouling and low solids retention time. Therefore, a hybrid anaerobic lagoon (HAL) process was selected which would be capable of retaining these solids for further reduction. Furthermore, the large lagoon HRT provides high solids retention times and volume for sludge buildup resulting in infrequent solids disposal. 3) Space. The facility had ample space for the installation of the hybrid anaerobic lagoon. Otherwise, a contact type of anaerobic system with a smaller footprint would have been required. - 4) Flow equalization. The textile plant was required by the local sewer authority to provide a constant, equalized flow 24 hours per day over 7 days per week. The large lagoon basin allowed the accumulation of wastewater during the week for subsequent controlled discharge during the weekend when the plant was not operating. Process Description As illustrated in Figure 3 and Table 7, the pretreatment system is relatively simple. Wastewater is transferred from the textile plant to a ph adjustment tank via a lift station. Sulfuric acid and/or caustic is added based on a ph control setting of roughly 7.0. The tank is mixed with a submersible mechanical mixer. As the wastewater is neutralized, light doses of nutrients in the form of aqua ammonia and phosphoric acid are added to encourage anaerobic cell growth. After neutralization and nutrient addition, the wastewater overflows to the influent end of the anaerobic basin. The wastewater flows through four different cells in the system that are defined by three baffle walls across and down the length of the basin. Anaerobic biomass is kept in suspension within the basin by a sludge recycle system which also serves to return settled sludge from the effluent cell to the influent cells. An effluent recycle system is also provided to return treated effluent back to the ph adjustment tank to mix with the incoming wastewater. As the wastewater is discharged from the basin, the ph is monitored and caustic added if needed to maintain a minimum ph of 6.0. The effluent is then routed through a metering manhole with a Parshall flume for flow monitoring via an ultrasonic flow monitor. The wastewater then 9

10 Anaerobic Lagoon (HAL) Gas recovery Effluent monitoring Sludge handling baffled cells; sludge recycling and effluent recycling Floating covers over each baffled cell to retain gas and contain odors; blower system with controls to transfer gas fiom under covers to flare system ph electrode and controller to control caustic metering pump; Parshall flume and ultrasonic flow meter to monitor discharge to city sludge is allowed to settle and digest within basin for periodic recovery through internal piping for contract dewatering and disposal of biosolids Based on a biomass yield of 0.13 lbs of VSS/lb COD removed, it is anticipated that roughly 1,884 gallons of sludge at 5% TS would be generated each day which would be retained by the sludge zone of the lagoon. Assuming that 25% of the lagoon volume is available for retaining this daily sludge volume, there would be roughly 166 days (>5 months) of sludge storage before removal is required. This predicted sludge wasting cycle is likely low because the very long SRTs (>625 d) will maximize the endogenous destruction of settled biomass, further reducing 10

11 6- IL... n Figure 3: Process Diagram for Case Study!I: Anaerobic Pretreatment System 11

12 the amount of sludge generated for disposal. For the sludge that will be removed for disposal, contact has been made with a local firm for sludge dewatering and disposal. On a contract basis, the firm would periodically come to the site and remove sludge from the sludge draw-off ports inside the lagoon basin, dewater it via a trailer mounted belt press and collect the solids in a bin for subsequent deposition in an approved landfill. Filtrate from the belt press would be returned to the influent headworks of the lagoon. Appropriate documentation including manifests would be maintained during the sludge removal process. ) The system is currently in the final stages of installation and will begin start up the end of April. It is expected that the system will be fully operational by June of References Smith, B., Identification and Reduction of Pollution Prevention Sources in Textile Wet Processing. Pollution Prevention Pays Program, Raleigh, NC. Richardson, S., Conversations and internal reports. 12

Palmer Wastewater Treatment Plant Environmental Impacts. A summary of the impacts of this treatment alternative are listed below:

Palmer Wastewater Treatment Plant Environmental Impacts. A summary of the impacts of this treatment alternative are listed below: 6.1.3 Environmental Impacts A summary of the impacts of this treatment alternative are listed below: 1. The Matanuska River will receive treated effluent as it currently does. 2. Effluent quality would

More information

BIOLOGICAL WASTEWATER BASICS

BIOLOGICAL WASTEWATER BASICS BIOLOGICAL WASTEWATER BASICS PRESENTATION GOALS EXPLAIN DIFFERENT TYPES OF WASTEWATER EXPLAIN THE DIFFERENT BIOLOGICAL SYSTEMS AND HOW THEY FUNCTION. COMPARE AND CONTRAST AEROBIC AND ANAEROBIC SYSTEMS

More information

W O C H H O L Z R E G I O N A L W A T E R R E C L A M A T I O N F A C I L I T Y O V E R V I E W

W O C H H O L Z R E G I O N A L W A T E R R E C L A M A T I O N F A C I L I T Y O V E R V I E W Facility Overview The recently upgraded and expanded Henry N. Wochholz Regional Water Reclamation Facility (WRWRF) treats domestic wastewater generated from the Yucaipa-Calimesa service area. The WRWRF

More information

Wastewater Treatment. Where does wastewater go when it leaves your house?

Wastewater Treatment. Where does wastewater go when it leaves your house? Wastewater Treatment Where does wastewater go when it leaves your house? Let s s take a look The process includes: Collection of wastewater Primary Treatment Secondary Treatment Solids Handling Influent

More information

WASTEWATER DEPARTMENT. Bentonville Wastewater Treatment Plant Facts:

WASTEWATER DEPARTMENT. Bentonville Wastewater Treatment Plant Facts: Mission: The mission of the Bentonville Wastewater Treatment Utility and staff is to protect public health and the environment through the effective treatment of wastewater. Effective wastewater treatment

More information

Energy Optimized Resource Recovery Project Presented By: Curtis Czarnecki, P.E.

Energy Optimized Resource Recovery Project Presented By: Curtis Czarnecki, P.E. Kenosha Wastewater Treatment Plant Energy Optimized Resource Recovery Project Presented By: Curtis Czarnecki, P.E. Kenosha Water Utility March 22, 2016 WWTP Service Area Overview Population: 110,000 Service

More information

City of Elk River Wastewater Treatment Facility Improvements. Achieving Wastewater Treatment Goals

City of Elk River Wastewater Treatment Facility Improvements. Achieving Wastewater Treatment Goals City of Elk River Wastewater Treatment Facility Improvements Achieving Wastewater Treatment Goals By Tejpal Bala, P.E. Bolton & Menk, Inc. The City of Elk River received a new NPDES permit and the existing

More information

Duffin Creek Water Pollution Control Plant Technical Information

Duffin Creek Water Pollution Control Plant Technical Information Duffin Creek Water Pollution Control Plant Technical Information Plant History The Duffin Creek Water Pollution Control Plant (WPCP) is located on the northern shore of Lake Ontario in the City of Pickering

More information

Wastewater Treatment Processes

Wastewater Treatment Processes Wastewater Treatment Processes CEL212 Environmental Engineering (2 nd Semester 2010-2011) Dr. Arun Kumar (arunku@civil.iitd.ac.in) Department of Civil Engineering Indian Institute of Technology (Delhi)

More information

BEING GOOD STEWARDS: IMPROVING EFFLUENT QUALITY ON A BARRIER ISLAND. 1.0 Executive Summary

BEING GOOD STEWARDS: IMPROVING EFFLUENT QUALITY ON A BARRIER ISLAND. 1.0 Executive Summary BEING GOOD STEWARDS: IMPROVING EFFLUENT QUALITY ON A BARRIER ISLAND Brett T. Messner, PE, Tetra Tech, Inc., 201 E Pine St, Suite 1000, Orlando, FL 32801 Brett.Messner@tetratech.com, Ph: 239-851-1225 Fred

More information

TWO YEARS OF BIOLOGICAL PHOSPHORUS REMOVAL WITH AN ADVANCED MSBR SYSTEM AT THE SHENZHEN YANTIAN WASTEWATER TREATMENT PLANT

TWO YEARS OF BIOLOGICAL PHOSPHORUS REMOVAL WITH AN ADVANCED MSBR SYSTEM AT THE SHENZHEN YANTIAN WASTEWATER TREATMENT PLANT TWO YEARS OF BIOLOGICAL PHOSPHORUS REMOVAL WITH AN ADVANCED MSBR SYSTEM AT THE SHENZHEN YANTIAN WASTEWATER TREATMENT PLANT Chester Yang, Ph.D., Gaowei Gu, Baowei Li, Hongyuan Li, Wanshen Lu, Lloyd Johnson,

More information

Module 1: Introduction to Wastewater Treatment Answer Key

Module 1: Introduction to Wastewater Treatment Answer Key Module 1: Introduction to Wastewater Treatment Answer Key What are some examples of different interest s various audiences may have? Officials of regulatory agencies or other operators would want to be

More information

2015 HDR, Inc., all rights reserved.

2015 HDR, Inc., all rights reserved. 2015 HDR, Inc., all rights reserved. Hastings Utilities Water Pollution Control Facility Improvements Brian Bakke, HDR ASCE Environmental Conference 4/6/2017 Review Existing Facilities Need for the Project

More information

Kenosha Wastewater Treatment Plant - Energy Optimized Resource Recovery Project

Kenosha Wastewater Treatment Plant - Energy Optimized Resource Recovery Project Kenosha Wastewater Treatment Plant - Energy Optimized Resource Recovery Project Prepared By: Curt Czarnecki, P.E. Kenosha Water Utility Presented By: Joseph Hughes, P.E. Centrisys Corporation MIWEA June

More information

We Know Water. AnoxKaldnes. Moving Bed Biofilm Reactor (MBBR) Integrated Fixed-Film Activated Sludge (IFAS) and ANITA Mox Deammonification

We Know Water. AnoxKaldnes. Moving Bed Biofilm Reactor (MBBR) Integrated Fixed-Film Activated Sludge (IFAS) and ANITA Mox Deammonification We Know Water AnoxKaldnes Moving Bed Biofilm Reactor (MBBR) Integrated Fixed-Film Activated Sludge (IFAS) and ANITA Mox Deammonification WATER TECHNOLOGIES AnoxKaldnes MBBR and Hybas Processes AnoxKaldnes

More information

Advantages & Applications of MBBR Technologies

Advantages & Applications of MBBR Technologies Advantages & Applications of MBBR Technologies Wastewater Technologies Attached Growth Suspended Growth Static Fixed film Trickling filters Rope media Web media Biological active filters (BAF) Dynamic

More information

SIMPLE and FLEXIBLE ENERGY SAVINGS And PERFORMANCE ENHANCEMENT for OXIDATION DITCH UPGRADES

SIMPLE and FLEXIBLE ENERGY SAVINGS And PERFORMANCE ENHANCEMENT for OXIDATION DITCH UPGRADES SIMPLE and FLEXIBLE ENERGY SAVINGS And PERFORMANCE ENHANCEMENT for OXIDATION DITCH UPGRADES Oxidation ditches are very popular wastewater treatment processes for small to medium sized municipalities that

More information

Winery FAST & Floating FAST

Winery FAST & Floating FAST Aerobic Treatment Technologies for the Wine Industry Winery FAST & Floating FAST Presented by: Joe Gill Smith & Loveless New Zealand, Ltd. Smith & Loveless Inc. Founded 1946 Based in Kansas City Manufacturing

More information

ATTACHMENT 1 GENERAL FACILITY INFORMATION. BOD5 mg/l mg/l TSS mg/l mg/l NH3-N mg/l mg/l

ATTACHMENT 1 GENERAL FACILITY INFORMATION. BOD5 mg/l mg/l TSS mg/l mg/l NH3-N mg/l mg/l ATTACHMENT 1 GENERAL FACILITY INFORMATION 1. Facility Name: 2. Type of Facility: 3. Population Served: Present: Design: 4. Flow: Average Maximum Peak 5. Water Quality: Present Design Assumed Actual Source:

More information

Center Sanitation District

Center Sanitation District EHLS Center Sanitation District EHLS Engineering Erik Jorgensen Suzanne Givler Heath Anderson Leryn Gorlitsky Outline of Presentation Background Current and Future Conditions Decision Matrix Description

More information

Figure Trickling Filter

Figure Trickling Filter 19.2 Trickling Filter A trickling filter is a fixed film attached growth aerobic process for treatment of organic matter from the wastewater. The surface of the bed is covered with the biofilm and as the

More information

- 1 - Retrofitting IFAS Systems In Existing Activated Sludge Plants. by Glenn Thesing

- 1 - Retrofitting IFAS Systems In Existing Activated Sludge Plants. by Glenn Thesing - 1 - Retrofitting IFAS Systems In Existing Activated Sludge Plants by Glenn Thesing Through retrofitting IFAS systems, communities can upgrade and expand wastewater treatment without the expense and complication

More information

Contents General Information Abbreviations and Acronyms Chapter 1 Wastewater Treatment and the Development of Activated Sludge

Contents General Information Abbreviations and Acronyms Chapter 1 Wastewater Treatment and the Development of Activated Sludge Contents Contents General Information Abbreviations and Acronyms... 6 Chapter 1 Wastewater Treatment and the Development of Activated Sludge... 8 The Importance of Wastewater Treatment... 8 The Scope of

More information

A SIMPLE SOLUTION TO BIG SNAIL PROBLEMS - A CASE STUDY AT VSFCD S RYDER STREET WASTEWATER TREATMENT PLANT

A SIMPLE SOLUTION TO BIG SNAIL PROBLEMS - A CASE STUDY AT VSFCD S RYDER STREET WASTEWATER TREATMENT PLANT A SIMPLE SOLUTION TO BIG SNAIL PROBLEMS - A CASE STUDY AT VSFCD S RYDER STREET WASTEWATER TREATMENT PLANT Timothy R. Tekippe, P.E.,* Robert J. Hoffman, P.E.,* Ronald J. Matheson,** Barry Pomeroy** *Carollo

More information

PERMIT TO OPERATE SILVER CLOUD CT., MONTEREY, CA TELEPHONE (831) FAX (831)

PERMIT TO OPERATE SILVER CLOUD CT., MONTEREY, CA TELEPHONE (831) FAX (831) FFR MONTEREY BAY UNIFIED AIR POLLUTION CONTROL DISTRICT PERMIT TO OPERATE 24580 SILVER CLOUD CT., MONTEREY, CA 93940 TELEPHONE (831) 647-9411 FAX (831) 647-8501 15018 OPERATION UNDER THIS PERMIT MUST BE

More information

We Know Water. AnoxKaldnes. Moving Bed Biofilm Reactor (MBBR) Integrated Fixed-Film Activated Sludge (IFAS) and ANITA Mox Deammonification

We Know Water. AnoxKaldnes. Moving Bed Biofilm Reactor (MBBR) Integrated Fixed-Film Activated Sludge (IFAS) and ANITA Mox Deammonification We Know Water AnoxKaldnes Moving Bed Biofilm Reactor (MBBR) Integrated Fixed-Film Activated Sludge (IFAS) and ANITA Mox Deammonification WATER TECHNOLOGIES AnoxKaldnes MBBR and Hybas Processes AnoxKaldnes

More information

AnoxKaldnes. Moving Bed Biofilm Reactor (MBBR) and Integrated Fixed-Film Activated Sludge (IFAS)

AnoxKaldnes. Moving Bed Biofilm Reactor (MBBR) and Integrated Fixed-Film Activated Sludge (IFAS) AnoxKaldnes Moving Bed Biofilm Reactor (MBBR) and Integrated Fixed-Film Activated Sludge (IFAS) AnoxKaldnes MBBR and Hybas Processes AnoxKaldnes is the global leader in MBBR and IFAS technologies. Kruger,

More information

WWTP Side Stream Treatment of Nutrients Considerations for City of Raleigh s Bioenergy Recovery Project. Erika L. Bailey, PE, City of Raleigh

WWTP Side Stream Treatment of Nutrients Considerations for City of Raleigh s Bioenergy Recovery Project. Erika L. Bailey, PE, City of Raleigh WWTP Side Stream Treatment of Nutrients Considerations for City of Raleigh s Bioenergy Recovery Project Erika L. Bailey, PE, City of Raleigh LNBA / NRCA 2017 Wastewater Treatment Plant Operators Training

More information

Sludge recycling (optional) Figure Aerobic lagoon

Sludge recycling (optional) Figure Aerobic lagoon 19.4 Aerated Lagoon Aerated lagoons are one of the aerobic suspended growth processes. An aerated lagoon is a basin in which wastewater is treated either on a flow through basis or with solids recycle.

More information

ENHANCING THE PERFORMANCE OF OXIDATION DITCHES. Larry W. Moore, Ph.D., P.E., DEE Professor of Environmental Engineering The University of Memphis

ENHANCING THE PERFORMANCE OF OXIDATION DITCHES. Larry W. Moore, Ph.D., P.E., DEE Professor of Environmental Engineering The University of Memphis ENHANCING THE PERFORMANCE OF OXIDATION DITCHES Larry W. Moore, Ph.D., P.E., DEE Professor of Environmental Engineering The University of Memphis ABSTRACT Oxidation ditches are very popular wastewater treatment

More information

AMPC Wastewater Management Fact Sheet Series Page 1

AMPC Wastewater Management Fact Sheet Series Page 1 Nitrogen removal Nitrogen present in meat processing wastewater are termed a nutrient, since they are essential elements for life. They largely derive from proteins dissolved into wastewater from meat

More information

AMPC Wastewater Management Fact Sheet Series Page 1

AMPC Wastewater Management Fact Sheet Series Page 1 Nitrogen removal Nitrogen present in meat processing wastewater are termed a nutrient, since they are essential elements for life. They largely derive from proteins dissolved into wastewater from meat

More information

Anaerobic Digester Optimization with Bio-Organic Catalyst. NYWEA 81 st Annual Meeting February 3, 2009 One Year Study November 07 - November 08

Anaerobic Digester Optimization with Bio-Organic Catalyst. NYWEA 81 st Annual Meeting February 3, 2009 One Year Study November 07 - November 08 Anaerobic Digester Optimization with Bio-Organic Catalyst NYWEA 81 st Annual Meeting February 3, 2009 One Year Study November 07 - November 08 Municipal Anaerobic Digester Optimization Program Index! Overview

More information

Sanitary and Environmental Engineering I (4 th Year Civil)

Sanitary and Environmental Engineering I (4 th Year Civil) Sanitary and Environmental Engineering I (4 th Year Civil) Prepared by Dr.Khaled Zaher Assistant Professor, Public Works Engineering Department, Faculty of Engineering, Cairo University Wastewater Flow

More information

/ Marley MARPAK Modular Biomedia /

/ Marley MARPAK Modular Biomedia / / Marley MARPAK Modular Biomedia / The Marley MARPAK Difference SPX Cooling Technologies is a world leader in the design, manufacturing and construction of cooling products. The design and production of

More information

COMPARISON OF SBR AND CONTINUOUS FLOW ACTIVATED SLUDGE FOR NUTRIENT REMOVAL

COMPARISON OF SBR AND CONTINUOUS FLOW ACTIVATED SLUDGE FOR NUTRIENT REMOVAL COMPARISON OF SBR AND CONTINUOUS FLOW ACTIVATED SLUDGE FOR NUTRIENT REMOVAL Alvin C. Firmin CDM Jefferson Mill, 670 North Commercial Street Suite 201 Manchester, New Hampshire 03101 ABSTRACT Sequencing

More information

ECO Smart Aerobic Waste Water Treatment System. Optimising the re-use and recycling of waste water

ECO Smart Aerobic Waste Water Treatment System. Optimising the re-use and recycling of waste water Optimising the re-use and recycling of waste water The ECO Smart aerobic wastewater treatment system is a selfcontained wastewater treatment system that utilizes a combination of anaerobic as well as aerobic

More information

Demonstration of IFAS Technology for Cold Temperature Nitrification in Lagoon WWTFs at Clare and Ludington, Michigan

Demonstration of IFAS Technology for Cold Temperature Nitrification in Lagoon WWTFs at Clare and Ludington, Michigan Demonstration of IFAS Technology for Cold Temperature Nitrification in Lagoon WWTFs at Clare and Ludington, Michigan Jason Borchert 1, Sarah Hubbell 2*, Heidi Rupp 2 1 Gourdie Fraser, Inc., Traverse City,

More information

Performance Evaluation of the Moores Creek Advanced Water Resource Recovery Facility

Performance Evaluation of the Moores Creek Advanced Water Resource Recovery Facility Performance Evaluation of the Moores Creek Advanced Water Resource Recovery Facility Richard W. Gullick, Ph.D. Director of Operations Timothy Castillo Wastewater Manager Presented to the Albemarle County

More information

CHAPTER 1 - WASTEWATER SYSTEM DESCRIPTION

CHAPTER 1 - WASTEWATER SYSTEM DESCRIPTION CHAPTER 1 - WASTEWATER SYSTEM DESCRIPTION 1.1 Introduction The GWA provides wastewater services for Guam s general population and for Andersen Air Force Base. The wastewater system is made up of seven

More information

Application of the AGF (Anoxic Gas Flotation) Process

Application of the AGF (Anoxic Gas Flotation) Process Application of the AGF (Anoxic Gas Flotation) Process Dennis A. Burke Environmental Energy Company, 6007 Hill Road NE, Olympia, WA 98516 USA (E-mail: dennis@makingenergy.com http//www.makingenergy.com)

More information

WASTE WATER T*R*E*A*T*M*E*N*T T*E*C*H*N*O*L*O*G*I.E

WASTE WATER T*R*E*A*T*M*E*N*T T*E*C*H*N*O*L*O*G*I.E WASTE WATER T*R*E*A*T*M*E*N*T T*E*C*H*N*O*L*O*G*I.E Many food processing operations generate high-strength wastewaters requiring unique approaches for costeffective treatment and residuals management.

More information

Primary filtration and primary effluent

Primary filtration and primary effluent FWRJ New Solution for Primary Wastewater Treatment: Cloth Media Filtration John D. Dyson Primary filtration and primary effluent cloth media filtration are both emerging technologies in wastewater treatment.

More information

Appendix D JWPCP Background and NDN

Appendix D JWPCP Background and NDN Appendix D JWPCP Background and NDN JWPCP Background JWPCP Water Quality Primary Clarifiers HPO Reactors Final Clarifiers Unit Influent Primary Effluent Secondary Effluent BOD mg/l 460 240

More information

CORPORATION THE EXPERIENCED LEADER IN SEQUENCING BATCH REACTOR TECHNOLOGY

CORPORATION THE EXPERIENCED LEADER IN SEQUENCING BATCH REACTOR TECHNOLOGY ISAM SEQUENCING BATCH REACTOR PROCESS TRUST FLUIDYNE S EXPERIENCE The Fluidyne ISAM Sequencing Batch Reactor (SBR) system incorporates the latest and most innovative technology and over two decades of

More information

membrane bioreactor performance compared to conventional wastewater treatment

membrane bioreactor performance compared to conventional wastewater treatment Water Technologies & Solutions technical paper membrane bioreactor performance compared to conventional wastewater treatment Authors: Thomas C. Schwartz and Brent R. Herring, Woodard and Curran Incorporated

More information

ISAM INTEGRATED SURGE ANOXIC MIX

ISAM INTEGRATED SURGE ANOXIC MIX ISAM INTEGRATED SURGE ANOXIC MIX P r o v e n T e c h n o l o g y FLUIDYNE S ISAM IS A TOTAL TREATMENT SYSTEM incorporating BOD, TSS and nitrogen removal along with sludge reduction in an integrated system.

More information

Palmer Wastewater Treatment Plant 6.7 Alternative 7: Upgrade Existing Lagoons with New Percolation Bed

Palmer Wastewater Treatment Plant 6.7 Alternative 7: Upgrade Existing Lagoons with New Percolation Bed 6.7 Alternative 7: Upgrade Existing Lagoons with New Percolation Bed 6.7.1 Description This alternative considers expanding the capacity of the existing lagoon treatment facility and changing the discharge

More information

ISAM SBR with Blower Assisted Jet Aeration Design Calculations For Lyons, CO WWTP Upgrade

ISAM SBR with Blower Assisted Jet Aeration Design Calculations For Lyons, CO WWTP Upgrade ISAM SBR with Blower Assisted Jet Aeration Design Calculations For Lyons, CO WWTP Upgrade May. 28, 2013 A. Site Conditions 1. Site elevation = 5,322 ft MSL 2. Average barometric pressure = 12.07 psia 3.

More information

Packaged Wastewater Treatment Systems for Individual Homes and Small Communities. Mark Gross Orenco Systems, Inc. Sutherlin, OR USA.

Packaged Wastewater Treatment Systems for Individual Homes and Small Communities. Mark Gross Orenco Systems, Inc. Sutherlin, OR USA. Packaged Wastewater Treatment Systems for Individual Homes and Small Communities Mark Gross Orenco Systems, Inc. Sutherlin, OR USA Abstract Packaged or pre-engineered wastewater treatment systems are required

More information

NC-PC Industry Day Pretreatment 101. Industrial Waste Impacts on POTW Treatment Processes. Dawn Padgett Operations Manager Charlotte Water

NC-PC Industry Day Pretreatment 101. Industrial Waste Impacts on POTW Treatment Processes. Dawn Padgett Operations Manager Charlotte Water NC-PC Industry Day Pretreatment 101 Industrial Waste Impacts on POTW Treatment Processes Dawn Padgett Operations Manager Charlotte Water NC-PC Industry Day Definitions BOD Amount of oxygen consumed by

More information

Post-Aerobic Digester with Bioaugmentation Pilot Study City of Meridian, ID WWTP PNCWA 2010

Post-Aerobic Digester with Bioaugmentation Pilot Study City of Meridian, ID WWTP PNCWA 2010 Post-Aerobic Digester with Bioaugmentation Pilot Study City of Meridian, ID WWTP by: William Leaf Adrienne Menniti Bruce Johnson CH2M HILL, Inc. Clint Dolsby Tracy Crane City of Meridian October 26, 21

More information

The following biological nutrient removal processes were evaluated in detail in the 2016 Liquid Processing Facilities Plan:

The following biological nutrient removal processes were evaluated in detail in the 2016 Liquid Processing Facilities Plan: Nitrite Shunt Pilot Project Purpose: The purpose of this project is to full scale pilot test the nitrite shunt biological nutrient removal process to confirm process design criteria, impacts to sludge

More information

State-of-the-art Treatment Technology for Challenging Wastewaters Generated from Processing Opportunity Crudes

State-of-the-art Treatment Technology for Challenging Wastewaters Generated from Processing Opportunity Crudes State-of-the-art Treatment Technology for Challenging Wastewaters Generated from Processing Opportunity Crudes The Headworks process team led by Dr. Somnath Basu, formerly a senior technologist of the

More information

NEW SOLUTION FOR PRIMARY WASTEWATER TREATMENT; CLOTH MEDIA FILTRATION

NEW SOLUTION FOR PRIMARY WASTEWATER TREATMENT; CLOTH MEDIA FILTRATION NEW SOLUTION FOR PRIMARY WASTEWATER TREATMENT; CLOTH MEDIA FILTRATION Introduction John D. Dyson*, Aqua Aerobic Systems, Inc. 636 N. Alpine Rd, Loves Park, IL jdyson@aqua-aerobic.com Primary and Primary

More information

Treatability Study and Reverse Osmosis Pilot Study of Industrial Wastewater at a Wood Products Mill

Treatability Study and Reverse Osmosis Pilot Study of Industrial Wastewater at a Wood Products Mill Treatability Study and Reverse Osmosis Pilot Study of Industrial Wastewater at a Wood Products Mill NC AWWA-WEA 2017 Annual Conference Randall Foulke, PE, BCEE, LEED AP Tracey Daniels, EI November 14,

More information

UPGRADING GAZA WASTEWATER TREATMENT PLANT. Gaza City is populated with 550,000 inhabitants and it forms 45% of the Gaza strip population.

UPGRADING GAZA WASTEWATER TREATMENT PLANT. Gaza City is populated with 550,000 inhabitants and it forms 45% of the Gaza strip population. Gaza City Gaza City is populated with 550,000 inhabitants and it forms 45% of the Gaza strip population. Gaza City has the oldest wastewater system in Gaza Strip; it consists of some of 280 kilometers

More information

Clif Bar Pretreatment

Clif Bar Pretreatment Pacific Northwest Pretreatment Workshop September 12, 2017 Clif Bar Pretreatment Larry Rupp and Jason King Keller Associates Meridian, Idaho CITY OF LEWISTON WWTP 2020 IMPROVEMENTS 1 City of Twin Falls

More information

EHS SMART-Treat Onsite Moving Media Treatment System

EHS SMART-Treat Onsite Moving Media Treatment System EHS SMART-Treat Onsite Moving Media Treatment System Sampling &Testing Protocol for SMART-Treat Wastewater Treatment System SAMPLING DURING OPERATION OF THE TREATMENT SYSTEM-IF DESIRED Sampling and analytical

More information

YOUR ONE STOP WASTEWATER MANAGEMENT CENTER Copyright 2014 Tomher Environmental SB. All rights reserved.

YOUR ONE STOP WASTEWATER MANAGEMENT CENTER Copyright 2014 Tomher Environmental SB. All rights reserved. YOUR ONE STOP WASTEWATER MANAGEMENT CENTER Copyright 2014 Tomher Environmental SB. All rights reserved. 1. What is BioSolv sewage treatment system? The BioSolv is an advanced sewage treatment system that

More information

CITY OF LONDON ENVIRONMENTAL & ENGINEERING SERVICES WASTEWATER TREATMENT OPERATIONS DIVISION

CITY OF LONDON ENVIRONMENTAL & ENGINEERING SERVICES WASTEWATER TREATMENT OPERATIONS DIVISION CITY OF LONDON ENVIRONMENTAL & ENGINEERING SERVICES WASTEWATER TREATMENT OPERATIONS DIVISION The City of London operates six Wastewater Treatment Plants namely: Greenway, Pottersburg, Vauxhall, Adelaide,

More information

WASTEWATER TREATMENT SYSTEM

WASTEWATER TREATMENT SYSTEM WASTEWATER TREATMENT SYSTEM PrintStudioOne.com Nelson Environmental Inc. The Nelson Environmental OPTAER system is an efficient pond-based wastewater treatment solution utilized in a broad spectrum of

More information

Anaerobic Digester Optimization with Bio-Organic Catalyst

Anaerobic Digester Optimization with Bio-Organic Catalyst Anaerobic Digester Optimization with Bio-Organic Catalyst NYWEA 81 st Annual Meeting February 3, 2009 One Year Study November 07 - November 08 2/2/09 1 Municipal Anaerobic Digester Optimization Program

More information

Altoona Westerly Wastewater Treatment Facility BNR Conversion with Wet Weather Accommodation

Altoona Westerly Wastewater Treatment Facility BNR Conversion with Wet Weather Accommodation Pennsylvania Water Environment Federation PennTEC Annual Technical Conference June 4, 2013 Altoona Westerly Wastewater Treatment Facility BNR Conversion with Wet Weather Accommodation Presented by: Jim

More information

Chapter 2: Description of Treatment Facilities

Chapter 2: Description of Treatment Facilities 2020 Facilities Plan Treatment Report 2.1 Introduction Chapter 2: Description of Treatment Facilities This chapter defines the Milwaukee Metropolitan Sewerage District (MMSD) service area. It also describes

More information

ANAEROBIC SLUDGE DIGESTION PROCESS. Prepared By Michigan Department of Environmental Quality Operator Training and Certification Unit

ANAEROBIC SLUDGE DIGESTION PROCESS. Prepared By Michigan Department of Environmental Quality Operator Training and Certification Unit ANAEROBIC SLUDGE DIGESTION PROCESS Prepared By Michigan Department of Environmental Quality Operator Training and Certification Unit WASTEWATER Water used to carry waste products away from homes, schools,

More information

PILOT SCALE TESTS OF A UNIQUE APPROACH FOR BNR UPGRADE OF A SHORT SRT HIGH PURITY OXYGEN SYSTEM AT PIMA COUNTY, AZ

PILOT SCALE TESTS OF A UNIQUE APPROACH FOR BNR UPGRADE OF A SHORT SRT HIGH PURITY OXYGEN SYSTEM AT PIMA COUNTY, AZ PILOT SCALE TESTS OF A UNIQUE APPROACH FOR BNR UPGRADE OF A SHORT SRT HIGH PURITY OXYGEN SYSTEM AT PIMA COUNTY, AZ ABSTRACT Ron Riska,: Pima County Wastewater Management Division Joseph A. Husband, P.E.,

More information

ENVIRONMENTAL ENGINEERING. Chemical Engineering department

ENVIRONMENTAL ENGINEERING. Chemical Engineering department ENVIRONMENTAL ENGINEERING Chemical Engineering department 1- PRELIMINARY AND PRIMARY TREATMENT Screening is the first technique employed in primary treatment, which is the first step in the wastewater

More information

We Know Water. AnoxKaldnes. Moving Bed Biofilm Reactor (MBBR) Integrated Fixed-Film Activated Sludge (IFAS) and ANITA Mox Deammonification

We Know Water. AnoxKaldnes. Moving Bed Biofilm Reactor (MBBR) Integrated Fixed-Film Activated Sludge (IFAS) and ANITA Mox Deammonification APPENDIX C.2 IFAS We Know Water AnoxKaldnes Moving Bed Biofilm Reactor (MBBR) Integrated Fixed-Film Activated Sludge (IFAS) and ANITA Mox Deammonification WATER TECHNOLOGIES AnoxKaldnes MBBR and Hybas

More information

Case Study. Biological Help for the Human Race. Industrial Wastewater Treatment at Eastern Seaboard Industrial Estate, Thailand.

Case Study. Biological Help for the Human Race. Industrial Wastewater Treatment at Eastern Seaboard Industrial Estate, Thailand. Case Study BiOWiSH Aqua Industrial Wastewater Treatment at Eastern Seaboard Industrial Estate, Thailand BiOWiSH Aqua Background Eastern Seaboard Industrial Estate (ESIE) is located in Rayong province on

More information

Wastewater Treatment clarifier

Wastewater Treatment clarifier Wastewater Treatment Pretreatment During pretreatment, items would normally be removed that would hinder the further processes of treatment. Items commonly removed include roots, rags, cans, or other large

More information

CITY OF LONDON ENVIRONMENTAL & ENGINEERING SERVICES WASTEWATER TREATMENT OPERATIONS DIVISION

CITY OF LONDON ENVIRONMENTAL & ENGINEERING SERVICES WASTEWATER TREATMENT OPERATIONS DIVISION CITY OF LONDON ENVIRONMENTAL & ENGINEERING SERVICES WASTEWATER TREATMENT OPERATIONS DIVISION The City of London operates five Wastewater Treatment Plants namely: Adelaide, Greenway, Oxford, Pottersburg

More information

Anderson Water Pollution Control Plant

Anderson Water Pollution Control Plant City of Anderson Wastewater Division Public Works Director Jeff Kiser Chief Plant Operator Plant Supervisor Operator III Operator I Phil DeBlasio Mike Hansen Tony Hinchliff Vacant Collections Supervisor

More information

Zero Liquid Discharge Project Extends Potable Water Supplies

Zero Liquid Discharge Project Extends Potable Water Supplies http://dx.doi.org/10.5991/opf.2014.40.0078 Ryan R. Popko, PE, and Phillip J. Locke, PE, are with McKim & Creed (www.mckimcreed.com), Clearwater, Fla. Fred J. Greiner is with the city of Palm Coast, Fla.

More information

OPERATION AND MANAGEMENT OF WASTEWATER TREATMENT PLANTS

OPERATION AND MANAGEMENT OF WASTEWATER TREATMENT PLANTS OPERATION AND MANAGEMENT OF WASTEWATER TREATMENT PLANTS Authors: Andrea Giordano Luigi Petta ENEA, Ente per le Nuove Tecnologie, l Energia e l Ambiente Bologna, Italy Keywords: Maintenance, Wastewater,

More information

ADVENT INTEGRAL SYSTEM

ADVENT INTEGRAL SYSTEM ADVENT INTEGRAL SYSTEM OPERATOR-FRIENDLY ACTIVATED SLUDGE SYSTEM WITH NO MOVING PARTS A revolutionary new configuration of activated sludge process with integral clarifier and self contained sludge recycle

More information

Technical overview and benefits

Technical overview and benefits Technical overview and benefits Overview Terms used in anaerobic digestion Different types of digesters Benefits of anaerobic digestion Total Solids, Volatile Solids Total Solids (TS)= Dry matter content

More information

FURTHER EXPANDED FLOWS AND LOADS R3 INDUSTRIAL WWTP PROCESS ENGINEERING EVALUATION

FURTHER EXPANDED FLOWS AND LOADS R3 INDUSTRIAL WWTP PROCESS ENGINEERING EVALUATION FURTHER EXPANDED FLOWS AND LOADS R3 INDUSTRIAL WWTP PROCESS ENGINEERING EVALUATION Prepared For: HyLife Foods Neepawa, Manitoba, Canada Prepared By: Pharmer Engineering 1998 West Judith Lane Boise, ID

More information

UPGRADING FOR TOTAL NITROGEN REMOVAL WITH A POROUS MEDIA IFAS SYSTEM

UPGRADING FOR TOTAL NITROGEN REMOVAL WITH A POROUS MEDIA IFAS SYSTEM UPGRADING FOR TOTAL NITROGEN REMOVAL WITH A POROUS MEDIA IFAS SYSTEM T. Masterson, J. Federico, G. Hedman, S. Duerr BETA Group, Inc. 6 Blackstone Valley Place Lincoln, Rhode Island 02865 ABSTRACT The Westerly,

More information

CEDAR CREEK Wastewater Treatment Facility

CEDAR CREEK Wastewater Treatment Facility CEDAR CREEK Wastewater Treatment Facility Where does the waste originate Private homes Businesses from? Condominium complexes Nursing homes Apartments ANY DWELING THAT USES WATER AND IS CONNECTED TO THE

More information

Sequence Batch Reactor A New Technology in Waste Water Treatment

Sequence Batch Reactor A New Technology in Waste Water Treatment Sequence Batch Reactor A New Technology in Waste Water Treatment Ashutosh Pipraiya 1, Diwan Singh 2, SK Patidar 3 1 M.Tech, Department of Civil Engineering, National Institute of Technology Kurukshetra

More information

COLD WEATHER NITRIFICATION OF LAGOON EFFLUENT USING A MOVING BED BIOFILM REACTOR (MBBR) TREATMENT PROCESS

COLD WEATHER NITRIFICATION OF LAGOON EFFLUENT USING A MOVING BED BIOFILM REACTOR (MBBR) TREATMENT PROCESS ABSTRACT COLD WEATHER NITRIFICATION OF LAGOON EFFLUENT USING A MOVING BED BIOFILM REACTOR (MBBR) TREATMENT PROCESS Mr. Flemming G. Wessman 1 and Mr. Chandler H. Johnson 1 AnoxKaldnes, Inc., 58 Weybosset

More information

Module 20: Trickling Filters Answer Key

Module 20: Trickling Filters Answer Key Module 20: Trickling Filters Answer Key Calculation Capital City WWTF, which processes 2.0 MGD, is required to nitrify to meet the 2.0 mg/l ammonia discharge limit stated in their NPDES permit. A table

More information

Case Study. Biological Help for the Human Race. Bathurst Municipal Wastewater Treatment Works, New South Wales, Australia.

Case Study. Biological Help for the Human Race. Bathurst Municipal Wastewater Treatment Works, New South Wales, Australia. Case Study BiOWiSH Aqua Bathurst Municipal Wastewater Treatment Works, New South Wales, Australia BiOWiSH Aqua Executive Summary The main objective of the study was to quantify the cost savings of using

More information

orld water works Clean Water and Energy from Wastewater IDEAL MBBR IDEAL IFAS

orld water works Clean Water and Energy from Wastewater IDEAL MBBR IDEAL IFAS orld water works Clean Water and Energy from Wastewater IDEAL MBBR IDEAL IFAS orld water works.com - Making a World of Difference Our Name reflects our Passion... WORLD = Our Living Planet WATER = Life

More information

Wastewater Plant Tour. There Is Gold In Them There Plants

Wastewater Plant Tour. There Is Gold In Them There Plants Wastewater Plant Tour There Is Gold In Them There Plants Why Should I Be Interested In Wastewater Treatment? Every municipality has at least one treatment facility. Many manufactures will have treatment

More information

Codigestion Case Studies Enhancing Energy Recovery From Sludge

Codigestion Case Studies Enhancing Energy Recovery From Sludge Codigestion Case Studies Enhancing Energy Recovery From Sludge Dale Gabel, PE, BCEE MWRD PWO Seminar 1 May 23, 2012 What is Codigestion? Direct addition of high-strength organic wastes to municipal wastewater

More information

Aqua MSBR MODIFIED SEQUENCING BATCH REACTOR

Aqua MSBR MODIFIED SEQUENCING BATCH REACTOR MODIFIED SEQUENCING BATCH REACTOR MODIFIED SEQUENCING BATCH REACTOR For over three decades, Aqua-Aerobic Systems has led the industry in sequencing batch reactor technology with performance proven and

More information

HEAVY INDUSTRY PLANT WASTEWATER TREATMENT, RECOVERY AND RECYCLE USING THREE MEMBRANE CONFIGURATIONS IN COMBINATION WITH AEROBIC TREATMENT A CASE STUDY

HEAVY INDUSTRY PLANT WASTEWATER TREATMENT, RECOVERY AND RECYCLE USING THREE MEMBRANE CONFIGURATIONS IN COMBINATION WITH AEROBIC TREATMENT A CASE STUDY HEAVY INDUSTRY PLANT WASTEWATER TREATMENT, RECOVERY AND RECYCLE USING THREE MEMBRANE CONFIGURATIONS IN COMBINATION WITH AEROBIC TREATMENT A CASE STUDY ABSTRACT Francis J. Brady Koch Membrane Systems, Inc.

More information

VILLAGE OF ALGONQUIN 2014 WASTEWATER FACILITY PLAN UPDATE EXECUTIVE SUMMARY

VILLAGE OF ALGONQUIN 2014 WASTEWATER FACILITY PLAN UPDATE EXECUTIVE SUMMARY EXECUTIVE SUMMARY EXECUTIVE SUMMARY INTRODUCTION AND BACKGROUND The Village of Algonquin, located along the Fox River in McHenry County, provides wastewater collection and treatment services to the entire

More information

CORPORATION THE EXPERIENCED LEADER IN SEQUENCING BATCH REACTOR TECHNOLOGY

CORPORATION THE EXPERIENCED LEADER IN SEQUENCING BATCH REACTOR TECHNOLOGY ISAM SEQUENCING BATCH REACTOR PROCESS TRUST FLUIDYNE S EXPERIENCE The Fluidyne ISAM Sequencing Batch Reactor (SBR) system incorporates the latest and most innovative technology and over three decades of

More information

Prepared by the Operation of Municipal Wastewater Treatment Plants Task Force of the Water Environment Federation

Prepared by the Operation of Municipal Wastewater Treatment Plants Task Force of the Water Environment Federation Operation of Municipal Wastewater Treatment Plants WEF Manual of Practice No. 11 Chapter 31 Aerobic Digestion Sixth Edition Prepared by the Operation of Municipal Wastewater Treatment Plants Task Force

More information

Wastewater treatment objecives

Wastewater treatment objecives Wastewater treatment objecives Removal of suspended and floatable materials Degradation of biodegradable organics Removal of nutrients Elimination of priority pollutants Elimination of pathogenic organisms

More information

Algae Removal from a Facultative Lagoon System Using Dissolved Air Flotation. J. Patrick Pierce, P.E. Environmental Treatment Systems, Inc.

Algae Removal from a Facultative Lagoon System Using Dissolved Air Flotation. J. Patrick Pierce, P.E. Environmental Treatment Systems, Inc. Algae Removal from a Facultative Lagoon System Using Dissolved Air Flotation J. Patrick Pierce, P.E. Environmental Treatment Systems, Inc. Facultative Lagoon System Designed for 1.5 MGD Discharging 1.15-1.35

More information

BIOSPHERE MOVING BED BIOLOGICAL SYSTEMS

BIOSPHERE MOVING BED BIOLOGICAL SYSTEMS REACTION TANKS BIOSPHERE MOVING BED BIOLOGICAL SYSTEMS PROVEN FIXED-FILM TECHNOLOGY IDEAL FOR BNR UPGRADES AND CAPACITY EXPANSIONS. SAME FOOTPRINT, BETTER TREATMENT AT NEPTUNE BEACH, FL WWTP Without adding

More information

CLR Process. Vertical Loop Configuration

CLR Process. Vertical Loop Configuration CLR Process Vertical Loop Configuration Vertical Configuration System Flexibility Parallel Operation Raw wastewater and return activated sludge are introduced at a single point in each standard CLR basin.

More information

Domestic Waste Water (Sewage): Collection, Treatment & Disposal

Domestic Waste Water (Sewage): Collection, Treatment & Disposal Domestic Waste Water (Sewage): Collection, Treatment & Disposal Sanitary sewers Storm water sewers Combined sewers Types of sewers: Types of collection system Building sewer/building connections:connected

More information

Wastewater Characterisation and Treatment

Wastewater Characterisation and Treatment Wastewater Characterisation and Treatment Recommended text books: Wastewater Engineering Metcalf and Eddy Standard Methods for the Examination of Water and Wastewater Contact: Benoit Guieysse B.J.Guieysse@massey.ac.nz

More information

IFAS Nutrient Removal Enhancement Retrofit of an Existing Contact / Stabilization Treatment Process at Neptune Beach, FL

IFAS Nutrient Removal Enhancement Retrofit of an Existing Contact / Stabilization Treatment Process at Neptune Beach, FL IFAS Nutrient Removal Enhancement Retrofit of an Existing Contact / Stabilization Treatment Process at Neptune Beach, FL John E. Olson, P.E. 1* ; Todd A. Schwingle, P.E. 1* ; Mark F. Greenwood 2* ; Amy

More information