Materials of Engineering ENGR 151 CHARACTERISTICS, APPLICATIONS AND PROCESSING OF POLYMERS

Size: px
Start display at page:

Download "Materials of Engineering ENGR 151 CHARACTERISTICS, APPLICATIONS AND PROCESSING OF POLYMERS"

Transcription

1 Materials of Engineering ENGR 151 CHARACTERISTICS, APPLICATIONS AND PROCESSING OF POLYMERS

2 POLYMER CRYSTALLINITY Crystalline regions thin platelets with chain folds at faces Chain folded structure Fig , Callister & Rethwisch 9e. 10 nm

3 POLYMER CRYSTALLINITY (CONT.) Polymers rarely 100% crystalline Difficult for all regions of all chains to become aligned crystalline region Degree of crystallinity expressed as % crystallinity. -- Some physical properties depend on % crystallinity. -- Heat treating causes crystalline regions to grow and % crystallinity to increase. amorphous region Fig , Callister 6e. (From H.W. Hayden, W.G. Moffatt, and J. Wulff, The Structure and Properties of Materials, Vol. III, Mechanical Behavior, John Wiley and Sons, Inc., 1965.)

4 POLYMER SINGLE CRYSTALS Electron micrograph multilayered single crystals (chain-folded layers) of polyethylene Single crystals only for slow and carefully controlled growth rates Fig , Callister & Rethwisch 9e. [From A. Keller, R. H. Doremus, B. W. Roberts, and D. Turnbull (Eds.), Growth and Perfection of Crystals. General Electric Company and John Wiley & Sons, Inc., 1958, p Reprinted with permission of John Wiley & Sons, Inc.] 1 μm

5 CHAPTER 15: CHARACTERISTICS, APPLICATIONS & PROCESSING OF POLYMERS ISSUES TO ADDRESS... What are the tensile properties of polymers and how are they affected by basic microstructural features? Hardening, anisotropy, and annealing in polymers. How does the elevated temperature mechanical response of polymers compare to ceramics and metals? What are the primary polymer processing methods? 5

6 MECHANICAL PROPERTIES OF POLYMERS STRESS-STRAIN BEHAVIOR brittle polymer plastic elastomer highly elastic polymer elastic moduli less than for metals Adapted from Fig. 15.1, Callister & Rethwisch 9e. Fracture strengths of polymers ~ 10% of those for metals Deformation strains for polymers > 1000% for most metals, deformation strains < 10% 6

7 MECHANICAL PROPERTIES OF POLYMERS STRESS-STRAIN BEHAVIOR Brittle polymer fractures with little strain. Plastic behavior similar to metals Initial elastic deformation followed by yielding and plastic deformation Elastomer rubberlike elasticity 7

8 MECHANICAL PROPERTIES OF POLYMERS TENSILE AND YIELD STRENGTHS 8

9 MECHANISMS OF DEFORMATION BRITTLE CROSSLINKED AND NETWORK POLYMERS Initial Near Failure σ(mpa) x brittle failure Initial Near Failure x plastic failure aligned, crosslinked polymer Stress-strain curves adapted from Fig. 15.1, Callister & Rethwisch 9e. e network polymer 9

10 MECHANISMS OF DEFORMATION SEMICRYSTALLINE (PLASTIC) POLYMERS Stress-strain curves adapted from Fig. 15.1, Callister & Rethwisch 9e. Inset figures along plastic response curve adapted from Figs & 15.13, Callister & Rethwisch 9e. (From SCHULTZ, POLYMER MATERIALS SCIENCE, 1st Edition, Reprinted by permission of Pearson Education, Inc., Upper Saddle River, NJ.)1974, pp ) σ(mpa) x brittle failure onset of necking x unload/reload plastic failure fibrillar structure near failure undeformed structure amorphous regions elongate e crystalline regions align crystalline block segments separate 10

11 MECHANISMS OF DEFORMATION SEMICRYSTALLINE (PLASTIC) POLYMERS 11

12 PREDEFORMATION BY DRAWING Drawing (ex: monofilament fishline) -- stretches the polymer prior to use -- aligns chains in the stretching direction Results of drawing: -- increases the elastic modulus (E) in the stretching direction -- increases the tensile strength (TS) in the stretching direction -- decreases ductility (%EL) Annealing after drawing decreases chain alignment -- reverses effects of drawing (reduces E and TS, enhances %EL) Adapted from Fig , Callister & Rethwisch 9e. (From Schultz, Polymer Materials Science, 1st Edition, Reprinted by permission of Pearson Education, Inc., Upper Saddle River, NJ.)1974, pp ) 12

13 MECHANISMS OF DEFORMATION ELASTOMERS σ(mpa) x initial: amorphous chains are kinked, cross-linked. brittle failure e plastic failure x elastomer x deformation is reversible (elastic)! final: chains are straighter, still cross-linked Stress-strain curves adapted from Fig. 15.1, Callister & Rethwisch 9e. Inset figures along elastomer curve (green) adapted from Fig , Callister & Rethwisch 9e. (Fig adapted from Z. D. Jastrzebski, The Nature and Properties of Engineering Materials, 3rd edition. Copyright 1987 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.) 13

14 THERMOPLASTICS AND THERMOSETS Thermoplastic can be reversibly cooled & reheated, i.e. recycled heat until soft, shape as desired, then cool ex: polyethylene, polypropylene, polystyrene. Thermoset when heated forms a molecular network (chemical reaction) degrades (doesn t melt) when heated a prepolymer molded into desired shape, then chemical reaction occurs ex: urethane, epoxy

15 THERMOPLASTICS VS. THERMOSETS Thermoplastics: -- little crosslinking -- ductile -- soften w/heating -- polyethylene polypropylene polycarbonate polystyrene Thermosets: -- significant crosslinking (10 to 50% of repeat units) -- hard and brittle -- do NOT soften w/heating -- vulcanized rubber, epoxies, polyester resin, phenolic resin T mobile liquid crystalline solid viscous liquid Callister, rubber Fig tough plastic partially crystalline solid Molecular weight Adapted from Fig , Callister & Rethwisch 9e. (From F. W. Billmeyer, Jr., Textbook of Polymer Science, 3rd edition. Copyright 1984 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.) 15

16 INFLUENCE OF T AND STRAIN RATE ON THERMOPLASTICS Decreasing T increases E -- increases TS -- decreases %EL Increasing strain rate same effects as decreasing T. σ(mpa) 80 4ºC ºC 40ºC Plots for semicrystalline PMMA (Plexiglas) 60ºC e to 1.3 Adapted from Fig. 15.3, Callister & Rethwisch 9e. (Reprinted with permission from T. S. Carswell and H. K. Nason, Effect of Environmental Conditions on the Mechanical Properties of Organic Plastics, in Symposium on Plastics. Copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA ) 16

17 MELTING & GLASS TRANSITION TEMPS. What factors affect T m and T g? Both T m and T g increase with increasing chain stiffness Chain stiffness increased by presence of 1. Bulky sidegroups 2. Polar groups or sidegroups 3. Chain double bonds and aromatic chain groups Regularity of repeat unit arrangements affects T m only Adapted from Fig , Callister & Rethwisch 9e. 17

18 CRAZING DURING FRACTURE OF THERMOPLASTIC POLYMERS Craze formation prior to cracking during crazing, plastic deformation of spherulites and formation of microvoids and fibrillar bridges aligned chains fibrillar bridges microvoids crack Fig. 15.9, Callister & Rethwisch 9e. (From J. W. S. Hearle, Polymers and Their Properties, Vol. 1, Fundamentals of Structure and Mechanics, Ellis Horwood, Ltd., Chichester, West Sussex, England, 1982.) 18

Chapter 15: Characteristics, Applications & Processing of Polymers (1)

Chapter 15: Characteristics, Applications & Processing of Polymers (1) Chapter 15: Characteristics, Applications & Processing of Polymers (1) ISSUES TO ADDRESS... What are the tensile properties of polymers and how are they affected by basic microstructural features? Hardening,

More information

Chapter 15: Characteristics, Applications & Processing of Polymers

Chapter 15: Characteristics, Applications & Processing of Polymers Chapter 15: Characteristics, Applications & Processing of Polymers What are the tensile properties of polymers and how are they affected by basic microstructural features? Hardening, anisotropy, and annealing

More information

Chapter 15: Characteristics, Applications & Processing of Polymers

Chapter 15: Characteristics, Applications & Processing of Polymers Chapter 15: Characteristics, Applications & Processing of Polymers Study: 15.1-15.14 Read: 15.15-15.24 What are the tensile properties of polymers and how are they affected by basic microstructural features?

More information

Chapter 15: Characteristics, Applications & Processing of Polymers

Chapter 15: Characteristics, Applications & Processing of Polymers Chapter 15: Characteristics, Applications & Processing of Polymers ISSUES TO ADDRESS... What are the tensile properties of polymers and how are they affected by basic microstructural features? Hardening,

More information

CHAPTER 14: POLYMER STRUCTURES

CHAPTER 14: POLYMER STRUCTURES CAPTER 14: POLYMER STRUCTURES ISSUES TO ADDRESS... What are the basic microstructural features? ow are polymer properties effected by molecular weight? ow do polymeric crystals accommodate the polymer

More information

Crystallinity in Polymers. Polymers. Polymer Crystallinity. Outline. Crystallinity in Polymers. Introduction. % crystallinity 100

Crystallinity in Polymers. Polymers. Polymer Crystallinity. Outline. Crystallinity in Polymers. Introduction. % crystallinity 100 Outline Polymers Introduction Crystallinity Stress relaxation Advanced polymers - applications Crystallinity in Polymers Although it may at first seem surprising, polymers can form crystal structures (all

More information

Chapter 14 Polymers CHAPTER 7 POLYMERIC MATERIALS. Ancient Polymer History. Rubber balls used by Incas Noah used pitch (a natural polymer) for the ark

Chapter 14 Polymers CHAPTER 7 POLYMERIC MATERIALS. Ancient Polymer History. Rubber balls used by Incas Noah used pitch (a natural polymer) for the ark Chapter 14 Polymers What is a polymer? Polymers are organic materials made of very large molecules containing hundreds of thousands of unit molecules called mers linked in a chain-like structure (repeated

More information

C C C C C C C C C C C C C C C C C C CH 3 CH 3 H. Polyethylene (PE) Polypropylene (PP) Polyvinyl chloride (PVC) repeat unit. repeat unit.

C C C C C C C C C C C C C C C C C C CH 3 CH 3 H. Polyethylene (PE) Polypropylene (PP) Polyvinyl chloride (PVC) repeat unit. repeat unit. Poly many mer repeat unit repeat unit Polyethylene (PE) l repeat unit l l Polyvinyl chloride (PV) 3 Polypropylene (PP) Adapted from Fig. 14.2, allister 7e. 3 repeat unit 3 1 2 3 4 Molecular weight, M i

More information

Chapter 8: Deformation & Strengthening Mechanisms. School of Mechanical Engineering Choi, Hae-Jin ISSUES TO ADDRESS

Chapter 8: Deformation & Strengthening Mechanisms. School of Mechanical Engineering Choi, Hae-Jin ISSUES TO ADDRESS Chapter 8: Deformation & Strengthening Mechanisms School of Mechanical Engineering Choi, Hae-Jin Materials Science - Prof. Choi, Hae-Jin Chapter 8-1 ISSUES TO ADDRESS Why are the number of dislocations

More information

Chapter 15 Part 2. Mechanical Behavior of Polymers. Deformation Mechanisms. Mechanical Behavior of Thermoplastics. Properties of Polymers

Chapter 15 Part 2. Mechanical Behavior of Polymers. Deformation Mechanisms. Mechanical Behavior of Thermoplastics. Properties of Polymers Mechanical Behavior of Polymers Chapter 15 Part 2 Properties of Polymers Wide range of behaviors Elastic-Brittle (Curve A) Thermosets and thermoplastics Elastic-Plastic (Curve B) Thermoplastics Extended

More information

Chapter 15-2: Processing of Polymers

Chapter 15-2: Processing of Polymers Chapter 15-2: Processing of Polymers ISSUES TO ADDRESS... Other issues in polymers What are the primary polymer processing methods? Chapter 15-1 Polymer Synthesis Reactions There are two types of polymerization

More information

Chapter 10 Polymer Characteristics. Dr. Feras Fraige

Chapter 10 Polymer Characteristics. Dr. Feras Fraige Chapter 10 Polymer Characteristics Dr. Feras Fraige Stress Strain Behavior (I) The description of stress-strain behavior is similar to that of metals Polymers can be brittle (A), plastic (B), or highly

More information

ISSUES TO ADDRESS...

ISSUES TO ADDRESS... Chapter 11: Phase Transformations School of Mechanical Engineering Choi, Hae-Jin Materials Science - Prof. Choi, Hae-Jin 1 ISSUES TO DDRESS... Transforming one phase into another takes time. Fe C FCC Eutectoid

More information

Why are dislocations observed primarily in metals CHAPTER 8: DEFORMATION AND STRENGTHENING MECHANISMS

Why are dislocations observed primarily in metals CHAPTER 8: DEFORMATION AND STRENGTHENING MECHANISMS Why are dislocations observed primarily in metals CHAPTER 8: and alloys? DEFORMATION AND STRENGTHENING MECHANISMS How are strength and dislocation motion related? How do we manipulate properties? Strengthening

More information

MatSE 259 Exam 4 Review Session

MatSE 259 Exam 4 Review Session MatSE 259 Exam 4 Review Session 1. Same exam format and protocol as the previous three 2. If your score for any of the previous exams needs to be updated in the school records (entered wrong SID, left

More information

Stress-Strain Behavior

Stress-Strain Behavior 15-1 CHAPTER 15 CHARACTERISTICS, APPLICATIONS, AND PROCESSING OF POLYMERS PROBLEM SOLUTIONS Stress-Strain Behavior which is 15.1 From Figure 15.3, the elastic modulus is the slope in the elastic linear

More information

3rd Chapter Characteristics, Applications & Processing. Billiard balls made of phenol formaldehyde

3rd Chapter Characteristics, Applications & Processing. Billiard balls made of phenol formaldehyde 3rd Chapter Characteristics, Applications & Processing of Polymers (CH 15) Billiard balls made of phenol formaldehyde WHY STUDY C, A, and P of Polymers? Several reasons: Wide applications of polymeric

More information

Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 421/6511 lecture 14/2

Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 421/6511 lecture 14/2 Polymers Outline Polymers Introduction Types of polymers Molecular Structure and Configurations Mechanical Behaviour of Polymers Crystallinity Viscoelasticity Melting and Glass Transition Temperatures

More information

ISSUES TO ADDRESS...

ISSUES TO ADDRESS... Chapter 7: Mechanical Properties School of Mechanical Engineering Choi, Hae-Jin Materials Science - Prof. Choi, Hae-Jin Chapter 7-1 ISSUES TO ADDRESS... Stress and strain: What are they and why are they

More information

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING Course Guidelines: 1. Introduction to Engineering Materials 2. Bonding and Properties 3. Crystal Structures & Properties

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Chapter 7: Mechanical Properties

Chapter 7: Mechanical Properties Chapter 7: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

CHAPTER 7: MECHANICAL PROPERTIES

CHAPTER 7: MECHANICAL PROPERTIES CHAPTER 7: MECHANICAL PROPERTIES ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Materials of Engineering ENGR 151 CHARACTERISTICS, APPLICATIONS AND PROCESSING OF POLYMERS

Materials of Engineering ENGR 151 CHARACTERISTICS, APPLICATIONS AND PROCESSING OF POLYMERS Materials of Engineering ENGR 151 CHARACTERISTICS, APPLICATIONS AND PROCESSING OF POLYMERS POLYMER FORMATION Synthesis of large (polymer) molecules is called polymerization. There are two types of polymerization

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Chapter 8: Mechanical Properties of Metals. Elastic Deformation

Chapter 8: Mechanical Properties of Metals. Elastic Deformation Chapter 8: Mechanical Properties of Metals ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites by Zhe Cheng

EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites by Zhe Cheng EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites 2017 by Zhe Cheng Expectations on Chapter 11 Chapter 11 Understand metals are generally categorized as ferrous alloys and non-ferrous alloys

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain Elastic behavior: When loads are small, how much reversible deformation occurs? What material resist reversible deformation better? Plastic behavior: At what point

More information

PROCESSING OF POLYMERS. Chapter 7

PROCESSING OF POLYMERS. Chapter 7 PRODUCTION TECHNIQUES (MANUFACTRING PROCESSES) ACADEMIC YEAR 94-95, SEMESTER ONE PROCESSING OF POLYMERS Chapter 7 Polymers: Structure, General Properties and Applications 1 Polymers Polymers and Plastics

More information

Photograph of several billiard balls that are made of phenol-formaldehyde (Bakelite). The Materials

Photograph of several billiard balls that are made of phenol-formaldehyde (Bakelite). The Materials 1496T_c15_523-576 12/31/05 13:57 Page 523 2nd REVISE PAGES hapter 15 haracteristics, Applications, and Processing of Polymers Photograph of several billiard balls that are made of phenol-formaldehyde (Bakelite).

More information

CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS...

CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS... CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

ME 206: Materials Science

ME 206: Materials Science ME 206: Materials Science Course Objective... Introduce fundamental concepts in Materials Science You will learn about: material structure how structure dictates properties how processing can change structure

More information

Today s Topics. Plastic stress-strain behaviour of metals Energy of mechanical ldeformation Hardness testing Design/safety factors

Today s Topics. Plastic stress-strain behaviour of metals Energy of mechanical ldeformation Hardness testing Design/safety factors MME 291: Lecture 10 Mechanical Properties of Materials 2 Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics Plastic stress- behaviour of metals Energy of mechanical ldeformation Hardness

More information

Polymers. Historical Classification

Polymers. Historical Classification Polymers The term polymer implies many "mers" or the building blocks...similar to the unit cell in metals. A polymer is a chemical compound or mixture of compounds formed by a process called polymerization,

More information

The Mechanical Properties of Polymers

The Mechanical Properties of Polymers The Mechanical Properties of Polymers Date: 14/07/2018 Abu Zafar Al Munsur Behavior Of Material Under Mechanical Loads = Mechanical Properties. Term to address here Stress and strain: These are size-independent

More information

Mechanical failures 1

Mechanical failures 1 Mechanical failures 1 Mechanical failure ISSUES TO ADDRESS... How do flaws in a material initiate failure? How is fracture resistance quantified; how do different material classes compare? How do we estimate

More information

Chapter 8: Mechanical Failure

Chapter 8: Mechanical Failure Chapter 8: Mechanical Failure Topics... How do loading rate, loading history, and temperature affect the failure stress? Ship-cyclic loading from waves. Chapter 8 - Failure Classification: Fracture behavior:

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties Elastic behavior: When loads are small, how much deformation occurs? What materials deform least? Stress and strain: What are they and why are they used instead of load

More information

Plastic stress-strain behaviour of metals Energy of mechanical ldeformation Hardness testing Design/safety factors

Plastic stress-strain behaviour of metals Energy of mechanical ldeformation Hardness testing Design/safety factors Mechanical Properties of Materials 2 Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Plastic stress-strain behaviour of metals Energy of mechanical ldeformation Hardness testing Design/safety factors

More information

Introduction to polymers

Introduction to polymers The University of Edinburgh Division of Engineering Session 2001-2002 Materials Science and Engineering Introduction to polymers 1. Polymeric materials basic definitions, structure, classification 1.1

More information

Material HDT Continuous Use Temp. Radal (Polyphenylsulfone) 400 F 300 F

Material HDT Continuous Use Temp. Radal (Polyphenylsulfone) 400 F 300 F Material Selection* Failures arising from hasty material selection are not uncommon in plastics or any other industry. In an application that demands high-impact resistance, a high-impact material must

More information

Chapter 1 - Introduction

Chapter 1 - Introduction Chapter 1 - Introduction What is materials science? Why should we know about it? Materials drive our society Stone Age Bronze Age Iron Age Now? Silicon Age? Polymer Age? Chapter 1-1 Chapter 1-2 Hardness

More information

Chapter 8 Deformation and Strengthening Mechanisms. Question: Which of the following is the slip system for the simple cubic crystal structure?

Chapter 8 Deformation and Strengthening Mechanisms. Question: Which of the following is the slip system for the simple cubic crystal structure? Chapter 8 Deformation and Strengthening Mechanisms Concept Check 8.1 Why? Question: Which of the following is the slip system for the simple cubic crystal structure? {100} {110} {100} {110}

More information

Issues to address. Why Mechanical Test?? Mechanical Properties. Why mechanical properties?

Issues to address. Why Mechanical Test?? Mechanical Properties. Why mechanical properties? Mechanical Properties Why mechanical properties? Folsom Dam Gate Failure, July 1995 Need to design materials that can withstand applied load e.g. materials used in building bridges that can hold up automobiles,

More information

Introduction to Engineering Materials ENGR2000 Chapter 19: Thermal Properties. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 19: Thermal Properties. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 19: Thermal Properties Dr. Coates Chapter 19: Thermal Properties ISSUES TO ADDRESS... How do materials respond to the application of heat? How do

More information

Stress Strain Behavior of Polymers. The Stress/Strain behavior of solid polymers can be categorized into several classes of behavior:

Stress Strain Behavior of Polymers. The Stress/Strain behavior of solid polymers can be categorized into several classes of behavior: Wednesday, April 14, 1999 Stress Strain Behavior of Polymers Page: 1 =>Back To Characterization Lab =>Back To Polymer Morphology Download this page: =>StressStrain.pdf Introduction: Stress Strain Behavior

More information

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties بسم الله الرحمن الرحیم Materials Science Chapter 7 Mechanical Properties 1 Mechanical Properties Can be characterized using some quantities: 1. Strength, resistance of materials to (elastic+plastic) deformation;

More information

CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Slip Systems 8.3 (a) Compare planar densities (Section 3.15 and Problem W3.46 [which appears on the book s Web site]) for the (100),

More information

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2 AERO 214 Introduction to Aerospace Mechanics of Materials Lecture 2 Materials for Aerospace Structures Aluminum Titanium Composites: Ceramic Fiber-Reinforced Polymer Matrix Composites High Temperature

More information

POLYMERS Chapter 2 1

POLYMERS Chapter 2 1 POLYMERS Chapter 2 1 Ancient Polymers Originally natural polymers were used: Wood Rubber Cotton Wool Leather Silk Oldest known use: Rubber balls used by Incas Noah used pitch (a natural polymer) for the

More information

Materials Science and Engineering: An Introduction

Materials Science and Engineering: An Introduction Materials Science and Engineering: An Introduction Callister, William D. ISBN-13: 9780470419977 Table of Contents List of Symbols. 1 Introduction. 1.1 Historical Perspective. 1.2 Materials Science and

More information

MSE 170 Final review part 2

MSE 170 Final review part 2 MSE 170 Final review part 2 Exam date: 12/9/2008 Tues, 8:30-10:20 Place: Here! Closed book, no notes and no collaborations Two sheets of letter-sized paper with doublesided notes is allowed Exam is comprehensive:

More information

Materials Science. Introduce fundamental concepts in Materials Science

Materials Science. Introduce fundamental concepts in Materials Science Materials Science Course Objective... Introduce fundamental concepts in Materials Science You will learn about: material structure how structure dictates properties how processing can change structure

More information

Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4.

Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4. Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4. Mechanical behaviour of ceramics 7.5. Mechanical behaviour of polymers

More information

TI Typical HDPE raw material and pipe test methods EDITION 0607 PAGE 1/10

TI Typical HDPE raw material and pipe test methods EDITION 0607 PAGE 1/10 PAGE 1/10 Typical HDPE raw material and pipe test methods We hereby want to provide an overview of the most common test methods Index Tests Page Density 2/10 Melt Index 2/10 Tensile Properties 3/10 Flexural

More information

Dr. R. Scott Archibald Dr. Raimondo Baldassarri Dr. Andrea Donghi 8 May 2017

Dr. R. Scott Archibald Dr. Raimondo Baldassarri Dr. Andrea Donghi 8 May 2017 An Overview of the Similarities and Differences of Cast and Thermoplastic (TPU) Polyurethane Dr. R. Scott Archibald Dr. Raimondo Baldassarri Dr. Andrea Donghi 8 May 2017 When I first joined my company,

More information

Chapter 8: Mechanical Failure ISSUES TO ADDRESS...

Chapter 8: Mechanical Failure ISSUES TO ADDRESS... Chapter 8: Mechanical Failure ISSUES TO ADDRESS... What are the common modes of mechanical failures? How do micro-cracks lead to failure? How do the fracture resistances of the different materials compare?

More information

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS Stress-Strain Relationships Hardness Effect of Temperature on Properties Fluid Properties Viscoelastic Behavior of Polymers Mechanical Properties in Design and Manufacturing

More information

Captains Tryouts Materials Science. Written by Araneesh Pratap (Chattahoochee High School GA)

Captains Tryouts Materials Science. Written by Araneesh Pratap (Chattahoochee High School GA) Captains Tryouts 2017-2018 Materials Science Written by Araneesh Pratap (Chattahoochee High School GA) Instructions: 1. Write all answers on the Answer Sheet. Do not write on this Test Packet. 2. This

More information

Chapter 6:Mechanical Properties

Chapter 6:Mechanical Properties Chapter 6:Mechanical Properties Why mechanical properties? Need to design materials that can withstand applied load e.g. materials used in building bridges that can hold up automobiles, pedestrians materials

More information

Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior

Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior -1-2 -3-4 ( ) -5 ( ) -6-7 -8-9 -10-11 -12 ( ) Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior 6- Plastic behavior 7- Uniaxial tensile load 8- Bi-axial tensile

More information

NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor

NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor NDT Deflection Measurement Devices on Pavement Structure NDT measurement of pavement surface

More information

Multiple choices (3 points each): 1. Shown on the right is A. an ethylene mer B. an ethylene monomer C. a vinyl monomer D.

Multiple choices (3 points each): 1. Shown on the right is A. an ethylene mer B. an ethylene monomer C. a vinyl monomer D. Materials Science and Engineering Department MSE 200, Exam #4 ID number First letter of your last name: Name: No notes, books, or information stored in calculator memories may be used. Cheating will be

More information

STRENGTH OF POLYMERS

STRENGTH OF POLYMERS University of Nottingham Department of Mechanical, Materials and Manufacturing Engineering POLYMER ENGINEERING STRENGTH OF POLYMERS 1. Introduction A plastic component can fail to meet its mechanical requirements

More information

L Manufacturing of Polymer Composites FS 17 Exercise 2. Exercise 2: Solution

L Manufacturing of Polymer Composites FS 17 Exercise 2. Exercise 2: Solution Exercise 2: Solution MATRIX SYSTEMS ETH Zürich Laboratory of Composite Materials and Adaptive Structures Page 1 Task 1: Polymeric materials a) What part of the composite determines its thermal properties?

More information

How do we find ultimate properties?

How do we find ultimate properties? Introduction Why ultimate properties? For successful product design a knowledge of the behavior of the polymer is important Variation in properties over the entire range of operating conditions should

More information

Concepts of stress and strain

Concepts of stress and strain Chapter 6: Mechanical properties of metals Outline Introduction Concepts of stress and strain Elastic deformation Stress-strain behavior Elastic properties of materials Plastic deformation Yield and yield

More information

CHAPTER 6: Mechanical properties

CHAPTER 6: Mechanical properties CHAPTER 6: Mechanical properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Analysis and design of composite structures

Analysis and design of composite structures Analysis and design of composite structures Class notes 1 1. Introduction 2 Definition: composite means that different materials are combined to form a third material whose properties are superior to those

More information

ENGINEERING MATERIAL 100

ENGINEERING MATERIAL 100 Department of Applied Chemistry Division of Science and Engineering SCHOOL OF ENGINEERING ENGINEERING MATERIAL 100 Experiments 4 and 6 Mechanical Testing and Applications of Non-Metals Name: Yasmin Ousam

More information

When non-branched linear polymers such as polyethylene (PE) crystallizes from the melt,

When non-branched linear polymers such as polyethylene (PE) crystallizes from the melt, Polarizing Optical Microscopy: Birefringence Analysis and the Effect of Different Crystallization Temperatures on the Spherulitic Microstructure Eman Mousa Alhajji North Carolina State University Department

More information

MATERIALS: Clarifications and More on Stress Strain Curves

MATERIALS: Clarifications and More on Stress Strain Curves A 3.0 m length of steel rod is going to be used in the construction of a bridge. The tension in the rod will be 10 kn and the rod must extend by no more than 1.0mm. Calculate the minimum cross-sectional

More information

Plastics Failure Analysis Dr. Ahamed Shabeer

Plastics Failure Analysis Dr. Ahamed Shabeer Plastics Failure Analysis Dr. Ahamed Shabeer Polymer Scientist Bodycote Testing Group- Orange County Materials Testing Laboratory Anaheim, California What Does Failure Analysis Require? Expertise Willingness

More information

MECHANICAL PROPERTIES. (for metals)

MECHANICAL PROPERTIES. (for metals) MECHANICAL PROPERTIES (for metals) 1 Chapter Outline Terminology for Mechanical Properties The Tensile Test: Stress-Strain Diagram Properties Obtained from a Tensile Test True Stress and True Strain The

More information

Mechanical Properties of Metals. Goals of this unit

Mechanical Properties of Metals. Goals of this unit Mechanical Properties of Metals Instructor: Joshua U. Otaigbe Iowa State University Goals of this unit Quick survey of important metal systems Detailed coverage of basic mechanical properties, especially

More information

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1 CHAPTER 3 PROPERTIES OF MATERIALS PART 1 30 July 2007 1 OUTLINE 3.1 Mechanical Properties 3.1.1 Definition 3.1.2 Factors Affecting Mechanical Properties 3.1.3 Kinds of Mechanical Properties 3.1.4 Stress

More information

Material Properties 3

Material Properties 3 Material Properties 3 Real Stress and Strain True M Corrected Stress M Engineering Strain Several Alloys Material n MPa psi Low-carbon steel 0.26 530 77,000 (annealed) Alloy steel 0.15 640 93,000 (Type

More information

Chapter 12: Structures & Properties of Ceramics

Chapter 12: Structures & Properties of Ceramics Chapter 12: Structures & Properties of Ceramics ISSUES TO ADDRESS... Review of structures for ceramics How are impurities accommodated in the ceramic lattice? In what ways are ceramic phase diagrams similar

More information

Introduction to Dynamic Mechanical Testing for Rubbers and Elastomers. Mackenzie Geiger Applications Scientist September 6, 2017

Introduction to Dynamic Mechanical Testing for Rubbers and Elastomers. Mackenzie Geiger Applications Scientist September 6, 2017 Introduction to Dynamic Mechanical Testing for Rubbers and Elastomers Mackenzie Geiger Applications Scientist September 6, 2017 Is DMA Thermal Analysis or Rheology? Definitions Thermal Analysis measurement

More information

5.1 Essentials of Polymer Composites

5.1 Essentials of Polymer Composites 5 Polymer Composites Polymer modification can follow from the mixing of two or more macromolecular compounds or their filling with reinforcing materials of inorganic or organic substances. It enables the

More information

Applied Plastics Product Design - Workshop

Applied Plastics Product Design - Workshop Applied Plastics Product Design - Workshop Material Selection and Datasheet Interpretation October 12, 2006 Vishu Shah Consultek 1 Material Selection Process Understanding Material Basics Structure Properties

More information

CHAPTER. Fabrication and Processing of Engineering Materials. Chapter 17 -

CHAPTER. Fabrication and Processing of Engineering Materials. Chapter 17 - CHAPTER 17 Fabrication and Processing of Engineering Materials Chapter 17-1 Chapter 17: Fabrication and Processing of Engineering Materials ISSUES TO ADDRESS... What are some of the common fabrication

More information

Manufacturing of Composites Prof. J. Ramkumar Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Lecture - 02 Matrices

Manufacturing of Composites Prof. J. Ramkumar Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Lecture - 02 Matrices Manufacturing of Composites Prof. J. Ramkumar Department of Mechanical Engineering Indian Institute of Technology, Kanpur Lecture - 02 Matrices Welcome friends, we will go on to lecture 2. So, lecture

More information

Morphological Investigations - Different Microscopic Techniques (Semicrystalline Polymers)

Morphological Investigations - Different Microscopic Techniques (Semicrystalline Polymers) Morphological Investigations - Different Microscopic Techniques (Semicrystalline Polymers) Method SEM TEM AFM Typical Sample Preparation Evaporation Surface Etching Ultramicrotomy Selective Staining no

More information

Chapter 8: Mechanical Failure

Chapter 8: Mechanical Failure Chapter 8: Mechanical Failure ISSUES TO ADDRESS... How do cracks that lead to failure form? How is fracture resistance quantified? How do the fracture resistances of the different material classes compare?

More information

DSC - Differential Scanning Calorimetry. Investigation of the Thermal Properties of Polymers

DSC - Differential Scanning Calorimetry. Investigation of the Thermal Properties of Polymers LTH Department of Polymer and Materials chemistry Polymer Physics 2015 DSC - Differential Scanning Calorimetry Investigation of the Thermal Properties of Polymers Teaching assistant: Annika Weiber Introduction

More information

2. Definition of Environmental Stress Cracking (ESC)

2. Definition of Environmental Stress Cracking (ESC) 2. Definition of Environmental Stress Cracking (ESC) Environmental stress cracking (ESC) in plastics means the failure at about room temperature due to continuously acting external and/or internal stresses

More information

Introduction to Materials and Processes

Introduction to Materials and Processes Introduction to Materials and Processes A successful product one that performs well, is good value for money and gives pleasure to the user uses the best materials for the job, and fully exploits its potential

More information

3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS

3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS 3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS Igor Kokcharov 3.1 TENSION TEST The tension test is the most widely used mechanical test. Principal mechanical properties are obtained from the test. There

More information

I just want to say one word to you... just one word... Plastics. -the graduate

I just want to say one word to you... just one word... Plastics. -the graduate I just want to say one word to you... just one word... Plastics -the graduate Quiz! 1. What is your name? 2. Which are polymers: wood, skin, Jell-O, DNA 3. Where does almost all plastic come from? 4. Which

More information

Module #0. Introduction. READING LIST DIETER: Ch. 1, pp. 1-6

Module #0. Introduction. READING LIST DIETER: Ch. 1, pp. 1-6 Module #0 Introduction READING LIST DIETER: Ch. 1, pp. 1-6 Introduction Components used in engineering structures usually need to bear mechanical loads. Engineers are mainly interested in design rules

More information

PLMSE 406 Practice Test A polymer chain in the melt or in the rubbery state has an average end-to-end distance that is proportional to

PLMSE 406 Practice Test A polymer chain in the melt or in the rubbery state has an average end-to-end distance that is proportional to PLMSE 406 Practice Test 2 1. A polymer chain in the melt or in the rubbery state has an average end-to-end distance that is proportional to a. N b. N 0.75 c. N 0.6 d. N 0.5 e. N 0.33 where N is the number

More information

AQA GCSE Design and Technology 8552

AQA GCSE Design and Technology 8552 AQA GCSE Design and Technology 8552 Polymers Unit 3 Materials and their working properties 4 Objectives Know the primary sources of materials for producing polymers Be able to recognise and characterise

More information

CE205 MATERIALS SCIENCE PART_6 MECHANICAL PROPERTIES

CE205 MATERIALS SCIENCE PART_6 MECHANICAL PROPERTIES CE205 MATERIALS SCIENCE PART_6 MECHANICAL PROPERTIES Dr. Mert Yücel YARDIMCI Istanbul Okan University Deparment of Civil Engineering Chapter Outline Terminology for Mechanical Properties The Tensile Test:

More information

Structure, Properties and Processing of Plastics and Reinforced Plastics. (Chap10 in Kalpakjian and Schmid)

Structure, Properties and Processing of Plastics and Reinforced Plastics. (Chap10 in Kalpakjian and Schmid) Structure, Properties and Processing of Plastics and Reinforced Plastics (Chap10 in Kalpakjian and Schmid) Objectives Thermoplastics, thermosets, elastomers, and reinforced plastics Structure Property

More information

Mechanical Properties

Mechanical Properties Stress-strain behavior of metals Elastic Deformation Plastic Deformation Ductility, Resilience and Toughness Hardness 108 Elastic Deformation bonds stretch δ return to initial Elastic means reversible!

More information

أت ارش. Dr. Abdel-Wahab El-Morsy Faculty of Engineering - Rabigh

أت ارش. Dr. Abdel-Wahab El-Morsy Faculty of Engineering - Rabigh Basic Workshop 1 أت ارش There are thousands of materials available for use in engineering applications. Most materials fall into one of three classes that are based on the atomic bonding forces of a particular

More information

Chapter 1. The Structure of Metals. Body Centered Cubic (BCC) Structures

Chapter 1. The Structure of Metals. Body Centered Cubic (BCC) Structures Chapter 1 The Structure of Metals Body Centered Cubic (BCC) Structures Figure 1. The body-centered cubic (bcc) crystal structure: (a) hard-ball model; (b) unit cell; and (c) single crystal with many unit

More information

Polymer Materials Science

Polymer Materials Science Budapest University of Technology and Economics Department of Polymer Engineering Polymer Materials Science BMEGEPT9107, 2+0+0, 3 Credits 2. Morphological Structure of Polymers Lecturer: Prof. Dr. László

More information