Weekly summary of Tropic101x as posted by student Lucia_Agudelo. With minor grammatical and content edits by Tropic101x team

Size: px
Start display at page:

Download "Weekly summary of Tropic101x as posted by student Lucia_Agudelo. With minor grammatical and content edits by Tropic101x team"

Transcription

1 Weekly summary of Tropic101x as posted by student Lucia_Agudelo With minor grammatical and content edits by Tropic101x team Summary of Week 3 NUTRIENT CYCLES LECTURE Elements like carbon (C) and nitrogen (N) form the building blocks of all living organisms. Different organisms acquire these elements from their environment in: Organic forms (carbohydrates, fats, proteins) Inorganic forms (CO2, NH3, NO2-, NO3-) Nutrient cycles explain the transition between different forms by different organisms living in different parts of the ecosystem. Plants acquire carbon in the inorganic form CO2 to build biomass (carbon fixation) through photosynthesis, together with light energy to drive this process. Light energy is used to oxidise water generating the energy that is required to reduce carbon dioxide to sugar. When an animal builds biomass directly from the organic carbon they ingest, this is called chemo-heterotrophy.

2 Then, sugars are oxidized to carbon dioxide using oxygen as an acceptor for electrons and releasing chemical bond energy. In ammonification, protein is broken down into its component amino acids that are deaminated to produce organic acids and ammonia. LECTURE Classic trophic pyramid associated with a coral reef ecosystem. The plants/primary producers fix carbon dioxide and all organisms, producers and consumers alike, oxidize excess biomass (organic carbon) to carbon dioxide. Carbon dioxide entering the water from the atmosphere adds an additional source of carbon to allow the system to grow and flourish. The plants assimilate inorganic nitrogen as ammonia excreted by the ammonification of protein occurring in plants and animals alike.

3 Microbes earn energy from aerobic respiration in the nitrogen cycle. Some of them substitute ammonia for sugar, this process is called nitrification because nitrite is the product. The organisms are chemotrophs. Another set of nitrifying microbes are capable of oxidizing nitrite to nitrate, these nitrifying microbes use the energy gained to fix carbon dioxide into biomass. These nitrifying microbes are therefore chemo-autotrophs. Another very important process in the nitrogen cycle is the conversion of ammonia to dinitrogen gas, N2. The ANAMMOX bacteria and chemo-heterotrophic bacteria obtain energy from the chemical bonds in ammonia but with the assistance of nitrite, it oxidizes them anaerobically all the way down to nitrogen gas.

4 LECTURE Microbes that can directly convert ammonia to N2 gas, explain how nitrogen gained by the ecosystem can be lost to the atmosphere, but they do not explain how to gain it from the atmosphere. Microbes that can introduce nitrogen gas in a form that is acceptable to other organisms in the ecosystem are: The group of organisms capable of nitrogen fixation is exemplified by autotrophic and heterotrophic cyanobacteria. An input of nitrogen from the atmosphere will allow for growth, but that input would have to be very large unless we can re-access the nutrients locked away in the carcasses and fecal matter. Microbes decompose dead bodies into inorganic nutrients and purge excess nitrogen from the system back into the atmosphere.

5 CALCIFICATION AND THE CARBONATE BALANCE LECTURE The framework of coral reefs is primarily generated by reef-building corals, whose dead skeletons build up over time and are glued together by organisms such as red coralline algae. Eroding organisms and storms are two processes on coral reefs which remove large amounts of calcium carbonate. Calcification is highest in warm sun-lit waters of the tropics and sub-tropics where the concentration of calcium carbonate ions is highest. Here a range of organisms such as reef-building corals, algae, molluscs, crustaceans and small creatures known as foraminiferans are able to deposit large amounts of calcium carbonate from the surrounding water column. The surrounding water column is supersaturated with calcium carbonate ions which means that there's an abundant source of materials to make the crystals of calcite and aragonite which are used to build the shells and skeletons of marine organisms. Ways of measuring calcification: 1. 1) Put corals in a non-toxic dye then put them back in the field (coral still alive). Cut skeleton open (this kills the coral) at a later stage. The stained layer within the skeleton allows you to calculate how much calcium carbonate has been laid down since the dye mark ) Incubate corals in seawater to which a small amount of radioisotope has been added. Over time, the radioisotope is deposited along with non-radioactive isotopes of calcium and it's used to measure the rate that calcium carbonate is being formed. 3)Buoyant weight method, in this method coral fragments or other calcifying organisms are weighed under water. Now if you know the density of calcium carbonate, you can then calculate the amount of calcium carbonate that's been added to the coral over time.

6 4) One of the most important methodologies is based on the fact that long lived corals like Porites put down a layer of calcium carbonate each year. Biologists can visualize yearly bands using techniques such as x-ray radiography to get a picture of how calcification has changed over time, and just like a tree, dark lines delineate the beginning and end of each year of calcium carbonate. LECTURE Large scale factors such as storms and the activities of specific coral reef organisms contribute to the process of removing calcium carbonate from the structure of coral reefs or decalcification. One factor that influences that tendency for calcium carbonate to remain or disappear from carbonate reefs is the ph and carbonatechemistry of seawater. The carbonate chemistry of sea water depends on the concentration of CO2 in the atmosphere. As carbon dioxide builds up in seawater, the concentration of carbonate ions declines. This affects the overall availability of carbonate ions for the deposition of minerals such as aragonite and calcite. External biological eroders: eat coral directly or chew on pieces of substrate that inadvertently are eroded from the surface of the reef.

7 Internal biological eroders: use a range of different techniques to bore into the skeletons of corals and other calcifying organisms. This directly reduces the structural integrity of coral skeletons leading to their eventual removal from the reef by storms. KAM Considering that the growth rate of a coral reef is inversely proportional to the decalcification and is directly proportional to calcification, we can expect a higher growth in these scenarios: Low - Mid ppm of CO2 Mid - High light Mid - High temperatures LECTURE The three-dimensional structure of coral reefs is extremely important to the abundance and diversity of fish species. When reefs lose coral and structure, they tend to be populated by more herbivorous fish and those fish which are specialists, in terms of feeding on coral, disappear.

8 The degradation of calcium carbonate stocks has implications for the protection of reefs. Sheltered ecosystems, such as seagrass and mangroves, may be increasingly exposed to wave energy if the calcified structures of the outer reefs disappear. These global changes, when coupled with more local disturbances such as overfishing and pollution, have the potential to produce large-scale impacts to the way that tropical coastal ecosystems function and provide services and goods for humanity. PREDATOR-PREY INTERACTIONS: LECTURE A standard food chain starts with an autotroph that's harnessing the sun's energy and is photosynthesizing at the base of the food chain. Then there's a simple relationship of energy moving up through the food chain, so from phytoplankton up to zooplankton. The transfer of energy from one level to the next is an incredibly inefficient process: typically only about 10% of the energy is actually transferred from one level to another. The number of different trophic levels is no more than five because energy transfer up the food chain is an inefficient process. Pelagic food chains tend to be fairly simple, but in a benthic system the complexity grows considerably.

9 CORRECTION: they CAN swim quickly to evade predation

10

11 LECTURE Avoiding predators is a strong selection force on all organisms that you find a coral reef, so many organisms have developed specific specializations and adaptations in order to cope with this kind of pressure. One of the characteristics of marine organisms is to have a bipartite life cycle which means they spend some of their life in one habitat and part of their life in another (ontogenic migrations). Example: Parrotfish life cycle 1. An adult parrotfish is reproduces generating eggs or fertilizing them. 2. Those eggs get swept offshore by ocean currents and they might spend a month or so developing into young fish. 3. Those fish travel to new, sheltered places (like mangroves) and colonize new habitat. 4. Once they are large enough they then come back to the reef. 5. The reef is full of predators. 6. They might go and live in branching corals that provide good refuges. 7. As they get larger they become less vulnerable to predators.

12 Fish and some invertebrates don't come back to the reef, they go over the reef and come into the lagoon, into the mangrove or seagrass. It's a great place as a nursery because the predators can t hunt very effectively in that environment and there's plenty of food. KAM Scarus guacamaia: has a complex life cycle that is accompanied by a series of color changes called polychromatism. They are sequential hermaphrodites, which mean that they start their life as females and eventually change into males.

13 LECTURE The relationship between the amount of grazing (which might be estimated by the number of grazing fish present) and the amount of seaweeds or macroalgae living on that reef is a negative relationship.

14 In Jamaica, people have been fishing intensively for many decades. In the 1970s coral cover was actually very high, something like sixty percent or more. In 1980 a very large hurricane came along and it smashed up the reef and reduced the amount living coral. In 1983 the long spined sea urchins were dying. The reef was hit a bit more by some hurricane activity that began to continue to decline and the reason for that is because the fleshy algae, the seaweeds, had increased because they were no longer being controlled by herbivores. Storms and coral bleaching events tend to push the coral cover down towards the algal sort of end of the spectrum. The problem happens when we have added too many stressors to the ecosystem. We can also add nutrients to that story. So many of the objectives of coral reef management are to try and manage the system to push that fulcrum further and further to the right, to try to maintain healthy reefs with high coral cover.

15 Keystone species: A species that has a disproportionately big impact on the ecosystem even though they're not very abundant. Indirect effects of predation: The effects of predators on prey are greater than just direct consumption. Many prey species alter their behaviour to avoid predation, perhaps reducing feeding, growth and reproduction rates. In this situation the smaller grouper, which is the one that's hiding, is hiding from the big predator and therefore the chances that this smaller predator is going to manage to get out from its hiding place and catch these prey is relatively low because there's lots of predators around. Humans came along and we took out some of those bigger predators. Smaller predator is going to feel empowered to go out and spend more time foraging looking for prey, it might be more successful and it'll take off. This can change the whole structure of the biodiversity and ecology of the ecosystem. REPRODUCTION, RECRUITMENT AND CONNECTIVITY LECTURE What's are the differences between the reproduction of marine organisms and those living on land? Water is abundant Direct release of gametes possible Reduced need for complex reproductive structures Conditions are more constant Reduced thermal variability and extremes Greater constancy of gas and salt concentrations Greater buoyancy force Larger transport distances of marine gametes and organisms

16

17 LECTURE The life cycle of the crown of thorns starfish is a good example because it is typical of many organisms associated with tropical coastal ecosystems: 1. Spawning occurs during the spring and early summer. Large numbers of egg and sperm are delivered into the water column. 2. Eggs and sperm will meet and fertilization will occur. 3. The larvae develop mouths and digestive systems, spending up to two weeks in the water column before they become negatively buoyant and recruit to the benthos (the bottom). 4. The larva turns into a juvenile starfish. 5. The juvenile starfish begin feeding and maturing until they are ready to spawn and release eggs and sperm into the water column. Types of larval life cycles Planktotrophic: Larval stages eat things (feed on plankton) Development is generally longer Lecithotrophic: Larval stages don t eat (feed on egg reserves/egg yolk) Larvae released from parent Brooding: Lecithotrophic development but larvae remain in Brood Chambers Reproductive timing:

18 Spawning tends to occur such that larval and juvenile development occurs at the most suitable time of year. Factors that can influence the production of gametes: Age and size Nutrition of spawning adults Sea temperature Light levels and periodicity Specific chemicals designed to coordinate spawning Spawning cycles: Discontinuous or opportunistic Non-phasic or continuous Lunar o semi-lunar spawning Annual spawning Mass spawning depends on: Temperature Lunar phase LECTURE Reef building corals show a broad range of reproductive strategies: Asexual reproduction Sexual reproduction Gonochorism (individuals are single-gendered, not hermaphrodites) Hermaphrodism (simultaneous and sequential) Broadcast spawners as well as brooders. Most larvae are Lecithotrophic. Acropora tend to be simultaneous hermaphrodites which broadcast spawn: 1. Release eggs and sperm in bundles. The buoyant eggs drag the bundles to the surface where they break open and fertilization occurs. 2. Planulae larvae develop. 3. The larvae may flatten out into a prawn chip shape, and after four to five days they begin to head away from the surface down to the bottom in search of suitable habitat. 4. The larvae develop into the primary polyp which then undergoes asexual reproduction dividing (cloning) into a number of other polyps forming the coral colony. Years later the colony grows and becomes mature the cycle is repeated.

19 Importance of reproduction and recruitment: Crucial determinant of dispersal, population structure and connectivity. Reduced larval life means reduced dispersal - means less connectivity between populations. Increased larval life means greater dispersal distances greater connectivity between populations. The more different subpopulations become, the greater the genetic distance between them. If dispersal distances are larger, then there's a greater exchange of individuals and genetic material between subpopulations leading to reduction in the genetic differences or structure between the eight subpopulations. The issue of population structure is important for effective conservation planning and has been taken into account in recent attempts to try and apply a system which recognizes the fact that some sub-populations, as well as some reefs, are in greater or less communication with each other via dispersal.

Autotrophs vs. Heterotrophs

Autotrophs vs. Heterotrophs How Ecosystems Work Autotrophs vs. Heterotrophs Autotrophs make their own food so they are called PRODUCERS Heterotrophs get their food from another source so they are called CONSUMERS Two Main forms of

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment.

What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment. Chapter 18 What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment. What is Biodiversity? Biodiversity is the sum

More information

Climate Change and Coral Bleaching

Climate Change and Coral Bleaching Rising ocean temperatures may push coral reefs to their limits. Climate Change and Coral Bleaching http://www.nova.org.au/coral-bleaching Essentials! Corals are animals that live in a mutually beneficial

More information

ANSWER KEY - Ecology Review Packet

ANSWER KEY - Ecology Review Packet ANSWER KEY - Ecology Review Packet OBJECTIVE 1: Ecosystem Structure 1. What is the definition of an abiotic factor? Give one example. A nonliving part of an ecosystem. Example: water 2. What is the definition

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Ecology, the Environment, and Us

Ecology, the Environment, and Us BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 23 Ecology, the Environment, and Us Lecture Presentation Anne Gasc Hawaii Pacific University and University

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

The Carbon Cycle. Goal Use this page to review the carbon cycle. CHAPTER 2 BLM 1-19 DATE: NAME: CLASS:

The Carbon Cycle. Goal Use this page to review the carbon cycle. CHAPTER 2 BLM 1-19 DATE: NAME: CLASS: CHAPTER 2 BLM 1-19 The Carbon Cycle Goal Use this page to review the carbon cycle. CHAPTER 2 BLM 1-20 The Carbon Cycle Concept Map Goal Use this page to make a concept map about the carbon cycle. What

More information

Coral reefs. Coral reef ecosystems. Why are reefs important? Coastal ecosystems and ecosystem services

Coral reefs. Coral reef ecosystems. Why are reefs important? Coastal ecosystems and ecosystem services Coral reef ecosystems Coral reefs What are corals, what are reefs? Ecology Human stresses History of climate and human stresses Why are reefs important? Biodiversity Shoreline protection Nurse juvenile

More information

Ecosystem consists of the organism which live in a particular area, the relationship between them, and their physical environment.

Ecosystem consists of the organism which live in a particular area, the relationship between them, and their physical environment. Ecosystem consists of the organism which live in a particular area, the relationship between them, and their physical environment. An ecosystem can be terrestrial (on land) or aquatic (in water) An ecosystem

More information

Chapter 36: Population Growth

Chapter 36: Population Growth Chapter 36: Population Growth Population: Population Concepts interbreeding group of same species Carrying Capacity: maximum population size an ecosystem can sustainably support Critical Number: minimum

More information

Ecology: Part 2. Biology Mrs. Bradbury

Ecology: Part 2. Biology Mrs. Bradbury Ecology: Part 2 Biology Mrs. Bradbury Model 1: Food Chains Food Chain simple model showing the movement of matter and energy through ecosystems. Autotrophs Heterotrophs Decomposers Arrows show energy transfer

More information

Inquiry into Australia s biodiversity in a changing climate. 1. Terrestrial, marine and freshwater biodiversity in Australia and its territories

Inquiry into Australia s biodiversity in a changing climate. 1. Terrestrial, marine and freshwater biodiversity in Australia and its territories Inquiry into Australia s biodiversity in a changing climate Submission from the Australian Coral Reef Society 1. Terrestrial, marine and freshwater biodiversity in Australia and its territories Reefs and

More information

Chapter 4. Ecosystems

Chapter 4. Ecosystems Chapter 4 Ecosystems Chapter 4 Section 1: What Is an Ecosystem Key Vocabulary Terms 7 Adapted from Holt Biology 2008 Community A group of various species that live in the same habitat and interact with

More information

Chapter 6. Aquatic Biodiversity. Chapter Overview Questions

Chapter 6. Aquatic Biodiversity. Chapter Overview Questions Chapter 6 Aquatic Biodiversity Chapter Overview Questions Ø What are the basic types of aquatic life zones and what factors influence the kinds of life they contain? Ø What are the major types of saltwater

More information

Ecology Part 2: How Ecosystems Work

Ecology Part 2: How Ecosystems Work Ecology Part 2: How Ecosystems Work Name: Unit 2 1 In this second part of Unit 2, our big idea questions are: SECTION 1 How is energy transferred from the Sun to producers and then to consumers? Why do

More information

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17 Chapter 3 Ecosystem Ecology Reversing Deforestation in Haiti Answers the following: Why is deforestation in Haiti so common? What the negative impacts of deforestation? Name three actions intended counteract

More information

ECOSYSTEMS. Follow along in chapter 54. *Means less important

ECOSYSTEMS. Follow along in chapter 54. *Means less important ECOSYSTEMS Follow along in chapter 54 *Means less important How do ecosystems function? What is an ecosystem? All living things in an area and their abiotic environment Ecosystem function can be easily

More information

Unit 2: Ecology. Chapters 2: Principles of Ecology

Unit 2: Ecology. Chapters 2: Principles of Ecology Unit 2: Ecology Chapters 2: Principles of Ecology Ecology Probe: Answer the questions and turn it in! This is a standard aquarium with a population of fish. There is no filter in this aquarium and no one

More information

Name: Section: Biology 101L Laboratory 8: Ecology and Food Webs (Exercise and homework adapted from Bio Food webs of Western Oregon University)

Name: Section: Biology 101L Laboratory 8: Ecology and Food Webs (Exercise and homework adapted from Bio Food webs of Western Oregon University) Biology 101L Laboratory 8: Ecology and Food Webs (Exercise and homework adapted from Bio 101-6 Food webs of Western Oregon University) Objectives (1) You will explore some of the key trophic relationships

More information

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Cycles of Matter 1 of 33 The purpose of this lesson is to learn the water, carbon, nitrogen, and phosphorus cycles. This PowerPoint will provide most of the required information you need to accomplish

More information

Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems

Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems Life Depends on the Sun Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Section 1: Energy Flow in Ecosystems

Section 1: Energy Flow in Ecosystems Section 1: Energy Flow in Ecosystems Preview Classroom Catalyst Objectives Life Depends on the Sun From Producers to Consumers An Exception: Deep-Ocean Ecosystems What Eats What Cellular Respiration: Burning

More information

Ecosystems & Energy Chapter 5

Ecosystems & Energy Chapter 5 Ecosystems & Energy Chapter 5 Energy Exchange in Ecosystems Cells Cells - minute compartments in a living organism which carry out processes of life Surrounded by lipid membrane controlling flow of materials

More information

How Ecosystems Work: Energy Flow and Nutrient Cycles

How Ecosystems Work: Energy Flow and Nutrient Cycles How Ecosystems Work: Energy Flow and Nutrient Cycles Bubble in your ID and the answer to the 25 questions. You can look up the answers to these question on line. 1. The flow of solar energy through an

More information

Weekly summary of Tropic101x as posted by student Lucia_Agudelo. With minor grammatical and content edits by Tropic101x team

Weekly summary of Tropic101x as posted by student Lucia_Agudelo. With minor grammatical and content edits by Tropic101x team Weekly summary of Tropic101x as posted by student Lucia_Agudelo With minor grammatical and content edits by Tropic101x team Summary of Week 4 MARINE ECOSYSTEM SERVICES LECTURE 4.1.1 These are the services

More information

Biology Ecology Unit Chapter 2 Study Guide

Biology Ecology Unit Chapter 2 Study Guide Name: Date: Block: Biology Ecology Unit Chapter 2 Study Guide 1. Directions: Use each of the terms below just once to complete the passage. Ecology Biotic factors Nonliving Environments Atmosphere Humans

More information

Ecology the scientific study of interactions between different organisms and between organisms and their environment or surroundings

Ecology the scientific study of interactions between different organisms and between organisms and their environment or surroundings Ecology the scientific study of interactions between different organisms and between organisms and their environment or surroundings Biotic living factors that influence an ecosystem Abiotic non-living

More information

Principles of Ecology

Principles of Ecology Principles of Ecology 1 Keystone Anchors Describe ecological levels of organization in the biosphere. o Describe the levels of ecological organization (i.e., organism, population, community, ecosystem,

More information

Ecosystems Part 2. Food Chains, Food Webs, and Energy

Ecosystems Part 2. Food Chains, Food Webs, and Energy Ecosystems Part 2 Food Chains, Food Webs, and Energy Autotrophs Organisms that use the energy in sunlight to convert water and carbon dioxide into Glucose (food) Also called Producers because they produce

More information

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein!

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! Nitrogen Cycle 2.2 WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! In animals, proteins are vital for muscle function. In plants, nitrogen is important for growth. NITROGEN Nitrogen

More information

AP Environmental Science

AP Environmental Science AP Environmental Science Types of aquatic life zones MARINE Estuaries coral reefs mangrove swamps neritic zone pelagic zone FRESHWATER lakes and ponds streams and rivers wetlands Distribution of aquatic

More information

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat Name Period Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish an ecosystem from a community. Describe the diversity of a representative ecosystem. Sequence the process of succession. Interactions

More information

CORAL REEF CONSERVATION LESSON PLAN A Reef of Your Own

CORAL REEF CONSERVATION LESSON PLAN A Reef of Your Own Coral Reef Conservation CORAL REEF CONSERVATION LESSON PLAN A Reef of Your Own Theme Coral Reef Biology Links to Overview Essays and Resources Needed for Student Research http://oceanservice.noaa.gov/topics/ocean/coralreefs

More information

Student Exploration: Coral Reefs 1 Abiotic Factors

Student Exploration: Coral Reefs 1 Abiotic Factors Name: Date: Per. Student Exploration: Coral Reefs 1 Abiotic Factors Vocabulary: consumer, coral, coral bleaching, coral reef, filter feeder, food chain, food web, grazer, nutrients, ocean acidification,

More information

The Open Ocean. College of Marine Sciences, Shanghai Ocean University

The Open Ocean. College of Marine Sciences, Shanghai Ocean University The Open Ocean Regions of the Open Sea Beyond the shallow coastal seas over the continental shelves (neritic zone) lies the open ocean (oceanic zone). The photic zone is the layer that receives enough

More information

1. All the interconnected feeding relationships in an ecosystem make up a food. a. Interaction b. Chain c. Network d. Web

1. All the interconnected feeding relationships in an ecosystem make up a food. a. Interaction b. Chain c. Network d. Web Ecology Unit Test DO NOT WRITE ON TEST!!! Take a deep breath, take your time, and make sure you understand exactly what the question is asking you. For true/false, fill in the correct bubble ( A for true

More information

WHAT IS ECOLOGY? Ecology- the scientific study of interactions between organisms and their environments, focusing on energy transfer

WHAT IS ECOLOGY? Ecology- the scientific study of interactions between organisms and their environments, focusing on energy transfer Ecology WHAT IS ECOLOGY? Ecology- the scientific study of interactions between organisms and their environments, focusing on energy transfer Ecology is a science of relationships WHAT DO YOU MEAN BY ENVIRONMENT?

More information

12. How could forest fire change populations in the ecosystem? Populations could be destroyed or have to relocate,

12. How could forest fire change populations in the ecosystem? Populations could be destroyed or have to relocate, Name: Ecology Review Sheet 15-16 Directions: This review should be completed by using your Interactive Notebook (IAN). This review is worth +5 points on your Ecology test, if it is completed and turned

More information

3 3 Cycles of Matter. EOC Review

3 3 Cycles of Matter. EOC Review EOC Review A freshwater plant is placed in a salt marsh. Predict the direction in which water will move across the plant s cell wall, and the effect of that movement on the plant. a. Water would move out

More information

Ecosystems. Studying Organisms In Their Environment. Division Ave. High School AP Biology. organism. population. community. ecosystem.

Ecosystems. Studying Organisms In Their Environment. Division Ave. High School AP Biology. organism. population. community. ecosystem. Ecosystems Studying Organisms In Their Environment organism population community ecosystem biosphere 1 Essential questions What limits the production in ecosystems? How do nutrients move in the ecosystem?

More information

Principles of Ecology

Principles of Ecology Principles of Ecology Ecology Study of interactions that take place between organisms and their environments Living things are affected by nonliving and living parts of the environment Abiotic factors:

More information

Coral Reefs and Climate Change

Coral Reefs and Climate Change and Populations oral Reefs and limate hange 1 There are many different types of environments on the planet, and often many ecosystems within each environment. Ecosystems all contain a balance of abiotic

More information

Ecosystem refers to the organism which live in a particular area, the relationship between them, and their physical environment.

Ecosystem refers to the organism which live in a particular area, the relationship between them, and their physical environment. Ecosystem refers to the organism which live in a particular area, the relationship between them, and their physical environment. Ecosystem have two components: Biocenosis: is the set of living being in

More information

Interactions in Ecosystems I. Ecosystem. Interactions in Ecosystems I. Ecosystem

Interactions in Ecosystems I. Ecosystem. Interactions in Ecosystems I. Ecosystem I. Ecosystem A. Definition A unit of nature in which nutrients are cycled and energy flows. B. Abiotic factors: non-living components of the ecosystem. 1. Soil ph, salinity, temperature, texture. 2. Water

More information

Vocabulary An organism is a living thing. E.g. a fish

Vocabulary An organism is a living thing. E.g. a fish Organisms in their Environment Vocabulary An organism is a living thing. E.g. a fish Vocabulary A habitat is where an organism lives E.g. a pond Vocabulary A group of the same kind of organisms living

More information

Multiple Choice. Name Class Date

Multiple Choice. Name Class Date Chapter 3 The Biosphere Chapter Test A Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following descriptions about the

More information

Ecology: Chapters Worksheet

Ecology: Chapters Worksheet Ecology: Chapters 34 36 Worksheet Name: Chapter 34: The Biosphere Concept 34.1 The biosphere is the global ecosystem. (pp. 744 749) The scientific study of the interactions among organisms and between

More information

RipCycles & Nutrient Travels

RipCycles & Nutrient Travels RipCycles & Nutrient Travels Adapted from: Water Wonders in Project Learning Tree produced by The American Forest Foundation, Washington, D.C., 1996. Nutrient Cycling Grade Level: Part A: Intermediate

More information

Biomass and Biofuels

Biomass and Biofuels Biomass and Biofuels PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo February 11, 2014 What is bioenergy? Photosynthesis: the primary energy

More information

Feeding Relationships and trophic levels

Feeding Relationships and trophic levels Feeding Relationships and trophic levels All life needs a source of energy. Therefore, the life in an ecosystem need energy too! The sun provides that energy. The sun s energy is not DIRECTLY usable by

More information

Coral Reefs- A Challenging Ecosystem for Human Societies* B. Salvat Originally published in Global Environmental Change, 1992, vol. 2, pp.

Coral Reefs- A Challenging Ecosystem for Human Societies* B. Salvat Originally published in Global Environmental Change, 1992, vol. 2, pp. Coral Reefs- A Challenging Ecosystem for Human Societies* B. Salvat Originally published in Global Environmental Change, 1992, vol. 2, pp. 12-18 18 Presented by: Amy Dewees & Melissa Parente What is coral?

More information

buried in the sediment; the carbon they contain sometimes change into fossil fuels; this process takes millions of years

buried in the sediment; the carbon they contain sometimes change into fossil fuels; this process takes millions of years STUDY GUIDE CHAPTER 8 - ANSWERS 1) THE CARBON CYCLE - Describe the transformations related to the circulation of carbon. DEFINITION: the carbon cycle is a set of processes by which the essential element

More information

Food Chains, Food Webs, and Bioaccumulation Background

Food Chains, Food Webs, and Bioaccumulation Background Food Chains, Food Webs, and Bioaccumulation Background Introduction Every living organism needs energy to sustain life. Organisms within a community depend on one another for food to create energy. This

More information

The Biosphere and Biogeochemical Cycles

The Biosphere and Biogeochemical Cycles The Biosphere and Biogeochemical Cycles The Earth consists of 4 overlapping layers: Lithosphere Hydrosphere (and cryosphere) Atmosphere Biosphere The Biosphere The biosphere is the layer of life around

More information

Gas Guzzlers. Biological Pump

Gas Guzzlers. Biological Pump Gas Guzzlers Biological Pump Aquatic Biodiversity Chapter 8 Coral Reefs Open Ocean Deep Sea Marine equivalent of tropical rain forests Habitats for one-fourth of all marine species Coral polyps, which

More information

Chapter 2. Table of Contents. Section 1 Organisms and Their Releationships. Section 2 Flow of Energy in an Ecosystem. Section 3 Cycling of Matter

Chapter 2. Table of Contents. Section 1 Organisms and Their Releationships. Section 2 Flow of Energy in an Ecosystem. Section 3 Cycling of Matter Ecosystems Table of Contents Section 1 Organisms and Their Releationships Section 2 Flow of Energy in an Ecosystem Section 3 Cycling of Matter Section 1 Organisms and Their Releationships Interactions

More information

Chapter Introduction. Matter. Ecosystems. Chapter Wrap-Up

Chapter Introduction. Matter. Ecosystems. Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Abiotic Factors Cycles of Matter Chapter Wrap-Up Energy in Ecosystems How do living things and the nonliving parts of the environment interact? What do you

More information

The Cycling of Matter

The Cycling of Matter Section 2 Objectives Describe the short-term and long-term process of the carbon cycle. Identify one way that humans are affecting the carbon cycle. List the three stages of the nitrogen cycle. Describe

More information

Cycles in Nature Standard 1 Objective 2:

Cycles in Nature Standard 1 Objective 2: Cycles in Nature Standard 1 Objective 2: Explain relationships between matter cycles and Energy a) use diagrams to trace the movement of matter through a cycle b) Explain how water is a limiting factor

More information

Climate change and the ocean. Climate change and the ocean. Change in ocean currents. Change in ocean currents. Global conveyor belt

Climate change and the ocean. Climate change and the ocean. Change in ocean currents. Change in ocean currents. Global conveyor belt Climate change and the ocean Climate change and the ocean Avg Pacific and Indian Hurricane intensification, loss of coral reefs Atlantic Ocean Mean concentration of anthropogenic carbon as of 1994 in μmol/kg

More information

Ecology. Limiting factors. Introduction to Marine Ecology. Ecological communities and ecosystems

Ecology. Limiting factors. Introduction to Marine Ecology. Ecological communities and ecosystems Introduction to Marine Ecology Physical limiting factors light, temperature, salinity, nutrients, gases variation within the ocean: depth and geography Marine habitats: where to make a living Marine feeding

More information

What is an ecosystem?

What is an ecosystem? 1 What is an ecosystem? System = regularly interacting and interdependent components forming a unified whole Ecosystem = an ecological system; = a community and its physical environment treated together

More information

Ecosystem, Biodiversity. Lecture 4: Introduction to Civil and Environmental Engineering

Ecosystem, Biodiversity. Lecture 4: Introduction to Civil and Environmental Engineering Ecosystem, Biodiversity Lecture 4: Introduction to Civil and Environmental Engineering What are Ecosystems? Ecosystems are the biotic and abiotic factors in a specified area that interact with one another.

More information

7 Energy Flow Through an Ecosystem NOW THAT YOU are familiar with producers and consumers,

7 Energy Flow Through an Ecosystem NOW THAT YOU are familiar with producers and consumers, 7 Energy Flow Through an Ecosystem NOW THAT YOU are familiar with producers and consumers, you are going to learn about how these organisms interact within an ecosystem. Picture a seal swimming in the

More information

Marine Primary Productivity: Measurements and Variability

Marine Primary Productivity: Measurements and Variability Why should we care about productivity? Marine Primary Productivity: Measurements and Variability Photosynthetic activity in oceans created current O 2 -rich atmosphere Plankton form ocean sediments & fossil

More information

1/2/2015. Is the size of a population that can be supported indefinitely by the resources of a given ecosystem

1/2/2015. Is the size of a population that can be supported indefinitely by the resources of a given ecosystem Review Video Is the size of a population that can be supported indefinitely by the resources of a given ecosystem Beyond this carrying capacity, no additional individuals of a population can be supported

More information

Nitrogen & Bacteria. A biological journey through the environment

Nitrogen & Bacteria. A biological journey through the environment Nitrogen & Bacteria A biological journey through the environment Sources of Nitrogen to the Environment Agricultural Natural Industrial Transportation Nitrogen as a pollutant Too much Nitrogen can cause

More information

3 2 Energy Flow. Slide 1 of 41. Copyright Pearson Prentice Hall

3 2 Energy Flow. Slide 1 of 41. Copyright Pearson Prentice Hall 1 of 41 Producers Where does the energy for life processes come from? Producers Without a constant input of energy, living systems cannot function. Sunlight is the main energy source for life on Earth.

More information

MARINE POLLUTION DEGRADATION MITIGATION MANAGEMENT IS ESSENTIAL FOR IMPROVING MARINE ENVIRONMENT

MARINE POLLUTION DEGRADATION MITIGATION MANAGEMENT IS ESSENTIAL FOR IMPROVING MARINE ENVIRONMENT MARINE POLLUTION DEGRADATION MITIGATION MANAGEMENT IS ESSENTIAL FOR IMPROVING MARINE ENVIRONMENT The health of the world s oceans and marine life is degrading rapidly as a result of excess human activities.

More information

Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling

Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling Systems in the Environment are not Independent of one Another Central Case Study: The Vanishing Oysters of the Chesapeake Bay Chesapeake

More information

autotroph an organism that uses the Sun s energy and raw materials to make its own food; a producer

autotroph an organism that uses the Sun s energy and raw materials to make its own food; a producer trophic level a category of living things defined by how it gains its energy; the first trophic level contains autotrophs, and each higher level contains heterotrophs autotroph an organism that uses the

More information

Chapter 37 Communities and Ecosystems

Chapter 37 Communities and Ecosystems Chapter 37 Communities and Ecosystems PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Introduction Natural

More information

Aquatic respiration and ocean metabolism

Aquatic respiration and ocean metabolism Aquatic respiration and ocean metabolism Remember what life is all about: Energy (ATP) Reducing power (NADPH) Nutrients (C, N, P, S, Fe, etc., etc.) Photosynthetic organisms use sunlight, H 2 O, and dissolved

More information

Material Cycles in Ecosystems. Total Recall: What happens to energy with increasing levels of a food chain?

Material Cycles in Ecosystems. Total Recall: What happens to energy with increasing levels of a food chain? Material Cycles in Ecosystems Total Recall: What happens to energy with increasing levels of a food chain? Available energy decreases with increasing levels of a food chain. *What must occur for there

More information

WHAT IS ECOLOGY? Ecology- the scientific study of interactions between organisms and their environments, focusing on energy transfer

WHAT IS ECOLOGY? Ecology- the scientific study of interactions between organisms and their environments, focusing on energy transfer More Ecology WHAT IS ECOLOGY? Ecology- the scientific study of interactions between organisms and their environments, focusing on energy transfer Ecology is a science of relationships WHAT DO YOU MEAN

More information

Patterns of Productivity

Patterns of Productivity Patterns of Productivity OCN 201 Biology Lecture 8 Primary Production - the production of autotrophic biomass Secondary Production - the production of heterotrophic biomass Production vs Biomass Biomass

More information

1. The diagram below represents many species of plants and animals and their surroundings.

1. The diagram below represents many species of plants and animals and their surroundings. 1. The diagram below represents many species of plants and animals and their surroundings. 4. Which statement most accurately predicts what would happen in the aquarium shown below if it were tightly covered

More information

Autotrophs (producers) Photosynthetic Organisms: Photosynthesis. Chemosynthe*c bacteria

Autotrophs (producers) Photosynthetic Organisms: Photosynthesis. Chemosynthe*c bacteria ALL living things need energy for growth, reproduction, metabolic reactions. Energy can t be created or destroyed only changed into different forms. SUN is source of all energy. Autotrophs (producers):

More information

NOAA: The Heat is ON! Climate Change and Coral Reef Ecosystems

NOAA: The Heat is ON! Climate Change and Coral Reef Ecosystems LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NOAA: The Heat is ON! Climate Change and Coral Reef Ecosystems Coral Bleaching Dr. Mark Eakin Thursday, April 30, 2009 Coral Bleaching 101 Presented by Mark Eakin

More information

Environment Review. Powerpoint Templates. Page 1

Environment Review. Powerpoint Templates. Page 1 Environment Review Powerpoint Templates Page 1 Question 1 Which organisms in the food web above can be described as both primary and secondary consumers? a primary consumer feeds on plants and a secondary

More information

Let s Be Oral About Coral. much support has been placed on the preservation of polar bears, the fact that all animals are

Let s Be Oral About Coral. much support has been placed on the preservation of polar bears, the fact that all animals are Let s Be Oral About Coral Allison Feng 1 Let s Be Oral About Coral When climate change is thought of in relation to animals, the archetypal image of a lone polar bear floating on a piece of melting ice

More information

FREQUENTLY ASKED QUESTIONS

FREQUENTLY ASKED QUESTIONS tsd04.07 page 1 of 5 FREQUENTLY ASKED QUESTIONS about Bacta-Pur KLEAR, Bacta-Pur NUTRIPAK & Bacta-Pur Sludgebusters 2007 Bacta-Pur, BACTIVATOR & ECOPROBIOTICS are trademarks of Aquaresearch Canada Ltd

More information

Lab: Modeling Ecosystems Virtual Lab B I O L O G Y : I n t e r a c t i o n s i n E c o s y s t e m s

Lab: Modeling Ecosystems Virtual Lab B I O L O G Y : I n t e r a c t i o n s i n E c o s y s t e m s Name Date Period Lab: Modeling Ecosystems Virtual Lab B I O L O G Y : I n t e r a c t i o n s i n E c o s y s t e m s Directions 1. Open the Virtual Lab titled Model Ecosystems. http://www.mhhe.com/biosci/genbio/virtual_labs/bl_02/bl_02.html

More information

Bio 112 Ecology: Final Study Guide

Bio 112 Ecology: Final Study Guide Bio 112 Ecology: Final Study Guide Below is an outline of the topics and concepts covered on the final exam. This packet also includes a practice test, along with answers to questions 1-44. You may submit

More information

Aquatic Communities Aquatic communities can be classified as freshwater

Aquatic Communities Aquatic communities can be classified as freshwater Aquatic Communities Aquatic communities can be classified as freshwater or saltwater. The two sets of communities interact and are joined by the water cycle. Gravity eventually returns all fresh water

More information

DRK-12 Carbon Assessment, Form B

DRK-12 Carbon Assessment, Form B DRK-12 Carbon Assessment, Form B Fall, 2013 Please don t include this first sheet in student copies. This assessment is designed to elicit middle school or high school students accounts of carbon-transforming

More information

Energy Flow UNIT 2: ENVIRONMENTAL BIOLOGY AND GENETICS

Energy Flow UNIT 2: ENVIRONMENTAL BIOLOGY AND GENETICS Energy Flow UNIT 2: ENVIRONMENTAL BIOLOGY AND GENETICS Learning Objectives Components of an Ecosystem Give the meanings of the words; habitat, population, community and ecosystem What is Ecology / Environmental

More information

Guided Notes Unit 3B: Matter and Energy

Guided Notes Unit 3B: Matter and Energy Name: Date: Block: Chapter 13: Principles of Ecology I. Concept 13.3: Energy in Ecosystems II. a. Review Vocabulary b. Autotrophs Guided Notes Unit 3B: Matter and Energy i. Producers: convert the light

More information

06/10/2015. Lecture 3: Ecological Pyramids and the Transfer of Energy in Ecosystems PYRAMID OF NUMBERS. Pyramid of Numbers. Pyramid of numbers cont.

06/10/2015. Lecture 3: Ecological Pyramids and the Transfer of Energy in Ecosystems PYRAMID OF NUMBERS. Pyramid of Numbers. Pyramid of numbers cont. Lecture 3: Ecological Pyramids and the Transfer of Energy in Ecosystems ECOLOGICAL PYRAMIDS The trophic levels of an ecosystem can be arranged into in a pyramid and these are called the ecological pyramids

More information

Ecosystems: Nutrient Cycles

Ecosystems: Nutrient Cycles Ecosystems: Nutrient Cycles Greeks, Native Peoples, Buddhism, Hinduism use(d) Earth, Air, Fire, and Water as the main elements of their faith/culture Cycling in Ecosystems the Hydrologic Cycle What are

More information

Biosphere & Biogeochemical Cycles

Biosphere & Biogeochemical Cycles Biosphere & Biogeochemical Cycles Biosphere Sphere of living organisms All the regions of the earth and its atmosphere in which living organisms are found or can live. Interacts with all the other spheres

More information

Keystone Biology Remediation B4: Ecology

Keystone Biology Remediation B4: Ecology Keystone Biology Remediation B4: Ecology Assessment Anchors: to describe the levels of ecological organization (i.e. organism, population, community, ecosystem, biome, biosphere) (B.4.1.1) to describe

More information

Production vs Biomass

Production vs Biomass Patterns of Productivity OCN 201 Biology Lecture 5 Production vs Biomass Biomass = amount of carbon per unit area (= standing stock * C/cell) Units (e.g.): g C m -2 Primary Production = amount of carbon

More information

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid?

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid? 2.2 Nutrient Cycles in Ecosystems Review How energy flows What is the difference between a food chain, food web, and food pyramid? https://www.youtube.com/watch?v=xhr1iebeops https://www.youtube.com/watch?v=alusi_6ol8m

More information

Ecology. AQA Biology topic 7

Ecology. AQA Biology topic 7 Ecology AQA Biology topic 7 7.1 Adaptations, Interdependence and Competition Ecosystems Definition: An ecosystem is the total interaction of a community of living organisms (biotic) with the non-living

More information

6 th Grade Cards 1. Which of these is NOT a benefit of biodiversity? 6. Which animal listed below would complete this food chain?

6 th Grade Cards 1. Which of these is NOT a benefit of biodiversity? 6. Which animal listed below would complete this food chain? 1. Which of these is NOT a benefit of biodiversity? A. medicine B. food C. gold D. oxygen 6. Which animal listed below would complete this food chain? A. fly B. lizard C. butterfly D. hummingbird 2. Which

More information

Ocean Water Buoyancy and Hypoxia in the Gulf of Mexico. Definitions. Hypoxia in the Headlines. Joe Smith. ExxonMobil Upstream Research Company

Ocean Water Buoyancy and Hypoxia in the Gulf of Mexico. Definitions. Hypoxia in the Headlines. Joe Smith. ExxonMobil Upstream Research Company Ocean Water Buoyancy and Hypoxia in the Gulf of Mexico Joe Smith ExxonMobil Upstream Research Company Joe Smith 2004 Hypoxia NOAA Coastal Data Development Center Definitions Hypoxia is a term meaning low

More information