Study on physical model of the crossing of the Rhône flood plain by a new railway line near Lyon

Size: px
Start display at page:

Download "Study on physical model of the crossing of the Rhône flood plain by a new railway line near Lyon"

Transcription

1 Study on physical model of the crossing of the Rhône flood plain by a new railway line near Lyon Sébastien Derrien 1,a, Claude Guilbaud 1, Yves Simond 2 and Denis Cuvillier 2 1 ARTELIA Eau & Environnement, 6 Rue de Lorraine, Echirolles, France 2 SNCF Réseau, 78 Rue de la Villette, Lyon Cedex 3, France Abstract. In order to address the questions raised by a new railway line crossing the Rhône, and in addition to mathematical modelling conducted during the preliminary studies, SNCF Réseau commissioned Artelia Eau & Environnement with a physical scale model study of the projected infrastructure. The physical scale model represented the river Rhône and its flood plain, the existing bridges over the river Rhône for the A432 motorway and the high speed line, and then the project (viaduct and relief structures). After calibration of the measurements devices, tests were carried out in current conditions, in design conditions and in optimised design conditions. The physical scale model enabled to identify the hydraulic impact of the project during flood events (increase of the maximum water level, due to bad flow conditions at the inlet of relief structures) and validate the improvements of the design (reshaping of the relief structures' inlet, and removal of embankments close to the relief structures). The final optimized design ensures the hydraulic transparency of the project. 1 Introduction The project of rail by-pass around Lyon urban area (CFAL Contournement Ferroviaire de l'agglomération Lyonnaise) is led by SNCF Réseau (former Réseau Ferré de France). This project is strategic at regional, national and European scale: it is planned both for the movement of passenger trains and freight, it will improve the rail network while freeing up capacity at the heart of the Lyon railway junction, and it will promote economic dynamics in the Rhône-Alpes region. In order to address the questions raised by the project at the crossing of the Rhône in its northern branch, and in addition to mathematical modelling conducted during the preliminary studies, SNCF Réseau commissioned Artelia Eau & Environnement with a physical scale model study of the bridge over the river Rhone for the new railway line, located at the end of Miribel Jonage island and close to the town of Nievroz, which is exposed to floods. The objectives of the physical scale model study were the following: - characterisation of the hydraulic impact (qualitative & quantitative) of projected structures on flood discharges and flow conditions; - optimisation of structures and of constructional requirements in order to minimise these impacts. 2 The scale model 2.1 Similitude and scale factor The flows being free surface ones, the study on scale model is conducted using Froude's similitude, i.e. Froude's number (ratio between inertia and gravity forces) is the same on the model and in nature. The Froude s number is given by the following formula: Figure 1. Location map Fr = v / (gh) (1) a Corresponding author: sebastien.derrien@arteliagroup.com The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (

2 with: - v: velocity (m/s) - g: gravity acceleration (m/s²), - h: flow depth (m), According to the problems to be studied and the size of the project, the geometrical scale factor ( ) is 1/80. This scale allows for the representation in the model of the maximum flows and is appropriate for the study of the hydraulic impact of projected structures. The model is undistorted (same vertical and horizontal scales). Considering the Froude similitude is achieved, the scale factors are the following: - water levels: h = = 1/80 - velocities: v = 1/2 = 1/8.9 - discharge: Q = 5/2 = 1/ time : t = t = 1/2 = 1/ Model extent The physical scale model represents the river Rhône and its flood plain (including the town of Nievroz), the existing bridges over the river Rhône for the A432 motorway and the high speed line, and then the CFAL project (viaduct and relief structures). The model represents 4 km of the Rhône river (50 m on model) and covers an area of 5.2 km² (approximately 800 m² on model). Figure 4. General top view of the model 2.3 Model equipment In order to accurately reproduce unsteady flow conditions in the Rhône large flood plain area, the following equipment layout is set up on the model: - for inflow control: discharge-controlled pump with electromagnetic flow meter, - for outflow control: downstream level controlled by four flap gates across the flood plain, reproducing the various water levels calculated by a previous numerical model study, - for water level measurement: continuous measurement and recording by 22 calibrated ultrasound sensors, distributed within main channel and flood plain, - for flow velocity measurement: micro propeller inside the structures (viaduct and relief structures), and a LS-PIV (Large Scale Particle Image Velocimetry) system combined with a data processing software, - for maximum flood expanse survey: robotic survey station, - for general flow patterns visualisation: use of dye injected from 10 points underneath the ground level. All electronic equipment (flow meters, flap gates, ultrasound sensors, camera for LS-PIV recording) is monitored and operated from a unique computer workstation with dedicated controlling software, specially developed for the purpose of the model study. Figure 2. Model extent Figure 5. General view of the model equipment Figure 3. General upstream view of the model 2

3 - Unsteady flow for flooding process, recording of water levels variations and maximum flood extent, - Steady flow at peak discharge for velocity measurements (by micro propeller and LS-PIV), flow patterns identification (by use of dye) and checking of the maximum flood extent. 3.3 Tests in current conditions Figure 6. General view of the controlling software 3 Model tests 3.1 Calibration tests After calibration of the measurements devices, a first series of tests is carried out in order to calibrate the scale model and ensure that it reproduces correctly natural phenomena. The calibration is a two-stage procedure: - simulation of non-overflowing conditions and comparison with recorded water levels in the river. This first step leads to calibrate the river bed roughness, with an average difference in water levels of 10 cm nature. - simulation of the 1990 overflowing flood (30- years event) and comparison with recorded water levels in the river, surveyed maximum flood extent and results of the previous numerical model (maximum water level in the flood plain and development of the unsteady flooding process). This second step leads to calibrate the flood plain roughness in the vegetalised areas, as realistically as possible. The average difference in water levels is 12 cm in the main channel compared to recorded water levels, and 10 cm in flood plain compared to numerical modelling. Except in one area where the topography is very flat and therefore sensitive to a small water level variation, the maximum flood extent is very well reproduced. Compared to numerical simulations, the overflowing process occurs sooner and more progressively on the physical model, but the general shape of the water rise and the maximum water levels during flood peak are similar. 3.2 Tests conditions Tests are carried out under the following conditions: year flood - 1,000-year flood By comparison with numerical simulations, the physical model enables to: - confirm the maximum flood extent and maximum water levels, - precise the hydraulic functioning of the relief structures under the existing motorway and high speed line, as they are explicitly modelled. Flow patterns and flow velocities in front and through the structures are fully described. Measurements show that the flow in the flood plain is slightly higher (+10%) for both tested discharges on the scale model, but the global flow repartition within the four relief structures is confirmed. Figure 7. LS-PIV treatment in front of a relief structure (100- year flood, current conditions) 3.4 Tests in design conditions In design conditions, i.e. with the CFAL project implemented just upstream of the existing structures, the tests results show that: - the maximum impact on water levels in the flood plain is noticed upstream from the relief structures (between +10 and +18 cm), and reduces as going upstream (less than 4 cm at the upstream end of the model), - the maximum flood extent surveyed on the model is slightly affected by the moderate rise in water level, only in the flattest areas, - the project layout reduces the hydraulic capacity of the relief structures (-13%), which results in a higher flow in the main channel. 3

4 3.5 Tests in optimised design conditions Figure 8. Comparison of water level recording in front of one relief structure (100-year flood) In addition to the conventional use of dye (fluorescein) to characterise flow patterns, the LS-PIV procedure enable to precisely describe the velocity fields in front of the planned scheme, and thus identify the impact of a given structure. Stream line patterns, flow separation and recirculation areas can be characterised, giving a better understanding of the phenomena involved and thus a precious guide for the optimisations design. Several optimisations are designed and tested on the physical model: - lowering of the relief structures inlets to reduce head losses, and partial modification of the embankment shape in the vicinity of the relief structures, - complete removal of the storm management ponds located at the foot of the main embankment, - Creation of an outlet channel for one of the relief structures in order to improve its hydraulic functioning. The first optimisation gives on its own the better results, as the maximum water level recorded during flood peaks are similar to the initial conditions. The other optimisations do not bring additional significant effect on the flood flow conditions, and therefore do not need to be implemented. The hydraulic transparency of the global scheme can thus be achieved by means of relatively simple works and minor project's adaptations. Figure 9. Flow pattern characterisation with dye in front of a relief structure (100-year flood, design conditions) Figure 11. LS-PIV treatment in front of a relief structure after first optimisation (1000-year flood, optimised design conditions) 4 Conclusions Figure 10. Effect of projected structure on flow pattern close to a relief structure with use of dye (100-year flood, design conditions) The physical scale model enabled to identify the hydraulic impact of the project during flood events (increase of the maximum water level, due to bad flow conditions at the inlet of relief structures) and validate the improvements of the design (reshaping of the relief structures' inlet, and removal of embankments close to the relief structures). The final optimized design ensures the hydraulic transparency of the project. The scale model is a very useful tool for optimisation of major linear infrastructures crossing flood plain, where flow patterns and functioning of hydraulic structures are not easily accessible by numerical modelling only. 4

5 Indeed, the scale model represents completely and in detail all the structures: embankments, relief structures (walls, inlet and outlet with rip-rap protection, piers), viaducts (shape and orientation of piers), which makes the complete and proper modelling of all head losses possible, when the numerical modelling has to rely on theoretical parameters. The scale model is in this way a unique tool as it gives the opportunity to gain a reliable insight into the flow conditions, as real as it can be in nature. 5

ELBE RIVER MODEL: UVP FLOW MAPPING

ELBE RIVER MODEL: UVP FLOW MAPPING ELBE RIVER MODEL: UVP FLOW MAPPING Vojtech Bares 1 and Prof. Vojtech Broza 2 1 Doctorand, Czech Technical University in Prague, Faculty of Civil Engineering, Laboratory of Ecological Risks in Urban Drainage,

More information

Performance improvement of headworks: a case of Kalignadaki A Hydropweor Project through physical hydraulic modelling

Performance improvement of headworks: a case of Kalignadaki A Hydropweor Project through physical hydraulic modelling Performance improvement of headworks: a case of Kalignadaki A Hydropweor Project through physical hydraulic modelling Dr. Ing. Meg B. Bishwakarma General Manager, Hydro Lab Pvt. Ltd., Nepal ABSTRACT: The

More information

Learning objectives. Upon successful completion of this lecture, the participants will be able to:

Learning objectives. Upon successful completion of this lecture, the participants will be able to: Solomon Seyoum Learning objectives Upon successful completion of this lecture, the participants will be able to: Describe and perform the required step for designing sewer system networks Outline Design

More information

Practical Hydraulics on a Large Wastewater Treatment Works

Practical Hydraulics on a Large Wastewater Treatment Works Practical Hydraulics on a Large Wastewater Treatment Works Rob Wilson Examples Flow distribution chambers with weirs Flow distribution without weirs Manifold distribution Flow distribution to inlet screens

More information

Created by Simpo PDF Creator Pro (unregistered version) Asst.Prof.Dr. Jaafar S. Maatooq

Created by Simpo PDF Creator Pro (unregistered version)  Asst.Prof.Dr. Jaafar S. Maatooq Lect.No.9 2 nd Semester Barrages, Regulators, Dams 1 of 15 In order to harness the water potential of a river optimally, it is necessary to construct two types of hydraulic structures, as shown in Figure

More information

THE CONSTRUCTION PHASES OF THE NEW NAGA HAMMADI BARRAGE COFFERDAMS

THE CONSTRUCTION PHASES OF THE NEW NAGA HAMMADI BARRAGE COFFERDAMS Ninth International Water Technology Conference, IWTC9 2005, Sharm El-Sheikh, Egypt 355 THE CONSTRUCTION PHASES OF THE NEW NAGA HAMMADI BARRAGE COFFERDAMS Yasser Shawky ( 1), Hala Badawy ( 2) (1) Researcher,

More information

Appendix J Hydrology and Hydraulics

Appendix J Hydrology and Hydraulics Appendix J Hydrology and Hydraulics Marsh Lake Dam Ecosystems Restoration Feasibility Study Hydraulics & Hydrology Appendix January 2011 Contents List of Figures iii List of Tables iii I. General 1 II.

More information

LOCATION AND DESIGN DIVISION

LOCATION AND DESIGN DIVISION VIRGINIA DEPARTMENT OF TRANSPORTATION LOCATION AND DESIGN DIVISION INSTRUCTIONAL AND INFORMATIONAL MEMORANDUM GENERAL SUBJECT: CULVERT DESIGN SPECIFIC SUBJECT: COUNTERSINKING AND LOW FLOW CONSIDERATIONS

More information

Design of a passive hydraulic containment system using FEFLOW modelling

Design of a passive hydraulic containment system using FEFLOW modelling Design of a passive hydraulic containment system using FEFLOW modelling Rémi Vigouroux remi.vigouroux@arteliagroup.com Florence Lenhardt florence.lenhardt@arteliagroup.com Noëlle Doucet noelle.doucet@arteliagroup.com

More information

Modelling and Analysis of EES Systems Using SWMM

Modelling and Analysis of EES Systems Using SWMM Planning and Design of a Right-of-Way LID (Etobicoke Exfiltration System) July 24 th 2015 Toronto, Ontario, Canada ling and Analysis of EES Systems Using SWMM Darko Joksimovic Department of Civil Engineering,

More information

EXPERIMENTAL STUDY OF EFFECT OF END SILL ON STILLING BASIN PERFORMANCE

EXPERIMENTAL STUDY OF EFFECT OF END SILL ON STILLING BASIN PERFORMANCE EXPERIMENTAL STUDY OF EFFECT OF END SILL ON STILLING BASIN PERFORMANCE H.L.Tiwari Department of Civil Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh INDIA Arun Goel

More information

APPENDIX G HYDRAULIC GRADE LINE

APPENDIX G HYDRAULIC GRADE LINE Storm Drainage 13-G-1 APPENDIX G HYDRAULIC GRADE LINE 1.0 Introduction The hydraulic grade line is used to aid the designer in determining the acceptability of a proposed or evaluation of an existing storm

More information

Jacobi, Toombs, and Lanz, Inc.

Jacobi, Toombs, and Lanz, Inc. Area 5: Blackiston Mill Road at Dead Man's Hollow Flooding Assessment Jacobi, Toombs, and Lanz, Inc. This document summarizes an assessment of drainage and flooding concerns and provides recommendations

More information

Facilities Plan. Technical Memorandum No. TM-WW-7 Hydraulic Analysis and Effluent Pump Station

Facilities Plan. Technical Memorandum No. TM-WW-7 Hydraulic Analysis and Effluent Pump Station City of St. Joseph, Missouri Hydraulic Analysis and Effluent Pump Station By Work Order No. 09-001 B&V Project 163509 May 20, 2010 Table of Contents 1.0 Executive Summary...1 2.0 Purpose of Study...2 3.0

More information

ANALYSIS OF HYDRAULIC FLOOD CONTROL STRUCTURE AT PUTAT BORO RIVER

ANALYSIS OF HYDRAULIC FLOOD CONTROL STRUCTURE AT PUTAT BORO RIVER Civil Engineering Forum Volume XXII/ - May 03 ANALYSIS OF HYDRAULIC FLOOD CONTROL STRUCTURE AT PUTAT BORO RIVER Ruhban Ruzziyatno Directorate General of Water Resources, Ministry of Public Works, Republic

More information

(b) Discuss in brief shaft spillway with neat sketches. Marks 04. OR Q (2) Explain in brief USBR stilling basin. Marks 08

(b) Discuss in brief shaft spillway with neat sketches. Marks 04. OR Q (2) Explain in brief USBR stilling basin. Marks 08 (b) Discuss in brief shaft spillway with neat sketches. Marks 04 OR Q (2) Explain in brief USBR stilling basin. Marks 08 Stilling Basins The basins are usually provided with special appurtenances including

More information

Thermal Imaging for Discharge and Velocity Measurements in Open Channels. PKI 205C, Omaha, NE ;

Thermal Imaging for Discharge and Velocity Measurements in Open Channels. PKI 205C, Omaha, NE ; Thermal Imaging for Discharge and Velocity Measurements in Open Channels E. Jackson 1, D. Admiraal 2, D. Alexander 3, J. Stansbury 4, J. Guo 5, D. Rundquist 6, and M. Drain 7 1 Dept. of Electrical Engineering,

More information

The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire

The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire May 4, 2010 Name of Model, Date, Version Number Dynamic Watershed Simulation Model (DWSM) 2002

More information

5.3 Flood Protection Plan

5.3 Flood Protection Plan 5.3 Flood Protection Plan 5.3.1 Existing Conditions (1) Land Elevation The majority of land in the study area is characterized as undeveloped land such as agricultural, unused land and forests which have

More information

Flood hazard assessment in the Raval District of Barcelona using a 1D/2D coupled model

Flood hazard assessment in the Raval District of Barcelona using a 1D/2D coupled model 9 th International Conference on Urban Drainage Modelling Belgrade 2012 Flood hazard assessment in the Raval District of Barcelona using a 1D/2D coupled model Beniamino Russo, David Suñer, Marc Velasco,

More information

Module 3. Irrigation Engineering Principles. Version 2 CE IIT, Kharagpur

Module 3. Irrigation Engineering Principles. Version 2 CE IIT, Kharagpur Module 3 Irrigation Engineering Principles Lesson 8 Conveyance Structures for Canal Flows Instructional objectives On completion of this lesson, the student shall learn the following: 1. The need for structures

More information

FINDINGS: Olsson used a three-step analysis strategy to develop a benefit cost ratio that would indicate the relative feasibility of this project.

FINDINGS: Olsson used a three-step analysis strategy to develop a benefit cost ratio that would indicate the relative feasibility of this project. EXECUTIVE SUMMARY FINDINGS: Based on the results of this feasibility study, the Platte Republican Diversion Project would be cost-effective. With minimal improvements to the channel, and the existing bridge

More information

Training Course Brochure Building Capacity in Rural & Urban Water Management

Training Course Brochure Building Capacity in Rural & Urban Water Management Training Course Brochure 2015 Building Capacity in Rural & Urban Water Management Introduction The WastePro Academy seeks to encourage the use of desktop software applications in the water and environmental

More information

Open Channel Flow. Ch 10 Young, Handouts

Open Channel Flow. Ch 10 Young, Handouts Open Channel Flow Ch 10 Young, Handouts Introduction Many Civil & Environmental engineering flows have a free surface open to the atmosphere Rivers, streams and reservoirs Flow in partially filled pipes

More information

Analysis of Side Sluice in Trapezoidal Channel

Analysis of Side Sluice in Trapezoidal Channel Analysis of Side Sluice in Trapezoidal Channel Dr. L. G. Patil 1, Amol M. Kode 2 1 Associate Professor, Department of Civil Engineering, SGGSIE&T, Nanded 2 M. Tech Student, Department of Civil Engineering,

More information

Freight Street Development Strategy

Freight Street Development Strategy Freight Street Development Strategy Appendix B: Naugatuck River Floodplain Analysis Freight Street Development Strategy DECEMBER 2017 Page B-1 1.0 NAUGATUCK RIVER FLOODPLAIN AT FREIGHT STREET 1.1 Watershed

More information

3.0 DESIGN CRITERIA FOR SANITARY SEWER FACILITIES

3.0 DESIGN CRITERIA FOR SANITARY SEWER FACILITIES 3.0 DESIGN CRITERIA FOR SANITARY SEWER FACILITIES All sanitary sewers shall be designed in accordance with these Design Standards, LBWD Rules and Regulations, and to accepted engineering principles. In

More information

Stream Reaches and Hydrologic Units

Stream Reaches and Hydrologic Units Chapter United States 6 Department of Agriculture Natural Resources Conservation Service Chapter 6 Stream Reaches and Hydrologic Units Rain clouds Cloud formation Precipitation Surface runoff Evaporation

More information

nhc EARTH TECH CANADA INC. CITY OF WINNIPEG NORTH END WATER POLLUTION CONTROL CENTRE PUMP STATION MODEL TEST FINAL REPORT JANUARY 2005

nhc EARTH TECH CANADA INC. CITY OF WINNIPEG NORTH END WATER POLLUTION CONTROL CENTRE PUMP STATION MODEL TEST FINAL REPORT JANUARY 2005 EARTH TECH CANADA INC. CITY OF WINNIPEG NORTH END WATER POLLUTION CONTROL CENTRE PUMP STATION MODEL TEST FINAL REPORT JANUARY 2005 nhc northwest hydraulic consultants CITY OF WINNIPEG NORTH END WATER POLLUTION

More information

Effective Analysis by Arrangement of Multi-Baffle at Weir Downstream

Effective Analysis by Arrangement of Multi-Baffle at Weir Downstream Engineering, 2016, 8, 872-882 http://www.scirp.org/journal/eng ISSN Online: 1947-394X ISSN Print: 1947-3931 Effective Analysis by Arrangement of Multi-Baffle at Weir Downstream Joon-Gu Kang River Experiment

More information

2 Hydrology Studies. 2.1 Introduction

2 Hydrology Studies. 2.1 Introduction 2 Hydrology Studies Report by: C. Cadou, P. Eng. 2.1 Introduction The objective of this analysis was to review the hydrological/hydraulic and energy production components of studies carried out to date

More information

THE RATIONAL METHOD FREQUENTLY USED, OFTEN MISUSED

THE RATIONAL METHOD FREQUENTLY USED, OFTEN MISUSED THE RATIONAL METHOD FREQUENTLY USED, OFTEN MISUSED Mark Pennington, Engineer, Pattle Delamore Partners Ltd, Tauranga ABSTRACT The Rational Method has been in use in some form or another at least since

More information

Facilities Development Manual

Facilities Development Manual State of Wisconsin Department of Transportation Facilities Development Manual ORIGINATOR Director, Bureau of Highway Development PROCEDURE 13-25-35 CHAPTER 13 Drainage SECTION 25 Storm Sewer Design SUBJECT

More information

Hydraulic Jumps. CIVE 401: Fall Team 10: Yalin Mao, Natalie Pace, Kyle Nickless. November 19, 2014

Hydraulic Jumps. CIVE 401: Fall Team 10: Yalin Mao, Natalie Pace, Kyle Nickless. November 19, 2014 Hydraulic Jumps CIVE 401: Fall 014 Team 10: Yalin Mao, Natalie Pace, Kyle Nickless November 19, 014 1 INTRODUCTION The fields of fluid mechanics and hydraulics contain a wide range of phenomena. Some concepts

More information

GEOMORPHIC EFECTIVENESS OF FLOODS ON LOWER TAPI RIVER BASIN USING 1-D HYDRODYNAMIC MODEL,HEC-RAS

GEOMORPHIC EFECTIVENESS OF FLOODS ON LOWER TAPI RIVER BASIN USING 1-D HYDRODYNAMIC MODEL,HEC-RAS GEOMORPHIC EFECTIVENESS OF FLOODS ON LOWER TAPI RIVER BASIN USING 1-D HYDRODYNAMIC MODEL,HEC-RAS Darshan Mehta 1, Raju Karkar 2, Lalji Ahir 3 Assistant Professor, CED, S.S.A.S.I.T, Surat, Gujarat, India

More information

Irrigation Structures 2. Dr. M. R. Kabir

Irrigation Structures 2. Dr. M. R. Kabir CHAPTER 9 Irrigation Structures 2 Dr. M. R. Kabir Professor and Head, Department of Civil Engineering University of Asia Pacific (UAP), Dhaka LECTURE 22 What is Cross Drainage Works? In an irrigation project,

More information

SECTION 6 STORMWATER AND LAND DRAINAGE

SECTION 6 STORMWATER AND LAND DRAINAGE SECTION 6 STORMWATER AND LAND DRAINAGE Final Version, Approved September 2003 Section 6 and Land Drainage Contents 6.1 PERFORMANCE STANDARDS... 2 6.1.1 General... 2 6.2 MEANS OF COMPLIANCE... 3 6.2.1 General...

More information

DAM BREAK ANALYSIS & DISASTER MANAGEMENT PLAN

DAM BREAK ANALYSIS & DISASTER MANAGEMENT PLAN 11 DAM BREAK ANALYSIS & DISASTER MANAGEMENT PLAN 11.1 INTRODUCTION 11.1.1 Dam Break Phenomenon The construction of dams in rivers can provide considerable benefits such as the supply of drinking and irrigation

More information

Geneva Dam. Design of a Steep, Temporary, Riprap Ramp

Geneva Dam. Design of a Steep, Temporary, Riprap Ramp Geneva Dam Design of a Steep, Temporary, Riprap Ramp A Run-of of-river Dam Analysis for Geneva Dam Credit to: Yu-Chun Su, Ph.D., P.E., CFM David T. Williams. Ph.D., P.E, CFM Presentation Purpose History

More information

WASTEWATER & STORM WATER COLLECTION AND REMOVAL

WASTEWATER & STORM WATER COLLECTION AND REMOVAL CVE 471 WATER RESOURCES ENGINEERING WASTEWATER & STORM WATER COLLECTION AND REMOVAL Assist. Prof. Dr. Bertuğ Akıntuğ Civil Engineering Program Middle East Technical University Northern Cyprus Campus CVE

More information

Temporary Watercourse Crossing: Culverts

Temporary Watercourse Crossing: Culverts Temporary Watercourse Crossing: Culverts DRAINAGE CONTROL TECHNIQUE Low Gradient Velocity Control Short Term Steep Gradient Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent Symbol

More information

Delineation of a Fuel Spill Related Intake Protection Zone 3(IPZ-3) for the Stoney Point Drinking Water Intake Extending up the Thames River Watershed

Delineation of a Fuel Spill Related Intake Protection Zone 3(IPZ-3) for the Stoney Point Drinking Water Intake Extending up the Thames River Watershed Draft Technical Memo: Delineation of a Fuel Spill Related Intake Protection Zone 3(IPZ-3) for the Stoney Point Drinking Water Intake Extending up the Thames River Watershed Author: Jason Wintermute, Lower

More information

Earthquake damage detection in Tehran s water distribution system

Earthquake damage detection in Tehran s water distribution system Safety and Security Engineering III 517 Earthquake damage detection in Tehran s water distribution system G. Badalians Gholikandi 1, R. Rasti Ardakani 2, M. A. Pourjafari 3 & R. Riahi 1 1 Power and Water

More information

STORM WATER MANAGEMENT REPORT

STORM WATER MANAGEMENT REPORT Silvercreek Junction STORM WATER MANAGEMENT REPORT Howitt Creek at the Silvercreek Parkway Site Guelph, Ontario August, 2008 TSH File 22304A-04 August 19, 2008 STORMWATER MANAGEMENT REPORT Howitt Creek

More information

Design criteria, Flooding of sewer systems in flat areas.

Design criteria, Flooding of sewer systems in flat areas. Design criteria, Flooding of sewer systems in flat areas. Ir Harry. Van Luijtelaar Tauw bv, P.O. box 830, 7400 AV Deventer, The Netherlands, Telephone +31570699304, Fax +31570699666, E-mail hlj@tauw.nl.

More information

Power Plants in northern Germany Project examples for optimizing intakes and outfalls

Power Plants in northern Germany Project examples for optimizing intakes and outfalls (Initial page layout) Power Plants in northern Germany Project examples for optimizing intakes and outfalls O. Stoschek* * Coastal and Estuarine Dynamics Department, DHI, Agern Allé 5, Hørsholm, Denmark,

More information

Hydraulic Problems during 2001 Flood in Gdańsk

Hydraulic Problems during 2001 Flood in Gdańsk PUBLS. INST. GEOPHYS. POL. ACAD. SC., E-10 (406), 2008 Hydraulic Problems during 2001 Flood in Gdańsk Wojciech MAJEWSKI Institute of Meteorology and Water Management Podleśna 61, 01-673 Warszawa, Poland

More information

Chapter 8. Inlets. 8.0 Introduction. 8.1 General

Chapter 8. Inlets. 8.0 Introduction. 8.1 General . Introduction This chapter provides criteria and design guides for evaluating and designing storm sewer inlets in the City of Centennial. The review of all planning submittals will be based on the criteria

More information

ASSESSMENT OF DRAINAGE CAPACITY OF CHAKTAI AND RAJAKHALI KHAL IN CHITTAGONG CITY AND INUNDATION ADJACENT OF URBAN AREAS

ASSESSMENT OF DRAINAGE CAPACITY OF CHAKTAI AND RAJAKHALI KHAL IN CHITTAGONG CITY AND INUNDATION ADJACENT OF URBAN AREAS Proceedings of the 4 th International Conference on Civil Engineering for Sustainable Development (ICCESD 2018), 9~11 February 2018, KUET, Khulna, Bangladesh (ISBN-978-984-34-3502-6) ASSESSMENT OF DRAINAGE

More information

PARR HYDROELECTRIC PROJECT PARR HYDRO DEVELOPMENT & FAIRFIELD PUMPED STORAGE FACILITY DEVELOPMENT FERC PROJECT No SC SEPTEMBER 19, 2012

PARR HYDROELECTRIC PROJECT PARR HYDRO DEVELOPMENT & FAIRFIELD PUMPED STORAGE FACILITY DEVELOPMENT FERC PROJECT No SC SEPTEMBER 19, 2012 PARR HYDROELECTRIC PROJECT PARR HYDRO DEVELOPMENT & FAIRFIELD PUMPED STORAGE FACILITY DEVELOPMENT FERC PROJECT No. 1894 - SC SEPTEMBER 19, 2012 PARR AND FAIRFIELD LOCATIONS Lockhart Neal Shoals Monticello

More information

The Impact Wear Behavior of Large Rocks on Slurry Pump Materials and Equipment.

The Impact Wear Behavior of Large Rocks on Slurry Pump Materials and Equipment. The Impact Wear Behavior of Large Rocks on Slurry Pump Materials and Equipment. Robert J. Visintainer V.P. of Engineering and R&D GIW Industries Inc. Dan Wolfe Sr. Associate Mechanical Syncrude Canada

More information

Brisbane River Catchment Flood Study overview

Brisbane River Catchment Flood Study overview Brisbane River Catchment Flood Study overview Brisbane River Catchment Flood Study overview Floods can and do occur in the Brisbane River catchment. The Queensland Government, local councils and the community

More information

Types of Water Resource Systems. Types of Water Resource Systems. Design of Water Resource Systems. Design for Public Water-Supply

Types of Water Resource Systems. Types of Water Resource Systems. Design of Water Resource Systems. Design for Public Water-Supply Types of Water Resource Systems Water Use Provide specified level of service to meet societal need Capacity dictated by population of service area, commercial and industrial requirements, economic design

More information

Stormwater Management Studies PDS Engineering Services Division ES Policy # 3-01

Stormwater Management Studies PDS Engineering Services Division ES Policy # 3-01 Stormwater Management Studies PDS Engineering Services Division Revised Date: 2/28/08 INTRODUCTION The City of Overland Park requires submission of a stormwater management study as part of the development

More information

Surge Analysis for the Proposed OSIS Augmentation Relief Sewer Tunnel

Surge Analysis for the Proposed OSIS Augmentation Relief Sewer Tunnel 5 Surge Analysis for the Proposed OSIS Augmentation Relief Sewer Tunnel M. P. Cherian, Ari Pandian, Karen Ridgway and Gregory Barden The City of Columbus, Ohio, submitted a wet weather management plan

More information

Review of the Flood Carrying Capacity of the Tarawera River below State Highway 30

Review of the Flood Carrying Capacity of the Tarawera River below State Highway 30 Review of the Flood Carrying Capacity of the Tarawera River below State Highway 30 Prepared by Verna Arts, Engineering Hydrologist Environment Bay of Plenty April 2005 5 Quay Street P O Box 364 Whakatane

More information

Outlet Structure Modeling

Outlet Structure Modeling Watershed Modeling using HEC-RAS Outlet Structure Modeling Jeff Wickenkamp, P.E., CFM, D.WRE Patrick Lach, P.E. Hey and Associates, Inc. Water Resources, Wetlands and Ecology Outline of Presentation Why

More information

Northland Regional Council. Awanui Flood Scheme Preliminary Design

Northland Regional Council. Awanui Flood Scheme Preliminary Design REPORT Northland Regional Council Awanui Flood Scheme Preliminary Design REPORT Northland Regional Council Awanui Flood Scheme Preliminary Design Report prepared for: NORTHLAND REGIONAL COUNCIL Report

More information

The role of domestic rainwater harvesting systems in storm water runoff mitigation

The role of domestic rainwater harvesting systems in storm water runoff mitigation European Water 58: 497-53, 217. 217 E.W. Publications The role of domestic rainwater harvesting systems in storm water runoff mitigation I. Gnecco *, A. Palla and P. La Barbera Department of Civil, Chemical

More information

APPLICATION OF A HYDRODYNAMIC MIKE 11 MODEL FOR THE EUPHRATES RIVER IN IRAQ

APPLICATION OF A HYDRODYNAMIC MIKE 11 MODEL FOR THE EUPHRATES RIVER IN IRAQ 2008/2 PAGES 1 7 RECEIVED 13.1.2008 ACCEPTED 26.4.2008 A. H. KAMEL APPLICATION OF A HYDRODYNAMIC MIKE 11 MODEL FOR THE EUPHRATES RIVER IN IRAQ Ing. Ammar H. Kamel Slovak University of Technology Faculty

More information

Sewer Audit - Design Checklist Gravity sewers, sewage pumping stations and pressure sewers

Sewer Audit - Design Checklist Gravity sewers, sewage pumping stations and pressure sewers Question Relevant Clauses Design checked? Do the drawings show an appropriate revision history, and is 1.1 the design complete, checked and effectively ready for construction? 1.2 Has the whole catchment

More information

Index. Page numbers followed by f indicate figures.

Index. Page numbers followed by f indicate figures. Index Aerodynamic method, 103, 110 111 Algae, 131, 173, 175 Alternate depth, 88 Alternating block method, 132, 140 141 Attenuation, 106, 107f, 118, 120 Page numbers followed by f indicate figures. Baseflow

More information

Slowing the Flow Partnership ICF STUDY VISIT TO YORKSHIRE 4/5 OCTOBER 2017

Slowing the Flow Partnership ICF STUDY VISIT TO YORKSHIRE 4/5 OCTOBER 2017 Slowing the Flow Partnership ICF STUDY VISIT TO YORKSHIRE 4/5 OCTOBER 2017 1 Slowing the Flow: Partnership 2 Slowing the Flow: Derwent Catchment 13 3 Slowing the Flow: Overview and Principles Two catchments:

More information

OFFICE OF STRUCTURES MANUAL ON HYDROLOGIC AND HYDRAULIC DESIGN CHAPTER 3 POLICY AND PROCEDURES

OFFICE OF STRUCTURES MANUAL ON HYDROLOGIC AND HYDRAULIC DESIGN CHAPTER 3 POLICY AND PROCEDURES OFFICE OF STRUCTURES MANUAL ON HYDROLOGIC AND HYDRAULIC DESIGN CHAPTER 3 POLICY AND PROCEDURES April 28, 2016 Table of Contents 3.1 Introduction... 2 3.1.1 Purpose of Chapter 3... 2 3.1.2 Policy vs. Design

More information

Energy Loss and Drag in a Steady Flow through Emergent Vegetation

Energy Loss and Drag in a Steady Flow through Emergent Vegetation th International Conference on Hydroscience & Engineering November -,, Tainan, Taiwan. Energy Loss and Drag in a Steady Flow through Emergent egetation Ghufran Ahmed Pasha, Prof. Norio Tanaka,. Graduate

More information

Outlet Flow Velocity in Circular Culvert

Outlet Flow Velocity in Circular Culvert Archives of Hydro-Engineering and Environmental Mechanics Vol. 61 (2014), No. 3 4, pp. 193 203 DOI: 10.1515/heem-2015-0013 IBW PAN, ISSN 1231 3726 Outlet Flow Velocity in Circular Culvert Wojciech Szpakowski

More information

Highway Drainage 1- Storm Frequency and Runoff 1.1- Runoff Determination

Highway Drainage 1- Storm Frequency and Runoff 1.1- Runoff Determination Highway Drainage Proper drainage is a very important consideration in design of a highway. Inadequate drainage facilities can lead to premature deterioration of the highway and the development of adverse

More information

The hydrologic and hydraulic study of the behaviour of the Nyl River floodplain

The hydrologic and hydraulic study of the behaviour of the Nyl River floodplain River Basin Management IV 149 The hydrologic and hydraulic study of the behaviour of the Nyl River floodplain C. F. B. Havenga 1, A. Jeleni 1, W. V. Pitman 2 & A. K. Bailey 2 1 Department of Water Affairs

More information

Irrigation Design (1) IHD302

Irrigation Design (1) IHD302 Irrigation Design (1) IHD302 Instructors : 1-Prof Dr. Kamal Abou Alhasan 2- Dr. Ashraf Saad 3- Dr. Soha Elayoty 4- Dr. Mohamed Attia 5- Dr. Hany Gomaa Topics Design of irrigation system Design of Bridge

More information

What s so hard about Stormwater Modelling?

What s so hard about Stormwater Modelling? What s so hard about Stormwater Modelling? A Pugh 1 1 Wallingford Software Pty Ltd, ann.pugh@wallingfordsoftware.com Abstract A common misconception of stormwater modelling is that it is simple. While

More information

Ponds. Pond A water impoundment made by excavating a pit, or constructing a dam or an embankment.

Ponds. Pond A water impoundment made by excavating a pit, or constructing a dam or an embankment. POND SITE SELECTION AND CONSTRUCTION Uses, Planning, & Design David Krietemeyer Area Engineer USDA-NRCS June 20, 2008 Uses Considerations for Location of Commonly Used Terms Pond A water impoundment made

More information

Environmental Engineering-I

Environmental Engineering-I Environmental Engineering-I Prof. Dr. Muhammad Zulfiqar Ali Khan Engr. Muhammad Aboubakar Farooq Water Distribution Systems & Analysis 1 Water Distribution Systems & Analysis References Water Supply &

More information

Groundwater modelling to assess the effect of interceptor drainage and lining

Groundwater modelling to assess the effect of interceptor drainage and lining Irrigation and Drainage Systems (2006) 20: 23 40 C Springer 2006 Groundwater modelling to assess the effect of interceptor drainage and lining Example of model application in the Fordwah Eastern Sadiqia

More information

Voith s StreamDiver solution for decentralized low head hydropower plant operations

Voith s StreamDiver solution for decentralized low head hydropower plant operations Voith s StreamDiver solution for decentralized low head hydropower plant operations Stefan Reich Joerg Lochschmidt, Mandar Pachegaokar Voith Hydro Holding GmbH & Co. KG Voith Hydro Holding GmbH & Co. Voith

More information

HYDRO EUROPE ISIS Report. Team

HYDRO EUROPE ISIS Report. Team HYDRO EUROPE 2011 ISIS Report Team 6 23.02.2011 Team members: Liza ASHTON, Thibault DESPLANQUES, Jens Harold DRASER, Manuel GOMEZ (supervisor), Kyung Tae LEE, Maxime NARDINI, Jieun PARK, Jiyoung PARK &

More information

Lateral Outflow from Supercritical Channels

Lateral Outflow from Supercritical Channels Lateral Outflow from Supercritical Channels J. Coonrod 1, J. Ho 2 and N. Bernardo 3 1 Associate Professor, Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131; PH (505) 277-3233;

More information

Welded Mesh Gabions and Mattresses River Protection Design Guide Anping County Zhuoda Hardware Mesh Co.,Ltd. Wire Mesh Industrial Zone, Anping

Welded Mesh Gabions and Mattresses River Protection Design Guide Anping County Zhuoda Hardware Mesh Co.,Ltd. Wire Mesh Industrial Zone, Anping Welded Mesh Gabions and Mattresses River Protection Design Guide Anping County Zhuoda Hardware Mesh Co.,Ltd. Wire Mesh Industrial Zone, Anping County, Hebei, P. R. China. Tel : 0086-318-7752001 7531068

More information

Drop Height For Channel Erosion Control

Drop Height For Channel Erosion Control Drop Height For Channel Erosion Control James C.Y. Guo, Professor and Director Department of Civil Engineering, U. of Colorado at Denver, Denver, Colorado 8017 E-mail: James.Guo@cudenver.edu Introduction

More information

Information Request 11

Information Request 11 Information Request 11 Information Request 11 11-1 Responses to Information Request 11 Response to Information Request 11a Response to Information Request 11b 11-2 11-6 Federal Review Panel Information

More information

URBAN FLOODING: HEC-HMS

URBAN FLOODING: HEC-HMS 1.0 Introduction URBAN FLOODING: HEC-HMS -Sunil Kumar, Director, NWA All major ancient civilisations were developed in the river valleys because river served as source of water, food, transportation and

More information

Track-Structure Interaction Analysis using FE Modelling Techniques

Track-Structure Interaction Analysis using FE Modelling Techniques Track-Structure Interaction Analysis using FE Modelling Techniques Philip Icke, LUSAS, UK; Geoffrey Paice, LUSAS, UK Abstract 1.1 With the growth in both High Speed and Light Rail infrastructure projects

More information

ICE FLOOD CHARACTERISTIC AND REGULATION PLAN DURING INITIAL FREEZE-UP PERIOD OF WANJIAZHAI RESERVOIR

ICE FLOOD CHARACTERISTIC AND REGULATION PLAN DURING INITIAL FREEZE-UP PERIOD OF WANJIAZHAI RESERVOIR Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 2002 International Association of Hydraulic Engineering and Research ICE FLOOD

More information

IMPROVED WATER RESOURCE MANAGEMENT USING AN ACOUSTIC PULSED DOPPLER SENSOR IN A SHALLOW OPEN CHANNEL

IMPROVED WATER RESOURCE MANAGEMENT USING AN ACOUSTIC PULSED DOPPLER SENSOR IN A SHALLOW OPEN CHANNEL IMPROVED WATER RESOURCE MANAGEMENT USING AN ACOUSTIC PULSED DOPPLER SENSOR IN A SHALLOW OPEN CHANNEL Mike Cook 1, PhD Craig Huhta 1 SonTek/YSI Inc., San Diego, California, USA Abstract. Over the years

More information

HYDROLOGICAL STUDY FOR GOMTI RIVER FRONT DEVELOPMENT

HYDROLOGICAL STUDY FOR GOMTI RIVER FRONT DEVELOPMENT LUCKNOW DEVELOPMENT AUTHORITY, LUCKHNOW HYDROLOGICAL STUDY FOR GOMTI RIVER FRONT DEVELOPMENT DEPARTMENT OF CIVIL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE 247 667 Hydrological study for

More information

Review & Design of the Apia Pressure Sewer System. Presented by Jammie Saena - Samoa Water Authority & Paul Edwards Urban Water Solutions

Review & Design of the Apia Pressure Sewer System. Presented by Jammie Saena - Samoa Water Authority & Paul Edwards Urban Water Solutions Review & Design of the Apia Pressure Sewer System Presented by Jammie Saena - Samoa Water Authority & Paul Edwards Urban Water Solutions 1 Contents Project Background Project Team Data Collection Physical

More information

DRAINAGE & DESIGN OF DRAINAGE SYSTEM

DRAINAGE & DESIGN OF DRAINAGE SYSTEM Drainage on Highways DRAINAGE & DESIGN OF DRAINAGE SYSTEM P. R.D. Fernando Chartered Engineer B.Sc.(Hons), M.Eng. C.Eng., MIE(SL) Drainage Requirement of Highway Drainage System Introduction Drainage means

More information

UPRR criteria for sizing waterway openings under bridges and through culverts are as follows:

UPRR criteria for sizing waterway openings under bridges and through culverts are as follows: UNION PACIFIC RAILROAD SCOPE OF HYDROLOGIC/HYDRAULIC DESIGN ENGINEERING AND PERMITTING SERVICES FOR SIZING WATERWAY OPENINGS AT NEW AND REPLACEMENT STRICTURES These flood passage criteria were developed

More information

Assignment I Design of a Marine Outfall

Assignment I Design of a Marine Outfall Assignment I Design of a Marine Outfall Environmental Hydraulics DESIGN OF A MARINE OUTFALL WITH A DIFFUSER FOR COOLING WATER A cooling water flow of 20 m 3 /s from a nuclear power plant should be discharged

More information

PART 3 - STANDARDS FOR SEWERAGE FACILITIES DESIGN OF STORM SEWERS

PART 3 - STANDARDS FOR SEWERAGE FACILITIES DESIGN OF STORM SEWERS PART 3 - STANDARDS FOR SEWERAGE FACILITIES 3.3 - DESIGN OF STORM SEWERS 3.301 Design of Storm Sewers A. General Information B. Investigations and Surveys C. Special Projects 3.302 Design Criteria for Storm

More information

FLOOD INUNDATION ANALYSIS FOR METRO COLOMBO AREA SRI LANKA

FLOOD INUNDATION ANALYSIS FOR METRO COLOMBO AREA SRI LANKA FLOOD INUNDATION ANALYSIS FOR METRO COLOMBO AREA SRI LANKA Mohamed Mashood Mohamed Moufar* (MEE 13633) Supervisor: Dr. Duminda Perera**, ABSTRACT The canal network in Metro Colombo area in Sri Lanka, initially

More information

Constructed Wetland Channel T-9

Constructed Wetland Channel T-9 Description A constructed wetland channel is a conveyance BMP that is built, in part, to enhance stormwater quality. Constructed wetland channels use dense vegetation to slow down runoff and allow time

More information

Simulation of Flameless Combustion of Natural Gas in a Laboratory Scale Furnace

Simulation of Flameless Combustion of Natural Gas in a Laboratory Scale Furnace Turkish J. Eng. Env. Sci. 30 (2006), 135 143. c TÜBİTAK Simulation of Flameless Combustion of Natural Gas in a Laboratory Scale Furnace Sébastien MURER, Barbara PESENTI and Paul LYBAERT Thermal Engineering

More information

RAIN WATER HARVESTING FOR URBAN FLOOD PEAK REDUCTION

RAIN WATER HARVESTING FOR URBAN FLOOD PEAK REDUCTION RAIN WATER HARVESTING FOR URBAN FLOOD PEAK REDUCTION Dr. A.K.Sarma, IIT Guwahati, India M. D. Baishya, Engineering Student, NERIST, India G. Giraud, Engineering Student, ENGEES, France 2005 INTRODUCTION

More information

HYDROLOGIC-HYDRAULIC STUDY ISABELLA OCEAN RESIDENCES ISLA VERDE, CAROLINA, PR

HYDROLOGIC-HYDRAULIC STUDY ISABELLA OCEAN RESIDENCES ISLA VERDE, CAROLINA, PR HYDROLOGIC-HYDRAULIC STUDY ISABELLA OCEAN RESIDENCES ISLA VERDE, CAROLINA, PR 1 INTRODUCTION 1.1 Project Description and Location Isabella Ocean Residences is a residential development to be constructed

More information

Urban Flood Evaluation in Maceió, Brazil: Definition of the Critical Flood Event Supported by a Mathematical Cell Model

Urban Flood Evaluation in Maceió, Brazil: Definition of the Critical Flood Event Supported by a Mathematical Cell Model Urban Flood Evaluation in Maceió, Brazil: Definition of the Critical Flood Event Supported by a Mathematical Cell Model Vidal, D.H.F 1*, Barbosa, F.R 1, and Miguez, M.G 1 1 Federal University of Rio de

More information

Sediment management of hydropower cascade: example of CNR run-of-river developments, French Rhone River, France

Sediment management of hydropower cascade: example of CNR run-of-river developments, French Rhone River, France Sediment management of hydropower cascade: example of CNR run-of-river developments, French Rhone River, France Christophe PETEUIL Compagnie Nationale du Rhone Engineering Department, River Systems and

More information

Chapter 4. Drainage Report and Construction Drawing Submittal Requirements

Chapter 4. Drainage Report and Construction Drawing Submittal Requirements 4.0 Introduction The requirements presented in this section shall be used to aid the design engineer or applicant in the preparation of drainage reports, drainage studies, and construction drawings for

More information

Measuring discharge. Climatological and hydrological field work

Measuring discharge. Climatological and hydrological field work Measuring discharge Climatological and hydrological field work 1. Background Discharge (or surface runoff Q s) refers to the horizontal water flow occurring at the surface in rivers and streams. It does

More information

Sanitary and Environmental Engineering I (4 th Year Civil)

Sanitary and Environmental Engineering I (4 th Year Civil) Sanitary and Environmental Engineering I (4 th Year Civil) Prepared by Dr.Khaled Zaher Assistant Professor, Public Works Engineering Department, Faculty of Engineering, Cairo University Wastewater Flow

More information