Microbiology 微生物学 Spring-Summer

Size: px
Start display at page:

Download "Microbiology 微生物学 Spring-Summer"

Transcription

1

2 Microbiology 微生物学 2017 Spring-Summer

3 Relevant Information and Resources Course slides can be found at 教学工作 Course-related questions will be answered through s. Textbook: Brock Biology of Microorganisms (13 th )

4 Chapter 23 Microbial Ecosystems I Microbial Ecology

5 Ecological Concepts Ecosystem: the sum total of all of the organisms and abiotic factors in a particular environment. (a) Taihu, China (b) St. John s River, USA Normal (high richness) (a) St. John s River, USA Abnormal (low richness but high abundance)

6 Ecological Concepts Microbial species diversity: Richness (Total number of different species) vs. Abundance (The proportion of each species in the community)

7 Microbial Ecosystems

8 Microbial Ecosystems Light Community 1 Community 2 Photic zone: Oxic zone: Oxygenic phototrophs Aerobes and facultative 6 CO 2 6 H 2 O aerobes C 6 H 12 O 6 6 O 2 C 6 H 12 O 6 6 O 2 6 CO 2 6 H 2 O Energy yield Community 3 Anoxic sediments: 1. Guild 1: denitrifying bacteria (NO 3 N 2 ) ferric iron-reducing bacteria (Fe 3 Fe 2 ) 2. Guild 2: sulfate-reducing bacteria (SO 2 4 H 2 S) sulfur-reducing bacteria (S 0 H 2 S) 3. Guild 3: fermentative bacteria 4. Guild 4: methanogens (CO 2 CH 4 ) acetogens (CO 2 acetate) Populations, Guilds (metabolically similar microbial populations that exploit the same resources in a similar way), and Communities

9 Microbial Ecosystems Human activities CO 2 Respiration Land plants Animals and microorganisms Fossil fuels Humus Soil formation Aquatic plants and phytoplankton CO 2 Biological pump Death and mineralization Aquatic animals CO 2 Earth s crust Rock formation Biogeochemical Cycling: CO 2

10 Microbial Ecosystems (CH 2 O) n Biogeochemical Cycling: C Organic matter Oxygenic photosynthesis Chemolithotrophy Respiration Methanotrophy CO 2 Oxic Anoxic Methanogenesis Syntroph assisted Acetogenesis Anoxygenic photosynthesis Anaerobic respiration and fermentation Organic matter (CH 2 O) n

11 Microbial Ecosystems Biogeochemical Cycling: N Nitrification groups of protein Nitrogen fixation DRNA groups of protein Nitrogen fixation Oxic Anoxic Anammox Denitrification

12 Microbial Ecosystems Ferrous iron oxidation (bacterial or chemical) (Ferric) Ferric iron reduction (bacterial or chemical) Biogeochemical Cycling: Fe Smelting of ores Chemical oxidation (Ferrous)

13 Distance (mm) Microbial Environment Microorganisms, Niches (prime vs. fundamental), Microenvironments Nutrient levels and growth rates: feastor-famine; Competition vs. Cooperation Distance (mm) Oxygen microenvironments in a small soil particle

14 Surface and Biofilms Greater access to nutrients, protection, staying in a favorable habitat Microcolonies Root Microorganisms on surface a). A plant root, b) a microscopic slide immersed in a river

15 Surface and Biofilms Biofilms: Assemblages of bacterial cells attached to a surface and enclosed in an adhesive matrix secreted by the cells. Cells in biofilm Surface a). A cross-sectional view of a biofilm; b) a natural biofilm by Confocal microscope; c) A natural biofilm on a rock.

16 Biofilm formation Attachment Colonization Development (adhesion of a (intercellular (more growth and few cells to a suitable solid surface) communication, growth, and polysaccharide formation) polysaccharide) Cell O Water channels Surface Polysaccharide

17 Biofilm constituents and Regulation Extracellular substances: Polysaccharide, Protein, DNA c-di-gmp Regulatory factor: c-di-gmp

18 Biofilm control Methods: 1) To Prevent from forming; 2) To Induce dispersion

19 Chapter 22 Methods in Microbial Ecology I Culture-Dependent Analysis of Microbial Communities

20 Enrichment Enrichment: 1. Inocula; 2. Medium; 3. Conditions; 4. Techniques Enrichment Bias Mineral salts medium containing mannitol but lacking NH 4, NO 3, or organic nitrogen. NH 4 Soil Incubate aerobically +NH 4 plate NH 4 plate +NH 4 plate Isolation of Azotobacter NH 4 plate

21

22

23 Enrichment

24 Enrichment Lake or pond water Mud supplemented with organic nutrients and CaSO 4 Gradients Column O 2 H 2 S Foil cap Algae and cyanobacteria Purple nonsulfur bacteria Sulfur chemolithotrophs Patches of purple sulfur or green sulfur bacteria Anoxic decomposition and sulfate reduction The Winogradsky Column

25 Isolation Pure culture methods Colonies Paraffin seal

26 Isolation Isolation: 1. The streak plate; 2. Agar dilution tubes; 3. Most-Probable Number (MPN); Purity verification: 1. Microscopy; 2. Colonies; 1 ml (liquid) or 1 g (solid) 9-ml broth Growth Enrichment culture or natural sample Dilution 1 ml 1 ml 1 ml 1 ml 1 ml Growth No growth 1/10 (10 1 ) Other media; Procedure for MPN analysis

27 Isolation b a a b Cell Beam focus Objective lens of microscope Laser beam Optically trapped cell Severing point Capillary tube Laser Mixture of cells The laser tweezers for the isolation of single cells

28 Chapter 22 Methods in Microbial Ecology II Culture-Independent Analysis of Microbial Communities

29 Staining Nonspecific fluorescent stains Nucleic acid staining: Viable & Dead DAPI Acridine orange DAPI (4,6 -diamido-2- phenylindole SYBR Green I Non-Specific fluorescent strains

30 Staining Viability staining: Dye unable to penetrate membrane Using with Propidium iodide nucleic acid staining (penetrating membrane) Live Green; Dead -- Red

31 Staining Fluorescent Antibodies: Antigen Bacterial cell Antibacterial antibody, labeled with fluorescent dye Fluorescent antibodies as a cell tag Direct immunofluorescence Method ONE

32 Staining Fluorescent Antibodies: Antigen Bacterial cell Antibacterial antibody (unlabeled) made in rabbit Method TWO Anti-rabbit Ig, labeled with fluorescent dye Indirect immunofluorescence

33 Staining Green Fluorescent Protein (GFP)

34 FISH Fluorescence in situ hybridization Phylogenetic Staining using FISH

35 FISH Phylogenetic Staining using FISH Sewage sludge

36 FISH CARD (catalyzed reporter deposition) -- FISH Probe + peroxidase : tyramide fluorescent intermediate + protein

37 PCR-based method Steps in single gene biodiversity analysis Fhylotype: the microbial diversity of a given habitat

38 PCR-based method DGGE: Denaturing Gradient Gel Electrophore sis

39 PCR-based method

40 PCR-based method Fhylotype: the microbial diversity of a given habitat T-RFLP: Terminal Restriction Fragment Length Polymorphism

41 Fluorescence PCR-based method Position S rrna gene Forward PCR primer containing fluorescent tag ( ) ITS region bp Position 1513 Position 23 23S rrna gene Reverse PCR primer Community DNA PCR Gel analysis Fragment size (base pairs) ARISA: Automated Ribosomal Intergenic Spacer Analysis.

42 Chips Positive Weak positive Negative Phylochips

43 Environmental Genomics Microbial community Extract DNA Community sampling approach Total community DNA Environmental genomics approach Amplify single gene, for example, gene encoding 16S rrna Sequence and generate tree Restriction digest total DNA and then shotgun sequence Assembly and annotation Outcomes Genomes Single gene phylogenetic tree 1. Phylogenetic snapshot of most members of the community 2. Identification of novel phylotypes Total gene pool of the community 1. Identification of all gene categories 2. Discovery of new genes 3. Linking genes to phylotypes

44 Percent identity Fold coverage Environmental Genomics Genomic islands 100 ISL1 ISL2 ISL3 ISL4 ISL5 80 Fold coverage Position along the Prochlorococcus genome (kbp) Metagenomic analysis: Comparison of the genome sequences of cultured strains with Prochlorococcus genes obtained from metagenomic analyses of ocean water.

45 Microbial Activity in Nature Microbial Activity Measurements by Chemical Assays using Radioisotopes and Microelectrodes Sulfate reduction Formalin-killed control Time Sulfate reduction H 2 S Lactate 14 CO2 incorporation Photosynthesis Light Killed Dark Time 14 C-Glucose respiration H 2 present Killed H 2 absent Killed Time Time

46 Microbial Activity in Nature Gold Glass Platinum O 2 Microelectrode 5 m Membranes Glass m NO 3 N 2 O 2e 1 N 2 O H 2 O N 2 2 OH Bacteria Cathode Nutrient solution NO 3 - Microelectrode

47 Depth in sediment (mm) Microbial Activity in Nature Oxygen (O 2 ) concentration ( M) O 2 Seawater Oxic sediment NO 3 Microbial Activity Measurements: Depth profiles of oxygen and nitrate in deepsea sediments 10 Anoxic sediment Nitrate (NO 3 ) concentration ( M)

48 Microbial Activity in Nature Enzyme substrates Stable Isotopes Enzyme that fixes CO 2 Fixed carbon Isotopic Fractionation: Enzymes typically favor the lighter isotope. These discrimination between isotopes are the result of biological activities.

49 Microbial Activity in Nature Marine carbonate Calvin cycle plants Atmospheric CO 2 Methane Petroleum Isotopic Geochemistry of 13 C and 12 C Cyanobacteria Purple sulfur bacteria Green sulfur bacteria Recent marine sediments 3.5 billion-year-old rocks C ( 0 / 00 )

50 Microbial Activity in Nature Isotopic Geochemistry of 34 S and 32 S Igneous rocks Marine sulfate Sedimentary sulfide Meteoritic sulfide Lunar sulfides Sulfide from marine mud Elemental sulfur S ( 0 / 00 )

51 13 C ( 0 / 00 ) Microbial Activity in Nature SIMS: Secondary Ion Mass Spectrometry able to work on a single cell so detected activity can be assigned to specific microbes Ion source Primary ions Sample Mass spectrometer Magnet ABCDE Multiple detectors Secondary ions Outer shell of sulfate-reducing bacteria cells (green) burned away by primary ion beam Inner core of methanotrophic Archaea cells (red) exposed Cycles of sputtering and data collection (increasing depth into aggregate)

52 Microbial Activity in Nature Flow Cytometry: Cells labeled by FISH Sample stream Nozzle Light scatter and fluorescence detector Laser Deflection plates Induces charge on selected droplets Sorted samples Waste (non labeled cells)

53 Microbial Activity in Nature FISH-MAR: MicroAuto- Radiography

54 Colin Murrell Microbial Activity in Nature This cell metabolizes 13 C substrate 13 C-DNA 12 C-DNA Environmental sample Feed 13 C substrate These cells do not metabolize 13 C substrate Extract DNA 12 C-DNA Separate light (12C) from heavy ( 13 C) DNA 13 C-DNA Remove and analyze (PCR 16S rrna or metabolic genes, or do genomics) Ultracentrifuge tube with DNA SIP: Stable Isotope Probing

55 Microbial Activity in Nature Single-Cell Genomics: Label cells by FISH Isolate fluorescent cells by flow cytometry Extract DNA PCR DNA Multiple displacement amplification (MDA) and sequencing Primers Phage DNA polymerase MDA: Multiple Displacement Amplification Assay for specific genes (16S rrna genes, metabolic genes, etc.) A B C Sequence genome

Microbiology. Zhenmei Lu ( 吕镇梅 ) 2010 Spring-Summer 2017 Spring-Summer

Microbiology. Zhenmei Lu ( 吕镇梅 ) 2010 Spring-Summer 2017 Spring-Summer Microbiology Zhenmei Lu ( 吕镇梅 ) lzhenmei@zju.edu.cn 2010 Spring-Summer 2017 Spring-Summer Chapter 23 Microbial Ecosystems 23.1 Ecological Concepts Ecosystem: a dynamic complex of plant, animal, and microbial

More information

Methods in Microbial Ecology

Methods in Microbial Ecology LECTURE PRESENTATIONS For BROCK BIOLOGY OF MICROORGANISMS, THIRTEENTH EDITION Michael T. Madigan, John M. Martinko, David A. Stahl, David P. Clark Chapter 22 Lectures by John Zamora Middle Tennessee State

More information

MMG 301 Dr. Frank Dazzo Microbial Ecology: Methodology & Soil Microbiology. Some methods used to study microbes in natural habitats:

MMG 301 Dr. Frank Dazzo Microbial Ecology: Methodology & Soil Microbiology. Some methods used to study microbes in natural habitats: MMG 301 Dr. Frank Dazzo Microbial Ecology: Methodology & Soil Microbiology Some methods used to study microbes in natural habitats: Microbial abundance: microscopy, computer-assisted image analysis measurement

More information

Day 3. Examine gels from PCR. Learn about more molecular methods in microbial ecology

Day 3. Examine gels from PCR. Learn about more molecular methods in microbial ecology Day 3 Examine gels from PCR Learn about more molecular methods in microbial ecology Genes We Targeted 1: dsrab 1800bp 2: mcra 750bp 3: Bacteria 1450bp 4: Archaea 950bp 5: Archaea + 950bp 6: Negative control

More information

Day 3. Examine gels from PCR. Learn about more molecular methods in microbial ecology

Day 3. Examine gels from PCR. Learn about more molecular methods in microbial ecology Day 3 Examine gels from PCR Learn about more molecular methods in microbial ecology 1: dsrab 1800bp 2: mcra 750bp 3: Bacteria 1450bp 4: Archaea 950bp 5: Archaea + 950bp 6: Negative control Genes We Targeted

More information

Major Microbial Habitats and Diversity

Major Microbial Habitats and Diversity LECTURE PRESENTATIONS For BROCK BIOLOGY OF MICROORGANISMS, THIRTEENTH EDITION Michael T. Madigan, John M. Martinko, David A. Stahl, David P. Clark Chapter 23 Lectures by John Zamora Middle Tennessee State

More information

Insight into microbial world molecular biology research in environmental microbiology

Insight into microbial world molecular biology research in environmental microbiology Insight into microbial world molecular biology research in environmental microbiology Aleksandra Ziembi ska The Silesian University of Technology, Environmental Biotechnology Department aleksandra.ziembinska@polsl.pl

More information

Importance. Prokaryotes vs. Eukaryotes. Viruses: a form of life or not?

Importance. Prokaryotes vs. Eukaryotes. Viruses: a form of life or not? 1 Importance Microorganisms (esp. bacteria) plays a key role in the decomposition and stabilization of organic matter Control of diseases caused by pathogenic organisms of human origin Prokaryotes vs.

More information

Microbial Diversity and Assessment (III) Spring, 2007 Guangyi Wang, Ph.D. POST103B

Microbial Diversity and Assessment (III) Spring, 2007 Guangyi Wang, Ph.D. POST103B Microbial Diversity and Assessment (III) Spring, 2007 Guangyi Wang, Ph.D. POST103B guangyi@hawaii.edu http://www.soest.hawaii.edu/marinefungi/ocn403webpage.htm Overview of Last Lecture Taxonomy (three

More information

Day 3. Examine gels from PCR. Learn about more molecular methods in microbial ecology. Tour the Bay Paul Center Keck Sequencing Facility

Day 3. Examine gels from PCR. Learn about more molecular methods in microbial ecology. Tour the Bay Paul Center Keck Sequencing Facility Day 3 Examine gels from PCR Learn about more molecular methods in microbial ecology Tour the Bay Paul Center Keck Sequencing Facility 1: dsrab 1800bp 2: mcra 750bp 3: Bacteria 1450bp 4: Archaea 950bp 5:

More information

3 3 Cycles of Matter

3 3 Cycles of Matter 3 3 Cycles of Matter Recycling in the Biosphere Energy - one way flow matter - recycled within and between ecosystems. biogeochemical cycles matter Elements, chemical compounds, and other forms passed

More information

3 3 Cycles of Matter Slide 1 of 33

3 3 Cycles of Matter Slide 1 of 33 1 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within and between ecosystems.

More information

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem?

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem? 2 of 33 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? 3 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the

More information

Molecular Methods in Microbial Ecology

Molecular Methods in Microbial Ecology Molecular Methods in Microbial Ecology Contact Info: Julie Huber, jhuber@whoi.edu Schedule: Tuesday 10/24/17 Introduction, Extraction of DNA from Winogradsky columns Run DNA products on gel Thursday 10/26/17

More information

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Chapter Two: Cycles of Matter (pages 32-65) 2.2 Biogeochemical Cycles (pages 42 52) In order to survive and grow, organisms must obtain nutrients that serve as sources of energy or chemical building blocks,

More information

Classification of Microorganisms

Classification of Microorganisms PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 10 Classification of Microorganisms The Study of Phylogenetic Relationships Taxonomy is the science

More information

Nitrogen & Bacteria. A biological journey through the environment

Nitrogen & Bacteria. A biological journey through the environment Nitrogen & Bacteria A biological journey through the environment Sources of Nitrogen to the Environment Agricultural Natural Industrial Transportation Nitrogen as a pollutant Too much Nitrogen can cause

More information

MICROBES IN ECOLOGY INTRODUCTION

MICROBES IN ECOLOGY INTRODUCTION MICROBES IN ECOLOGY INTRODUCTION - Microbes usually live in communities and rarely as individuals They are Present in every known ecosystem Over 99% of microbes contribute to the quality of human life

More information

Chapter 4B: Methods of Microbial Identification. Chapter Reading pp , ,

Chapter 4B: Methods of Microbial Identification. Chapter Reading pp , , Chapter 4B: Methods of Microbial Identification Chapter Reading pp. 118-121, 244-245, 250-251 Biochemical Testing In addition to morphological (i.e., appearance under the microscope) and differential staining

More information

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Biology 1 of 33 2 of 33 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? 3 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move

More information

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Biology 1 of 33 2 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within

More information

3 3 Cycles of Matter. EOC Review

3 3 Cycles of Matter. EOC Review EOC Review A freshwater plant is placed in a salt marsh. Predict the direction in which water will move across the plant s cell wall, and the effect of that movement on the plant. a. Water would move out

More information

1. Where are nutrients accumulated or stored for short or long periods?

1. Where are nutrients accumulated or stored for short or long periods? Use with textbook pages 68 87. Nutrient cycles Answer the questions below. Comprehension 1. Where are nutrients accumulated or stored for short or long periods? 2. Name a biotic process and an abiotic

More information

Characterizing Phenotypes of Bacteria by Staining Method

Characterizing Phenotypes of Bacteria by Staining Method Experiment 3 Laboratory to Biology III Diversity of Microorganisms / Wintersemester / page 1 Experiment 3 Characterizing Phenotypes of Bacteria by Staining Method Advisor NN Reading Chapters in BBOM 9

More information

5/6/2015. Matter is recycled within and between ecosystems.

5/6/2015. Matter is recycled within and between ecosystems. Biogeochemical Cycles/ Nutrient Cycles Biogeochemical Cycle Evaporation Water Cycle Transpiration Condensation Precipitation Runoff Vocabulary Seepage Root Uptake Carbon Cycle Phosphorus Cycle Nitrogen

More information

Characterizing Phenotypes of Bacteria by Staining Method

Characterizing Phenotypes of Bacteria by Staining Method Experiment 3 Laboratory to Biology III Diversity of Microorganisms / Wintersemester / page 1 Experiment Characterizing Phenotypes of Bacteria by Staining Method Advisor Reading NN Chapters 3.1, 3.7, 3.8,

More information

Ecosystems and Nutrient Cycles Chapters 3

Ecosystems and Nutrient Cycles Chapters 3 Ecosystems and Nutrient Cycles Chapters 3 Prokaryotic and Eukaryotic cells Figure 3-2 Prokaryotic cells: Have organelles. Bacteria and Archaea are composed of prokaryotic cells. Eukaryotic cells: cells,

More information

How to quantify bacteria in sediments?

How to quantify bacteria in sediments? How to quantify bacteria in sediments? Parkes, R.J., B.A. Cragg and P. Wellsbury, 2000 Phasecontrast microscopy Counting chamber (Thoma, Petroff-Hausser,...) Only feasable for liquid samples. Perry & Staley,

More information

3 3 CYCLES OF MATTER

3 3 CYCLES OF MATTER 3 3 CYCLES OF MATTER REVIEW: 1. What is an element? 2. What is a compound? 3. What are the 6 elements that are most important to living things? Matter = a substance that takes up space. BIOGEOCHEMICAL

More information

1. Energy to do work 2. Raw material to build/repair things (nutrients)

1. Energy to do work 2. Raw material to build/repair things (nutrients) 1. Energy to do work 2. Raw material to build/repair things (nutrients) Living things are built from water Nutrients: carbon, hydrogen, nitrogen, and oxygen 3. Essential nutrients are cycled through environment

More information

10/18/2010 THINK ABOUT IT CHAPTER 3 THE BIOSHPERE RECYCLING IN THE BIOSPHERE RECYCLING IN THE BIOSPHERE

10/18/2010 THINK ABOUT IT CHAPTER 3 THE BIOSHPERE RECYCLING IN THE BIOSPHERE RECYCLING IN THE BIOSPHERE THINK ABOUT IT CHAPTER 3 THE BIOSHPERE 3.4 Mrs. Michaelsen A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them

More information

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein!

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! Nitrogen Cycle 2.2 WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! In animals, proteins are vital for muscle function. In plants, nitrogen is important for growth. NITROGEN Nitrogen

More information

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Cycles of Matter 1 of 33 The purpose of this lesson is to learn the water, carbon, nitrogen, and phosphorus cycles. This PowerPoint will provide most of the required information you need to accomplish

More information

Chapter 10: Classification of Microorganisms

Chapter 10: Classification of Microorganisms Chapter 10: Classification of Microorganisms 1. The Taxonomic Hierarchy 2. Methods of Identification 1. The Taxonomic Hierarchy Phylogenetic Tree of the 3 Domains Taxonomic Hierarchy 8 successive taxa

More information

Requirements for Growth

Requirements for Growth Requirements for Growth Definition: Bacterial growth defined as an increase in the number of cells. Physical Requirements: temperature, ph, tonicity Temperature: On the basis of growth range of temperature

More information

Microbiology Exam 2, 2/27/07 Name

Microbiology Exam 2, 2/27/07 Name Microbiology Exam 2, 2/27/07 Name 1. (2 pts) Catabolism refers to D, whereas anabolism refers to A. (be sure to fill in the blanks!) a. synthesis of cell structures b. transfer of electrons c. uptake of

More information

OPTION C.6 NITROGEN & PHOSPHORUS CYCLES

OPTION C.6 NITROGEN & PHOSPHORUS CYCLES OPTION C.6 NITROGEN & PHOSPHORUS CYCLES C.6 A Cycle INTRO https://www.thewastewaterblog.com/single-post/2017/04/29/-cycle-and-other-graphics IB BIO C.6 3 The nitrogen cycle describes the movement of nitrogen

More information

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter Lesson Overview 3.4 THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them up, so where do essential

More information

UNIT 1 SUSTAINING ECOSYSTEMS

UNIT 1 SUSTAINING ECOSYSTEMS UNIT 1 SUSTAINING ECOSYSTEMS Chapter 2 Biogeochemical Cycles Science 10 Change & Recovery in Ecosystems (you do not need to copy) What happens to the materials that make up a truck when it begins to rust?

More information

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter Lesson Overview Cycles of Ma,er Lesson Overview 3.4 Cycles of Matter THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these

More information

Background. Biogeochemical Role. Archaeal Nitrification in the Ocean by Cornelia Wutcher et al Presenters: Brian Drupieski and Megan McCurdy

Background. Biogeochemical Role. Archaeal Nitrification in the Ocean by Cornelia Wutcher et al Presenters: Brian Drupieski and Megan McCurdy Archaeal Nitrification in the Ocean by Cornelia Wutcher et al. 2006. Presenters: Brian Drupieski and Megan McCurdy Background Crenarchaeota From the kingdom Archaea Most abundant oceanic prokaryote Limited

More information

The rest of this article describes four biogeochemical cycles: the water cycle, carbon cycle, nitrogen cycle, and phosphorous cycle.

The rest of this article describes four biogeochemical cycles: the water cycle, carbon cycle, nitrogen cycle, and phosphorous cycle. BIOGEOCHEMICAL CYCLES The chemical elements and water that are needed by living things keep recycling over and over on Earth. These cycles are called biogeochemical cycles. They pass back and forth through

More information

Nutrient Cycles. Nutrient cycles involve flow of high quality energy from the sun through the environment & of elements.

Nutrient Cycles. Nutrient cycles involve flow of high quality energy from the sun through the environment & of elements. Nutrient Cycles Nutrient cycles (= biogeochemical cycles): natural processes that involve the flow of nutrients from the environment (air, water, soil, rock) to living organisms ( ) & back again. Nutrient

More information

BIOGEOCHEMICAL CYCLES

BIOGEOCHEMICAL CYCLES BIOGEOCHEMICAL CYCLES BIOGEOCHEMICAL CYCLES A biogeochemical cycle or cycling of substances is a pathway by which a chemical element or molecule moves through both biotic and abiotic compartments of Earth.

More information

THE CYCLING OF NUTRIENTS

THE CYCLING OF NUTRIENTS Unit 4 THE CYCLING OF NUTRIENTS LEARNING OBJECTIVES 1. Recognize the need for the recycling of the earth s chemicals and the consequences if this is not done. 2. Learn the difference between a global cycle

More information

Mochamad Nurcholis. Food Technology Department Agricuktural Technology Faculty Brawijaya University 2013

Mochamad Nurcholis. Food Technology Department Agricuktural Technology Faculty Brawijaya University 2013 Mochamad Nurcholis Food Technology Department Agricuktural Technology Faculty Brawijaya University 2013 Microbial Identification Type Conventional Identification DNA Hybridization PCR Amplification DNA

More information

Lab 2-Microbial Enumeration

Lab 2-Microbial Enumeration Lab 2-Microbial Enumeration 2/19/08 CE 573 Introduction There are many different techniques that can be utilized when trying to quantify microorganisms found in a given sample. The purpose of this lab

More information

2010BPS Systems Microbiology Quiz questions

2010BPS Systems Microbiology Quiz questions 2010BPS Systems Microbiology Quiz questions INSTRUCTIONS: 1. Write your name on the answer books provided. 2. Write only the correct alphabet against the question number in your answer books provided.

More information

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17 Chapter 3 Ecosystem Ecology Reversing Deforestation in Haiti Answers the following: Why is deforestation in Haiti so common? What the negative impacts of deforestation? Name three actions intended counteract

More information

Winogradoky, was prepared by filling a large lass cylinder (2,000 ml) about one fourth full with organic rich sulfide containing mud from the

Winogradoky, was prepared by filling a large lass cylinder (2,000 ml) about one fourth full with organic rich sulfide containing mud from the two strategies were employed Sippewisset marsh. The mud was spiked with calciumsulfate as sulfate source. The mud was then covered with seawater till to the top and microscopical observation showed an

More information

Chapter 6: Microbial Growth

Chapter 6: Microbial Growth Chapter 6: Microbial Growth 1. Requirements for Growth 2. Culturing Microorganisms 3. Patterns of Microbial Growth 1. Requirements for Growth Factors that affect Microbial Growth Microbial growth depends

More information

Taxonomy. Classification of microorganisms 3/12/2017. Is the study of classification. Chapter 10 BIO 220

Taxonomy. Classification of microorganisms 3/12/2017. Is the study of classification. Chapter 10 BIO 220 Taxonomy Is the study of classification Organisms are classified based on relatedness to each other Chapter 10 BIO 220 Fig. 10.1 1 Species Binomial nomenclature for species identification A eukaryotic

More information

Contents. 1 Basic Molecular Microbiology of Bacteria... 1 Exp. 1.1 Isolation of Genomic DNA Introduction Principle...

Contents. 1 Basic Molecular Microbiology of Bacteria... 1 Exp. 1.1 Isolation of Genomic DNA Introduction Principle... Contents 1 Basic Molecular Microbiology of Bacteria... 1 Exp. 1.1 Isolation of Genomic DNA... 1 Introduction... 1 Principle... 1 Reagents Required and Their Role... 2 Procedure... 3 Observation... 4 Result

More information

Fundamentals and Applications of Biofilms Analysis, Structure and Physiology of Bacterial Biofilms Ching-Tsan Huang ( 黃慶璨 ) Office: Agronomy

Fundamentals and Applications of Biofilms Analysis, Structure and Physiology of Bacterial Biofilms Ching-Tsan Huang ( 黃慶璨 ) Office: Agronomy 1 Fundamentals and Applications of Biofilms Analysis, Structure and Physiology of Bacterial Biofilms Ching-Tsan Huang ( 黃慶璨 ) Office: Agronomy Building, Room 111 Tel: (02) 33664454 E-mail: cthuang@ntu.edu.tw

More information

A functional gene approach to studying nitrogen cycling in the sea. Matthew Church (MSB 612 / March 20, 2007

A functional gene approach to studying nitrogen cycling in the sea. Matthew Church (MSB 612 / March 20, 2007 A functional gene approach to studying nitrogen cycling in the sea Matthew Church (MSB 612 / 6-8779 mjchurch@hawaii.edu) March 20, 2007 Overview Climate change, carbon cycling, and ocean biology Distributions

More information

Do Now. Take out your activity you completed on Friday when I wasn t here!

Do Now. Take out your activity you completed on Friday when I wasn t here! Do Now Take out your activity you completed on Friday when I wasn t here! Biogeochemical Cycles 37.18-37.23 Objectives Identify and describe the flow of nutrients in each biogeochemical cycle Explain the

More information

Ecology, the Environment, and Us

Ecology, the Environment, and Us BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 23 Ecology, the Environment, and Us Lecture Presentation Anne Gasc Hawaii Pacific University and University

More information

Chapter 10 Analytical Biotechnology and the Human Genome

Chapter 10 Analytical Biotechnology and the Human Genome Chapter 10 Analytical Biotechnology and the Human Genome Chapter Outline Enzyme tests and biosensors DNA-based tests DNA analysis technologies Human genome and genome-based analytical methods 1 Enzyme-based

More information

TABLE OF CONTENTS. 4, Environmental Chemistry 2, Biogeochemical cycle of carbon and nitrogen

TABLE OF CONTENTS. 4, Environmental Chemistry 2, Biogeochemical cycle of carbon and nitrogen Subject Paper No and Title Module No and Title Module Tag CHE_P4_M2 TABLE OF CONTENTS 1. Learning outcomes 2. Introduction 2.1. Bio-distribution of elements 2.2. Biogeochemical cycles 3. Carbon cycle 3.1.

More information

Bacteria in the aqua-c environment. Takeshi TERAHARA Assist. Prof. Tokyo University of Marine Science and Technology (TUMSAT)

Bacteria in the aqua-c environment. Takeshi TERAHARA Assist. Prof. Tokyo University of Marine Science and Technology (TUMSAT) Bacteria in the aqua-c environment Takeshi TERAHARA Assist. Prof. Tokyo University of Marine Science and Technology (TUMSAT) How many microorganism live in just 1 ml of seawater? Up to a million of microorganisms!!

More information

13.5. Cycling of Matter. Water cycles through the environment.

13.5. Cycling of Matter. Water cycles through the environment. 13.5 Cycling of Matter VOCABULARY hydrologic cycle biogeochemical cycle nitrogen fixation KEY CONCEPT Matter cycles in and out of an ecosystem. Main Ideas Water cycles through the environment. Elements

More information

Ecology Part 2. Living Environment

Ecology Part 2. Living Environment Ecology Part 2 Living Environment Recycling in the Biosphere Matter is recycled within and between ecosystems Elements, chemical compounds, and other forms of matter are passed from one organism to another

More information

The Nitrogen Cycle. ) in the atmosphere is converted into ammonium ions ( NH 4 + ).

The Nitrogen Cycle. ) in the atmosphere is converted into ammonium ions ( NH 4 + ). The Nitrogen Cycle Nitrogen is essential for many processes; it is crucial for all life on Earth. It is in all amino acids, is incorporated into proteins, and is present in the bases that make up nucleic

More information

2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE. nutrients: aka.

2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE. nutrients: aka. 2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE nutrients: stores: aka Nutrients are accumulated for short or long periods

More information

Index. Index 419. B Bacillus mojavensis, Bacterial cells, 14, 17, 21, 103, 104, 147, 182, 183, 214, 354, 360, 370, 398 isolation, 14, 370

Index. Index 419. B Bacillus mojavensis, Bacterial cells, 14, 17, 21, 103, 104, 147, 182, 183, 214, 354, 360, 370, 398 isolation, 14, 370 Index 419 Index 13 C NMR, in vivo, 173 175, 183 186, 396, 402 16S rdna, 3 8, 25, 30, 31, 56 58, 159, 160, 235, 412 amplification, 23 27, 62, 78 81, 237 240, 325, 407, 408, 411 library construction, 78

More information

SYLLABUS: 53:154 ENVIRONMENTAL MICROBIOLOGY Assoc. Prof. Timothy E. Mattes Phone: Lectures: Mon/Wed/Fri 12:30 1:20 p.m.

SYLLABUS: 53:154 ENVIRONMENTAL MICROBIOLOGY Assoc. Prof. Timothy E. Mattes Phone: Lectures: Mon/Wed/Fri 12:30 1:20 p.m. SYLLABUS: 53:154 ENVIRONMENTAL MICROBIOLOGY Assoc. Prof. Timothy E. Mattes Phone: 335-5065 Lectures: Mon/Wed/Fri 12:30 1:20 p.m. 3026 SC Labs: Wednesdays 3:30 5:30 p.m. 1246 SC Office Hours: Tues/Thurs

More information

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat Name Period Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish an ecosystem from a community. Describe the diversity of a representative ecosystem. Sequence the process of succession. Interactions

More information

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment.

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOCHEMIST: Scientists who study how LIFE WORKS at a CHEMICAL level. The work of biochemists has

More information

Chapter 34 Nature of Ecosystems. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 34 Nature of Ecosystems. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 34 Nature of Ecosystems 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 34.1 The Biotic Components of Ecosystems Ecosystems Abiotic components include

More information

Elements essential for life also cycle through ecosystems.

Elements essential for life also cycle through ecosystems. 13.5 Cycling of Matter KEY CONCEPT Matter cycles in and out of an ecosystem. MAIN IDEAS Water cycles through the environment. Elements essential for life also cycle through ecosystems. VOCABULARY hydrologic

More information

Nitrogen Cycle Game. Read the information below and answer the questions that follow.

Nitrogen Cycle Game. Read the information below and answer the questions that follow. Nitrogen Cycle Game Read the information below and answer the questions that follow. The nitrogen cycle is one of the biogeochemical cycles and is very important for ecosystems. Nitrogen cycles slowly

More information

The Biosphere and Biogeochemical Cycles

The Biosphere and Biogeochemical Cycles The Biosphere and Biogeochemical Cycles The Earth consists of 4 overlapping layers: Lithosphere Hydrosphere (and cryosphere) Atmosphere Biosphere The Biosphere The biosphere is the layer of life around

More information

Nutrient Cycling & Soils

Nutrient Cycling & Soils Nutrient Cycling & Soils tutorial by Paul Rich Outline 1. Nutrient Cycles What are nutrient cycles? major cycles 2. Water Cycle 3. Carbon Cycle 4. Nitrogen Cycle 5. Phosphorus Cycle 6. Sulfur Cycle 7.

More information

Aerobic and Anaerobic Biodegradation. Danny Clark ENSO Bottles LLC 06/29/2010

Aerobic and Anaerobic Biodegradation. Danny Clark ENSO Bottles LLC 06/29/2010 2010 Aerobic and Anaerobic Biodegradation Danny Clark ENSO Bottles LLC 06/29/2010 Aerobic and Anaerobic Biodegradation A look into aerobic and anaerobic biodegradation By Danny Clark ENSO Bottles, LLC

More information

Foundations in Microbiology Seventh Edition

Foundations in Microbiology Seventh Edition Lecture PowerPoint to accompany Foundations in Microbiology Seventh Edition Talaro Chapter 26 Environmental Microbiology Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or

More information

NUTRIENT CYCLES REVIEW

NUTRIENT CYCLES REVIEW 52 Name A.P. Environmental Science Date Mr. Romano NUTRIENT CYCLES REVIEW 1. Which of the following chain of events would occur as a result of land clearing/deforestation? (vocabulary check: efflux means

More information

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems.

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems. AP BIOLOGY ECOLOGY ACTIVITY #5 Ecosystems NAME DATE HOUR An ecosystem consists of all the organisms living in a community as well as all the abiotic factors with which they interact. The dynamics of an

More information

Main Topics. Microbial habitats. Microbial habitats. Lecture 21: Bacterial diversity and Microbial Ecology. Ecological characteristics of bacteria

Main Topics. Microbial habitats. Microbial habitats. Lecture 21: Bacterial diversity and Microbial Ecology. Ecological characteristics of bacteria Lecture 21: Bacterial diversity and Microbial Ecology Dr Mike Dyall-Smith Haloarchaea Research Lab., Lab 3.07 mlds@unimelb.edu.au Ref: Prescott, Harley & Klein, 6th ed., parts of chapters 21-24 (refer

More information

MMG301 Dr. Frank Dazzo Aquatic & Wastewater Microbiology

MMG301 Dr. Frank Dazzo Aquatic & Wastewater Microbiology MMG301 Dr. Frank Dazzo Aquatic & Wastewater Microbiology Natural aquatic habitats for microorganisms include lakes, ponds, rivers, springs, oceans estuaries, marshes. The concentration, mixing and movement

More information

Another cause of diversity may be the creation of different habitats within a region by periodic disturbance A community that forms if the land is

Another cause of diversity may be the creation of different habitats within a region by periodic disturbance A community that forms if the land is Another cause of diversity may be the creation of different habitats within a region by periodic disturbance A community that forms if the land is undisturbed and that perpetuates itself for as long as

More information

Unit 2: Ecology. Chapters 2: Principles of Ecology

Unit 2: Ecology. Chapters 2: Principles of Ecology Unit 2: Ecology Chapters 2: Principles of Ecology Ecology Probe: Answer the questions and turn it in! This is a standard aquarium with a population of fish. There is no filter in this aquarium and no one

More information

Molecular Methods in Microbial Ecology

Molecular Methods in Microbial Ecology Molecular Methods in Microbial Ecology Contact Info: Julie Huber Lillie 305 x7291 jhuber@mbl.edu Schedule: 26 Oct: Introductory Lecture, DNA extraction 28 Oct: Run DNA products on gel Lecture on PCR Prepare

More information

Biogeochemical Cycles. Nutrient cycling at its finest!

Biogeochemical Cycles. Nutrient cycling at its finest! Biogeochemical Cycles Nutrient cycling at its finest! Four Criteria for Sustainability Sustainable Ecosystems Need: Reliance on Solar Energy High Biodiversity Population Control Nutrient Cycling This note

More information

WARM UP. What can make up a population?

WARM UP. What can make up a population? WARM UP What can make up a population? 1 ECOSYSTEMS: Cycles www.swpc.noaa.gov/ 2 Biochemical Cycling Cycling of nutrients called biogeochemical cycling Move nutrients from nonliving world to living organisms

More information

We share the Earth. Ecology & Environmental Issues

We share the Earth. Ecology & Environmental Issues We share the Earth Ecology & Environmental Issues 1 with a whole lot of other creatures We don t share very well. 2 Ecology Putting it all together study of interactions between creatures & their environment,

More information

What shapes the metabolic and phylogenetic structure of microbial communities in aquatic systems?

What shapes the metabolic and phylogenetic structure of microbial communities in aquatic systems? What shapes the metabolic and phylogenetic structure of microbial communities in aquatic systems? What is a microbial food web and what is the ecological importance? Marine Microbial Food Web Dynamics

More information

4/13/2015. The Biosphere

4/13/2015. The Biosphere The Biosphere Ecology- the scientific study of interactions among organisms and between organisms and their environment. The word ecology was first used in 1866 by Ernst Haeckel. Biosphere- contains the

More information

EQ: How are nutrients recycled throughout the environment?

EQ: How are nutrients recycled throughout the environment? EQ: How are nutrients recycled throughout the environment? Biogeochemical Cycles Recall that matter is neither created nor destroyed; but it can transform and be passed on. Biogeochemical cycles: how water,

More information

TERRESTRIAL ECOLOGY PART DUEX. Biogeochemical Cycles Biomes Succession

TERRESTRIAL ECOLOGY PART DUEX. Biogeochemical Cycles Biomes Succession DO NOW: -GRAB PAPERS FOR TODAY -GET A HIGHLIGHTER -UPDATE HW FOR TONIGHT COMPLETE AQUATIC ECOLOGY PACKET (INCLUDES VIDEO) -BEGIN READING THROUGH THE LECTURE TERRESTRIAL ECOLOGY PART DUEX Biogeochemical

More information

MLA Header: coal oil natural gas burning of fossil fuels volcanoes photosynthesis respiration ocean sugar greenhouse decayed

MLA Header: coal oil natural gas burning of fossil fuels volcanoes photosynthesis respiration ocean sugar greenhouse decayed MLA Header: s worksheet Please answer the following using the words in the text box. Carbon coal oil natural gas burning of fossil fuels volcanoes photosynthesis respiration ocean sugar greenhouse decayed

More information

CYCLES OF MATTER NATURAL WORLD

CYCLES OF MATTER NATURAL WORLD CYCLES OF MATTER NATURAL WORLD Objectives Describe how matter cycles between the living and nonliving parts of an ecosystem. Explain why nutrients are important in living systems. Describe how the availability

More information

Ch. 5 - Nutrient Cycles and Soils

Ch. 5 - Nutrient Cycles and Soils Ch. 5 - Nutrient Cycles and Soils What are Nutrient (biogeochemical) Cycles? a process by which nutrients are recycled between living organisms and nonliving environment. The three general types of nutrient

More information

2/25/2013. Psychrotrophs Grow between 0 C and C Cause food spoilage Food Preservation Temperatures

2/25/2013. Psychrotrophs Grow between 0 C and C Cause food spoilage Food Preservation Temperatures 3 4 5 6 7 8 9 0 Chapter 6 Microbial Growth Microbial Growth Increase in number of cells, not cell size Populations Colonies The Requirements for Growth Physical requirements Temperature ph Osmotic pressure

More information

Microbial communities in restored freshwater wetlands. Susannah Green Tringe DOE Joint Genome Institute INTECOL, June 5, 2012

Microbial communities in restored freshwater wetlands. Susannah Green Tringe DOE Joint Genome Institute INTECOL, June 5, 2012 Microbial communities in restored freshwater wetlands Susannah Green Tringe DOE Joint Genome Institute INTECOL, June 5, 2012 Talk outline Project motivation and background Metagenomics and carbon cycling

More information

Ecosystems: Nutrient Cycles

Ecosystems: Nutrient Cycles Ecosystems: Nutrient Cycles Greeks, Native Peoples, Buddhism, Hinduism use(d) Earth, Air, Fire, and Water as the main elements of their faith/culture Cycling in Ecosystems the Hydrologic Cycle What are

More information

Cell Growth and DNA Extraction- Technion igem HS

Cell Growth and DNA Extraction- Technion igem HS Growing Cells and DNA Extraction Goals 1. Become familiar with the process of growing bacteria 2. Get to know the DNA extraction process 3. Perform miniprep in the lab Keywords 1. Growth stages 6. Techniques

More information

The Biosphere Chapter 3. What Is Ecology? Section 3-1

The Biosphere Chapter 3. What Is Ecology? Section 3-1 The Biosphere Chapter 3 What Is Ecology? Section 3-1 Interactions and Interdependence Ecology is the scientific study of interactions among organisms and between organisms and their environment, or surroundings.

More information

Genomics 101: How genomics can assist in MIC management

Genomics 101: How genomics can assist in MIC management Genomics 101: How genomics can assist in MIC management Lisa Gieg Biological Sciences 1 Microbiological Monitoring ATP Assay Bug bottles Molecular Microbiological Methods (MMM) a.k.a. Genomics, NGS 2 Microbiological

More information

Determining the f ratio 11/16/2010. Incubate seawater in the presence of trace 15

Determining the f ratio 11/16/2010. Incubate seawater in the presence of trace 15 Plankton production is supported by 2 types of nitrogen: 1) new production supported by external sources of N (e.g. NO 3 and N 2 ), 2) recycled or regenerated production, sustained by recycling of N. Assumptions:

More information

Aerobic and Anaerobic Biodegradation

Aerobic and Anaerobic Biodegradation Polimernet Plastik San.Tic.Ltd.Şti. Tel:+90 216 393 77 46 / Email: info@polimernet.com www.polimernet.com 1 Aerobic and Anaerobic Biodegradation This document provides an in depth explanation, detailing

More information