The Molecular Basis of Inheritance

Size: px
Start display at page:

Download "The Molecular Basis of Inheritance"

Transcription

1 Chapter 16 The Molecular Basis of Inheritance PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero

2 Overview: Life s Operating Instructions In 1953, James Watson and Francis Crick introduced an elegant double-helical model for the structure of deoxyribonucleic acid, or DNA DNA, the substance of inheritance, is the most celebrated molecule of our time Hereditary information is encoded in DNA and reproduced in all cells of the body This DNA program directs the development of biochemical, anatomical, physiological, and (to some extent) behavioral traits

3

4 Concept 16.1: DNA is the genetic material Early in the 20th century, the identification of the molecules of inheritance loomed as a major challenge to biologists

5 The Search for the Genetic Material: Scientific Inquiry When Morgan s group showed that genes are located on chromosomes, the two components of chromosomes DNA and protein became candidates for the genetic material The key factor in determining the genetic material was choosing appropriate experimental organisms The role of DNA in heredity was first discovered by studying bacteria and the viruses that infect them

6 Evidence That DNA Can Transform Bacteria The discovery of the genetic role of DNA began with research by Frederick Griffith in 1928 Griffith worked with two strains of a bacterium, a pathogenic S strain and a harmless R strain When he mixed heat-killed remains of the pathogenic strain with living cells of the harmless strain, some living cells became pathogenic He called this phenomenon transformation, now defined as a change in genotype and phenotype due to assimilation of foreign DNA

7 LE 16-2 Living S cells (control) Living R cells (control) Heat-killed S cells (control) Mixture of heat-killed S cells and living R cells RESULTS Mouse dies Mouse healthy Mouse healthy Mouse dies Living S cells are found in blood sample

8 In 1944, Oswald Avery, Maclyn McCarty, and Colin MacLeod announced that the transforming substance was DNA Their conclusion was based on experimental evidence that only DNA worked in transforming harmless bacteria into pathogenic bacteria Many biologists remained skeptical, mainly because little was known about DNA

9 Evidence That Viral DNA Can Program Cells More evidence for DNA as the genetic material came from studies of a virus that infects bacteria Such viruses, called bacteriophages (or phages), are widely used in molecular genetics research Animation: Phage T2 Reproductive Cycle

10 LE nm Phage head Tail Tail fiber DNA Bacterial cell

11 In 1952, Alfred Hershey and Martha Chase performed experiments showing that DNA is the genetic material of a phage known as T2 To determine the source of genetic material in the phage, they designed an experiment showing that only one of the two components of T2 (DNA or protein) enters an E. coli cell during infection They concluded that the injected DNA of the phage provides the genetic information Animation: Hershey-Chase Experiment

12 LE 16-4 Phage Bacterial cell Radioactive protein Empty protein shell Radioactivity (phage protein) in liquid Batch 1: Sulfur ( 35 S) DNA Phage DNA Centrifuge Radioactive DNA Pellet (bacterial cells and contents) Batch 2: Phosphorus ( 32 P) Centrifuge Pellet Radioactivity (phage DNA) in pellet

13 Additional Evidence That DNA Is the Genetic Material In 1947, Erwin Chargaff reported that DNA composition varies from one species to the next This evidence of diversity made DNA a more credible candidate for the genetic material By the 1950s, it was already known that DNA is a polymer of nucleotides, each consisting of a nitrogenous base, a sugar, and a phosphate group Animation: DNA and RNA Structure

14 LE 16-5 Sugar phosphate backbone end Nitrogenous bases Thymine (T) Adenine (A) Cytosine (C) Phosphate DNA nucleotide Sugar (deoxyribose) end Guanine (G)

15 Building a Structural Model of DNA: Scientific Inquiry After most biologists became convinced that DNA was the genetic material, the challenge was to determine how its structure accounts for its role Maurice Wilkins and Rosalind Franklin were using a technique called X-ray crystallography to study molecular structure Franklin produced a picture of the DNA molecule using this technique

16 LE 16-6 Rosalind Franklin Franklin s X-ray diffraction photograph of DNA

17 Franklin s X-ray crystallographic images of DNA enabled Watson to deduce that DNA was helical The X-ray images also enabled Watson to deduce the width of the helix and the spacing of the nitrogenous bases The width suggested that the DNA molecule was made up of two strands, forming a double helix Animation: DNA Double Helix

18 LE 16-7 end Hydrogen bond end 1 nm 3.4 nm end 0.34 nm end Key features of DNA structure Partial chemical structure Space-filling model

19 Watson and Crick built models of a double helix to conform to the X-rays and chemistry of DNA Franklin had concluded that there were two antiparallel sugar-phosphate backbones, with the nitrogenous bases paired in the molecule s interior At first, Watson and Crick thought the bases paired like with like (A with A, and so on), but such pairings did not result in a uniform width Instead, pairing a purine with a pyrimidine resulted in a uniform width consistent with the X-ray

20 LE 16-UN298 Purine + purine: too wide Pyrimidine + pyrimidine: too narrow Purine + pyrimidine: width consistent with X-ray data

21 Watson and Crick reasoned that the pairing was more specific, dictated by the base structures They determined that adenine paired only with thymine, and guanine paired only with cytosine

22 LE 16-8 Sugar Adenine (A) Sugar Thymine (T) Sugar Sugar Guanine (G) Cytosine (C)

23 Concept 16.2: Many proteins work together in DNA replication and repair The relationship between structure and function is manifest in the double helix Watson and Crick noted that the specific base pairing suggested a possible copying mechanism for genetic material

24 The Basic Principle: Base Pairing to a Template Strand Since the two strands of DNA are complementary, each strand acts as a template for building a new strand in replication In DNA replication, the parent molecule unwinds, and two new daughter strands are built based on base-pairing rules Animation: DNA Replication Overview

25 LE 16-9_1 The parent molecule has two complementary strands of DNA. Each base is paired by hydrogen bonding with its specific partner, A with T and G with C.

26 LE 16-9_2 The parent molecule has two complementary strands of DNA. Each base is paired by hydrogen bonding with its specific partner, A with T and G with C. The first step in replication is separation of the two DNA strands.

27 LE 16-9_3 The parent molecule has two complementary strands of DNA. Each base is paired by hydrogen bonding with its specific partner, A with T and G with C. The first step in replication is separation of the two DNA strands. Each parental strand now serves as a template that determines the order of nucleotides along a new, complementary strand.

28 LE 16-9_4 The parent molecule has two complementary strands of DNA. Each base is paired by hydrogen bonding with its specific partner, A with T and G with C. The first step in replication is separation of the two DNA strands. Each parental strand now serves as a template that determines the order of nucleotides along a new, complementary strand. The nucleotides are connected to form the sugar-phosphate backbones of the new strands. Each daughter DNA molecule consists of one parental strand and one new strand.

29 Watson and Crick s semiconservative model of replication predicts that when a double helix replicates, each daughter molecule will have one old strand (derived or conserved from the parent molecule) and one newly made strand Competing models were the conservative model and the dispersive model

30 LE Parent cell First replication Second replication Conservative model. The two parental strands reassociate after acting as templates for new strands, thus restoring the parental double helix. Semiconservative model. The two strands of the parental molecule separate, and each functions as a template for synthesis of a new, complementary strand. Dispersive model. Each strand of both daughter molecules contains a mixture of old and newly synthesized DNA.

31 Experiments by Meselson and Stahl supported the semiconservative model They labeled the nucleotides of the old strands with a heavy isotope of nitrogen, while any new nucleotides were labeled with a lighter isotope The first replication produced a band of hybrid DNA, eliminating the conservative model A second replication produced both light and hybrid DNA, eliminating the dispersive model and supporting the semiconservative model

32 LE Bacteria cultured in medium containing 15 N Bacteria transferred to medium containing 14 N DNA sample centrifuged after 20 min (after first replication) Conservative model First replication DNA sample centrifuged after 40 min (after second replication) Less dense More dense Second replication Semiconservative model Dispersive model

33 DNA Replication: A Closer Look The copying of DNA is remarkable in its speed and accuracy More than a dozen enzymes and other proteins participate in DNA replication

34 Getting Started: Origins of Replication Replication begins at special sites called origins of replication, where the two DNA strands are separated, opening up a replication bubble A eukaryotic chromosome may have hundreds or even thousands of origins of replication Replication proceeds in both directions from each origin, until the entire molecule is copied At the end of each replication bubble is a replication fork, a Y-shaped region where new DNA strands are elongating

35 LE Origin of replication Parental (template) strand Daughter (new) strand 0.25 µm Bubble Replication fork Two daughter DNA molecules In eukaryotes, DNA replication begins at may sites along the giant DNA molecule of each chromosome. In this micrograph, three replication bubbles are visible along the DNA of a cultured Chinese hamster cell (TEM).

36 Animation: Origins of Replication

37 Elongating a New DNA Strand Enzymes called DNA polymerases catalyze the elongation of new DNA at a replication fork Each nucleotide that is added to a growing DNA strand is a nucleoside triphosphate The rate of elongation is about 500 nucleotides per second in bacteria and 50 per second in human cells

38 LE New strand end Template strand end end end Sugar Phosphate Base end DNA polymerase end Pyrophosphate Nucleoside triphosphate end end

39 Antiparallel Elongation The antiparallel structure of the double helix (two strands oriented in opposite directions) affects replication DNA polymerases add nucleotides only to the free end of a growing strand; therefore, a new DNA strand can elongate only in the to direction

40 Along one template strand of DNA, called the leading strand, DNA polymerase can synthesize a complementary strand continuously, moving toward the replication fork To elongate the other new strand, called the lagging strand, DNA polymerase must work in the direction away from the replication fork The lagging strand is synthesized as a series of segments called Okazaki fragments, which are joined together by DNA ligase

41 LE Parental DNA Leading strand Okazaki fragments Lagging strand DNA pol III Template strand Leading strand Lagging strand Template strand DNA ligase Overall direction of replication

42 Animation: Leading Strand

43 Priming DNA Synthesis DNA polymerases cannot initiate synthesis of a polynucleotide; they can only add nucleotides to the end The initial nucleotide strand is a short one called an RNA or DNA primer An enzyme called primase can start an RNA chain from scratch Only one primer is needed to synthesize the leading strand, but for the lagging strand each Okazaki fragment must be primed separately

44 LE 16-15_1 Primase joins RNA nucleotides into a primer. Template strand Overall direction of replication

45 LE 16-15_2 Primase joins RNA nucleotides into a primer. Template strand DNA pol III adds DNA nucleotides to the primer, forming an Okazaki fragment. RNA primer Overall direction of replication

46 LE 16-15_3 Primase joins RNA nucleotides into a primer. Template strand DNA pol III adds DNA nucleotides to the primer, forming an Okazaki fragment. RNA primer After reaching the next RNA primer (not shown), DNA pol III falls off. Okazaki fragment Overall direction of replication

47 LE 16-15_4 Primase joins RNA nucleotides into a primer. Template strand DNA pol III adds DNA nucleotides to the primer, forming an Okazaki fragment. RNA primer After reaching the next RNA primer (not shown), DNA pol III falls off. Okazaki fragment After the second fragment is primed, DNA pol III adds DNA nucleotides until it reaches the first primer and falls off. Overall direction of replication

48 LE 16-15_5 Primase joins RNA nucleotides into a primer. Template strand DNA pol III adds DNA nucleotides to the primer, forming an Okazaki fragment. RNA primer After reaching the next RNA primer (not shown), DNA pol III falls off. Okazaki fragment After the second fragment is primed, DNA pol III adds DNA nucleotides until it reaches the first primer and falls off. DNA pol I replaces the RNA with DNA, adding to the end of fragment 2. Overall direction of replication

49 LE 16-15_6 Primase joins RNA nucleotides into a primer. Template strand DNA pol III adds DNA nucleotides to the primer, forming an Okazaki fragment. RNA primer After reaching the next RNA primer (not shown), DNA pol III falls off. Okazaki fragment After the second fragment is primed, DNA pol III adds DNA nucleotides until it reaches the first primer and falls off. DNA pol I replaces the RNA with DNA, adding to the end of fragment 2. DNA ligase forms a bond between the newest DNA and the adjacent DNA of fragment 1. The lagging strand in the region is now complete. Overall direction of replication

50 Animation: Lagging Strand

51 Other Proteins That Assist DNA Replication Helicase untwists the double helix and separates the template DNA strands at the replication fork Single-strand binding protein binds to and stabilizes single-stranded DNA until it can be used as a template Topoisomerase corrects overwinding ahead of replication forks by breaking, swiveling, and rejoining DNA strands

52 Primase synthesizes an RNA primer at the ends of the leading strand and the Okazaki fragments DNA pol III continuously synthesizes the leading strand and elongates Okazaki fragments DNA pol I removes primer from the ends of the leading strand and Okazaki fragments, replacing primer with DNA and adding to adjacent ends DNA ligase joins the end of the DNA that replaces the primer to the rest of the leading strand and also joins the lagging strand fragments

53 LE Overall direction of replication Leading strand Origin of replication Lagging strand DNA pol III Lagging strand OVERVIEW Leading strand Leading strand Parental DNA Replication fork Primase DNA pol III Primer Lagging strand DNA pol I DNA ligase

54 Animation: DNA Replication Review

55 The DNA Replication Machine as a Stationary Complex The proteins that participate in DNA replication form a large complex, a DNA replication machine The DNA replication machine is probably stationary during the replication process Recent studies support a model in which DNA polymerase molecules reel in parental DNA and extrude newly made daughter DNA molecules

56 Proofreading and Repairing DNA DNA polymerases proofread newly made DNA, replacing any incorrect nucleotides In mismatch repair of DNA, repair enzymes correct errors in base pairing In nucleotide excision repair, enzymes cut out and replace damaged stretches of DNA

57 LE A thymine dimer distorts the DNA molecule. A nuclease enzyme cuts the damaged DNA strand at two points and the damaged section is removed. Nuclease DNA polymerase Repair synthesis by a DNA polymerase fills in the missing nucleotides. DNA ligase DNA ligase seals the free end of the new DNA to the old DNA, making the strand complete.

58 Replicating the Ends of DNA Molecules Limitations of DNA polymerase create problems for the linear DNA of eukaryotic chromosomes The usual replication machinery provides no way to complete the ends, so repeated rounds of replication produce shorter DNA molecules

59 LE End of parental DNA strands Leading strand Lagging strand Last fragment Previous fragment Lagging strand RNA primer Primer removed but cannot be replaced with DNA because no end available for DNA polymerase Removal of primers and replacement with DNA where a end is available Second round of replication New leading strand New leading strand Further rounds of replication Shorter and shorter daughter molecules

60 Eukaryotic chromosomal DNA molecules have at their ends nucleotide sequences called telomeres Telomeres do not prevent the shortening of DNA molecules, but they do postpone the erosion of genes near the ends of DNA molecules

61 LE µm

62 If chromosomes of germ cells became shorter in every cell cycle, essential genes would eventually be missing from the gametes they produce An enzyme called telomerase catalyzes the lengthening of telomeres in germ cells

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance The Molecular Basis of Inheritance Chapter 16 Objectives Describe the contributions of the following people: Griffith; Avery, McCary, and MacLeod; Hershey and Chase; Chargaff; Watson and Crick; Franklin;

More information

BIOLOGY 101. CHAPTER 16: The Molecular Basis of Inheritance: Life s Operating Instructions

BIOLOGY 101. CHAPTER 16: The Molecular Basis of Inheritance: Life s Operating Instructions BIOLOGY 101 CHAPTER 16: The Molecular Basis of Inheritance: Life s Operating Instructions Life s Operating Instructions CONCEPTS: 16.1 DNA is the genetic material 16.2 Many proteins work together in DNA

More information

Overview: Life s Operating Instructions Concept 16.1: DNA is the genetic material The Search for the Genetic Material: Scientific Inquiry

Overview: Life s Operating Instructions Concept 16.1: DNA is the genetic material The Search for the Genetic Material: Scientific Inquiry Overview: Life s Operating Instructions In 1953, James Watson and Francis Crick introduced an elegant double-helical model for the structure of deoxyribonucleic acid, or DNA DNA, the substance of inheritance,

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Chapter 16 The Molecular Basis of Inheritance

Chapter 16 The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance Chromosomes and DNA Morgan s experiments with Drosophila were able to link hereditary factors to specific locations on chromosomes. The double-helical model

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 16 The Molecular Basis of Inheritance

More information

CHAPTER 16 MOLECULAR BASIS OF INHERITANCE

CHAPTER 16 MOLECULAR BASIS OF INHERITANCE CHAPTER 16 MOLECULAR BASIS OF INHERITANCE DNA as genetic material? Deducted that DNA is the genetic material Initially worked by studying bacteria & the viruses that infected them 1928 Frederick Griffiths

More information

MOLECULAR BASIS OF INHERITANCE

MOLECULAR BASIS OF INHERITANCE MOLECULAR BASIS OF INHERITANCE C H A P T E R 1 6 as genetic material? Deducted that is the genetic material Initially worked by studying bacteria & the viruses that infected them 1928 Frederick Griffiths

More information

AP Biology Chapter 16 Notes:

AP Biology Chapter 16 Notes: AP Biology Chapter 16 Notes: I. Chapter 16: The Molecular Basis of Inheritance a. Overview: i. April 1953 James Watson and Francis Crick great the double helix model of DNA- deoxyribonucleic acid ii. DNA

More information

Fig. 16-7a. 5 end Hydrogen bond 3 end. 1 nm. 3.4 nm nm

Fig. 16-7a. 5 end Hydrogen bond 3 end. 1 nm. 3.4 nm nm Fig. 16-7a end Hydrogen bond end 1 nm 3.4 nm 0.34 nm (a) Key features of DNA structure end (b) Partial chemical structure end Fig. 16-8 Adenine (A) Thymine (T) Guanine (G) Cytosine (C) Concept 16.2: Many

More information

BIOLOGY. The Molecular Basis of Inheritance CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. The Molecular Basis of Inheritance CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 16 The Molecular Basis of Inheritance Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Life s Operating Instructions

More information

The Molecul Chapter ar Basis 16: The M of olecular Inheritance Basis of Inheritance Fig. 16-1

The Molecul Chapter ar Basis 16: The M of olecular Inheritance Basis of Inheritance Fig. 16-1 he Chapter Molecular 16: he Basis Molecular of Inheritance Basis of Inheritance Fig. 16-1 dditional Evidence hat DN Is the Genetic Material It was known that DN is a polymer of nucleotides, each consisting

More information

The Genetic Material. The Genetic Material. The Genetic Material. DNA: The Genetic Material. Chapter 14

The Genetic Material. The Genetic Material. The Genetic Material. DNA: The Genetic Material. Chapter 14 DNA: Chapter 14 Frederick Griffith, 1928 studied Streptococcus pneumoniae, a pathogenic bacterium causing pneumonia there are 2 strains of Streptococcus: - S strain is virulent - R strain is nonvirulent

More information

Chromosomes. Nucleosome. Chromosome. DNA double helix. Coils. Supercoils. Histones

Chromosomes. Nucleosome. Chromosome. DNA double helix. Coils. Supercoils. Histones Chromosomes Chromosome Nucleosome DNA double helix Coils Supercoils Histones Evidence That DNA Can Transform Bacteria Frederick Griffith s experiment 1928 Griffith called the phenomenon transformation

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance hapter 16 he Molecular Basis of Inheritance PowerPoint Lectures for Biology, Seventh Edition Neil ampbell and Jane Reece Lectures by hris Romero Scientific History he march to understanding that DN is

More information

Transformation: change in genotype & phenotype due to assimilation of external DNA by a cell.

Transformation: change in genotype & phenotype due to assimilation of external DNA by a cell. DNA Replication Chapter 16: DNA as Genetic Material Genes are on Chromosomes T.H. Morgan o Working with Drosophila (fruit flies) o Genes are on chromosomes o But is it the protein or the DNA of the chromosomes

More information

DNA: The Genetic Material. Chapter 14

DNA: The Genetic Material. Chapter 14 DNA: The Genetic Material Chapter 14 The Genetic Material Frederick Griffith, 1928 studied Streptococcus pneumoniae, a pathogenic bacterium causing pneumonia there are 2 strains of Streptococcus: - S strain

More information

DNA: The Genetic Material. Chapter 14. Genetic Material

DNA: The Genetic Material. Chapter 14. Genetic Material DNA: The Genetic Material Chapter 14 Genetic Material Frederick Griffith, 1928 Streptococcus pneumoniae, a pathogenic bacterium causing pneumonia 2 strains of Streptococcus: - S strain virulent - R strain

More information

4) separates the DNA strands during replication a. A b. B c. C d. D e. E. 5) covalently connects segments of DNA a. A b. B c. C d. D e.

4) separates the DNA strands during replication a. A b. B c. C d. D e. E. 5) covalently connects segments of DNA a. A b. B c. C d. D e. 1) Chargaff's analysis of the relative base composition of DNA was significant because he was able to show that a. the relative proportion of each of the four bases differs from species to species. b.

More information

DNA Replication. Packet #17 Chapter #16

DNA Replication. Packet #17 Chapter #16 DNA Replication Packet #17 Chapter #16 1 HISTORICAL FACTS ABOUT DNA 2 Historical DNA Discoveries 1928 Frederick Griffith finds a substance in heat-killed bacteria that transforms living bacteria 1944 Oswald

More information

DNA The Genetic Material

DNA The Genetic Material DNA The Genetic Material 2006-2007 Chromosomes related to phenotype T.H. Morgan working with Drosophila fruit flies associated phenotype with specific chromosome white-eyed male had specific X chromosome

More information

Chapter 16 The Molecular Basis of Inheritance

Chapter 16 The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance Question? Traits are inherited on chromosomes, but what in the chromosomes is the genetic material? Two possibilities: Protein DNA Qualifications Protein:

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance The Molecular Basis of Inheritance Scientific History The march to understanding that DNA is the genetic material T.H. Morgan (1908) Frederick Griffith (1928) Avery, McCarty & MacLeod (1944) Erwin Chargaff

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance LEURE PRESENIONS For MPBELL BIOLOY, NINH EDIION Jane B. Reece, Lisa. Urry, Michael L. ain, Steven. Wasserman, Peter V. Minorsky, Robert B. Jackson hapter 6 he Molecular Basis of Inheritance Lectures by

More information

Name: - Bio A.P. DNA Replication & Protein Synthesis

Name: - Bio A.P. DNA Replication & Protein Synthesis Name: - Bio A.P. DNA Replication & Protein Synthesis 1 ESSENTIAL KNOWLEDGE Big Idea 3: Living Systems store, retrieve, transmit and respond to information critical to living systems Enduring Understanding:

More information

Wednesday, April 9 th. DNA The Genetic Material Replication. Chapter 16

Wednesday, April 9 th. DNA The Genetic Material Replication. Chapter 16 Wednesday, April 9 th DNA The Genetic Material Replication Chapter 16 Modified from Kim Foglia Scientific History The march to understanding that DNA is the genetic material T.H. Morgan (1908) Frederick

More information

of Inheritance BIOL 222

of Inheritance BIOL 222 h. 16 he Molecular Basis of Inheritance of Inheritance BIOL 222 Overview: Life s Opera:ng Instruc:ons James Watson and Francis rick 1953 produced double helical model for the structure of DN. H. Morgan

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance Lecture Outline Overview In April 1953, James Watson and Francis Crick shook the scientific world with an elegant double-helical model for the structure of

More information

The Molecular Basis of Inheritance (Ch. 13)

The Molecular Basis of Inheritance (Ch. 13) The Molecular Basis of Inheritance (Ch. 13) Many people contributed to our understanding of DNA T.H. Morgan (1908) Frederick Griffith (1928) Avery, McCarty & MacLeod (1944) Erwin Chargaff (1947) Hershey

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance Chapter 16 Lecture Outline The Molecular Basis of Inheritance Overview: Life s Operating Instructions In April 1953, James Watson and Francis Crick shook the scientific world with an elegant double-helical

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Chapter 10 The Molecular Basis of Inheritance Lecture Outline Overview: Life s Operating Instructions

Chapter 10 The Molecular Basis of Inheritance Lecture Outline Overview: Life s Operating Instructions Chapter 10 The Molecular Basis of Inheritance Lecture Outline Overview: Life s Operating Instructions In April 1953, James Watson and Francis Crick shook the scientific world with an elegant double helical

More information

13 The Molecular Basis of Inheritance

13 The Molecular Basis of Inheritance CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 13 The Molecular Basis of Inheritance Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life s Operating

More information

1. DNA Structure. Genetic Material: Protein or DNA? 10/28/2015. Chapter 16: DNA Structure & Replication. 1. DNA Structure. 2.

1. DNA Structure. Genetic Material: Protein or DNA? 10/28/2015. Chapter 16: DNA Structure & Replication. 1. DNA Structure. 2. hapter 6: DN Structure & Replication. DN Structure 2. DN Replication. DN Structure hapter Reading pp. 33-38 enetic Material: Protein or DN? Until the early 950 s no one knew for sure, but it was generally

More information

Chapter 16 Molecular Basis of. Chapter 16. Inheritance (DNA structure and Replication) Helicase Enzyme

Chapter 16 Molecular Basis of. Chapter 16. Inheritance (DNA structure and Replication) Helicase Enzyme Chapter 16 Chapter 16 Molecular Basis of Inheritance (DNA structure and Replication) Helicase Enzyme The Amazing Race What is the genetic material? DNA or protein? 1928 Griffith transformation of pneumonia

More information

DNA: The Primary Source of Heritable Information. Genetic information is transmitted from one generation to the next through DNA or RNA

DNA: The Primary Source of Heritable Information. Genetic information is transmitted from one generation to the next through DNA or RNA DNA and Replication DNA: The Primary Source of Heritable Information Genetic information is transmitted from one generation to the next through DNA or RNA Chromosomes Non-eukaryotic (bacteria) organisms

More information

3.A.1 DNA and RNA: Structure and Replication

3.A.1 DNA and RNA: Structure and Replication 3.A.1 DNA and RNA: Structure and Replication Each DNA polymer is made of Nucleotides (monomer) which are made of: a) Phosphate group: Negatively charged and polar b) Sugar: deoxyribose- a 5 carbon sugar

More information

Chapter 13 DNA The Genetic Material Replication

Chapter 13 DNA The Genetic Material Replication Chapter 13 DNA The Genetic Material Replication Scientific History The march to understanding that DNA is the genetic material T.H. Morgan (1908) Frederick Griffith (1928) Avery, McCarty & MacLeod (1944)

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance hapter 16 he Molecular Basis of Inheritance Edited by Shawn Lester PowerPoint Lectures for Biology, Seventh Edition Neil ampbell and Jane Reece Lectures by hris Romero verview: Life s perating Instructions

More information

Essential Questions. DNA: The Genetic Material. Copyright McGraw-Hill Education

Essential Questions. DNA: The Genetic Material. Copyright McGraw-Hill Education Essential Questions Which experiments led to the discovery of DNA as the genetic material? What is the basic structure of DNA? What is the basic structure of eukaryotic chromosomes? Vocabulary Review nucleic

More information

Hershey & Chase Avery, MacLeod, & McCarty DNA: The Genetic Material

Hershey & Chase Avery, MacLeod, & McCarty DNA: The Genetic Material DA: The Genetic Material Chapter 14 Griffith s experiment with Streptococcus pneumoniae Live S strain cells killed the mice Live R strain cells did not kill the mice eat-killed S strain cells did not kill

More information

DNA Structure. DNA: The Genetic Material. Chapter 14

DNA Structure. DNA: The Genetic Material. Chapter 14 DNA: The Genetic Material Chapter 14 DNA Structure DNA is a nucleic acid. The building blocks of DNA are nucleotides, each composed of: a 5-carbon sugar called deoxyribose a phosphate group (PO 4 ) a nitrogenous

More information

Friday, April 17 th. Crash Course: DNA, Transcription and Translation. AP Biology

Friday, April 17 th. Crash Course: DNA, Transcription and Translation. AP Biology Friday, April 17 th Crash Course: DNA, Transcription and Translation Today I will 1. Review the component parts of a DNA molecule. 2. Describe the process of transformation. 3. Explain what is meant by

More information

All This For Four Letters!?! DNA and Its Role in Heredity

All This For Four Letters!?! DNA and Its Role in Heredity All This For Four Letters!?! DNA and Its Role in Heredity What Is the Evidence that the Gene Is DNA? By the 1920s, it was known that chromosomes consisted of DNA and proteins. A new dye stained DNA and

More information

E - Horton AP Biology

E - Horton AP Biology E - Bio @ Horton AP Biology Unit Molecular Genetics Notes DNA The Genetic Material A. Genetic material must be: 1. able to store information used to control both the development and the metabolic activities

More information

Molecular Genetics I DNA

Molecular Genetics I DNA Molecular Genetics I DNA Deoxyribonucleic acid is the molecule that encodes the characteristics of living things. It is the molecule that is passed from a mother cell to daughter cells, and the molecule

More information

Lesson Overview Identifying the Substance of Genes

Lesson Overview Identifying the Substance of Genes 12.1 Identifying the Substance of Genes Griffith s Experiments The discovery of the chemical nature of the gene began in 1928 with British scientist Frederick Griffith, who was trying to figure out how

More information

The Development of a Four-Letter Language DNA

The Development of a Four-Letter Language DNA The Development of a Four-Letter Language DNA The Griffith Experiment Chromosomes are comprised of two types of macromolecules, proteins and DNA, but which one is the stuff of genes? the answer was discovered

More information

Chapter 13 Active Reading Guide The Molecular Basis of Inheritance

Chapter 13 Active Reading Guide The Molecular Basis of Inheritance Name: AP Biology Mr. Croft Chapter 13 Active Reading Guide The Molecular Basis of Inheritance Section 1 1. What are the two chemical components of chromosomes? 2. Why did researchers originally think that

More information

DNA and Replication 1

DNA and Replication 1 DNA and Replication 1 History of DNA 2 History of DNA Early scientists thought protein was the cell s hereditary material because it was more complex than DNA Proteins were composed of 20 different amino

More information

I. DNA as Genetic Material Figure 1: Griffith s Experiment. Frederick Griffith:

I. DNA as Genetic Material Figure 1: Griffith s Experiment. Frederick Griffith: I. DNA as Genetic Material Figure 1: Griffith s Experiment Frederick Griffith: a) Frederick Griffith suspected that some component of the S strain was being passed along to the R strain, causing it to

More information

Chapter 16: The Molecular Basis of Inheritance

Chapter 16: The Molecular Basis of Inheritance AP Biology Reading Guide Name Chapter 16: The Molecular Basis of Inheritance Concept 16.1 DNA is the genetic material 1. What are the two chemical components of chromosomes? 2. The search for identifying

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance hapter 16 he Molecular Basis of Inheritance Dr. Wendy Sera Houston ommunity ollege Biology 1406 Key oncepts in hapter 16 1. DN is the genetic material 2. Many proteins work together in DN replication and

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance hapter 6 he Molecular Basis of Inheritance Dr. Wendy Sera Key oncepts in hapter 6. DN is the genetic material. Many proteins work together in DN replication and repair. 3. chromosome consists of a DN molecule

More information

DNA STRUCTURE AND REPLICATION

DNA STRUCTURE AND REPLICATION AP BIOLOGY EVOLUTION/HEREDITY UNIT Unit 1 Part 2 Chapter 16 Activity #2 BUILDING BLOCKS OF DNA: Nucleotides: NAME DATE PERIOD DNA STRUCTURE AND REPLICATION 1. 5 carbon sugar (deoxyribose) 2. Nitrogenous

More information

PowerPoint Notes on Chapter 9 - DNA: The Genetic Material

PowerPoint Notes on Chapter 9 - DNA: The Genetic Material PowerPoint Notes on Chapter 9 - DNA: The Genetic Material Section 1 Identifying the Genetic Material Objectives Relate Griffith s conclusions to the observations he made during the transformation experiments.

More information

Lecture Series 8 DNA and Its Role in Heredity

Lecture Series 8 DNA and Its Role in Heredity Lecture Series 8 DNA and Its Role in Heredity DNA and Its Role in Heredity A. DNA: The Genetic Material B. The Structure of DNA C. DNA Replication D. The Mechanism of DNA Replication E. DNA Proofreading

More information

DNA and Its Role in Heredity. DNA and Its Role in Heredity. A. DNA: The Genetic Material. A. DNA: The Genetic Material.

DNA and Its Role in Heredity. DNA and Its Role in Heredity. A. DNA: The Genetic Material. A. DNA: The Genetic Material. DNA and Its Role in Heredity A. DNA: The Genetic Material Lecture Series 8 DNA and Its Role in Heredity B. The Structure of DNA C. DNA E. DNA Proofreading and Repair F. Practical Applications of DNA A.

More information

Chapter 16: The Molecular Basis of Inheritance

Chapter 16: The Molecular Basis of Inheritance Name Period Chapter 16: The Molecular Basis of Inheritance Concept 16.1 DNA is the genetic material 1. What are the two chemical components of chromosomes? 2. Why did researchers originally think that

More information

The DNA Molecule: The Molecular Basis of Inheritance

The DNA Molecule: The Molecular Basis of Inheritance Slide hapter 6 he DN Molecule: he Molecular Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil ampbell and Jane Reece Lectures by hris Romero, updated by Erin Barley

More information

Chapter 16 : The Molecular Basis of Inheritance

Chapter 16 : The Molecular Basis of Inheritance Chapter 16 : The Molecular Basis of Inheritance over view : - In 1953, James Watson and Francis Crick shook the world with an elegant double-helical model for the structure of deoxyribonucleic acid(dna).

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 13 The Molecular Basis of Inheritance Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Brief History. Many people contributed to our understanding of DNA

Brief History. Many people contributed to our understanding of DNA DNA (Ch. 16) Brief History Many people contributed to our understanding of DNA T.H. Morgan (1908) Frederick Griffith (1928) Avery, McCarty & MacLeod (1944) Erwin Chargaff (1947) Hershey & Chase (1952)

More information

copyright cmassengale 2

copyright cmassengale 2 1 copyright cmassengale 2 History of DNA Early scientists thought protein was the cell s hereditary material because it was more complex than DNA Proteins were composed of 20 different amino acids in long

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance Lecture Outline Overview: Life s Operating Instructions In April 1953, James Watson and Francis Crick shook the scientific world with an elegant double-helical

More information

Chapter 16. The Molecular Basis of Inheritance

Chapter 16. The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance Overview: Life s Operating Instructions In April 1953, James Watson and Francis Crick shook the scientific world with an elegant double-helical model for the

More information

Chapter 16. The Molecular Basis of Inheritance. Biology Kevin Dees

Chapter 16. The Molecular Basis of Inheritance. Biology Kevin Dees Chapter 16 The Molecular Basis of Inheritance DNA Life s instructions!!!! Deoxyribonucleic Acid Nucleic acid polymer from nucleotide monomers Unique in that it can: Self replicate Carry information History

More information

Chapter 9. Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination

Chapter 9. Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination Chapter 9 Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination 1 Genetics Genome Chromosome Gene Protein Genotype Phenotype 2 Terms and concepts gene Fundamental unit of heredity

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance Lecture Outline Overview: Life s Operating Instructions In April 1953, James Watson and Francis Crick shook the scientific world with an elegant double-helical

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance Lecture Outline Overview: Life s Operating Instructions In April 1953, James Watson and Francis Crick shook the scientific world with an elegant double-helical

More information

Opening Activity. DNA is often compared to a ladder or a spiral staircase. Look at the picture above and answer the following questions.

Opening Activity. DNA is often compared to a ladder or a spiral staircase. Look at the picture above and answer the following questions. Opening Activity DNA is often compared to a ladder or a spiral staircase. Look at the picture above and answer the following questions. 1. How is the structure of DNA similar to that of a ladder or spiral

More information

BIOLOGY. Chapter 14 DNA Structure and Function

BIOLOGY. Chapter 14 DNA Structure and Function BIOLOY hapter 14 DN Structure and Function Figure 14.11 Figure 16.22a Figure 14.11 DN double helix (2 nm in diameter) Nucleosome (10 nm in diameter) DN, the double helix Histones Histones Histone tail

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance LEURE PRESENIONS For MPBELL BIOLOY, NINH EDIION Jane B. Reece, Lisa. Urry, Michael L. ain, Steven. Wasserman, Peter V. Minorsky, Robert B. Jackson hapter 16 he Molecular Basis of Inheritance Lectures by

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance 6 he Molecular Basis of Inheritance MPBELL BIOLOY ENH EDIION Reece Urry ain Wasserman Minorsky Jackson Life s Operating Instructions In 953, James Watson and Francis rick introduced an elegant double-helical

More information

Genetic material must be able to:

Genetic material must be able to: Genetic material must be able to: Contain the information necessary to construct an entire organism Pass from parent to offspring and from cell to cell during cell division Be accurately copied Account

More information

DNA: Structure and Replication - 1

DNA: Structure and Replication - 1 DNA: Structure and Replication - 1 We have briefly discussed that DNA is the genetic molecule of life. In eukaryotic organisms DNA (along with its histone proteins) is found in chromosomes. All cell activities

More information

Nucleic Acids. The book of you. Nucleic Acids DNA RNA PROTEINS. Function: genetic material stores information genes blueprint for building proteins

Nucleic Acids. The book of you. Nucleic Acids DNA RNA PROTEINS. Function: genetic material stores information genes blueprint for building proteins ucleic Acids DA RA PRTEIS 1 The book of you 2 ucleic Acids Function: genetic material stores information genes blueprint for building proteins DA DA RA proteins transfers information blueprint for new

More information

DNA. Discovery of the DNA double helix

DNA. Discovery of the DNA double helix DNA Replication DNA Discovery of the DNA double helix A. 1950 s B. Rosalind Franklin - X-ray photo of DNA. C. Watson and Crick - described the DNA molecule from Franklin s X-ray. What is DNA? Question:

More information

Lecture 15: 05/24/16. DNA: Molecular basis of Inheritance

Lecture 15: 05/24/16. DNA: Molecular basis of Inheritance Lecture 15: 05/24/16 DN: Molecular basis of Inheritance 1 DN Double Helix 2 3 DN: Molecular basis of Inheritance Historical Overview! First Isolation of DN DN as genetic material ransformation change in

More information

Chapter 16 DNA: The Genetic Material. The Nature of Genetic Material. Chemical Nature of Nucleic Acids. Chromosomes - DNA and protein

Chapter 16 DNA: The Genetic Material. The Nature of Genetic Material. Chemical Nature of Nucleic Acids. Chromosomes - DNA and protein Chapter 16 DNA: The Genetic Material The Nature of Genetic Material Chromosomes - DNA and protein Genes are subunits DNA = 4 similar nucleotides C(ytosine) A(denine) T(hymine) G(uanine) Proteins = 20 different

More information

Griffith Avery Franklin Watson and Crick

Griffith Avery Franklin Watson and Crick to. Protein Griffith Avery Franklin Watson and Crick Although Mendel understood that we inherit information, he didn t know how In 1928 Frederick Griffith was studying two forms of bacteria species One

More information

3. Replication of DNA a. When a cell divides, the DNA must be doubled so that each daughter cell gets a complete copy. It is important for this

3. Replication of DNA a. When a cell divides, the DNA must be doubled so that each daughter cell gets a complete copy. It is important for this DNA 1. Evidence for DNA as the genetic material. a. Until the 1940s, proteins were believed to be the genetic material. b. In 1944, Oswald Avery, Maclyn McCarty, and Colin MacLeod announced that the transforming

More information

2015 Biology Unit 4 PRACTICE TEST DNA, Structure, Function, Replication Week of December

2015 Biology Unit 4 PRACTICE TEST DNA, Structure, Function, Replication Week of December Name: Class: Date: 2015 Biology Unit 4 PRACTICE TEST DNA, Structure, Function, Replication Week of 14-18 December 1. Which scientists figured out the three-dimensional structure of DNA by using a model

More information

DNA Model Building and Replica3on

DNA Model Building and Replica3on DNA Model Building and Replica3on DNA Replication S phase Origins of replication in E. coli and eukaryotes (a) Origin of replication in an E. coli cell Origin of replication Bacterial chromosome Doublestranded

More information

Name Class Date. Information and Heredity, Cellular Basis of Life Q: What is the structure of DNA, and how does it function in genetic inheritance?

Name Class Date. Information and Heredity, Cellular Basis of Life Q: What is the structure of DNA, and how does it function in genetic inheritance? 12 DNA Big idea Information and Heredity, Cellular Basis of Life Q: What is the structure of DNA, and how does it function in genetic inheritance? WHAT I KNOW WHAT I LEARNED 12.1 How did scientists determine

More information

How do we know what the structure and function of DNA is? - Double helix, base pairs, sugar, and phosphate - Stores genetic information

How do we know what the structure and function of DNA is? - Double helix, base pairs, sugar, and phosphate - Stores genetic information DNA: CH 13 How do we know what the structure and function of DNA is? - Double helix, base pairs, sugar, and phosphate - Stores genetic information Discovering DNA s Function 1928: Frederick Griffith studied

More information

Bacteriophage = Virus that attacks bacteria and replicates by invading a living cell and using the cell s molecular machinery.

Bacteriophage = Virus that attacks bacteria and replicates by invading a living cell and using the cell s molecular machinery. Hershey-Chase Bacteriophage Experiment - 1953 Bacteriophage = Virus that attacks bacteria and replicates by invading a living cell and using the cell s molecular machinery. Bacteriophages are composed

More information

Name Campbell Chapter 16 The Molecular Basis of Inheritance

Name Campbell Chapter 16 The Molecular Basis of Inheritance A.P. Biology Name Campbell Chapter 16 The Molecular Basis of Inheritance 305-310 Who are these dudes? A. B. What distinguishes DNA from all other molecules? What does the adage Like begets like mean? DNA

More information

3.a.1- DNA and RNA 10/19/2014. Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes.

3.a.1- DNA and RNA 10/19/2014. Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. 3.a.1- DNA and RNA Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. EU 3.A: Heritable information provides for continuity of life. EU 3.B: Expression

More information

Chapter 13 - Concept Mapping

Chapter 13 - Concept Mapping Chapter 13 - Concept Mapping Using the terms and phrases provided below, complete the concept map showing the discovery of DNA structure. amount of base pairs five-carbon sugar purine DNA polymerases Franklin

More information

2. Why did researchers originally think that protein was the genetic material?

2. Why did researchers originally think that protein was the genetic material? AP Biology Chapter 13 Reading Guide The Molecular Basis of Inheritance Concept 13.1 DNA is the Genetic Material 1. What are the two chemical components of chromosomes? 2. Why did researchers originally

More information

DNA: The Genetic Material. Chapter 14

DNA: The Genetic Material. Chapter 14 DNA: The Genetic Material hapter 14 1 Frederick Griffith 1928 Studied Streptococcus pneumoniae, a pathogenic bacterium causing pneumonia 2 strains of Streptococcus S strain is virulent R strain is nonvirulent

More information

Vocabulary. Nucleic Acid Nucleotide Base pairing Complementary Template Strand Semiconservative Replication Polymerase

Vocabulary. Nucleic Acid Nucleotide Base pairing Complementary Template Strand Semiconservative Replication Polymerase DNA and Replication TEKS (6) Science concepts. The student knows the mechanisms of genetics, including the role of nucleic acids and the principles of Mendelian Genetics. The student is expected to: (A)

More information

The Structure of DNA

The Structure of DNA The Structure of DNA Questions to Ponder 1) How is the genetic info copied? 2) How does DNA store the genetic information? 3) How is the genetic info passed from generation to generation? The Structure

More information

DNA The Genetic Material

DNA The Genetic Material DNA The Genetic Material 2006-2007 Scientific History: The march to understanding that DNA is the genetic material u T.H. Morgan (1908) u Frederick Griffith (1928) u Avery, McCarty & MacLeod (1944) u Erwin

More information

Directed Reading. Section: Identifying the Genetic Material. was DNA? Skills Worksheet

Directed Reading. Section: Identifying the Genetic Material. was DNA? Skills Worksheet Skills Worksheet Directed Reading Section: Identifying the Genetic Material Read each question, and write your answer in the space provided. 1. What was Griffith trying to accomplish by injecting mice

More information