Superionic Solid State Stamping (S4)

Size: px
Start display at page:

Download "Superionic Solid State Stamping (S4)"

Transcription

1 Superionic Solid State Stamping (S4) Lead Faculty Researcher: Placid Ferreira Department: Materials Science & Engineering Hsu et al, Nano Letters, Description: This dry, single step, electrochemical etch process, developed by the Center, can produce nanoscale 3-D patterns with exceptional fidelity in thin metal films. The process employs a mold of a superionic material with patterns formed using an e-beam or focused ion beam (FIB) which is then placed against a thin metallic film while a potential is applied between the mold and the film. The current causes the film to ionize and dissolve into the mold leaving behind the pattern. Since this electrode reaction is contact dependent, occurring only at points of contact, the process is self-controlling. Large area solid electrolyte stamps have been developed by embossing ionic polymers from preformed masters. This process can replicate complex features with a resolution approaching 10 nm. Flexible ionic stamps with a fractal pattern have been embossed into Nafion polymer stamps. This process has been further extended in conjunction with a hydrofluoric acid etch which allows an S4 pattern to be transferred to a silicon surface creating a new non-lithographic manufacturing process for patterning GaAs and silicon. 2. Resolution: a. Lines: to ~10 nm wide, height > 500 nm b. Fidelity: sharp corners, points and edges 3. Geometric capabilities: Dots, lines, complex patterns (can cover large areas) 4. Geometric Forms: 2.5 D 5. Materials: a. Metal films tested: silver, copper, chromium, titanium, gold b. Mold materials: silver sulfide, copper sulfide, Nafion, phosphorous glass 6. Process a. Environment: ambient temperatures and atmospheric pressure b. Speed: etch rate, 4-5 nm/sec c. Control: self-limiting or current control

2 d. Mold fabrication: easily fabricated master molds in silicon via e-beam or focused ion beam (FIB) which can then be used to emboss multiple large area (> 12 mm/side) stamps/molds of superionic materials e. Mold life: over 80 replications have been demonstrated without loss of fidelity 7. Dimensional capabilities: moderate, < 100mm squared 8. Uniqueness: a. Only known direct patterning method for metals with nanoscale resolution b. Dry electrochemical process 9. Competition: Damascene 10. Limitations: a. Not suitable for multilayer situations b. Substrates limited now to chemistries tested 11. IP Status: Patents applied for 12. Potential Applications: a. Metamaterial structures b. Plasmonic structures and sensors (LSPR) c. Surface Enhanced Raman Spectroscopy (SERS) substrates (SERS enhancement > 10 6 ) d. Interdigitated electrodes: resistive and capacitive sensors e. Nano-wire sensors f. Chem-FETS g. Material tagging and bar-coding h. Metal enhanced Si etching i. Interconnects j. Miniature antenna 13. Current Research Focus: a. process scale-up and control b. New/different superionic materials 14. S4 Examples: a. Process: mold and etched S4 patterns:

3 b. S4 process fidelity demonstrated:

4 c. S4 produced nanoscale sensing patterns/arrays

5 Multifunctional Chemical Sensor Array

6 d. Effective embossing of nanopatterns for S4 process stamps A reduced Young s modulus and hardness for silver sulfide (~30 and o.5 GPa) allows for effective embossing of nanopatterns into stamps for the S4 process. Insert: space between the bow-tie pattern tips is 7 nm. Examples of metallic structures produced by the multiple-stamping/embossing approach. e. Flexible S4 ionic embossed stamps Flexible Stamp principle AFM image of pattern in Nafion polymer stamp.line width is <100 nm

7 f. New developments: Non-lithographic patterning of silicon, metal enhanced Si etching with S4 generated patterns. This process involves the use of S4 to create a pattern in a silver film that has been e-beam evaporated onto a silicon substrate that when placed in an etching solution of HF, H2O2, and EtOH, the silver catalyzes the selective etching of the silicon directly under the silver pattern. Illustration showing creation of silicon pillars/nanowires from silver S4 produced metal pattern which catalyzes HF etch process.

8 15. Recent Publications: a. Keng Hsu, Peter Schultz, Placid Ferreira, and Nicholas Fang, Electrochemical Nanoimprinting with Solid-State Superionic Stamps, Nano Letters, 2007, Vol. 7 No. 2, b. Keng Hsu, Peter Schultz, Placid Ferreira, and Nicholas X. Fang, Exploiting transport of guest metal ions in a host ionic crystal lattice for nanofabrication: Cu nanopatterning with Ag 2 S, Applied Physics A, Volume 97, Issue 4 (2009), Page 863 c. Keng Hsu, Ju H. Back, Moonsub Shim, Kin H. Fung, Placid Ferreira, and Nicholas Fang, SERS EM-field Enhancement Study through Fast Raman Mapping of Optical Sierpinski Carpet Fractals, Journal of Raman Spectroscopy, DOI: /jrs. 2581, 2010 d. Keng Hsu, Placid Ferreira, and Nicholas Fang, Numerical Modeling for the Dynamic Balance Between Interfacial Kinetics and Ionic Transport of Ag-Ag 2 S systems, Journal of Applied Physics, Submitted, 2010 e. Keng Hsu, Placid Ferreira, and Nicholas Fang, Controlled Directional Growth of Silver Micro Wires on a Solid Electrolyte Surface, Applied Physics Letters, 96, , 2010 f. Keng Hsu, Peter Schultz, Placid Ferreira, and Nicholas X. Fang, "Electrochemical Nanoimprinting of Silver and Copper with the Solid-State Superionic Stamping (S4) Process," Soft Lithography, John Rogers and Hong H. Lee (ed.), John Wiley and Sons, g. Winston Chern, Keng Hsu, Ik Su Chun, Bruno Pavanelli De Azeredo, Nick Fang, Placid Ferreira, and Xiuling Li, Non-Lithographic Patterning and Metal-Assisted Chemcial Etching for Manufacturing of Tunable Light-Emitting Silicon Nanowire Arrays, Nature Nanotech, submitted, 2009 h. S. Choi, M. Yan, I. Adesida, K. Hsu, and N. Fang, Ultradense gold nanostructures fabricated using hydrogen silsesquioxane resist and applications for surface-enhanced Raman spectroscopy, J. Vac. Sci. Technol. B 27 (6), 2009, i. Chaturvedi P., K. Hsu, S. Zhang, and N. X. Fang, "New Frontiers of Metamaterials: Design and Febrication," MRS Bulletin, 33:10, , 2008 j. Schultz P., Hsu, K., Fang, N., and, Ferreira, P., Solid-state electrochemical nanoimprinting of copper, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures -- November Volume 25, Issue 6, pp k. N. Fang, K. Hsu, K. Rapaka, and P. Ferreira, Pattern transfer by Solid-State Electrochemical Stamping, US patent application, No. 11/376,908. l. K. Jacobs, K. Hsu, N. Fang, P. Ferreira, "Direct Nanoscale Patterning of Metals Using Polymer Electrolytes," US patent application, No. TF07168-US m. X. Li, N. Fang, P. Ferreira, W. Chern, I. S. Chun, K. Hsu, Method of Forming an Array of High Aspect Ratio Semiconductor Nanostructures, No. TF09098-pro

Nanoimprinting in Polymers and Applications in Cell Studies. Albert F. YEE Chemical Engineering & Materials Science UC Irvine

Nanoimprinting in Polymers and Applications in Cell Studies. Albert F. YEE Chemical Engineering & Materials Science UC Irvine Nanoimprinting in Polymers and Applications in Cell Studies Albert F. YEE Chemical Engineering & Materials Science UC Irvine Presentation outline Motivation Reversal imprinting Soft inkpad imprinting on

More information

NanoFabrication Systems DPN. Nanofabrication Systems. A complete line of instruments and tools for micro and nanopatterning applications

NanoFabrication Systems DPN. Nanofabrication Systems. A complete line of instruments and tools for micro and nanopatterning applications DPN Nanofabrication Systems A complete line of instruments and tools for micro and nanopatterning applications DPN Nanofabrication Systems A complete line of instruments and tools for micro and nanopatterning

More information

THIN METALLIC LAYERS STRUCTURED BY E-BEAM LITHOGRAPHY. Miroslav HORÁČEK, Vladimír KOLAŘÍK, Michal URBÁNEK, František MATĚJKA, Milan MATĚJKA

THIN METALLIC LAYERS STRUCTURED BY E-BEAM LITHOGRAPHY. Miroslav HORÁČEK, Vladimír KOLAŘÍK, Michal URBÁNEK, František MATĚJKA, Milan MATĚJKA THIN METALLIC LAYERS STRUCTURED BY E-BEAM LITHOGRAPHY Miroslav HORÁČEK, Vladimír KOLAŘÍK, Michal URBÁNEK, František MATĚJKA, Milan MATĚJKA Ústav přístrojové techniky AV ČR, v. v. i., Královopolská 147,

More information

Fully-integrated, Bezel-less Transistor Arrays Using Reversibly Foldable Interconnects and Stretchable Origami Substrates

Fully-integrated, Bezel-less Transistor Arrays Using Reversibly Foldable Interconnects and Stretchable Origami Substrates Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Fully-integrated, Bezel-less Transistor Arrays Using Reversibly Foldable Interconnects and Stretchable

More information

In-Situ Monitoring of Pattern Filling in Nano-Imprint Lithography Using Surface Plasmon Resonance

In-Situ Monitoring of Pattern Filling in Nano-Imprint Lithography Using Surface Plasmon Resonance Copyright 2011 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoscience and Nanotechnology Vol. 11, 1 6, 2011 In-Situ Monitoring of Pattern Filling

More information

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems Technology p. 9 The Parallels to Microelectronics p. 15 The

More information

Sub-5 nm Structures Process Development and Fabrication Over Large Areas

Sub-5 nm Structures Process Development and Fabrication Over Large Areas A S Jugessur,, 2017, 1:1 SciFed Nanotech Research Letters Research Article Open Access Sub-5 nm Structures Process Development and Fabrication Over Large Areas * A S Jugessur * University of Iowa Microfabrication

More information

Nanoscale Imaging, Material Removal and Deposition for Fabrication of Cutting-edge Semiconductor Devices

Nanoscale Imaging, Material Removal and Deposition for Fabrication of Cutting-edge Semiconductor Devices Hitachi Review Vol. 65 (2016), No. 7 233 Featured Articles Nanoscale Imaging, Material Removal and Deposition for Fabrication of Cutting-edge Semiconductor Devices Ion-beam-based Photomask Defect Repair

More information

Choi, Jun-Hyuk Korea Institute of Machinery & Materials

Choi, Jun-Hyuk Korea Institute of Machinery & Materials The 11 th US-Korea Nanosymposium Choi, Jun-Hyuk 2014. 09. 29 Korea Institute of Machinery & Materials About KIMM Nano-research Bldg Clean RM Five Research Divisions; 1. Advanced Manufacturing Sys. 2. Extreme

More information

Three-dimensional SU-8 structures by reversal UV imprint

Three-dimensional SU-8 structures by reversal UV imprint Three-dimensional SU-8 structures by reversal UV imprint W. Hu, a B. Yang, C. Peng, and S. W. Pang b Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, The University

More information

PARAMETER EFFECTS FOR THE GROWTH OF THIN POROUS ANODIC ALUMINUM OXIDES

PARAMETER EFFECTS FOR THE GROWTH OF THIN POROUS ANODIC ALUMINUM OXIDES 10.1149/1.2794473, The Electrochemical Society PARAMETER EFFECTS FOR THE GROWTH OF THIN POROUS ANODIC ALUMINUM OXIDES S. Yim a, C. Bonhôte b, J. Lille b, and T. Wu b a Dept. of Chem. and Mat. Engr., San

More information

Advanced Polymers And Resists For Nanoimprint Lithography

Advanced Polymers And Resists For Nanoimprint Lithography Q U A L I T Y A S S U R A N C E MICROSYSTEMS & NANOSYSTEMS SPECIAL REPORT Advanced Polymers And Resists For Nanoimprint Lithography Numerous polymer systems specifically designed for nanoimprint lithography

More information

SCIENCE CHINA Technological Sciences. Replication of large area nanoimprint stamp with small critical dimension loss

SCIENCE CHINA Technological Sciences. Replication of large area nanoimprint stamp with small critical dimension loss SCIENCE CHINA Technological Sciences RESEARCH PAPER March 2012 Vol.55 No.3: 600 605 doi: 10.1007/s11431-011-4695-3 Replication of large area nanoimprint stamp with small critical dimension loss MENG FanTao

More information

Trench Structure Improvement of Thermo-Optic Waveguides

Trench Structure Improvement of Thermo-Optic Waveguides International Journal of Applied Science and Engineering 2007. 5, 1: 1-5 Trench Structure Improvement of Thermo-Optic Waveguides Fang-Lin Chao * Chaoyang University of Technology, Wufong, Taichung County

More information

A Functional Micro-Solid Oxide Fuel Cell with. Nanometer Freestanding Electrolyte

A Functional Micro-Solid Oxide Fuel Cell with. Nanometer Freestanding Electrolyte Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 SUPPLEMENTARY INFORMATION A Functional Micro-Solid Oxide Fuel Cell with

More information

Study of the resist deformation in nanoimprint lithography

Study of the resist deformation in nanoimprint lithography Study of the resist deformation in nanoimprint lithography Yoshihiko Hirai, a) Masaki Fujiwara, Takahiro Okuno, and Yoshio Tanaka Department of Mechanical System Engineering, Graduate School of Engineering,

More information

Proton beam fabrication of nickel stamps for nanoimprint lithography

Proton beam fabrication of nickel stamps for nanoimprint lithography Nuclear Instruments and Methods in Physics Research B 231 (2005) 407 412 www.elsevier.com/locate/nimb Proton beam fabrication of nickel stamps for nanoimprint lithography K. Ansari *, P.G. Shao, J.A. van

More information

Today s Class. Materials for MEMS

Today s Class. Materials for MEMS Lecture 2: VLSI-based Fabrication for MEMS: Fundamentals Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap: Last Class What is

More information

Title: Localized surface plasmon resonance of metal nanodot and nanowire arrays studied by far-field and near-field optical microscopy

Title: Localized surface plasmon resonance of metal nanodot and nanowire arrays studied by far-field and near-field optical microscopy Contract Number: AOARD-06-4074 Principal Investigator: Heh-Nan Lin Address: Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan

More information

Micro and nano structuring of carbon based materials for micro injection moulding and hot embossing

Micro and nano structuring of carbon based materials for micro injection moulding and hot embossing Micro and nano structuring of carbon based materials for micro injection moulding and hot embossing Victor Usov, Graham Cross, Neal O Hara, Declan Scanlan, Sander Paulen, Chris de Ruijter, Daniel Vlasveld,

More information

Electrical Characterization of Tungsten Nanowires Deposited by Focused Ion Beam (FIB) *

Electrical Characterization of Tungsten Nanowires Deposited by Focused Ion Beam (FIB) * Nanopages 1 (2006) 2, 255 262 DOI: 10.1556/Nano.1.2006.2.10 Electrical Characterization of Tungsten Nanowires Deposited by Focused Ion Beam (FIB) * E. Horváth 1,2**, P. L. Neumann 2, A. L. Tóth 1, É. Vázsonyi

More information

Supporting Information. Low Temperature Oxidation-free Selective Laser Sintering of Cu

Supporting Information. Low Temperature Oxidation-free Selective Laser Sintering of Cu Supporting Information Low Temperature Oxidation-free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications Jinhyeong Kwon 1,, Hyunmin Cho

More information

Micromachining vs. Soft Fabrication

Micromachining vs. Soft Fabrication Introduction to BioMEMS & Medical Microdevices Silicon Microfabrication Part 1 Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Prof., http://saliterman.umn.edu/

More information

Module 13: Soft Lithography. Lecture 19: Soft Lithography 2

Module 13: Soft Lithography. Lecture 19: Soft Lithography 2 Module 13: Soft Lithography Lecture 19: Soft Lithography 2 1 In the previous lecture we have introduced the concept of Soft Lithography and discussed three of the methods, which are Replica Molding, Micro

More information

Introduction to Micro/Nano Fabrication Techniques. Date: 2015/05/22 Dr. Yi-Chung Tung. Fabrication of Nanomaterials

Introduction to Micro/Nano Fabrication Techniques. Date: 2015/05/22 Dr. Yi-Chung Tung. Fabrication of Nanomaterials Introduction to Micro/Nano Fabrication Techniques Date: 2015/05/22 Dr. Yi-Chung Tung Fabrication of Nanomaterials Top-Down Approach Begin with bulk materials that are reduced into nanoscale materials Ex:

More information

Roll-to-Roll Nanoimprint - 6 회 -

Roll-to-Roll Nanoimprint - 6 회 - Roll-to-Roll Nanoimprint - 6 회 - 목차 Click to add Title 1 Roll to Roll nanoimprint Introduction : Continuous Production System (Roll-to-Roll) Fabrication Processes Fabrication of nano roll mold 2 Case study

More information

Polymer Microfabrication (Part II) Prof. Tianhong Cui, Mechanical Engineering ME 8254

Polymer Microfabrication (Part II) Prof. Tianhong Cui, Mechanical Engineering ME 8254 Polymer Microfabrication (Part II) Prof. Tianhong Cui, Mechanical Engineering ME 8254 Other Polymer Techniques Embossing Low cost High throughput Structures as small as 25 nm Injection molding Features

More information

High Performance Lithium Battery Anodes Using Silicon Nanowires

High Performance Lithium Battery Anodes Using Silicon Nanowires Supporting Online Materials For High Performance Lithium Battery Anodes Using Silicon Nanowires Candace K. Chan, Hailin Peng, Gao Liu, Kevin McIlwrath, Xiao Feng Zhang, Robert A. Huggins and Yi Cui * *To

More information

Scanning thermal microscopy probe capable of simultaneous electrical imaging and the addition of a diamond tip

Scanning thermal microscopy probe capable of simultaneous electrical imaging and the addition of a diamond tip Scanning thermal microscopy probe capable of simultaneous electrical imaging and the addition of a diamond tip E Brown, L Hao, D C Cox and J C Gallop National Physical Laboratory, Hampton Road, Teddington,

More information

Copper Interconnect Technology

Copper Interconnect Technology Tapan Gupta Copper Interconnect Technology i Springer Contents 1 Introduction 1 1.1 Trends and Challenges 2 1.2 Physical Limits and Search for New Materials 5 1.3 Challenges 6 1.4 Choice of Materials 7

More information

Soft Lithography. Jin-Goo Park. Materials and Chemical Engineering Hanyang University, Ansan. Electronic Materials and Processing Lab.

Soft Lithography. Jin-Goo Park. Materials and Chemical Engineering Hanyang University, Ansan. Electronic Materials and Processing Lab. Hanyang University Soft Lithography Jin-Goo Park Materials and Chemical Engineering Hanyang University, Ansan Electronic Materials and Processing Lab. Introduction to Soft Lithography Research Micro- Electro-

More information

Nanotechnology Principles, Applications, Careers, and Education. Copyright 2011 The Pennsylvania State University

Nanotechnology Principles, Applications, Careers, and Education. Copyright 2011 The Pennsylvania State University Nanotechnology Principles, Applications, Careers, and Education Copyright 2011 The Pennsylvania State University Outline What are the principles of nanotechnology? What are some applications? What kind

More information

Surface Acoustic Wave fabrication using nanoimprint. Zachary J. Davis, Senior Consultant,

Surface Acoustic Wave fabrication using nanoimprint. Zachary J. Davis, Senior Consultant, Surface Acoustic Wave fabrication using nanoimprint Zachary J. Davis, Senior Consultant, zjd@teknologisk.dk Center for Microtechnology & Surface Analysis Micro and Nano Technology Sensor Technology Top

More information

Vertically aligned Ni magnetic nanowires fabricated by diblock-copolymer-directed Al thin film anodization

Vertically aligned Ni magnetic nanowires fabricated by diblock-copolymer-directed Al thin film anodization Vertically aligned Ni magnetic nanowires fabricated by diblock-copolymer-directed Al thin film anodization Researcher: Kunbae (Kevin) Noh, Graduate Student, MAE Dept. and CMRR Collaborators: Leon Chen,

More information

3. Monodomain porous alumina obtained by nanoimprint lithography

3. Monodomain porous alumina obtained by nanoimprint lithography 3. Monodomain porous alumina obtained by nanoimprint lithography 3.1 Nanoimprint lithography (NIL) In the previous chapter, the preparation of polydomain porous alumina by self-ordering was discussed.

More information

Introduction to Nanofabrication: Top Down to Bottom Up

Introduction to Nanofabrication: Top Down to Bottom Up Welcome to NACK s Webinar Introduction to Nanofabrication: Top Down to Bottom Up NACK is an NSF-funded ATE Resource Center supporting faculty in Nanotechnology Education Hosted by MATEC Networks www.matecnetworks.org

More information

MEMSAND MICROSYSTEMS Design, Manufacture, and Nanoscale Engineering

MEMSAND MICROSYSTEMS Design, Manufacture, and Nanoscale Engineering MEMSAND MICROSYSTEMS Design, Manufacture, and Nanoscale Engineering Second Edition TAI-RAN HSU Microsystems Design and Packaging Laboratory Department of Mechanical and Aerospace Engineering San Jose State

More information

Large-area patterning by roller-based nanoimprint lithography

Large-area patterning by roller-based nanoimprint lithography JOANNEUM RESEARCH Forschungsgesellschaft Institute MATERIALS, Weiz, Austria Large-area patterning by roller-based nanoimprint lithography Ursula Palfinger, Dieter Nees, Stephan Ruttloff, Markus Leitgeb,

More information

Surface plasmon dielectric waveguides

Surface plasmon dielectric waveguides Surface plasmon dielectric waveguides Igor I. Smolyaninov, Yu-Ju Hung, and Christopher C. Davis Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 Phone:

More information

Lecture 22: Integrated circuit fabrication

Lecture 22: Integrated circuit fabrication Lecture 22: Integrated circuit fabrication Contents 1 Introduction 1 2 Layering 4 3 Patterning 7 4 Doping 8 4.1 Thermal diffusion......................... 10 4.2 Ion implantation.........................

More information

Thermal Nanoimprinting Basics

Thermal Nanoimprinting Basics Thermal Nanoimprinting Basics Nanoimprinting is a way to replicate nanoscale features on one surface into another, like stamping copies are made by traditional fabrication techniques (optical/ebeam lith)

More information

We get small. Micron-scale Circuits and Structures from Prototype through Production

We get small. Micron-scale Circuits and Structures from Prototype through Production We get small. Micron-scale Circuits and Structures from Prototype through Production Smaller, tighter, better. When you need to produce ultra-small electrical, mechanical and optical components to extreme

More information

Large Area Functional Surfaces By Roll-to-Roll Nanoimprint Lithography Project: APPOLO

Large Area Functional Surfaces By Roll-to-Roll Nanoimprint Lithography Project: APPOLO Large Area Functional Surfaces By Roll-to-Roll Nanoimprint Lithography Project: APPOLO Mr. Theodoros Tachtsidis Nanotypos 23rd and 24th of June Amsterdam Core Overview Nanotypos is a pioneering research

More information

Chapter 2 Capacitive Sensing Electrodes

Chapter 2 Capacitive Sensing Electrodes Chapter 2 Capacitive Sensing Electrodes The capacitive sensing electrodes on the top of a CMOS chip serve as an interface between the microelectronic readout system and the biological/chemical analyte.

More information

CONTENTS. Introduction. NSOM Optical Fiber Probes

CONTENTS. Introduction. NSOM Optical Fiber Probes CONTENTS Introduction NSOM Optical Fiber Probes AFM Probes AFM Probes Hard to achieve Force Constants and Resonance Frequencies Deep Trench AFM Probes Electrical and STM Probes Hollow AFM Nanopipette Probes

More information

Thin. Smooth. Diamond.

Thin. Smooth. Diamond. UNCD Wafers Thin. Smooth. Diamond. UNCD Wafers - A Family of Diamond Material UNCD is Advanced Diamond Technologies (ADT) brand name for a family of thin fi lm diamond products. UNCD Aqua The Aqua series

More information

Fabrication of photonic band-gap crystals

Fabrication of photonic band-gap crystals Fabrication of photonic band-gap crystals C. C. Cheng and A. Scherer California Institute of Technology, Pasadena, California 91125 Received 19 June 1995; accepted 9 August 1995 We describe the fabrication

More information

Thin. Smooth. Diamond.

Thin. Smooth. Diamond. UNCD Wafers Thin. Smooth. Diamond. UNCD Wafers - A Family of Diamond Material UNCD is Advanced Diamond Technologies (ADT) brand name for a family of thin fi lm diamond products. UNCD Aqua The Aqua series

More information

Why Probes Look the Way They Do Concepts and Technologies of AFM Probes Manufacturing

Why Probes Look the Way They Do Concepts and Technologies of AFM Probes Manufacturing Agilent Technologies AFM e-seminar: Understanding and Choosing the Correct Cantilever for Your Application Oliver Krause NanoWorld Services GmbH All mentioned company names and trademarks are property

More information

Epitaxy and Roughness Study of Glancing Angle Deposited Nanoarrays. Hamid Alouach and G. J. Mankey

Epitaxy and Roughness Study of Glancing Angle Deposited Nanoarrays. Hamid Alouach and G. J. Mankey Epitaxy and Roughness Study of Glancing Angle Deposited Nanoarrays Hamid Alouach and G. J. Mankey Introduction Objective: Approach: Characterization: Fabrication of nanoscale magnetic wires for spin transport

More information

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon Chapter 5 Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon 5.1 Introduction In this chapter, we discuss a method of metallic bonding between two deposited silver layers. A diffusion

More information

Local Oxide Growth Mechanisms on Nickel Films

Local Oxide Growth Mechanisms on Nickel Films Materials Transactions, Vol. 48, No. 3 (2007) pp. 471 to 475 #2007 The Japan Institute of Metals Local Oxide Growth Mechanisms on Nickel Films Te-Hua Fang* 1 and Kuan-Jen Chen* 2 Institute of Mechanical

More information

Nanyang Technological University School of Materials Science & Engineering

Nanyang Technological University School of Materials Science & Engineering Final Year Project Proposal 1 3D Assembly of Nano/Micro Zirconia Particles for Enhanced Energy Damping Capacity Dr Du Zehui (duzehui@ntu.edu.sg) To develop the best possible method to assemble micro/nano-scale

More information

Developing Enhanced Substrates for OLED SSL

Developing Enhanced Substrates for OLED SSL Developing Enhanced Substrates for OLED SSL DOE SSL R&D Manufacturing Workshop San Diego CA 7 May, 2014 Dr. W. Dennis Slafer MicroContinuum, Inc. 57 Smith Place Cambridge, MA 02138 www.microcontinuum.com

More information

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio Plasmonics using Metal Nanoparticles Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio April 1, 2007 Motivation Why study plasmonics? Miniaturization of optics and photonics to subwavelength scales

More information

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS AND FABRICATION ENGINEERING ATTHE MICRO- NANOSCALE Fourth Edition STEPHEN A. CAMPBELL University of Minnesota New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Preface xiii prrt i OVERVIEW AND MATERIALS

More information

Microelectronics. Integrated circuits. Introduction to the IC technology M.Rencz 11 September, Expected decrease in line width

Microelectronics. Integrated circuits. Introduction to the IC technology M.Rencz 11 September, Expected decrease in line width Microelectronics Introduction to the IC technology M.Rencz 11 September, 2002 9/16/02 1/37 Integrated circuits Development is controlled by the roadmaps. Self-fulfilling predictions for the tendencies

More information

Direct Patterning of Self Assembled Nano-Structures of Block Copolymers via Electron Beam Lithography

Direct Patterning of Self Assembled Nano-Structures of Block Copolymers via Electron Beam Lithography Macromolecular Research, Vol. 13, No. 5, pp 435-440 (2005) Direct Patterning of Self Assembled Nano-Structures of Block Copolymers via Electron Beam Lithography Bo Kyung Yoon, Wonseok Hwang, Youn Jung

More information

ADVANCED MANUFACTURING CHOICES: TOWARDS A CARBON WORLD. ENG Spring 2017, Class 10, Carbon-MEMS/Carbon-NEMS

ADVANCED MANUFACTURING CHOICES: TOWARDS A CARBON WORLD. ENG Spring 2017, Class 10, Carbon-MEMS/Carbon-NEMS ADVANCED MANUFACTURING CHOICES: TOWARDS A CARBON WORLD ENG 165-265 Spring 2017, Class 10, Carbon-MEMS/Carbon-NEMS Table of Content Why carbon? Carbon MEMS and Carbon NEMS: A New Way of Manufacturing Carbon

More information

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society Mater. Res. Soc. Symp. Proc. Vol. 940 2006 Materials Research Society 0940-P13-12 A Novel Fabrication Technique for Developing Metal Nanodroplet Arrays Christopher Edgar, Chad Johns, and M. Saif Islam

More information

WP7 JRA2 JRA2 Research on High Precision Manufacturing. Investigation of optimum NIL stamp fabrication method to copy sub-10 nm BCP features

WP7 JRA2 JRA2 Research on High Precision Manufacturing. Investigation of optimum NIL stamp fabrication method to copy sub-10 nm BCP features DELIVERABLE REPORT WP7 JRA2 JRA2 Research on High Precision Manufacturing D7.1 Investigation of optimum NIL stamp fabrication method to copy sub-10 nm BCP features M18 NFFA-Europe has received funding

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

Micro-Nano Fabrication Research

Micro-Nano Fabrication Research Micro-Nano Fabrication Research Technical Education Quality Improvement Programme 22-23 December 2014 Dr. Rakesh G. Mote Assistant Professor Department of Mechanical Engineering IIT Bombay rakesh.mote@iitb.ac.in;

More information

NO x gas response characteristics of thin film mixed oxide semiconductor

NO x gas response characteristics of thin film mixed oxide semiconductor Sensors and Actuators B 108 (2005) 211 215 NO x gas response characteristics of thin film mixed oxide semiconductor Kap-Duk Song a, Jung-Il Bang a, Sang-Rok Lee a, Yun-Su Lee a, Young-Ho Hong b, Duk-Dong

More information

1 MARCH 2017 FILM DEPOSITION NANOTECHNOLOGY

1 MARCH 2017 FILM DEPOSITION NANOTECHNOLOGY 1 MARCH 2017 FILM DEPOSITION NANOTECHNOLOGY PRESENTATION Pedro C. Feijoo E-mail: PedroCarlos.Feijoo@uab.cat FABRICATION TECHNOLOGIES FOR NANOELECTRONIC DEVICES. PEDRO C. FEIJOO 2 FILM GROWTH Chemical vapor

More information

Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation

Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation Giuseppe Calafiore,1, Alexander Koshelev,1, Frances I. Allen 2,3, Scott Dhuey 3, Simone Sassolini 3, Edward Wong 3, Paul

More information

Note Application of Screen Printing in Flexible Miniature Thermocouple Process Development

Note Application of Screen Printing in Flexible Miniature Thermocouple Process Development Int. J. Electrochem. Sci., 10 (2015) 3082-3087 Note Application of Screen Printing in Flexible Miniature Thermocouple Process Development International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

More information

Conductive glass (NTA glass )

Conductive glass (NTA glass ) Art Beam Co. Ltd. Conductive glass (NTA glass ) Nano Technology Assorted Glass Japanese Patent No. 3854985 (applied for 2001, granted 2006) Vanadate glass and its manufacturing method Patent holder: Tetsuaki

More information

Chapter 7 NANOIMPRINTED CIRCULAR GRATING DISTRIBUTED FEEDBACK DYE LASER

Chapter 7 NANOIMPRINTED CIRCULAR GRATING DISTRIBUTED FEEDBACK DYE LASER Chapter 7 66 NANOIMPRINTED CIRCULAR GRATING DISTRIBUTED FEEDBACK DYE LASER 7.1 Introduction In recent years, polymer dye lasers have attracted much attention due to their low-cost processing, wide choice

More information

Outline. Introduction to the LIGA Microfabrication Process. What is LIGA? The LIGA Process. Dr. Bruce K. Gale Fundamentals of Microfabrication

Outline. Introduction to the LIGA Microfabrication Process. What is LIGA? The LIGA Process. Dr. Bruce K. Gale Fundamentals of Microfabrication Outline Introduction to the LIGA Microfabrication Process Dr. Bruce K. Gale Fundamentals of Microfabrication What is LIGA? The LIGA Process Lithography Techniques Electroforming Mold Fabrication Analyzing

More information

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

Metallization deposition and etching. Material mainly taken from Campbell, UCCS Metallization deposition and etching Material mainly taken from Campbell, UCCS Application Metallization is back-end processing Metals used are aluminum and copper Mainly involves deposition and etching,

More information

Figure 6. Rare-gas atom-beam diffraction patterns. These results were obtained by Wieland Schöllkopf and Peter Toennies at the Max-Planck Institute

Figure 6. Rare-gas atom-beam diffraction patterns. These results were obtained by Wieland Schöllkopf and Peter Toennies at the Max-Planck Institute Figure 6. Rare-gas atom-beam diffraction patterns. These results were obtained by Wieland Schöllkopf and Peter Toennies at the Max-Planck Institute in Göttingen, Germany, using a freestanding, 100nm-period

More information

Applications of Nano Patterning Process 1. Patterned Media

Applications of Nano Patterning Process 1. Patterned Media Applications of Nano Patterning Process 1. Patterned Media Contents Introduction Part. 1. Nanoimprinting on Glass Substrate for Patterned Media Part. 2. Nanoinjection Molding of Nanopillars for Patterned

More information

MODERN COMPUTER TENDING TOWARDS NANOTECHNOLOGY MAKING GRATE GROWTH IN 21 ST CENTURY

MODERN COMPUTER TENDING TOWARDS NANOTECHNOLOGY MAKING GRATE GROWTH IN 21 ST CENTURY MODERN COMPUTER TENDING TOWARDS NANOTECHNOLOGY MAKING GRATE GROWTH IN 21 ST CENTURY Mrs. Jayashree Yadannavar Department of Information Technology,MIT AOE, Alandi(D),Pune ABSTRACT At present in the field

More information

Supplementary Figure S1 Photograph of MoS 2 and WS 2 flakes exfoliated by different metal naphthalenide (metal = Na, K, Li), and dispersed in water.

Supplementary Figure S1 Photograph of MoS 2 and WS 2 flakes exfoliated by different metal naphthalenide (metal = Na, K, Li), and dispersed in water. Supplementary Figure S1 Photograph of MoS 2 and WS 2 flakes exfoliated by different metal naphthalenide (metal = Na, K, Li), and dispersed in water. Supplementary Figure S2 AFM measurement of typical LTMDs

More information

for Bioanalytical Applications

for Bioanalytical Applications Conferinţa Diaspora in Cercetarea Ştiinţifică şi Invăţămantul Superior din Romania Bucuresti, 21-24 Septembrie 2010 Multifunctional Plasmonic Nanosensors for Bioanalytical Applications Simion Astilean

More information

Gas and surface applications of atmospheric pressure plasmas

Gas and surface applications of atmospheric pressure plasmas Gas and surface applications of atmospheric pressure plasmas Eugen Stamate Technical University of Denmark Roskilde 4000, Denmark OUTLINE Introduction of DTU Energy Conversion and Storage Activities in

More information

Flexible Substrates for Smart Sensor Applications

Flexible Substrates for Smart Sensor Applications Flexible Substrates for Smart Sensor Applications A novel approach that delivers miniaturized, hermetic, biostable and highly reliable smart sensor modules. AUTHORS Dr. Eckardt Bihler, Dr. Marc Hauer,

More information

Imprint lithography for curved cross-sectional structure using replicated Ni mold

Imprint lithography for curved cross-sectional structure using replicated Ni mold Imprint lithography for curved cross-sectional structure using replicated Ni mold Yoshihiko Hirai, a) Satoshi Harada, Hisao Kikuta, and Yoshio Tanaka Mechanical System Engineering, Graduate School of Engineering,

More information

During solution evaporation, there are two major competing evaporation-driven effects, coffee ring effect and Marangoni flow.

During solution evaporation, there are two major competing evaporation-driven effects, coffee ring effect and Marangoni flow. Abstract Evaporation driven particle packing has been investigated to reveal interesting patterns at micrometer to millimeter scale. While the microscopic structures of these patterns are well characterized,

More information

FY06 ACCOMPLISHMENTS. Nanoelectronics Manufacture, Inspection, and Repair using Thermal Dip Pen Nanolithography

FY06 ACCOMPLISHMENTS. Nanoelectronics Manufacture, Inspection, and Repair using Thermal Dip Pen Nanolithography FY06 ACCOMPLISHMENTS Nanoelectronics Manufacture, Inspection, and Repair using Thermal Dip Pen Nanolithography William P. King Georiga Institute of Technology FY06 was the second year of this grant, and

More information

Holographix LLC Overview. High quality custom replicated optics and surface relief patterns in production volumes

Holographix LLC Overview. High quality custom replicated optics and surface relief patterns in production volumes Holographix LLC Overview 2018 High quality custom replicated optics and surface relief patterns in production volumes One location in Marlborough, MA. 15,000 sq. ft. facility with additional space available

More information

ScienceDirect. Growth of Carbon Nano Tubes on Copper Substrate Suitable for Lithium Ion Battery Anode

ScienceDirect. Growth of Carbon Nano Tubes on Copper Substrate Suitable for Lithium Ion Battery Anode Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 11 (2015 ) 634 638 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials, UFGNSM15 Growth

More information

Integration of Block-Copolymer with Nano- Imprint Lithography: Pushing the Boundaries of Emerging Nano-Patterning Technology

Integration of Block-Copolymer with Nano- Imprint Lithography: Pushing the Boundaries of Emerging Nano-Patterning Technology Integration of Block-Copolymer with Nano- Imprint Lithography: Pushing the Boundaries of Emerging Nano-Patterning Technology April 2010 update SNL Geoff Brennecka (PI) Bruce Burckel Matt George Jack Skinner

More information

Simple UV-based Soft-lithography Process for. Fabrication of Low-Loss Polymer PSQ-L-based. Waveguides

Simple UV-based Soft-lithography Process for. Fabrication of Low-Loss Polymer PSQ-L-based. Waveguides Simple UV-based Soft-lithography Process for Fabrication of Low-Loss Polymer PSQ-L-based Waveguides Jie Teng 1, 2, 4, Stijn Scheerlinck 4, Geert Morthier 4, Roel Baets 4, Hongbo Zhang 2,3, Xigao Jian 2,3,

More information

High Definition Selective Metallization for Printed Electronics

High Definition Selective Metallization for Printed Electronics High Definition Selective Metallization for Printed Electronics Wolfgang Decker VAST FILMS, Ltd. Outline Introduction of VAST FILMS What is Selective Metalization Range of Applications for Selective Metalization

More information

UT Austin, ECE Department VLSI Design 2. CMOS Fabrication, Layout Rules

UT Austin, ECE Department VLSI Design 2. CMOS Fabrication, Layout Rules 2. CMOS Fabrication, Layout, Design Rules Last module: Introduction to the course How a transistor works CMOS transistors This module: CMOS Fabrication Design Rules CMOS Fabrication CMOS transistors are

More information

Change in stoichiometry

Change in stoichiometry Measurement of Gas Sensor Performance Gas sensing materials: 1. Sputtered ZnO film (150 nm (Massachusetts Institute of Technology) 2. Sputtered SnO 2 film (60 nm) (Fraunhofer Institute of Physical Measurement

More information

Manufacturing Technologies for MEMS and SMART SENSORS

Manufacturing Technologies for MEMS and SMART SENSORS 4 Manufacturing Technologies for MEMS and SMART SENSORS Dr. H. K. Verma Distinguished Professor (EEE) Sharda University, Greater Noida (Formerly: Deputy Director and Professor of Instrumentation Indian

More information

Czochralski Crystal Growth

Czochralski Crystal Growth Czochralski Crystal Growth Crystal Pulling Crystal Ingots Shaping and Polishing 300 mm wafer 1 2 Advantage of larger diameter wafers Wafer area larger Chip area larger 3 4 Large-Diameter Wafer Handling

More information

SOLAR ENERGY. Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs.

SOLAR ENERGY. Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs. SOLAR ENERGY Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs. What is Photovoltaics? Photovoltaics is a high-technology

More information

Production and analysis of optical gratings and nanostructures created by laser based methods

Production and analysis of optical gratings and nanostructures created by laser based methods Summary of the Ph.D. thesis Production and analysis of optical gratings and nanostructures created by laser based methods Kiss Bálint Supervisor: Dr. Vass Csaba Research fellow Doctoral School in Physics

More information

Free standing Multilayer Thin Film of Cellulose Nanocrystals

Free standing Multilayer Thin Film of Cellulose Nanocrystals Free standing Multilayer Thin Film of Cellulose Nanocrystals Chaoyang Jiang Department of Chemistry The University of South Dakota Edmonton, June 25, 2009 Cellulose Nanocrystals Nanotechnology R&D Priority

More information

Preprint - Mechatronics 2008, Le Grand-Bornand, France, May

Preprint - Mechatronics 2008, Le Grand-Bornand, France, May Potentialities of piezoresistive cantilever force sensors based on free standing thick films Hélène Debéda(*), Isabelle Dufour, Patrick Ginet, Claude Lucat University of Bordeaux 1, IMS Laboratory, 51

More information

Fabrication characteristics of a line-and-space pattern and a dot pattern on a roll mold by using electron-beam lithography

Fabrication characteristics of a line-and-space pattern and a dot pattern on a roll mold by using electron-beam lithography 0123456789 Bulletin of the JSME Journal of Advanced Mechanical Design, Systems, and Manufacturing Vol.10, No.5, 2016 Fabrication characteristics of a line-and-space pattern and a dot pattern on a roll

More information

Metallic Antireflection Structures Made from Silver Ink by a Liquid Transfer Imprint Lithography Technique

Metallic Antireflection Structures Made from Silver Ink by a Liquid Transfer Imprint Lithography Technique Journal of Photopolymer Science and Technology Volume 30, Number 5 (2017) 539-544 C 2017SPST Metallic Antireflection Structures Made from Silver Ink by a Liquid Transfer Imprint Lithography Technique Ichiro

More information

纳米压印技术最新进展. Obducat Technologies AB., Sweden Gang Luo,

纳米压印技术最新进展. Obducat Technologies AB., Sweden Gang Luo, 纳米压印技术最新进展 Obducat Technologies AB., Sweden Gang Luo, 20170711 History 2016 Launch of SINDRE Large Area 2015 Acquire Solarsemi Gmbh 2015 Awarded by NNT for Pioneering NIL into production 2014 Launch and

More information

Bio MEMS Class -1 st week

Bio MEMS Class -1 st week Bio MEMS Class -1 st week Jang, Jaesung Ref: Bashir ADDR Review paper, 2004. 1 Introduction Bio-MEMS: devices or systems, constructed using techniques inspired from micro/nano-scale fabrication, that are

More information

Chemical Mechanical Planarization

Chemical Mechanical Planarization 1 Chemical Mechanical Planarization SFR Workshop & Review November 14, 2002 David Dornfeld, Fiona Doyle, Costas Spanos, Jan Talbot Berkeley, CA 2 Focus of this presentation CMP research milestones in SFR

More information

Pattern Formation in PMMA Film Induced by Electric Field

Pattern Formation in PMMA Film Induced by Electric Field Pattern Formation in PMMA Film Induced by Electric Field OLEKSIY LYUTAKOV, 1 IVAN HÜTTEL, 1 VÁCLAV PRAJZLER, 2 VÍTĚZSLAV JEŘÁBEK, 2 ALEXANDER JANČÁREK, 3 VLADIMÍR HNATOWICZ, 4 VÁCLAV ŠVORČÍK 1 1 Department

More information