Evaluation of Sheet Metal Covers to Improve Tool Life in Forging

Size: px
Start display at page:

Download "Evaluation of Sheet Metal Covers to Improve Tool Life in Forging"

Transcription

1 Evaluation of Sheet Metal Covers to Improve Tool Life in Forging Prof. Dr.-Ing. L. Schaeffer*, J. Zottis, Dr. Ing. A. Brito, Laboratório de Transformação Mecânica UFRGS Prof. Dr.-Ing. G. Hirt, M. Wolfgarten*, Y. Yu Institut für Bildsame Formgebung RWTH Aachen University *Presenting authors

2 Motivation Tooling costs stand up to 15-35% of total costs Out of use Hot forging die Thermal fatigue Traditional forging Plastic deformation Wear Mechanial fatigue Failures Forging Main failure of forging die: abrasive wear Most failures appear on the surface Method of surface protection Surface treatment (Nitriding, PVD ) Coating Die insert Tool repair and exchange is still required To protect forging tool, decrease tooling costs Inspired by the exchangeable cutting tool insert For Making the surface of forging die exchangeable Slide 2

3 Motivation Forging with die covers Inexpensive and easy-to-exchange sheet metal as a protective die cover Fix the die cover Recycle use Forging Die cover concept Failures will only affect die covers Can be exchanged quickly Thermal load will be reduced Economical Forging die Out of use Take out forging pieces Take out the die cover after N forging pieces Slide 3

4 Motivation Slide 4

5 Conclusions from the previous project stage Materials were selected based upon their mechanical and thermal properties. Different geometries were developed to define the application range of this concept. The protection effect of die covers was proved both by simulations and experiment. Two geometries were validated by experiment and the die cover reached 10 forging cycles. Open questions: Wrinkling and thinning problems Application on more complex geometries Slide 5

6 Objectives of the 2nd phase Investigation of possibilities to improve the boundary conditions Influence of the friction coefficient on the tensile stresses within the die cover Test of enhanced sheet fixation Development of a suitable die geometry Investigation of 3D geometries Investigation of axisymmetric geometries Investigation of multi-stage forging processes Analysis of multi-stage forging process with reduced tangential movement in forging stages Investigation of the finisher step Slide 6

7 General information Publications Publications in Journals: First experimental and numerical study on the use of sheet metal die covers for wear protection in closed-die forging (Key Engineering Materials Vols (2015) pp ) Estudo da aplicabilidade de máscaras metálicas de DP600 em superfícies de matrizes de forjamento (Revista Ferramental. ed 66, p Curitiba, 2016) Conference Proceedings: Influence of the Die Geometry on the Application of a Sheet Metal Cover for Wear Protection in Closed Die Forging (35th SENAFOR) Influence of Die Geometry and Material Selection on the Behavior of Protective Die Covers in Closed-die Forging (ESAFORM 2016) Characterization of DP600 Sheet Mechanical Properties and Anisotropy (15 th ENEMET ABM) Study of DP600 metallic mask applicability in forging die surface (36th SENAFOR) Temperature influence on DP600 sheet hardness to metallic mask application in Hot Forging (36th SENAFOR) Hot Forging Process Analysis Using a Metallic Mask as Surface Coating (22th Cbecimat) Slide 7

8 General information Work missions Brazil: Prof. Dr.-Ing. L. Schaeffer Germany: M. Wolfgarten, Y. Yu Student missions Brazil: Master Student A-K. Haussmann Germany: Doctoral Student J. Zottis; Master Student T. M. Ivaniski Post-Doctor Prof. Dr. Eng. A. Brito (Brazil Germany) Students Bachelor students: A. Seeliger and N. Adrian (Germany); A. Rosiak, G. Graziottin and H. Kemmerich (Brazil) Master students: E. Segebade, S. Böhnke (Germany), T. M. Ivaniski (Brazil) Doctoral students: Y. Yu (Germany); L. de L. de Costa (Brazil), J. Zottis (Brazil Germany) Slide 8

9 Comparison of 2D die cover and 3D die cover 2D die cover Easy to form Wrinkling and thinning problems Material of billet flows around the die cover 2D die cover 3D die cover 3D die covers Need more complex manufacture process More stable Billet Die cover Forging die Problem of 2D die cover Material flows around the die cover 2D die cover 3D die cover Slide 9

10 Two ideas to explore 3D die covers From existed sheet metal parts to forging parts Advantages: die cover manufacture process already existed From the geometry to the manufacture of die cover Cross forging Square flange Slide 10

11 Two ideas to explore 3D die covers Cross sheet part From existed sheet metal parts to forging parts Cross die Material flow mainly perpendicular to forging direction 1 2 Cross forging part 3 4 Forming progress Material flow Slide 11

12 Temperature in C Investigation of 3D geometries Experimental validation Material: 22MnB5 Die covers manufactured by deep drawing Drawing depth: 30 mm Heat treatment Heating above 830 C, then cooling Deep drawing mm Comparison of the die cover before and after heat treatment C Time in s Heat treatment curve Slide 12

13 Experimental validation Billet: C45 Dimension: 50*50*75 mm Lubricant: graphite 10 forging cycles Lubrication Positioning billet Forging Taking off billet Waiting 10 s 30s 5s 2 s 34 s 30 s Forging process Slide 13

14 Force in KN Investigation of 3D geometries Von Mises stress Unit: MPa 1400 Two ideas to explore 3D die covers From the existed sheet metal part to the forging part Cross die Maximum stress: 1372 MPa 700 Stress distribution 0 Maximum point 1372 MPa experiment simulation 0 0,5 1 1,5 2 Time in s Press force Slide 14

15 Experimental validation 10 forging cycles Stable state: 350 C to 450 C Die covers before and after heat treatment Conclusions The 3D die covers are more stable than the 2D die covers The die cover made by 22MnB5 has more than 10 cycles service life Easy to put in and take off is possible in this case More cases with similar material flow ways can be explored as the applications Die covers before and after 10 forging cycles Slide 17

16 Idea two: from the geometry to the manufacture of die cover Supporting tool for incremental forming Idea of how to design the new geometry Keeping the cross section same with 2D geometries Considering the limitation of manufacture methods (deep drawing and incremental forming) Nonaxisymmetrical 2D geometries in phase 1 3D geometries design The selected 3D geometry Slide 18

17 Von Mises stress Unit: Mpa New 3D geometry Press force: 270 t Maximum stress: 1292 MPa Die cover manufacture: incremental forming Material: 22MnB5 0 Stress distribution Incremental forming of die cover Slide 19

18 Investigation of axisymmetric geometries Numerical investigation to determine suitable geometries Investigation of manufacturing strategies for the die cover Evaluation of die wear by forging experiments Axisymmetric geometry 3D axisymmetric geometries Forging force analysis Billet size Experimental plan X: Y: e+06 Ø150x50 mm Numerical evaluation billet size Gear Blanks Slide 20

19 With Die Cover Temperature ( C) 3D axisymmetric geometries Numerical simulation results Using a sheet metal as a die cover 22MnB5 Without die cover Maximum temperature of the lower die on surface decrease from 640 C to 320 C von Mises stresses decrease from 700 MPa to 380 MPa. With Die Cover Without Die Cover Stress - Effective (MPa) Die cover (22MnB5 with 1.5 mm thickness) after one forging cycle Temperature ( C) Stress Effective (MPa) Without Die Cover Slide 21

20 Investigation of manufacturing strategies for the die cover First Path tool 20 mm c d a b Second Path tool 20 mm Holder Sheet material Supporting tool Incremental Sheet Forming Different materials DP600 22MnB5 (before treatment) DC04 Manufacturing of a supporting tool (forging tool) Process parameters: Offset = 0.5 mm (Z) Velocity = 4000 m/s Tool size 1 st 20 mm 2 nd 10 mm Die cover measurements: 3D scan Optical 3D (ARGUS 5M) Final Geometry tool 10 mm Slide 22

21 Incremental Sheet Forming Equipment: Amino Fixation Bottom of Supporting tool Structure for lateral stability Fixation Samples number of manufactured covers with different thickness. Material thickness samples 1mm 3 DC04 1.5mm 3 DP600 1mm 3 1mm 6 22MnB5-coated (before quenching) 1.5mm 3 Slide 23

22 Incremental Sheet Forming Equipment: Amino Manufacturing steps: First path with 20 mm of tool diameter Second path with 10 mm of tool diameter Manufactured Die Cover ISF Process Final Step Slide 24

23 3D die covers measurements A PDA grid pattern or mesh printed by Laser on the bottom surface of sheet metal before incremental forming process (ISF). Optical 3D measurement system (ARGUS 5M) was used to evaluate the final thickness of the manufacture die cover. For the DP600 formed material, can be observed higher reduction in the die cover walls. ISF process could provide an accurate final geometry. Slide 25

24 3D axisymmetric geometries Experimental plan 1. Forging Experiment Set and lubrication 2. Heating Billet 45 min Dies 20 min 3. Billet Transfer ~ 30 s 4. Positioning and Start ~ 10 s 5. Forging Operation 15 mm (stroke Z) 6. Extraction and lubrication ~ 60 s DC04 Cover Materials 22MnB5 DP600 Forging cycle for each cover sample N = 4 Slide 26

25 Test of enhanced sheet fixation Test of enhanced sheet fixation High temperature glue (long curing time) Mechanical fixing Fixation effect in simulation Holder used as a mechanical fixation Fixation Holder Die cover Fixation Mechanical fixations Lower die Slide 27

26 Outlook Investigation of possibilities to improve the boundary conditions To validate the friction results in experiment using different topography Different topography Development of a suitable die geometry To explore the max service life of die cover in different geometries Evaluation of die wear Investigation of multi-stage forging processes Analysis of multi-stage forging process with reduced tangential movement in forging stages Investigation of the finisher step Slide 28

27 Thank you for your attention! Slide 29

Fundamental Course in Mechanical Processing of Materials. Exercises

Fundamental Course in Mechanical Processing of Materials. Exercises Fundamental Course in Mechanical Processing of Materials Exercises 2017 3.2 Consider a material point subject to a plane stress state represented by the following stress tensor, Determine the principal

More information

Energy efficient manufacturing chain for advanced bainitic steels based on thermomechanical processing

Energy efficient manufacturing chain for advanced bainitic steels based on thermomechanical processing Energy efficient manufacturing chain for advanced bainitic steels based on thermomechanical processing Prof. Dr. Alexandre da Silva Rocha, Laboratório de Transformação Mecânica UFRGS Prof. Dr.-Ing. Hans-Werner

More information

THERMO-MECHANICAL FATIGUE ANALYSIS ON FORGING TOOLS

THERMO-MECHANICAL FATIGUE ANALYSIS ON FORGING TOOLS THERMO-MECHANICAL FATIGUE ANALYSIS ON FORGING TOOLS STÉPHANE ANDRIETTI DIRECTOR OF SOFTWARE PRODUCTION DEPARTMENT TRANSVALOR SA - FRANCE OUTLINE INTRODUCTION DIE WEAR MODELING CASE STUDY#1 : CONSTANT VELOCITY

More information

Finite element simulation of magnesium alloy sheet forming at elevated temperatures

Finite element simulation of magnesium alloy sheet forming at elevated temperatures Journal of Materials Processing Technology 146 (2004) 52 60 Finite element simulation of magnesium alloy sheet forming at elevated temperatures Hariharasudhan Palaniswamy, Gracious Ngaile, Taylan Altan

More information

Defining a Method of Evaluating Die Life Performance by Using Finite Element Models (FEM) and a Practical Open Die Hot Forging Method

Defining a Method of Evaluating Die Life Performance by Using Finite Element Models (FEM) and a Practical Open Die Hot Forging Method Marashi, James and Zante, Remi Christophe and Foster, James (2016) Defining a method of evaluating die life performance by using finite element models (FEM) and a practical open die hot forging method.

More information

Numerical Simulation of Hydro-mechanical Deep Drawing - A Study on the Effect of Process Parameters on Drawability and Thickness Variation

Numerical Simulation of Hydro-mechanical Deep Drawing - A Study on the Effect of Process Parameters on Drawability and Thickness Variation Numerical Simulation of Hydro-mechanical Deep Drawing - A Study on the Effect of Process Parameters on Drawability and Thickness Variation Swadesh Kumar Singh and D. Ravi Kumar* Department of Mechanical

More information

Modelling and Experimental Research in Hot Precision Forging of Duplicate Gear Blank Zhi Li1, a, Baoyu Wang1, b

Modelling and Experimental Research in Hot Precision Forging of Duplicate Gear Blank Zhi Li1, a, Baoyu Wang1, b 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering (ICMMCCE 2015) Modelling and Experimental Research in Hot Precision Forging of Duplicate Gear Blank Zhi Li1,

More information

Fundamentals of Metal Forming

Fundamentals of Metal Forming Fundamentals of Metal Forming Chapter 15 15.1 Introduction Deformation processes have been designed to exploit the plasticity of engineering materials Plasticity is the ability of a material to flow as

More information

Plastic deformation analysis of wear on insert component and die service life in hot forging process

Plastic deformation analysis of wear on insert component and die service life in hot forging process Indian Journal of Engineering & Materials Sciences Vol. 22, December 2015, pp. 686-692 Plastic deformation analysis of wear on insert component and die service life in hot forging process R Rajiev a *

More information

1. Consider the following stress-strain responses of metallic materials:

1. Consider the following stress-strain responses of metallic materials: TECNOLOGIA MECÂNICA Mestrado em Engenharia de Materiais January 3, 2015 Number: Name: 1. Consider the following stress-strain responses of metallic materials: Y Load Unload Y E Load E Unload Y (1) (2)

More information

Forging Dr. B Gharaibeh Production Processes 1

Forging Dr. B Gharaibeh Production Processes 1 Forging Dr. B Gharaibeh Production 1 Deformation Operations that induce shape changes on the workpiece by plastic deformation under forces applied by various tools and dies - Primary working processes

More information

Research on the mechanism of weld-line movement of. U-shape TWB parts

Research on the mechanism of weld-line movement of. U-shape TWB parts 5th International Conference on Advanced Engineering Materials and Technology (AEMT 2015) Research on the mechanism of weld-line movement of U-shape TWB parts Yong Gan 1, a, Xi Qin 1, b*, Hanchao Wang

More information

FINITE ELEMENT ANALYSIS OF FRICTION PARAMETERS ON 6060 ALUMINIUM ALLOY IMPRESSION DIE COLD FORGING PROCESS

FINITE ELEMENT ANALYSIS OF FRICTION PARAMETERS ON 6060 ALUMINIUM ALLOY IMPRESSION DIE COLD FORGING PROCESS STUDIA UBB PHYSICA, Vol. 61 (LXI), 1, 2016, pp. 35-46 (RECOMMENDED CITATION) Dedicated to Professor Dr. Cozar Onuc on His 70 th Anniversary FINITE ELEMENT ANALYSIS OF FRICTION PARAMETERS ON 6060 ALUMINIUM

More information

Taylan Altan, PhD, Professor Emeritus Center for Precision Forming the Ohio State University.

Taylan Altan, PhD, Professor Emeritus Center for Precision Forming the Ohio State University. ADVANCED METHODS for FORMING AHSS and UHS Al ALLOYS Taylan Altan, PhD, Professor Emeritus Center for Precision Forming the Ohio State University www.cpforming.org www.ercnsm.org January 2015 Center for

More information

EFFECT OF EXTRUSION PARAMETERS AND DIE GEOMETRY ON THE PRODUCED BILLET QUALITY USING FINITE ELEMENT METHOD

EFFECT OF EXTRUSION PARAMETERS AND DIE GEOMETRY ON THE PRODUCED BILLET QUALITY USING FINITE ELEMENT METHOD EFFECT OF EXTRUSION PARAMETERS AND DIE GEOMETRY ON THE PRODUCED BILLET QUALITY USING FINITE ELEMENT METHOD A.Ε. Lontos 1, F.A. Soukatzidis 2, D.A. Demosthenous 1, A.K. Baldoukas 2 1. Mechanical Engineering

More information

Forming of locally made sheet steels

Forming of locally made sheet steels Forming of locally made sheet steels Issues and Opportunities HH1 Dipl.-Ing. Holger Heinzel (HERA) Prof. Thomas Neitzert (AUT) Slide 1 HH1 Local or locally? Holger Heinzel, 29/10/2006 Content Local material

More information

Study of Wear and Life Enhancement of Hot Forging Dies Using Finite Element Analysis

Study of Wear and Life Enhancement of Hot Forging Dies Using Finite Element Analysis , July 1-3, 2015, London, U.K. Study of Wear and Life Enhancement of Hot Forging Dies Using Finite Element Analysis Rachapol Iamtanomchai and Sasithon Bland * Abstract This work investigates the wear of

More information

Bulk Deformation Processes

Bulk Deformation Processes Bulk Deformation Processes Bachelor of Industrial Technology Management with Honours Semester I Session 2013/2014 TOPIC OUTLINE What is Bulk Deformation? Classification of Bulk Deformation Processes Types

More information

Forming - Bulk Forming

Forming - Bulk Forming Forming - Bulk Forming Manufacturing Technology II Lecture 4 Laboratory for Machine Tools and Production Engineering Chair of Manufacturing Technologies Prof. Dr.-Ing. Dr.-Ing. E. h. F. Klocke Outline

More information

Chapter 2: Mechanical Behavior of Materials

Chapter 2: Mechanical Behavior of Materials Chapter : Mechanical Behavior of Materials Definition Mechanical behavior of a material relationship - its response (deformation) to an applied load or force Examples: strength, hardness, ductility, stiffness

More information

Upset forging of a circular disc in open die forging. Analysis involves cylindrical coordinates

Upset forging of a circular disc in open die forging. Analysis involves cylindrical coordinates 12 Upset forging of a circular disc in open die forging Analysis involves cylindrical coordinates The stresses acting on an elemental volume in a disc are: σ r = radial stress responsible for increase

More information

Process Modeling in Impression-Die Forging Using Finite-Element Analysis

Process Modeling in Impression-Die Forging Using Finite-Element Analysis CHAPTER 16 Process Modeling in Impression-Die Forging Using Finite-Element Analysis Manas Shirgaokar Gracious Ngaile Gangshu Shen 16.1 Introduction Development of finite-element (FE) process simulation

More information

Optimizing Hot Forging Process Parameters of Hollow Parts Using Tubular and Cylindrical Workpiece: Numerical Analysis and Experimental Validation

Optimizing Hot Forging Process Parameters of Hollow Parts Using Tubular and Cylindrical Workpiece: Numerical Analysis and Experimental Validation Journal of Mechanics Engineering and Automation 8 (2018) 60-70 doi: 10.17265/2159-5275/2018.02.003 D DAVID PUBLISHING Optimizing Hot Forging Process Parameters of Hollow Parts Using Tubular and Cylindrical

More information

Increasing of tool life in cold forging by means of fem simulation

Increasing of tool life in cold forging by means of fem simulation Increasing of tool life in cold forging by means of fem simulation Dr. Nikolai Biba QuantorForm Ltd. Moscow Dipl.-Ing. Hendrik Muntinga Industrieberatung Ingenierburo, Ludenschied Dr. Sergey Stebunov QuantorForm

More information

QForm. Form3D. Advanced software for forging simulation

QForm. Form3D. Advanced software for forging simulation QForm Form3D Advanced software for forging simulation The goals of forging technology : Make the parts of the required shape Provide required properties Do it in time and at the lowest cost Forging process

More information

Determination of Optimal Preform Part for Hot Forging Process of the Manufacture Axle Shaft by Finite Element Method

Determination of Optimal Preform Part for Hot Forging Process of the Manufacture Axle Shaft by Finite Element Method AIJSTPME (2013) 6(1): 35-42 Determination of Optimal Preform Part for Hot Forging Process of the Manufacture Axle Shaft by Finite Element Method Sukjantha V. Department of Production Engineering, the Sirindhorn

More information

COMPARATIVE OF PARAMETERS IN THE FORGING PROCESS BY DIFFERENT APPLICATION LOAD

COMPARATIVE OF PARAMETERS IN THE FORGING PROCESS BY DIFFERENT APPLICATION LOAD DAAAM INTERNATIONAL SCIENTIFIC BOOK 013 pp. 449-458 CHAPTER 4 COMPARATIVE OF PARAMETERS IN THE FORGING PROCESS BY DIFFERENT APPLICATION LOAD MARIN, M.; GARCIA, E.; NUNEZ, P. & CAMACHO, A. Abstract: In

More information

CHAPTER 5 FINITE ELEMENT ANALYSIS AND AN ANALYTICAL APPROACH OF WARM DEEP DRAWING OF AISI 304 STAINLESS STEEL SHEET

CHAPTER 5 FINITE ELEMENT ANALYSIS AND AN ANALYTICAL APPROACH OF WARM DEEP DRAWING OF AISI 304 STAINLESS STEEL SHEET 97 CHAPTER 5 FINITE ELEMENT ANALYSIS AND AN ANALYTICAL APPROACH OF WARM DEEP DRAWING OF AISI 304 STAINLESS STEEL SHEET 5.1 INTRODUCTION Nowadays, the finite element based simulation is very widely used

More information

Hot Forming. Kalpakjian

Hot Forming. Kalpakjian Hot Forming Kalpakjian Hot Working: Forging Open Die Forging www.smeedwerkunica.nl Paul Berenson, www.paulb.com T.Green, WIT Forging: Heat Loss Metal near die surfaces are coolest, flow less www.freedomalloysusa.com

More information

FINITE VOLUME ANALYSIS OF TWO-STAGE FORGING PROCESS FOR ALUMINIUM 7075 ALLOY

FINITE VOLUME ANALYSIS OF TWO-STAGE FORGING PROCESS FOR ALUMINIUM 7075 ALLOY FINITE VOLUME ANALYSIS OF TWO-STAGE FORGING PROCESS FOR ALUMINIUM 7075 ALLOY M. Vidya Sagar a and A. Chennakesava Reddy b a Associate Professor, Department of Mechanical Engineering, JNTUH College of Engineering,

More information

Tooling Materials and Solutions for Thixoforming of Steel RASSILI Ahmed 1, a, FALZONE Salvatore 1, a and LECOMTE-BECKERS Jacqueline 1,b

Tooling Materials and Solutions for Thixoforming of Steel RASSILI Ahmed 1, a, FALZONE Salvatore 1, a and LECOMTE-BECKERS Jacqueline 1,b Solid State Phenomena Vols. 192-193 (2013) pp 527-532 (2013) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.192-193.527 Tooling Materials and Solutions for Thixoforming of Steel

More information

RESIDUAL STRESSES DUE TO DEEP-DRAWING OF PRE-COATED ALUMINUM-ALLOY SHEETS

RESIDUAL STRESSES DUE TO DEEP-DRAWING OF PRE-COATED ALUMINUM-ALLOY SHEETS Materials Science Forum Online: 005-07-15 ISSN: 166-975, Vols. 490-491, pp 35-363 doi:10.40/www.scientific.net/msf.490-491.35 005 Trans Tech Publications, Switzerland RESIDUAL STRESSES DUE TO DEEP-DRAWING

More information

X38CrMoV5 hot-work tool steel as tool material for thixoforging of steel: Numerical and experimental evaluation

X38CrMoV5 hot-work tool steel as tool material for thixoforging of steel: Numerical and experimental evaluation Trans. Nonferrous Met. Soc. China 20(2010) s713-s718 X38CrMoV5 hot-work tool steel as tool material for thixoforging of steel: Numerical and experimental evaluation A. RASSILI, J. C. PIERRET, G. VANEETVELD,

More information

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF FORGING PROCESS OF A CV JOINT OUTER RACE

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF FORGING PROCESS OF A CV JOINT OUTER RACE NUMERICAL AND EXPERIMENTAL INVESTIGATION OF FORGING PROCESS OF A CV JOINT OUTER RACE 1 M.M. MOHAMMADI and 2 M.H.SADEGHI. 1 CAD/CAM Laboratory, Manufacturing Engineering Division, School of Engineering,

More information

Tool wear prediction on sheet metal forming die of automotive part based on numerical simulation method

Tool wear prediction on sheet metal forming die of automotive part based on numerical simulation method 5 th Australasian Congress on Applied Mechanics, ACAM 2007 10-12 December 2007, Brisbane, Australia Tool wear prediction on sheet metal forming die of automotive part based on numerical simulation method

More information

Heinz Tschaetsch Metal Forming Practise

Heinz Tschaetsch Metal Forming Practise Heinz Tschaetsch Metal Forming Practise Heinz Tschaetsch Metal Forming Practise Processes Machines Tools Translated by Anne Koth 123 Author: Professor Dr.-Ing. e. h. Heinz Tschaetsch Paul-Gerhardt-Str.

More information

Simulation of finite volume of hot forging process of industrial gear

Simulation of finite volume of hot forging process of industrial gear 2012 International Conference on Networks and Information (ICNI 2012) IPCSIT vol. 57 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V57.21 Simulation of finite volume of hot forging process

More information

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) ISSN 0976 6340 (Print) ISSN 0976 6359 (Online) Volume 3, Issue 2, May-August (2012), pp. 604-609 IAEME: www.iaeme.com/ijmet.html Journal

More information

EXPERIMENTAL AND NUMERICAL ASPECTS REGARDING LEAD ALLOY PLASTIC DEFORMATION

EXPERIMENTAL AND NUMERICAL ASPECTS REGARDING LEAD ALLOY PLASTIC DEFORMATION EXPERIMENTAL AND NUMERICAL ASPECTS REGARDING LEAD ALLOY PLASTIC DEFORMATION MARIANA POP *, DAN FRUNZA *, ADRIANA NEAG * Abstract. The aim of this paper is to present an experimental and finite element

More information

Fracture and springback on Double Bulge Tube Hydro-Forming

Fracture and springback on Double Bulge Tube Hydro-Forming American Journal of Applied Sciences 5 (8): -6, 28 ISSN 56-929 28 Science Publications Fracture and springback on Double Bulge Tube Hydro-Forming F. Djavanroodi, M. Gheisary Department of Mechanical Engineering,

More information

Chapter 14: Metal-Forging Processes and Equipments

Chapter 14: Metal-Forging Processes and Equipments Manufacturing Engineering Technology in SI Units, 6 th Edition Chapter 14: Metal-Forging Processes and Equipments Chapter Outline Introduction Open-die Forging Impression-die and Closed-die Forging Various

More information

FEA approach for Prediction and Validation of Die Life of Hot Forging Dies

FEA approach for Prediction and Validation of Die Life of Hot Forging Dies FEA approach for Prediction and Validation of Die Life of Hot Forging Dies Mr. Bundale Santosh.D. 1, Dr. Ronge B.P. 2, Prof. Misal N.D. 3 1 M.E. (Mechanical)(CAD/CAM), SVERI s College of engineering, Pandharpur

More information

MANUFACTURING SCIENCE-I Time: 1 hour (EME-402) Max. marks:30

MANUFACTURING SCIENCE-I Time: 1 hour (EME-402) Max. marks:30 B.Tech. [SEM-IV (ME-41,42,43 & 44] QUIZ TEST-1 (Session: 2010-11) MANUFACTURING SCIENCE-I Time: 1 hour (EME-402) Max. marks:30 Note: All questions are compulsory. Q-1). Why there is no material wastage

More information

Investigation into the pre-forming s effect during multi-stages of tube hydroforming of aluminum alloy tube by using useful wrinkles

Investigation into the pre-forming s effect during multi-stages of tube hydroforming of aluminum alloy tube by using useful wrinkles journal of materials processing technology 209 (2009) 2553 2563 journal homepage: www.elsevier.com/locate/jmatprotec Investigation into the pre-forming s effect during multi-stages of tube hydroforming

More information

Intelligent Virtual Design of Precision Forging Processes in Consideration of Microstructure Evolution

Intelligent Virtual Design of Precision Forging Processes in Consideration of Microstructure Evolution Intelligent Virtual Design of Precision Forging Processes in Consideration of Microstructure Evolution Prof. Dr.-Ing. E. Doege, Dr.-Ing. J. Dittmann and Dipl.-Ing. C. Silbernagel Institute for Metal Forming

More information

Exercise 3 Lecture in the Subject: Manufacturing Technology II. The Forming System

Exercise 3 Lecture in the Subject: Manufacturing Technology II. The Forming System Lehrstuhl für Technologie der Fertigungsverfahren Laboratorium für Werkzeugmaschinen und Betriebslehre Exercise 3 Lecture in the Subject: Manufacturing Technology II The Forming System Werkzeugmaschinenlabor

More information

INDEX. forging Axisymmetric isothermal forging, cabbaging, compression of cylinders,

INDEX. forging Axisymmetric isothermal forging, cabbaging, compression of cylinders, INDEX Accuracy of simulation, 333 Air bending, 21, 141-147 Air rounding, 21 ALPID program, 136 Analysis in metal forming, 26-52 closed-die forging, 34, 35-36, 37 cold extrusion, 39-41 cold forging, 39-41

More information

Machining of Austempered Ductile Iron Challanges and Solutions

Machining of Austempered Ductile Iron Challanges and Solutions Machining of Austempered Ductile Iron Challanges and Solutions - Austempering a technology for substitution - Prof. Dr.-Ing. Dr.-Ing. E. h. Dr. h. c. Dr. h. c. Fritz Klocke Dr.-Ing. Dipl.-Wirt.-Ing. Benjamin

More information

A method for evaluating friction using a backward extrusion-type forging

A method for evaluating friction using a backward extrusion-type forging Journal of Materials Processing Technology, 33 (1992) 19-123 Elsevier 13-9';)- J/ 19 A method for evaluating friction using a backward extrusion-type forging G. Shen Department of ndustrial and Systems

More information

Abstract. 1 Introduction

Abstract. 1 Introduction The analysis of forming process for bimetal materials Stefan Kapinski Institute ofmachine Design Fundamentals Narbutta 84, 02-524 Warszawa, Poland EMail kapinska@sggw.waw.pl Abstract The paper presents

More information

A New Methodology to Manufacture Component by Closed Die Forging

A New Methodology to Manufacture Component by Closed Die Forging A New Methodology to Manufacture Component by Closed Die Forging Neeraj Deshpande 1, Ashutosh Sonawane 2, Tejas Deshpande 3, Aditya Deshmukh 4, Tukaram Sargar 5 1 UG Student, Department of Mechanical Engineering,

More information

Hot Stamping Process Simulation with LS-DYNA Capabilities and Benefits. David Lorenz DYNAmore GmbH

Hot Stamping Process Simulation with LS-DYNA Capabilities and Benefits. David Lorenz DYNAmore GmbH Hot Stamping Process Simulation with LS-DYNA Capabilities and Benefits David Lorenz DYNAmore GmbH Agenda 1. Hot Stamping and Presshardening of Boron Steel 2. Hot Stamping Feasibility Studies 3. Presshardening

More information

ERC/NSM Activities. Research for Industry and Government

ERC/NSM Activities. Research for Industry and Government / Activities Research for Industry and Government Stamping Hydroforming Machining Forging / Activities in Tube Hydroforming 1. Materials Determination of material flow stress data for tubular materials

More information

Numerical Analysis of the Effects of Orthogonal Friction and Work Piece Misalignment during an AA5042 Cup Drawing Process

Numerical Analysis of the Effects of Orthogonal Friction and Work Piece Misalignment during an AA5042 Cup Drawing Process 14 th International LS-DYNA Users Conference Session: Metal Forming Numerical Analysis of the Effects of Orthogonal Friction and Work Piece Misalignment during an AA5042 Cup Drawing Process Allen G. Mackey

More information

Die Design Software and Simulation Technology Experience

Die Design Software and Simulation Technology Experience Die Design Software and Simulation Technology Experience The Influence of Material Properties on Die Design Peter Ulintz Technical Director Precision Metalforming Association The Influence of Sheet Metal

More information

Numerical Simulation on the Hot Stamping Process of an Automobile Protective Beam

Numerical Simulation on the Hot Stamping Process of an Automobile Protective Beam 2016 International Conference on Material Science and Civil Engineering (MSCE 2016) ISBN: 978-1-60595-378-6 Numerical Simulation on the Hot Stamping Process of an Automobile Protective Beam Han-wu LIU

More information

Introduction to EWI Forming Center

Introduction to EWI Forming Center Introduction to EWI Forming Center Oct. 21, 2013 Hyunok Kim, Ph.D. Technical Director EWI Forming Center 1 National Priority for Forming Technology Advanced Forming and Joining Technologies are recognized

More information

Improvement in Life of Forging Die by Using Ansys Software

Improvement in Life of Forging Die by Using Ansys Software Improvement in Life of Forging Die by Using Ansys Software K Venkatesh 1, K Kiran Kumar 2, K Vedavyas 3 1, 2 Assistant Professor, 3 PG Scholar, Department of Mechanical Engg, AVN Institute of Engineering

More information

Compare with Rolling process which generally produces continuous plates, sheets, shapes

Compare with Rolling process which generally produces continuous plates, sheets, shapes 1 One of oldest and most important metal working processes 4000 BC First used to make jewelry, coins, implements by hammering metals with stone Now: Large rotors for turbines Gears Bolts and rivets Cutlery

More information

PLATE FORGING FOR CONTROLLING WALL THICKNESS DISTRIBUTION OF PRODUCTS

PLATE FORGING FOR CONTROLLING WALL THICKNESS DISTRIBUTION OF PRODUCTS PLATE FORGING FOR CONTROLLING WALL THICKNESS DISTRIBUTION OF PRODUCTS Ken-ichiro Mori Department of Mechanical Engineering, Toyohashi University of Technology, Japan Summary Plate forging processes for

More information

Lubrication in tube hydroforming (THF) Part II. Performance evaluation of lubricants using LDH test and pear-shaped tube expansion test

Lubrication in tube hydroforming (THF) Part II. Performance evaluation of lubricants using LDH test and pear-shaped tube expansion test Journal of Materials Processing Technology 146 (2004) 116 123 Lubrication in tube hydroforming (THF) Part II. Performance evaluation of lubricants using LDH test and pear-shaped tube expansion test Gracious

More information

Effects of TiCN Composite Die with Low Thermal Conductivity on Hot Forging Performances

Effects of TiCN Composite Die with Low Thermal Conductivity on Hot Forging Performances Journal of Mechanics Engineering and Automation 6 (216) 59-65 doi: 1.17265/2159-5275/216.2.1 D DAVID PUBLISHING Effects of TiCN Composite Die with Low Thermal Conductivity on Hot Forging Performances Ryo

More information

Numerical simulation of hydroforming a double conical tube

Numerical simulation of hydroforming a double conical tube Numerical simulation of hydroforming a double conical tube S.J.Yuan, W.J.Yuan *, Z.R.Wang School of Materials Science and Engineering, Harbin Institute of Technology, Harbin150001, China Abstract. The

More information

Mechanism of improvement of formability in pulsating hydroforming of tubes

Mechanism of improvement of formability in pulsating hydroforming of tubes International Journal of Machine Tools & Manufacture 47 (27) 978 984 www.elsevier.com/locate/ijmactool Mechanism of improvement of formability in pulsating hydroforming of tubes K. Mori, T. Maeno, S. Maki

More information

Determination of Flow Stress Data Using a Combination of Uniaxial Tensile and Biaxial Bulge Tests

Determination of Flow Stress Data Using a Combination of Uniaxial Tensile and Biaxial Bulge Tests Determination of Flow Stress Data Using a Combination of Uniaxial Tensile and Biaxial Bulge Tests By Ali Fallahiarezoodar, and Taylan Altan Editor s Note: This article describes a new methodology for accurate

More information

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol. 5, Issue 2

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol. 5, Issue 2 Design And Analysis Of Combined Extrusion Forging Die Behavior Under Thermal Structural Loads 1 Yedla Veerababu. 2* P. Satish Reddy, N.Guru Murthy, 3 M Manoj 4 PG Scholar, Assoc. Professor, Asst Professor,

More information

INFLUENCE OF TOOL PATH ON MAIN STRAINS, THICKNESS REDUCTION AND FORCES IN SINGLE POINT INCREMENTAL FORMING PROCESS

INFLUENCE OF TOOL PATH ON MAIN STRAINS, THICKNESS REDUCTION AND FORCES IN SINGLE POINT INCREMENTAL FORMING PROCESS Proceedings in Manufacturing Systems, Volume 6, Issue 4, 2011 ISSN 2067-9238 INFLUENCE OF TOOL PATH ON MAIN STRAINS, THICKNESS REDUCTION AND FORCES IN SINGLE POINT INCREMENTAL FORMING PROCESS Adrian BLAGA

More information

Thermal effects and friction in forming

Thermal effects and friction in forming Thermal effects and friction in forming R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 10 Table of Contents 1.Thermal

More information

Dual Phase steels. Extract from the product catalogue -European edition

Dual Phase steels. Extract from the product catalogue -European edition Automotive Worldwide Dual Phase steels Extract from the product catalogue -European edition Note: Information contained in this catalogue is subject to change. Please contact our sales team whenever you

More information

Frictional Condition Evaluation in Hot Magnesium Forming Using T- Shape and Ring Compression Tests

Frictional Condition Evaluation in Hot Magnesium Forming Using T- Shape and Ring Compression Tests College of Engineering Society of Manufacturing University of Tehran Engineering of Iran 3 rd International Conference on Manufacturing Engineering ICME211, Tehran, Iran 27-29 December 211 Frictional Condition

More information

A study of incremental sheet forming by using water jet

A study of incremental sheet forming by using water jet Int J Adv Manuf Technol (2017) 91:2291 2301 DOI 10.1007/s00170-016-9869-5 ORIGINAL ARTICLE A study of incremental sheet forming by using water jet B. Lu 1,2 & M. W. Mohamed Bazeer 1 & J. F. Cao 3 & S.

More information

Prediction of Hot Forging Die Life Using Wear and Cooling Model

Prediction of Hot Forging Die Life Using Wear and Cooling Model 43 Research Report Prediction of Hot Forging Life Using Wear and Cooling Model Toshiaki Tanaka, Koukichi Nakanishi, Yasuhiro Yogo, Sayuri Kondo, Yoshinari Tsuchiya, Toshiyuki Suzuki, Atsuo Watanabe Hot

More information

Glossary of Steel Terms

Glossary of Steel Terms Glossary of Steel Terms Steel Terms Explained. Below we list some of the most common steel terms and explain what they mean. AISI Alloy Alloy Steel Annealing ASTM Austenitic Bar Brinell (HB) Bright Drawn

More information

Formability R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur

Formability R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur Formability R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1.Formability... 3 1.1 Introduction:...

More information

Chapter 8: Strain Hardening and Annealing

Chapter 8: Strain Hardening and Annealing Slide 1 Chapter 8: Strain Hardening and Annealing 8-1 Slide 2 Learning Objectives 1. Relationship of cold working to the stress-strain curve 2. Strain-hardening mechanisms 3. Properties versus percent

More information

Simulation studies on Deep Drawing Process for the Evaluation of Stresses and Strains

Simulation studies on Deep Drawing Process for the Evaluation of Stresses and Strains International Journal of Computational Engineering Research Vol, 03 Issue, 4 Simulation studies on Deep Drawing Process for the Evaluation of Stresses and Strains A.Purushotham Department of Mechanical

More information

CASE 3: Analysis of tooling failure

CASE 3: Analysis of tooling failure CASE 3: Analysis of tooling failure Product: Valve spring retainer Product Material: 34Cr4 Tool Type: Rigid for the plastic analysis / elastic for the punch analysis Process Type: 2D Axi-symmetric, Isothermal,

More information

Casting. Forming. Sheet metal processing. Powder- and Ceramics Processing. Plastics processing. Cutting. Joining.

Casting. Forming. Sheet metal processing. Powder- and Ceramics Processing. Plastics processing. Cutting. Joining. Traditional Manufacturing Processes Casting Forming Sheet metal processing Powder- and Ceramics Processing Plastics processing Cutting Joining Surface treatment FUNDAMENTALS OF METAL FORMING Overview of

More information

Carina Baumgartner, Customer service. phs-ultraform. The press-hardening steel benchmark. voestalpine Steel Division

Carina Baumgartner, Customer service. phs-ultraform. The press-hardening steel benchmark. voestalpine Steel Division phs-ultraform The press-hardening steel benchmark Carina Baumgartner, Customer service voestalpine Steel Division www.voestalpine.com/steel 2 Hot-dip galvanized steel strip for press-hardened components

More information

Thin coatings using combined magnetron sputtering and ion implantation technique

Thin coatings using combined magnetron sputtering and ion implantation technique Thin coatings using combined magnetron sputtering and ion implantation technique E. Grigore, C. Ruset National Institute for Lasers, Plasma and Radiation Physics PO Box MG-36, Magurele, Romania Outline

More information

Evaluation of Lubricant Performance Using the Cup Drawing Test (CDT)

Evaluation of Lubricant Performance Using the Cup Drawing Test (CDT) Evaluation of Lubricant Performance Using the Cup Drawing Test (CDT) By Cliff Hoschouer 1, Jeff Jeffery 2, Frank Kenny 2, David Diaz Infante 3 and Taylan Altan 3 1 Shiloh Industries, 2 IRMCO, 3 Center

More information

IN SUPERALLOY FORGING PROCESS DESIGN. T. E. Howson and H. E. Delgado. Wyman-Gordon Company North Grafton, Massachusetts

IN SUPERALLOY FORGING PROCESS DESIGN. T. E. Howson and H. E. Delgado. Wyman-Gordon Company North Grafton, Massachusetts UTILIZATION OF COMPUTER MODELING IN SUPERALLOY FORGING PROCESS DESIGN T. E. Howson and H. E. Delgado Wyman-Gordon Company North Grafton, Massachusetts 01536 Summary The forging of a superalloy high pressure

More information

Manufacturing Process II. Forging

Manufacturing Process II. Forging Manufacturing Process II Forging Introduction Forging is a deformation process in which the work is compressed between two dies, using either impact or gradual pressure to form the part. It is the oldest

More information

PROCESS PARAMETER SENSITIVITY STUDY ON TUBE HYDROFORMING

PROCESS PARAMETER SENSITIVITY STUDY ON TUBE HYDROFORMING 7 th International LS-DYNA Users Conference Metal Forming Technology PROCESS PARAMETER SENSITIVITY STUDY ON TUBE HYDROFORMING X.M. Chen*, K. Palanisamy** and X.H. Zhu*** *United States Steel Corporation

More information

EVALUATION OF TWIST COMPRESSIONS TEST (TCT) AND CUP DRAW TEST (CDT) FOR DETERMINING THE PERFORMANCE OF LUBRICANTS FOR SHEET METAL FORMING OPERATIONS

EVALUATION OF TWIST COMPRESSIONS TEST (TCT) AND CUP DRAW TEST (CDT) FOR DETERMINING THE PERFORMANCE OF LUBRICANTS FOR SHEET METAL FORMING OPERATIONS EVALUATION OF TWIST COMPRESSIONS TEST (TCT) AND CUP DRAW TEST (CDT) FOR DETERMINING THE PERFORMANCE OF LUBRICANTS FOR SHEET METAL FORMING OPERATIONS THESIS Presented in Partial Fulfillment of the Requirements

More information

Selecting the Right Tool Steel for Your Metalforming Application.

Selecting the Right Tool Steel for Your Metalforming Application. Selecting the Right Tool Steel for Your Metalforming Application. Patricia Miller, Senior Technical Manager What parameters drive your tooling material choice? Application Work materials Failure mechanism

More information

Damage Evolution in Nakajima Tests of DP800 Dual Phase Steel

Damage Evolution in Nakajima Tests of DP800 Dual Phase Steel IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Damage Evolution in Nakajima Tests of DP800 Dual Phase Steel To cite this article: T Bergs et al 2018 IOP Conf. Ser.: Mater. Sci.

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT)

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) ISSN: 2319-5967 Investigation on Hot Stamping Process for Door Beam of Ultra-High Strength Steel Hong Xu, Mourui Zhang, Zhengwei Gu, Xin Li Department of Materials Science and Engineering, Jilin University,

More information

Finite Element Study on Thermal Fatigue Depth of Aluminum Alloy Die Casting Die

Finite Element Study on Thermal Fatigue Depth of Aluminum Alloy Die Casting Die 2015 2 nd International Conference on Material Engineering and Application (ICMEA 2015) ISBN: 978-1-60595-323-6 Finite Element Study on Thermal Fatigue Depth of Aluminum Alloy Die Casting Die C. G. Pan,

More information

2

2 1 2 3 4 5 6 7 Direct -Straightforward steady forward force by hydraulic ram Indirect -Has the advantage that there is no friction between billet and chamber (no movement) -Note dummy block at face of ram

More information

Effect of die coating on Forming of Micro-parts by Forward-Backward Extrusion of 6063 Aluminum Alloy

Effect of die coating on Forming of Micro-parts by Forward-Backward Extrusion of 6063 Aluminum Alloy IWMF214, 9 th INTERNATIONAL WORKSHOP ON MICROFACTORIES OCTOBER -8, 214, HONOLULU, U.S.A. / 1 Effect of die coating on Forming of Micro-parts by Forward-Backward Extrusion of 663 Aluminum Alloy Norio Takatsuji

More information

Manufacturing Process - I

Manufacturing Process - I Manufacturing Process - I UNIT II Metal Forming Processes Prepared By Prof. Shinde Vishal Vasant Assistant Professor Dept. of Mechanical Engg. NDMVP S Karmaveer Baburao Thakare College of Engg. Nashik

More information

Available online at ScienceDirect. Procedia Engineering 81 (2014 ) Markus Bambach*, Holger Voswinckel, Gerhard Hirt

Available online at  ScienceDirect. Procedia Engineering 81 (2014 ) Markus Bambach*, Holger Voswinckel, Gerhard Hirt Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 81 (2014 ) 2305 2310 11th International Conference on Technology of Plasticity, ICTP 2014, 19-24 October 2014, Nagoya Congress

More information

CHAPTER 14. Forging of Metals

CHAPTER 14. Forging of Metals CHAPTER 14 Forging of Metals 2 3 4 5 6 Forging (a) (b) (a) Schematic illustration of the steps involved in forging a bevel gear with a shaft. Source: Forging Industry Association. (b) Landing-gear components

More information

Introduction of EWI Forming Center

Introduction of EWI Forming Center Introduction of EWI Forming Center November 14, 2012 Ron Brown Director EWI Forming Center Office 614-688-5085 E-mail: rbrown@ewi.org Hyunok Kim Technical Director EWI Forming Center Office: 614-688-5239

More information

Numerical Simulation of Sliding Contact during Sheet Metal Stamping

Numerical Simulation of Sliding Contact during Sheet Metal Stamping Numerical Simulation of Sliding Contact during Sheet Metal Stamping Biglari F. R. * Nikbin K. ** O Dowd N. P. ** Busso E.P. ** * Mechanical Engineering Department, Amirkabir University of Technology, Hafez

More information

2. LITERATURE REVIEW

2. LITERATURE REVIEW 2. LITERATURE REVIEW For defining the goal of research, in this section a brief overview of Sheet metal forming, Bulk metal forming, Incremental forming process, FEM analysis, System Design approach, numerical

More information

Cupping and. Deep Drawing Cup Test. Test Machine, Model 242-Basic. testing equipment for quality management. Square Cup Test

Cupping and. Deep Drawing Cup Test. Test Machine, Model 242-Basic. testing equipment for quality management. Square Cup Test Cupping and Deep Drawing Cup Test Machine, Model 242-Basic DIN EN ISO 1520 Deep Drawing Cup Test Square Cup Test testing equipment for quality management ERICHSEN Cupping Test Deep Drawing Cup Test Electro-hydraulic

More information

Sunne, Sweden - 9 February 2007

Sunne, Sweden - 9 February 2007 UDDEHOLM GRADES IMPROVE PERFORMANCES IN THE PRODUCTION OF MANNESMANN DMV STAINLESS STEEL TUBES FOR AUTOMOTIVES - COLD WORK EXPERIENCES - Sunne, Sweden - 9 February 2007 DMV Mission Mannesmann DMV Stainless

More information

UDDEHOLM TOOL STEELS STAMPING WITH UDDEHOLM VANCRON SUPERCLEAN

UDDEHOLM TOOL STEELS STAMPING WITH UDDEHOLM VANCRON SUPERCLEAN UDDEHOLM TOOL STEELS STAMPING WITH UDDEHOLM VANCRON SUPERCLEAN TOOLING APPLICATION COLD WORK TOOLING 1 UDDEHOLMS AB No part of this publication may be reproduced or transmitted for commercial purposes

More information