1. Singly curved shells like cylindrical shells 2. Doubly curved or spherical shells

Size: px
Start display at page:

Download "1. Singly curved shells like cylindrical shells 2. Doubly curved or spherical shells"

Transcription

1 UNIT IV PART A 1. What are shells? (N/D 16), (M/J 12) Shells are three dimensional structures constructed as storage tanks or roof for large column free areas, such as exhibition halls, sports complex or theatres. 2. What are launching girders? (N/D 16) For erection of large beams in buildings or bridges, temporary girders are used. Such girders are called launching girders. Launching girders are usually of steel as it would be light compared to concrete girders 3. Write a note on offshore platform (M/J 16) Offshore platforms are structures constructed in the ocean to explore or to produce oil and gas from the sources found below the sea. Offshore platforms are in steel or in concrete 4. Define articulated structures (M/J 16) A structure in which relative motion is allowed to occur between parts, usually by means of a hinged or sliding joint or joints. 5. What are the precautions to be taken while erecting light weight components on tall structures? (M/J 12) The precautions to be taken while erecting light weight components on tall structures are, a) Excellent coordination and site organization have to be maintained b) All heavy equipments like generators, lightning system, twists, etc., are to be in working condition c) Adequate communication facility should be coordinated between ground level, crane drivers, ship format and twist operators. 6. What are the three common tower crane configurations? (N/D 11) The three common tower crane configurations are, a) Static tower cranes b) Travelling tower cranes c) Climbing tower cranes

2 7. What are cooling towers? (N/D 10) Cooling Towers are used to cool the water that is used to recon dense the steam that is used to generate electricity. 8. Define Braced Domes. (N/D 10) Braced domes are composed either of members lying of a surface of revolution of straight members with their connecting points lying on such a surface, an arrangement which avoids any obstruction of the inner space. This arrangement generally results in a dome of circular tone or in one truncated into a polygonal base, domes with elliptical or oval plan have been used in rare cases. 9. What are the systems of pre stressing? (N/D 11) 1. Freyssinet System 2. Magnel-blaton System 3. Lee-Mc. Call or stress steel system 1. What are the advantages of pre stressed cement concrete? (N/D 15) 1. It is possible to take the full advantage of compressive strength of concrete and high tensile strength of the steel used to 30% of the concrete is saved to 80% of the steel is saved. 4. Prestressed concrete members are thinner in section and hence there is greater reduction of the self-weight of the member. 2. How are domes erected? (N/D 12) Domes are usually erected with a central temporary support on which the supporting ring rests. If the span is greater than 40 50m, the tower of an erecting frame serves the support. 3. What are shells? (N/D 16) Shells are three dimensional structures constructed as storage tanks or roof for large column free areas, such as exhibition halls, sports complex or theatres. 4. How are shells classified? (N/D 11) 1. Singly curved shells like cylindrical shells 2. Doubly curved or spherical shells 5. What is a sky scraper? (N/D 15) A skyscraper is a tall, continuously habitable building of many storeys, usually designed for office and commercial use. There is no official definition or height above which a building may be classified as a skyscraper. One common feature of skyscrapers is having a steel framework that supports curtain walls. These curtain walls either bear on the framework below or are possibly suspended from the framework above, rather than load-bearing walls of conventional construction.

3 6. What are tall structures? (N/D 13) Transmission towers are tall structures with relatively small cross section and with a large ration between the height and the maximum. Tall buildings are generally multi storeyed structure where greater part of the construction is composed of beams and stancheons. 7. Define Braced Domes(A/M 11) Braced domes are composed either of members lying of a surface of revolution of straight members with their connecting points lying on such a surface, an arrangement which avoids any obstruction of the inner space. This arrangement generally results in a dome of circular tone or in one truncated into a polygonal base, domes with elliptical or oval plan have been used in rare cases 8. Distinguish between silos and bunkers. (N/D 11) Silos A silo is a structure for storing bulk materials. Silos are used in agriculture to store grain or fermented feed known as silage. Silos are more commonly used for bulk storage of grain, coal, cement, carbon black, woodchips, food products and sawdust. Silos are mostly above the ground Bunkers A bunker is a defensive military fortification designed to protect the inhabitants from falling bombs or other attacks. They were used extensively in World War I, World War II, and the Cold War for weapons facilities, command and control centers, and storage facilities. Bunkers are mostly below the ground PART B 1. Describe in detail about shell roof structures (N/D 16) (M/J 15) Shells are 3d structures constructed on storage tanks or roof for large column area such as indoor stadiums, exhibition halls, theatres, complex churches etc Classification Singly curved Double curved Cylindrical shells Singly curved It can be used for rectangular shape buildings, shells represents the roof of the building Dome storage

4 tank for water and petroleum is example for single curved Doubly curved For doubly curved structures the super structure should be in hexagonal or circular shape Cylindrical shape These are just modification of pitched roof and frequently employed in modern age construction It has two types North light shell roof Barrel vault shell roof Both are different to provide lighting effect in factories In barell vault ventilation s provided in middle Special Forms for Concrete Shells A thin shell concrete structure, is a structure composed of a relatively thin shell of concrete, usually with no interior columns or exterior buttresses. The shells are most commonly flat plates and domes, but may also take the form of ellipsoids or cylindrical sections, or some combination thereof. Types and Forms of Shell Structure Folded Plates Barrel Vaults Short Shells Domes of Revolution Folded Plate Domes Intersection Shells Warped Surfaces Combinations Shell Arches Folded Plates The elements of a folded plate structure are similar to those of a barrel shell except that all elements are planar, and the moments in the slab elements are affected by the differential movement of the joints. For the structure shown, the end supports and the side supports are both complete walls

5 Barrel Shells The elements of a barrel shell are: (1) The cylinder, (2) The frame or ties at the ends, including the columns, and

6 (3) The side elements, which may be a cylindrical element, a folded plate element, columns, or all combined. For the shell shown in the sketch, the end frame is solid and the side element is a vertical beam. A barrel shell carries load longitudinally as a beam and transversally as an arch. The arch, however, is supported by internal shears, and so may be calculated. The elements of a folded plate structure are similar to those of a barrel shell except that all elements are planar, and the moments in the slab elements are affected by the differential movement of the joints. For the structure shown, the end supports and the side supports are both complete walls The elements of a short shell are the barrel, which is relatively short compared to radius, the element at the base of the cylinder to pick up the arch loads, and the arches or rigid frame to pick up the entire ensemble. In this case it is a rigid frame arch. The size of the arch could have been reduced by horizontal ties at the springings. There may be multiple spans. The short shell carries loads in two ways: (1) As an arch carrying load to the lower elements. and (2) As as a curved beam to the arches. The thickness of the shell can be quite thin due to these properties. 1. Explain Domes (N/D 11) [N/D- 14] Domes

7 Domes are membrane structures, the internal stresses are tension and compression and are statically determinate if the proper edge conditions are fulfilled. In a dome of uniform thickness, under its own weight, the ring stresses are compression until the angle to the vertical is about 57 degrees. If the dome is less than a full hemisphere, a ring is required at the base of the dome to contain the forces. Translation Shells A translation shell is a dome set on four arches. The shape is different from a spherical dome and is generated by a vertical circle moving on another circle. All vertical slices have the same radius. It is easier to form than a spherical dome. The stresses in a translation shell are much like a dome at the top, but at the level of the arches, tension forces are offset by compression in the arch. However there are high tension forces in the corner. Advantages of Concrete Shells Like the arch, the curved shapes often used for concrete shells are naturally strong structures, allowing wide areas to be spanned without the use of internal supports, giving an open, unobstructed interior. The use of concrete as a building material reduces both materials cost and a construction cost, as concrete is relatively inexpensive and easily cast into compound curves. The resulting structure may be immensely strong and safe; modern monolithic dome houses, for example, have resisted hurricanes and fires, and are widely considered to be strong enough to withstand even F5 tornadoes.

8 Disadvantages of Concrete Shells Since concrete is porous material, concrete domes often have issues with sealing. If not treated, rainwater can seep through the roof and leak into the interior of the building. On the other hand, the seamless construction of concrete domes prevents air from escaping, and can lead to buildup of condensation on the inside of the shell. Shingling or sealants are common solutions to the problem of exterior moisture, and dehumidifiers or ventilation can address condensation 3.. Explain the general requirements in launching girders. (M/J 16)[N/D-13] Launching girders are most commonly used for placing pre-cast post-tensioned concrete box segments to form viaducts and bridges and are especially useful for lofty structures in marine or congested urban conditions due to their ability to move themselves forward to the next span - hence they are particularly economic for multi-span structures. Curvature can be accommodated by moving laterally on crossbeams and modest gradients can also be accommodated. For most situations the balanced cantilever method is the favoured sequence of construction. Description and Sequence: LGs are relatively large pieces of equipment, their size being based on the maximum spans and segment weights to be erected. A large LG might typically weigh in excess of 800 tonnes and be in the order of 150 to 180 metres in length (as a rule of thumb just over twice the length of the main spans unless intermediate temporary support systems are to be used). Regular inspection maintenance of this equipment to an approved schedule is fundamental to ensure trouble-free and safe operation. Once the LG is in place the basic steps for a typical span construction are:- Delivery of a segment to the LG (at deck level or from ground level) Pick-up and winching of segment into its approximate position Application of epoxy resin to segment faces to be joined Final positioning and temporary stressing for self-support (allowing the segment to be released from LG) Internal permanent post-tensioning sufficient to allow placing of the next segment Repetition for further segments until completion of the cantilevers

9 Form and stress a concrete stitch at mid-span to complete the span Launch the LG to next span Final post-tensioning possibly continuous through more than one span Launching the girder to the next span is usually a multi-stage process involving tiedowns, counterbalancing with pre-cast segments and winches and the use of temporary support legs but the precise procedure to be followed will vary from one piece of equipment to another and must be clearly set out in method statements, and preferably certified by an independent checking engineer. Launching girder in balanced cantilever mode Insurance Aspects: For insurance purposes launching girders may be considered either as contractor s plant or temporary works and this can be an important factor when preparing the policy documents. However, whether treated as plant or temporary works, a failure can have very serious insurance implications including:- Injury or loss of life by operatives and members of the public Third party property damage Damage and delay to the contract works Clearance of debris Claims can arise, and have arisen, either as a result of procedures not being strictly followed or due to failure of the equipment itself and hence the development of detailed procedural steps and their very strict implementation using experienced operatives is essential to reduce the risks to their lowest achievable level. Training and Access: Operating and moving LGs is a specialised process requiring staff with extensive training and experience. Whilst main contractors might wish to allocate some staff to the erection process they should be under the direct command of a specialist from the manufacturer or a company specialising in this type of work. In addition to the task of lifting and placing the segments these workers need to receive training in several related operations including gluing and post-stressing of the segments together with the numerous safety requirements for standard construction such as ventilation requirements, working at height, PPE and communications. All trained staff (including resident site staff) who are permitted to access the LG working areas, should be clearly identifiable (usually by means of a truss permit label on their helmets) without which access to the fenced-off working areas above and below should be denied. In the case of shift-working a period of supervision hand-over is important to ensure on-going operations follow the correct sequence and the agreed procedures.

10 Detailing the Erection Procedures: Method statements, including risk assessments, should set out the procedural steps to be followed in detail and it is considered important for the manufacturer or specialist company to be directly involved in this process. Setting out the multi-stage operations is best undertaken by means of a general method statement which can then be developed into a more detailed and specific MS. These statements will invariably require diagrammatic as well as descriptive elements covering the erection sequence for each span and highlighting the particular stressing required at different times, as certified by the independent checking engineer. 4. Write a note on bridge decks (M/J 12) (N/D 10) BRIDGE DECKS The principal function of a bridge deck is to provide support to local vertical loads (from highway traffic, railway or pedestrians) and transmit these loads to the primary superstructure of the bridge, (1). As a result of its function, the deck will be continuous along the bridge span and (apart from some railway bridges) continuous across the span. As a result of this continuity, it will act as a plate (isotropic or orthotropic depending on construction) to support cal patch Continuity ensures that whether or not it has been designed to do so, it will participate in the overall structural action of the superstructure. The overall structural actions may include: Contributing to the top flange of the longitudinal girders, Contributing to the top flange of cross girders at supports and, where present in twin girder and cross girder structures, throughout the span, Figure 1(3). Stabilising longitudinal and cross girders Acting as a diaphragm to transmit horizontal loads to supports. Providing a means of distribution of vertical load between longitudinal girders, It may be necessary to take account of these combined actions when verifying the design of the deck. This is most likely to be the case when there are significant stresses from the overall structural actions in the same direction as the maximum bending moments from local deck actions, e.g. in structures with cross girders where the direction of maximum moment is along the bridge. The passage of each wheel load causes a complete cycle of local bending stresses. The number of significant stress cycles is, therefore, very much higher for the deck than for the remainder of the superstructure. In addition, some of the actions of the deck arising from its participation in the overall behavior are subject to full reversal; an example is the transverse distribution of vertical load between girders. For both these reasons, fatigue is more likely to govern the design of

11 the bridge deck than the remainder of the superstructure. 5. What are the different Types of Material Handling Equipment? (N/D 10) (M/J 14) Material handling equipment encompasses a diverse range of tools, vehicles, storage units, appliances and accessories involved in transporting, storing, controlling, enumerating and protecting products at any stage of manufacturing, distribution consumption or disposal. Categories of Material Handling Equipment The four main categories of material handling equipment include: storage, engineered systems, industrial trucks and bulk material handling. Storage and Handling Equipment Storage equipment is usually limited to non-automated examples, which are grouped in with engineered systems. Storage equipment is used to hold or buffer materials during downtimes, or times when they are not being transported. These periods could refer to temporary pauses during long-term transportation or long-term storage designed to allow the buildup of stock. The majority of storage equipment refers to pallets, shelves or racks onto which materials may be stacked in an orderly manner to await transportation or consumption. Many companies have investigated increased efficiency possibilities in storage equipment by designing proprietary packaging that allows materials or products of a certain type to conserve space while in inventory. Examples of storage and handling equipment include: Racks, such as pallet racks, drive-through or drive-in racks, push-back racks, and sliding racks Stacking frames Shelves, bins and drawers Mezzanines Engineered Systems Engineered systems cover a variety of units that work cohesively to enable storage and transportation. They are often automated. A good example of an engineered system is an Automated Storage and Retrieval System, often abbreviated AS/RS, which is a large automated organizational structure

12 involving racks, aisles and shelves accessible by a shuttle system of retrieval. The shuttle system is a mechanized cherry picker that can be used by a worker or can perform fully automated functions to quickly locate a storage item s location and quickly retrieve it for other uses. Other types of engineered systems include: Conveyor systems Robotic delivery systems Automatic guided vehicles (AGV) Industrial Trucks Industrial trucks refer to the different kinds of transportation items and vehicles used to move materials and products in materials handling. These transportation devices can include small hand-operated trucks, pallet-jacks, and various kinds of forklifts. These trucks have a variety of characteristics to make them suitable for different operations. Some trucks have forks, as in a forklift, or a flat surface with which to lift items, while some trucks require a separate piece of equipment for loading. Trucks can also be manual or powered lift and operation can be walk or ride, requiring a user to manually push them or to ride along on the truck. A stack truck can be used to stack items, while a non-stack truck is typically used for transportation and not for loading. There are many types of industrial trucks: Hand trucks Pallet jacks Pallet trucks Walkie stackers Platform trucks Order picker Sideloader Many types of AGV Bulk Material Handling Equipment Bulk material handling refers to the storing, transportation and control of materials in loose bulk form. These materials can include food, liquid, or minerals, among others. Generally, these pieces of equipment deal with the items in loose form, such as conveyor belts or elevators designed to move large quantities of material, or in packaged form, through the use of drums and hoppers. Conveyor belts Stackers Reclaimers Bucket elevators Grain elevators Hoppers Silos

13 6 Explain in detail, the process of in-situ pre-stressing of high rise structures? (A/M 10) (N/D 12) PRESTRESSING METHOD IN MULTI-STORIED BUILDING FRAME History of Pre-stressing The art of pre-stressing concrete evolved over many decades and from many sources, but we can point to a few select instances in history that brought about this technology. In the United States, engineer John Roebling established a factory in 1841 for making rope out of iron wire, which he initially sold to replace the hempen rope used for hoisting cars over the portage railway in central Pennsylvania. Later, Roebling used wire ropes as suspension cables for bridges, and he developed the technique for spinning the cables in place. During the 19th century, low-cost production of iron and steel, when added to the invention of portland cement in 1824, led to the development of reinforced concrete. In 1867, Joseph Monier, a French gardener, patented a method of strengthening thin concrete flowerpots by embedding iron wire mesh into the concrete. Monier later applied his ideas to patents for buildings and bridges. Swiss engineer Robert Maillart s use of reinforced concrete, beginning in 1901, effected a revolution in structural art. Maillart, all of whose main bridges are located in Switzerland, was the first designer to break completely with the masonry tradition by putting concrete into forms technically appropriate to its properties yet visually surprising. His radical use of reinforced concrete revolutionized masonry arch bridge design. The idea of pre-stressing concrete was first applied by Eugene Freyssinet, a French structural and civil engineer, in 1928 as a method for overcoming concrete s natural weakness in tension. Pre-stressed concrete can now be used to produce beams, floors or bridges with a longer span than is practical with ordinary reinforced concrete. PRE-STRESSED CONCRETE Pre stressed concrete, like reinforced concrete, is a composite material which uses to advantage the compressive strength of concrete, whilst circumventing its weakness in tension. Pre

14 stressed concrete is made from structural concrete, usually of high strength, and high strength steel tendons which may or may not be grouped together. Prior to external loading the tendons are tensioned in one of two ways. With pretensioning the tendon are tensioned prior to the casting of the concrete and using post tensioning techniques the tendons are tensioned after the concrete has hardened. Some ordinary reinforcing steel is also often included both as subsidiary longitudinal reinforcement and as transverse stirrups to resist shear. Pre-stressed concrete is a method for overcoming concrete's natural weakness in tension. It can be used to produce beams, floors or bridges with a longer span than is practical with ordinary reinforced concrete. Pre-stressing tendons (generally of high tensilesteel cable or rods) are used to provide a clamping load which produces a compressive stress that offsets the tensile stress that the concrete compression member would otherwise experience due to a bending load. Traditional reinforced concrete is based on the use of steelreinforcement bars, inside poured concrete. The basic purpose of pre-stressing is to improve the performance of concrete members and this is achieved by inducing in the beam initial deformation and stresses which tend to counteract those produced by the service loads. Since concrete is weak in tension in normal reinforced concrete construction cracks develop in the tension zone at working loads and therefore all concrete in tension is ignored in design.

15 Pre-stressing involves inducing compressive stresses in the zone, which will tend to become tensile under external loads. This compressive stress neutralizes the tensile stress so that no resultant tension exists, (or only very small values, within the tensile strength of the concrete). Cracking is therefore eliminated under working load and all of the concrete may be assumed effective in carrying load. Therefore lighter sections may be used to carry a given bending moment, and pre-stressed concrete may be used for longer span than reinforced concrete. The pre-stressing force also reduces the magnitude of the principal tensile stress in the web so that thin-webbed I - sections may be used without the risk of diagonal tension failures and with further savings in self-weight. The pre-stressing force has to be produced by a high tensile steel, and it is necessary to use high quality concrete to resist the higher compressive stresses that are developed. As the name itself suggests pre-stressing is the technique of stressing a structural member prior to loading to resist excessive tensile stresses. The advantages of pre-stressed concrete as a construction material in multi storied frame can be listed as follows: Maximum utilization of provided section of the member. Provision of slender member for long span beams as compared to RCC. Use of high strength materials contribute to the durability of the structure. Pre-stresses concrete has considerable resilience and impact resistance. Proves to be economical only in long span beam-column frames compared to other materials. The intermediate distance between the columns can be in increased by using prestressed concrete as compared to reinforced cement concrete. Architectural design provisions and specifications can be achieved using pre-stressed concrete. Dead weight of concrete is reduced to a higher rate using pre-stressed concrete. PRINCIPLE OF PRESTRESSING The function of pre-stressing is to place the concrete structure under compression in those regions where load causes tensile stress. Tension caused by the load will first have to cancel the compression induced by the pre-stressing before it can crack the concrete. Figure (a) shows a plainly reinforced concrete simple-span beam and fixed cantilever beam cracked under applied load. Figure (b) shows the same unloaded beams with pre-stressing forces applied by stressing high strength tendons. By placing the pre-stressing low in the simple-span beam and high in the cantilever beam, compression is induced in the tension zones; creating upward camber. Figure (c) shows the two pre-stressed beams after loads have been applied. The loads cause both the simple-span beam and cantilever beam to deflect down, creating tensile stresses in the bottom of the simple-span beam and top of the cantilever beam. The structural Designer

16 balances the effects of load and pre-stressing in such a way that tension from the loading is compensated by compression induced by the pre-stressing. Tension is eliminated under the combination of the two and tension cracks are prevented. Also, construction materials (concrete and steel) are used more efficiently; optimizing materials, construction effort and cost. Fig 1. - Comparison of Reinforced and Prestressed Concrete Beams Pre-stressing can be applied to concrete members in two ways, by pre-tensioning or posttensioning. In pre-tensioned members the pre-stressing strands are tensioned against restraining bulkheads before the concrete is cast. After the concrete has been placed, allowed to harden and attain sufficient strength, the strands are released and their force is transferred to the concrete member. Pre-stressing by post-tensioning involves installing and stressing pre-stressing strand or bar tendons only after the concrete has been placed, hardened and attained a minimum compressive strength for that transfer. METHODS AND SYSTEM OF PRE-STRESSING There are two methods of pre-stressing concrete: - 1) Pre-cast Pre-tensioned 2) Pre-cast Post-tensioned Both methods involve tensioning cables inside a concrete beam and then anchoring the stressed cables to the concrete.

17 Pre-cast Pre-tensioned: - Pre-tensioning is a method of pre-stressing in which the steel tendons are tensioned before the casting of the member. In this method the tendons are tensioned using hydraulic jacks, which bear on strong abutments between which the moulds are placed. After the concrete attains full strength the tendons are released and the stress is transferred to the concrete by bond action. Procedure of precast pre-tensioned concreting Stage 1 Tendons and reinforcement are positioned in the beam mould. Stage 2 Tendons are stressed to about 70% of their ultimate strength. Stage 3 Concrete is cast into the beam mould and allowed to cure to the required initial strength. Stage 4 When the concrete has cured the stressing force is released and the tendons anchor themselves in the concrete.

18 1. Explain in detail, the merits and demerits of various types of shells. (A/M 11) (N/D 12) Advantages of Concrete Shells Like the arch, the curved shapes often used for concrete shells are naturally strong structures, allowing wide areas to be spanned without the use of internal supports, giving an open, unobstructed interior. The use of concrete as a building material reduces both materials cost and a construction cost, as concrete is relatively inexpensive and easily cast into compound curves. The resulting structure may be immensely strong and safe; modern monolithic dome houses, for example, have resisted hurricanes and fires, and are widely considered to be strong enough to withstand even F5 tornadoes. Disadvantages of Concrete Shells Since concrete is porous material, concrete domes often have issues with sealing. If not treated, rainwater can seep through the roof and leak into the interior of the building. On the other hand, the seamless construction of concrete domes prevents air from escaping, and can lead to buildup of condensation on the inside of the shell. Shingling or sealants are common solutions to the problem of exterior moisture, and dehumidifiers or ventilation can address condensation

Introduction to Structural Analysis TYPES OF STRUCTURES LOADS AND

Introduction to Structural Analysis TYPES OF STRUCTURES LOADS AND AND Introduction to Structural Analysis TYPES OF STRUCTURES LOADS INTRODUCTION What is the role of structural analysis in structural engineering projects? Structural engineering is the science and art

More information

UNIT V PART A

UNIT V PART A 1. Why concrete bridges are used? [N/D 14] UNIT V PART A a. Reinforced concrete and prestressed concrete have been found most suited for the construction of high way bridges the former for small and medium

More information

Concrete Bridge Design and Construction series

Concrete Bridge Design and Construction series www.thestructuralengineer.org 41 CBDC series July 2014 Concrete Bridge Design and Construction series This series is authored by the Concrete Bridge Development Group (CBDG). The group aims to promote

More information

PRESTRESSED CONCRETE STRUCTURES UNIT I INTRODUCTION THEORY AND BEHAVIOUR

PRESTRESSED CONCRETE STRUCTURES UNIT I INTRODUCTION THEORY AND BEHAVIOUR BASIC CONCEPTS: PRESTRESSED CONCRETE STRUCTURES UNIT I INTRODUCTION THEORY AND BEHAVIOUR A prestressed concrete structure is different from a conventional reinforced concrete structure due to the application

More information

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras PRESTRESSED CONCRETE STRUCTURES Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras Module 01: Introduction, Prestressing Systems and Material Properties Lecture

More information

Innovative Construction Technology

Innovative Construction Technology Innovative Construction Technology Learning Objectives Be able to explain the innovativeness of the following construction technology / method Top Down Construction Pre-stressed concrete System Formwork

More information

Long Railway Viaducts with Special Spans: Part-1. Arch Construction by Balanced Cantilever with Auxiliary Cables

Long Railway Viaducts with Special Spans: Part-1. Arch Construction by Balanced Cantilever with Auxiliary Cables Long Railway Viaducts with Special Spans: Part-1. Arch Construction by Balanced Cantilever with Auxiliary Cables J. Manterola A. Martínez Carlos Fernández Casado S.L., Spain B. Martín J.A. Navarro M. A:

More information

The Hashemite University Department of Civil Engineering. Dr. Hazim Dwairi. Dr. Hazim Dwairi 1

The Hashemite University Department of Civil Engineering. Dr. Hazim Dwairi. Dr. Hazim Dwairi 1 Department of Civil Engineering Lecture 2.1 Methods of Prestressing Advantages of Prestressing Section remains uncracked under service loads Reduction of steel corrosion (increase durability) Full section

More information

ST7008 PRESTRESSED CONCRETE

ST7008 PRESTRESSED CONCRETE ST7008 PRESTRESSED CONCRETE QUESTION BANK UNIT-I PRINCIPLES OF PRESTRESSING PART-A 1. Define modular ratio. 2. What is meant by creep coefficient? 3. Is the deflection control essential? Discuss. 4. Give

More information

VARIOUS TYPES OF SLABS

VARIOUS TYPES OF SLABS VARIOUS TYPES OF SLABS 1 CHOICE OF TYPE OF SLAB FLOOR The choice of type of slab for a particular floor depends on many factors. Economy of construction is obviously an important consideration, but this

More information

Prestressed Concrete Tanks. Design & Construction

Prestressed Concrete Tanks. Design & Construction Prestressed Concrete Tanks Design & Construction The PRELOAD Advantage PRELOAD has maintained a focused vision on designing and constructing the highest-quality and most-durable liquid storage tanks for

More information

9.6 Circular Prestressing

9.6 Circular Prestressing 9.6 Circular Prestressing This section covers the following topics. Introduction General Analysis and Design Prestressed Concrete Pipes Liquid Storage Tanks Ring Beams Conclusion 9.6.1 Introduction When

More information

VIADUCTS BY PUSHING: INCREMENTALLY LAUNCHED BRIDGES

VIADUCTS BY PUSHING: INCREMENTALLY LAUNCHED BRIDGES Istanbul Bridge Conference August 11-13, 2014 Istanbul, Turkey VIADUCTS BY PUSHING: INCREMENTALLY LAUNCHED BRIDGES J. E. Erdoğan 1 and Ö. Özkul 2 ABSTRACT Despite its widespread use around the world, constructing

More information

Design & technology characteristics of main bridge of Chaotianmen Yangtze River Bridge

Design & technology characteristics of main bridge of Chaotianmen Yangtze River Bridge Design & technology characteristics of main bridge of Chaotianmen Yangtze River Bridge Xuewei Duan, Xiaoyan Xiao and Wei Xu China Railway Bridge Reconnaissance & Design Institute Co., Ltd., Wuhan, China

More information

Bridge articulation No. 1.04

Bridge articulation No. 1.04 Bridge articulation Scope This Guidance Note gives advice on the selection of the articulation arrangements, the choice of bearing types and dispositions of bearings, for bridges where relative movement

More information

QUESTION BANK CE6702 PRESTRESSED CONCRETE STRUCTURES UNIT 3 - DEFLECTION AND DESIGN OF ANCHORAGE ZONE PART A (2 marks) 1. What are the functions of water stopper (water bar) in water tank construction?

More information

AN INNOVATIVE ERECTION TECHNIQUE FOR REDUCING TWO- THIRD OF CONSTRUCTIONAL BRIDGE DEFLECTIONS

AN INNOVATIVE ERECTION TECHNIQUE FOR REDUCING TWO- THIRD OF CONSTRUCTIONAL BRIDGE DEFLECTIONS AN INNOVATIVE ERECTION TECHNIQUE FOR REDUCING TWO- THIRD OF CONSTRUCTIONAL BRIDGE DEFLECTIONS Assist. Prof. Ala a M. Darwish Dr. Wameedh G. Abdul-Hussein Nawal D. Salman Building and Construction Engineering

More information

Design and Construction of the SH58 Ramp A Flyover Bridge over IH70. Gregg A. Reese, PE, CE, Summit Engineering Group, Inc.

Design and Construction of the SH58 Ramp A Flyover Bridge over IH70. Gregg A. Reese, PE, CE, Summit Engineering Group, Inc. Design and Construction of the SH58 Ramp A Flyover Bridge over IH70 Gregg A. Reese, PE, CE, Summit Engineering Group, Inc., Littleton, CO ABSTRACT: The SH58 Ramp A bridge in Golden, CO is the latest on

More information

Construction Measurement III SBQ3314. Precast Pre stressed Concrete Works. Dr. Sarajul Fikri Mohamed

Construction Measurement III SBQ3314. Precast Pre stressed Concrete Works. Dr. Sarajul Fikri Mohamed Construction Measurement III SBQ3314 Precast Pre stressed Concrete Works Dr. Sarajul Fikri Mohamed Table of Contents 1. Pre stressed concrete in bridgeworks: technological aspects 2. SMM2 measurement rules

More information

INFLUENCES OF ADVANCED COMPOSITE MATERIALS ON STRUCTURAL CONCEPTS FOR BRIDGES AND BUILDINGS. Introduction. Bridges

INFLUENCES OF ADVANCED COMPOSITE MATERIALS ON STRUCTURAL CONCEPTS FOR BRIDGES AND BUILDINGS. Introduction. Bridges INFLUENCES OF ADVANCED COMPOSITE MATERIALS ON STRUCTURAL CONCEPTS FOR BRIDGES AND BUILDINGS Prof. Dr. Thomas Keller Swiss Federal Institute of Technology, Lausanne, Switzerland Introduction The consideration

More information

1 Prepared By:Mr.A.Sathiyamoorthy, M.E., AP/Civil

1 Prepared By:Mr.A.Sathiyamoorthy, M.E., AP/Civil UNIVERSITY QUESTIONS PART A UNIT 1: INTRODUCTION THEORY AND BEHAVIOUR 1. List the loss of prestress. 2. Define axial prestressing. 3. What is the need for the use of high strength concrete and tensile

More information

DESIGN OF RC ELEMENTS UNIT 1 PART-A

DESIGN OF RC ELEMENTS UNIT 1 PART-A DESIGN OF RC ELEMENTS UNIT 1 PART-A 1. Calculate the design strength for M 30 grade concrete and Fe 415 grade steel? 2. What is the important principle of ultimate load method? 3. Write the classification

More information

Progressive Erection Applied to Box Girder with Strutted Wing Slab

Progressive Erection Applied to Box Girder with Strutted Wing Slab Progressive Erection Applied to Box Girder with Strutted Wing Slab Koji Osada 1, Taketo Kanamoto 1, Kimito Saito 2, Takahiro Arai 2 1 Introduction The Uchimaki Viaduct is a multi-span continuous box girder

More information

The New Incremental Launching Construction Technology of Jiubao Bridge Long-span Hybrid Arch-girder Structure

The New Incremental Launching Construction Technology of Jiubao Bridge Long-span Hybrid Arch-girder Structure The New Incremental Launching Construction Technology of Jiubao Bridge Long-span Hybrid Arch-girder Structure C.Y. Shao Shanghai Municipal Engineering Design & Research General Institute (Group) Co. Ltd.,

More information

P11 Handling and Storage E212 - Facilities Planning and Design

P11 Handling and Storage E212 - Facilities Planning and Design P11 Handling and Storage E212 - Facilities Planning and Design Material Handling Is the art and science of moving, storing, protecting and controlling material. Means providing the: Right amount of Material

More information

The construction technology of Chongqing Chaotianmen Bridge

The construction technology of Chongqing Chaotianmen Bridge The construction technology of Chongqing Chaotianmen Bridge Zhongfu Xiang School of Civil Engineering & Architectures, Chongqing Jiaotong University, Chongqing, China Wei Xu China zhongtie major bridge

More information

Precast Prestressed Segmental Elevated Urban Motorway in Italy

Precast Prestressed Segmental Elevated Urban Motorway in Italy Precast Prestressed Segmental Elevated Urban Motorway in Italy Bruno Gentilini Lino Gentilini Consulting Engineers Trento, Italy Bruno Gentilini Lino Gentilini The authors, who were responsible for the

More information

Behaviour of Masonry Vaults and Domes: Geometrical Considerations

Behaviour of Masonry Vaults and Domes: Geometrical Considerations Structural Analysis of Historical Constructions, New Delhi 2006 P.B. Lourenço, P. Roca, C. Modena, S. Agrawal (Eds.) Behaviour of Masonry Vaults and Domes: Geometrical Considerations G. Arun Yıldız Technical

More information

When building the arch, a provisional upright must be put on the pier placed on the roots of the arch.

When building the arch, a provisional upright must be put on the pier placed on the roots of the arch. The Cieza Viaduct Michael Müller Pondio Ingenieros, Madrid Summary: In the last few years the amount of arch bridges built in Spain has increased considerably. Even though these type of bridges are expensive

More information

AREMA 2008 Annual Conference. LOW PROFILE RAILROAD BRIDGE Steve K. Jacobsen, PE NNW, Inc. Rochester, Minnesota

AREMA 2008 Annual Conference. LOW PROFILE RAILROAD BRIDGE Steve K. Jacobsen, PE NNW, Inc. Rochester, Minnesota AREMA 2008 Annual Conference LOW PROFILE RAILROAD BRIDGE Steve K. Jacobsen, PE NNW, Inc. Rochester, Minnesota 55904 507-281-5188 Steve K. Jacobsen, PE 2 LOW PROFILE RAILROAD BRIDGE Steve K. Jacobsen, PE

More information

Highway Bridge Structure Components

Highway Bridge Structure Components Highway Bridge Structure Components Basic Bridge Components 1 Deck and 2 Stringer 3 Bearing 4 Pedestal 5 Footing 6 Piles 7 Underpass 8 Embakment 9 Live Loading Basic Bridge Components 1-Deck & wearing

More information

New Pumarejo Bridge over the river Magdalena in Barranquilla. Colombia.

New Pumarejo Bridge over the river Magdalena in Barranquilla. Colombia. New Pumarejo Bridge over the river Magdalena in Barranquilla. Colombia. J. Manterola S. Fernández S. Fuente J. Muñoz-Rojas J. A. Navarro ABSTRACT The overall length of the new bridge over the River Magdalena

More information

SUSPENSION BRIDGES. Early Suspension Bridges

SUSPENSION BRIDGES. Early Suspension Bridges SUSPENSION BRIDGES Dr. AZ Department of Civil Engineering Brawijaya University Early Suspension Bridges The earliest suspension bridges were found in China, dating back to 206 B.C. Many of the earlier

More information

CE2401-DESIGN OF REINFORCED CONCRETE AND BRICK MASONRY QUESTION BANK

CE2401-DESIGN OF REINFORCED CONCRETE AND BRICK MASONRY QUESTION BANK CE2401-DESIGN OF REINFORCED CONCRETE AND BRICK MASONRY QUESTION BANK UNIT-1 PART-A 1. What is a Retaining wall? 2. What are the disadvantages of gravity retaining walls? 3. What are the types of retaining

More information

VALLIAMMAI ENGINEERING COLLEGE KATTANKULATHUR ST7014-INDUSTRIAL STRUCTURES QUESTION BANK

VALLIAMMAI ENGINEERING COLLEGE KATTANKULATHUR ST7014-INDUSTRIAL STRUCTURES QUESTION BANK VALLIAMMAI ENGINEERING COLLEGE KATTANKULATHUR ST7014-INDUSTRIAL STRUCTURES QUESTION BANK Prepared by Ms.K.Suganya Devi Assistant Professor Department of Civil Engineering UNIT-1 PLANNING AND FUNCTIONAL

More information

THE FORENSIC MEDICAL CENTER

THE FORENSIC MEDICAL CENTER THE FORENSIC MEDICAL CENTER Image courtesy of Gaudreau, Inc. TECHNICAL REPORT #2 OCTOBER 26, 2007 KEENAN YOHE STRUCTURAL OPTION DR. MEMARI FACULTY ADVISOR EXECUTIVE SUMMARY Image courtesy of Gaudreau,

More information

Civil Engineering. Civil Engineering Civil engineering is considered to be the oldest field in engineering. still the same: Civil engineering is the.

Civil Engineering. Civil Engineering Civil engineering is considered to be the oldest field in engineering. still the same: Civil engineering is the. Civil Engineering NAME: CLASS: Civil Engineering Civil engineering is considered to be the oldest field in engineering. Engineered structures have been found dating back thousands of years like the pyramids

More information

Marina Bay Sands Hotel Arch 631 Kayla Brittany Maria Michelle

Marina Bay Sands Hotel Arch 631 Kayla Brittany Maria Michelle Marina Bay Sands Hotel Arch 631 Kayla Brittany Maria Michelle Overall Information Location: Singapore Date of Completion: 2010 Cost: $5.7 billion Architect: Moshe Safdie Executive Architect: Aedas, Pte

More information

A THEORETICAL ATTEMPT TO REDUCE THE CONSTRUCTIONAL DEFLECTIONS OF UN-SHORED REINFORCED CONCRETE DECK-GIRDER BRIDGES

A THEORETICAL ATTEMPT TO REDUCE THE CONSTRUCTIONAL DEFLECTIONS OF UN-SHORED REINFORCED CONCRETE DECK-GIRDER BRIDGES . Ala a M. DARWISH, 2. Wameedh G. ABDUL-HUSSEIN,. Nawal D. SALMAN A THEORETICAL ATTEMPT TO REDUCE THE CONSTRUCTIONAL DEFLECTIONS OF UN-SHORED REINFORCED CONCRETE DECK-GIRDER BRIDGES,2,. BUILDING AND CONSTRUCTION

More information

MK SYSTEM. // Pieces that can be easily assembled with minimal tools. Numerous configurations with standard components

MK SYSTEM. // Pieces that can be easily assembled with minimal tools. Numerous configurations with standard components MK SYSTEM Numerous configurations with standard components // Pieces that can be easily assembled with minimal tools // Table of contents Product description MK Systems Basic components MK SYSTEM product

More information

Basarab Cable Stayed Bridge in Bucharest

Basarab Cable Stayed Bridge in Bucharest Basarab Cable Stayed Bridge in Bucharest Javier MANTEROLA Pr. Dr. Civil Engineer Carlos Fernández Casado,S.L. Madrid, SPAIN jmanterola@cfcsl.com Antonio MARTÍNEZ Dr. Civil Engineer Carlos Fernández Casado,S.L.

More information

Verification Examples

Verification Examples Verification Examples 1 Introduction Gen Verification Examples contain the verified results of various program functions. Each example entails a general verification process witch confirms the validity

More information

Appendix A Proposed LRFD Specifications and Commentary

Appendix A Proposed LRFD Specifications and Commentary NCHRP Project 12-71 Design Specifications and Commentary for Horizontally Curved Concrete Box-Girder Highway Bridges Appendix A Proposed LRFD Specifications and Commentary A-1 A-2 4.2 DEFINITIONS (Additional)

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF CIVIL ENGINEERING CE PREFABRICATED STRUCTURES UNIT - I : INTRODUCTION

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF CIVIL ENGINEERING CE PREFABRICATED STRUCTURES UNIT - I : INTRODUCTION DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF CIVIL ENGINEERING CE6016 - PREFABRICATED STRUCTURES UNIT - I : INTRODUCTION PART A (2 Marks) 1. Write the advantages of prefabrication. (N -13)

More information

CABLE STAYED FOOTBRIDGE MADE OF UHPC

CABLE STAYED FOOTBRIDGE MADE OF UHPC CABLE STAYED FOOTBRIDGE MADE OF UHPC J.L. Vitek (1), M. Kalný (2) and R. Coufal (3) (1) Metrostav a.s. and CTU Prague, Prague, Czech Republic (2) PONTEX, Ltd., Prague, Czech Republic (3) TBG Metrostav,

More information

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras PRESTRESSED CONCRETE STRUCTURES Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras Module 5: Analysis and Design for Shear and Torsion Lecture-23: Analysis

More information

2016 DESIGN AND DRAWING OF REINFORCED CONCRETE STRUCTURES

2016 DESIGN AND DRAWING OF REINFORCED CONCRETE STRUCTURES R13 SET - 1 DESIGN AND DRAWING OF REINFCED CONCRETE STRUCTURES 1 Design a simply supported rectangular beam to carry 30kN/m superimposed load over a span of 6m on 460mm wide supports. Use M20 grade concrete

More information

UNIT-1 RETAINING WALLS

UNIT-1 RETAINING WALLS UNIT-1 RETAINING WALLS PART-A 1. Describe about Retaining wall. 2. Define gravity retaining walls. BT-1 3. Classify the types of retaining walls. 4. Explain cantilever retaining wall? 5. Describe about

More information

MIDAS Training Series

MIDAS Training Series MIDAS midas Civil Title: All-In-One Super and Sub Structure Design NAME Edgar De Los Santos / MIDAS IT United States 2016 Substructure Session 1: 3D substructure analysis and design midas Civil Session

More information

Principal Bridge Engineer Middle East & India Atkins Abu Dhabi, UAE

Principal Bridge Engineer Middle East & India Atkins Abu Dhabi, UAE Design of continuity slabs and the 020 Gajanan Chaudhari Principal Bridge Engineer Middle East & India Atkins Abu Dhabi, UAE Anand Panpate Senior Bridge Engineer Middle East & India Atkins Abu Dhabi, UAE

More information

Lecture 13 CONCRETE WORKS

Lecture 13 CONCRETE WORKS Lecture 13 TSP-308 MPK Ferdinand Fassa CONCRETE WORKS Concrete works Concrete is a man-made (rock) construction material, which is a mixture of portland cement, water, aggregates, and in some cases, admixtures.

More information

Sabah Shawkat Cabinet of Structural Engineering 2017

Sabah Shawkat Cabinet of Structural Engineering 2017 3.1-1 Continuous beams Every building, whether it is large or small, must have a structural system capable of carrying all kinds of loads - vertical, horizontal, temperature, etc. In principle, the entire

More information

Building in Beijing. Steel provides the support for two new high-profile atriums in China s capital.

Building in Beijing. Steel provides the support for two new high-profile atriums in China s capital. international projects Building in Beijing By Mark Sarkisian, P.E., S.E., Neville Mathias, P.E., S.E., and Aaron Mazeika, P.E. Steel provides the support for two new high-profile atriums in China s capital.

More information

Concrete Prestressed Concrete Pretensioned Concrete Posttensioned Concrete Typical Tendon Layout

Concrete Prestressed Concrete Pretensioned Concrete Posttensioned Concrete Typical Tendon Layout Concrete 45 1.13.0 Prestressed Concrete Concrete in which internal stresses (forces) are induced by means of prestressing steel tendons such that tensile stresses resulting from loads are counteracted

More information

4/14/2015 INTRODUCTION. Dr. AZ Department of Civil Engineering Brawijaya University BRIDGES

4/14/2015 INTRODUCTION. Dr. AZ Department of Civil Engineering Brawijaya University BRIDGES INTRODUCTION Dr. AZ Department of Civil Engineering Brawijaya University BRIDGES A bridge is a structure built to span a valley, road, body of water, or other physical obstacle, for the purpose of providing

More information

SPECIAL SPECIFICATION 4584 Segmental Concrete Bridge Unit

SPECIAL SPECIFICATION 4584 Segmental Concrete Bridge Unit 2004 Specifications CSJ: 0028-09-111 SPECIAL SPECIFICATION 4584 Segmental Concrete Bridge Unit 1. Description. Construct cast-in-place segmental concrete box girder superstructure according to the plans,

More information

Modjeski and Masters, Inc. Consulting Engineers 04/18/06 St. Croix River Bridge 3D Analysis Report Introduction

Modjeski and Masters, Inc. Consulting Engineers 04/18/06 St. Croix River Bridge 3D Analysis Report Introduction Introduction This memo presents a summary of a three dimensional (3D) analysis of the Organic concept for the proposed St. Croix River bridge project. The Organic concept has several attributes that are

More information

Office Building-G. Thesis Proposal. Carl Hubben. Structural Option. Advisor: Dr. Ali Memari

Office Building-G. Thesis Proposal. Carl Hubben. Structural Option. Advisor: Dr. Ali Memari Office Building-G Thesis Proposal Structural Option December 10, 2010 Table of Contents Executive Summary... 3 Introduction... 4 Gravity System...4 Lateral System:...6 Foundation System:...6 Problem Statement...

More information

7. Draw an equipment set up for the production of a beam by post tensioning. 10. What are the common concrete structures which are produced by

7. Draw an equipment set up for the production of a beam by post tensioning. 10. What are the common concrete structures which are produced by Construction Technology B (CON4313) Self Assessment Questions: Chapter 1 Prestressed Concrete 1. How does the prestressing of steel tendons in prestressed concrete offer a higher loading capacity than

More information

Reconstruction of Space Steel Constructions

Reconstruction of Space Steel Constructions 28 September 2 October 2009, Universidad Politecnica de Valencia, Spain Alberto DOMINGO and Carlos LAZARO (eds.) Reconstruction of Space Steel Constructions Jan BRODNIANSKY*, Zoltán AGÓCS, Rudolf ÁROCH,

More information

Bonner Bridge Replacement Update:

Bonner Bridge Replacement Update: Bonner Bridge Replacement Update: Jerry D. Jennings, PE - NCDOT Division 1 Engineer Pablo A. Hernandez, - NCDOT Resident Engineer September 18, 2017 Bonner Bridge Replacement Timeline Refresher Bonner

More information

Construction Techniques of The 3 rd Bosphorus Bridge in Istanbul, Turkey

Construction Techniques of The 3 rd Bosphorus Bridge in Istanbul, Turkey International Symposium on Industrial Chimneys and Cooling Towers, Prague, Oct 8-11, 2014 Construction Techniques of The 3 rd Bosphorus Bridge in Istanbul, Turkey M. Orçun TOKUÇ 1 and Tamer TUNCA 2 1 Engineer

More information

Spatial analysis of concrete filled steel tubular tied arch bridge

Spatial analysis of concrete filled steel tubular tied arch bridge Spatial analysis of concrete filled steel tubular tied arch bridge W. Huang College of Traffic, Fujian Agriculture and Forestry University, Fujian, China B. Chen College of Civil Engineering, Fuzhou University,

More information

Construction of the Nhat Tan Bridge (Vietnam-Japan Friendship Bridge)

Construction of the Nhat Tan Bridge (Vietnam-Japan Friendship Bridge) Construction of the Nhat Tan Bridge (Vietnam-Japan Friendship Bridge) Chodai Co., Ltd., Nippon Engineering Consultants Co., Ltd., IHI Infrastructure Systems Co,. Ltd., and Sumitomo Mitsui Construction

More information

Council on Tall Buildings. and Urban Habitat BACKGROUND SECTION STEEL REINFORCED CONCRETE SHEAR WALL STEEL PLATE COMPOSITE SHEAR WALL

Council on Tall Buildings. and Urban Habitat BACKGROUND SECTION STEEL REINFORCED CONCRETE SHEAR WALL STEEL PLATE COMPOSITE SHEAR WALL BACKGROUND CATALOG SECTION STEEL REINFORCED CONCRETE SHEAR WALL STEEL PLATE COMPOSITE SHEAR WALL STEEL PLATE SHEAR WALL CONCLUSION BACKGROUND With the rapid development of our economy and advancement of

More information

POST-TENSIONING APPLICATION AND TECHNOLOGY. Moe Kyaw Aung

POST-TENSIONING APPLICATION AND TECHNOLOGY. Moe Kyaw Aung POST-TENSIONING APPLICATION AND TECHNOLOGY Moe Kyaw Aung Overview 1. Background 2. Basic Design Concept 3. Application and Benefits 4. Components of Post-tensioning System 5. Installation Process 6. Construction

More information

Behavior of Skew Reinforced and Prestressed Concrete Composite Decks. Hany Ahmed Ahmed Dahish, Ahmed Foad El-ragi and Alaa Aly El-Sayed

Behavior of Skew Reinforced and Prestressed Concrete Composite Decks. Hany Ahmed Ahmed Dahish, Ahmed Foad El-ragi and Alaa Aly El-Sayed Life Science Journal 212;9(4) Behavior of Skew Reinforced and Prestressed Concrete Composite Decks Hany Ahmed Ahmed Dahish, Ahmed Foad El-ragi and Alaa Aly El-Sayed Faculty of Engineering, Fayoum University

More information

SECTION PLATE CONNECTED WOOD TRUSSES

SECTION PLATE CONNECTED WOOD TRUSSES SECTION 06173 PLATE CONNECTED WOOD TRUSSES PART 1 GENERAL 1.01 SUMMARY A. Section Includes: 1. Shop fabricated wood trusses for roof and floor framing. 2. Bridging, bracing, and anchorage. B. Related Sections:

More information

fifteen design for lateral loads Lateral Load Resistance Load Direction Lateral Load Resistance

fifteen design for lateral loads Lateral Load Resistance Load Direction Lateral Load Resistance APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SPRING 2017 lecture fifteen design for lateral loads Lateral Load Resistance stability important for any height basic

More information

The HKIE Structural Examination Written Examination

The HKIE Structural Examination Written Examination The HKIE Structural Examination Written Examination Section 2: Design Questions (80% of the Written Examination) Date: 28 November 2014 (Friday) Time: 12:00 nn - 06:00 pm Answer ONE question only Question

More information

CE 6506 CONSTRUCTION TECHNIQUES, EQUIPMENTS AND PRACTICES UNIT 1 CONCRETE TECHNOLOGY 1. List the various methods of mix design. 2. Name some methods of non-destructive testing of concrete. 3. What is the

More information

BRIDGES WITH PROGRESSIVELY ERECTED DECKS

BRIDGES WITH PROGRESSIVELY ERECTED DECKS Istanbul Bridge Conference August 11-13, 2014 Istanbul, Turkey BRIDGES WITH PROGRESSIVELY ERECTED DECKS P. Novotny 1, P. Svoboda 2 and J. Strasky 3 ABSTRACT Two types of bridges with progressively erected

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL Till the 1960s the design engineers generally ignored torsion. It was assumed that torsion effects were minor and could be taken care of by the large safety factor

More information

S p a c e e l e v a t o r. Structure selection and design Prof Schierle 1

S p a c e e l e v a t o r. Structure selection and design Prof Schierle 1 S p a c e e l e v a t o r Structure selection and design Prof Schierle 1 Selection criteria: 1 Morphology 2 Capacity Limits 3 Code Requirements 4 Cost 5 Load Conditions 6 Resources and Technology 7 Sustainability

More information

Crossroads at Westfields Building II

Crossroads at Westfields Building II Crossroads at Westfields Building II Chantilly, Va STEPHEN LUMPP Structural option Faculty Consultant: Dr. Andres Lepage Technical Report 2 EXECUTIVE SUMMARY This report is a study of alternate floor systems

More information

STRUCTURAL ANALYSIS. CE 382 Structural Analysis. As a structural engineer, you will be required to make many. Blue text is important course

STRUCTURAL ANALYSIS. CE 382 Structural Analysis. As a structural engineer, you will be required to make many. Blue text is important course CE 382 Structural Analysis Blue text is important course material Green text is important definition material for the course Red text is important conclu- sion or caution material for the course Text in

More information

Council on Tall Buildings

Council on Tall Buildings Structure Design of Sino Steel (Tianjin) International Plaza Xueyi Fu, Group Chief Engineer, China Construction Design International 1 1 Brief of Project 2 Location: Tianjin Xiangluowan Business District

More information

fifteen design for lateral loads Lateral Load Resistance Load Direction Lateral Load Resistance

fifteen design for lateral loads Lateral Load Resistance Load Direction Lateral Load Resistance APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS FALL 2013 lecture fifteen design for lateral loads Lateral Load Resistance stability important for any height basic mechanisms

More information

Design studies of the Castle Bridge over Wislok River in Rzeszow with application of CAD System

Design studies of the Castle Bridge over Wislok River in Rzeszow with application of CAD System Design studies of the Castle Bridge over Wislok River in Rzeszow with application of CAD System Author: Dariusz Alterman Superviser: Dr. Tomasz Siwowski, Civ. Eng. Chairman of the examination committee:

More information

Civil Engineering Construction I (CBE5031)

Civil Engineering Construction I (CBE5031) Civil Engineering Construction I (CBE5031) Precast Concrete 1 Definition of Precast Concrete Precasting means casting a concrete member at a place other than where it will be used and then moving it to

More information

5.4 Analysis for Torsion

5.4 Analysis for Torsion 5.4 Analysis for Torsion This section covers the following topics. Stresses in an Uncracked Beam Crack Pattern Under Pure Torsion Components of Resistance for Pure Torsion Modes of Failure Effect of Prestressing

More information

PRECAST CONCRETE GIRDER ERECTION

PRECAST CONCRETE GIRDER ERECTION 7.1 Precast Concrete Girder Erection - General Erection of precast concrete girders includes transporting the girders to the site, handling and temporary storage, installing anchor bolts, shear blocks

More information

Locrete Building System: the Technology Handbook

Locrete Building System: the Technology Handbook Locrete Building System: the Technology Handbook 1 3... Introduction 4... Characteristics 6... Locrete Production 8... Locrete Testing 12... Building with Locrete 16... Shuttering System 13... External

More information

two structural systems, planning and design Structural Organization Bearing Walls Structural Components

two structural systems, planning and design Structural Organization Bearing Walls Structural Components ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2013 lecture two structural systems, planning and design AISC teaching aids: Courtesy of John Hooper, MKA Seattle Structural Organization

More information

two structural systems, planning and design Structural Organization Structural Components Bearing Walls

two structural systems, planning and design Structural Organization Structural Components Bearing Walls ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2017 lecture two structural systems, planning and design AISC teaching aids: Courtesy of John Hooper, MKA Seattle Structural Organization

More information

CHAPTER 17 - SPECIALIST CONSTRUCTION SYSTEMS

CHAPTER 17 - SPECIALIST CONSTRUCTION SYSTEMS CHAPTER 17 - SPECIALIST CONSTRUCTION SYSTEMS WJ Martin 17.1 SCOPE Specialist construction systems refer to the construction systems falling outside of the normal reinforced and prestressed bridges that

More information

EVERYONE'S RESPONSIBILITY

EVERYONE'S RESPONSIBILITY EVERYONE'S RESPONSIBILITY Guideline for Industrial Steel Storage Rack December 2010 Guideline for Industrial Steel Storage Rack Workplace Safety & Health Divsion 200 401 York Avenue Winnipeg, Manitoba

More information

Over the years, the use of precast concrete has taken giant

Over the years, the use of precast concrete has taken giant Precast Concrete Bridge Deck - Design, Transportation and Erection: A Designer s Overview Debabrata Mukherjee 1, Manju Balaji 2 1 Group Engineer, Atkins 2 Engineer, Atkins 76 Over the years, the use of

More information

Lessons learned: 3.2.Stability concepts

Lessons learned: 3.2.Stability concepts The contractor did not follow the contract requirement to limit the advancement of the uppermost lifted slabs to not more than three levels above the level of completed shear walls. Also, he did not provide

More information

SPECIFICATIONS FOR THE CONSTRUCTION OF NEW PASSENGER EQUIPMENT CARS PREFACE

SPECIFICATIONS FOR THE CONSTRUCTION OF NEW PASSENGER EQUIPMENT CARS PREFACE SPECIFICATIONS FOR THE CONSTRUCTION OF NEW PASSENGER EQUIPMENT CARS Standard ADOPTED 1939; ADVANCED TO STANDARD, 1945. PREFACE The specifications have been prepared on the basis that they will be used

More information

UNIT-I DESIGN CONCEPTS, DESIGN OF BEAMS Part - A (Short Answer Questions)

UNIT-I DESIGN CONCEPTS, DESIGN OF BEAMS Part - A (Short Answer Questions) S.NO IMPORTANT QUESTIONS UNIT-I DESIGN CONCEPTS, DESIGN OF BEAMS Part - A (Short Answer Questions) 1 What are the three methods of design of reinforced concrete structural elements? 2 State four objectives

More information

Design of Steel-Concrete Composite Bridges

Design of Steel-Concrete Composite Bridges Design of Steel-Concrete Composite Bridges to Eurocodes Ioannis Vayas and Aristidis Iliopoulos CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis

More information

fifteen design for lateral loads Lateral Load Resistance Load Direction Lateral Load Resistance

fifteen design for lateral loads Lateral Load Resistance Load Direction Lateral Load Resistance APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS FALL 2014 lecture fifteen design for lateral loads Lateral Load Resistance stability important for any height basic mechanisms

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER 1 Introduction In the past it was common practice to teach structural analysis and stress analysis, or theory of structures and strength of materials as they were frequently known, as two separate

More information

Jonathan R. Torch Technical Report 2 Columbia University. Technical Report 2. Pro-Con Structural Study of Alternate Floor Systems

Jonathan R. Torch Technical Report 2 Columbia University. Technical Report 2. Pro-Con Structural Study of Alternate Floor Systems Technical Report 2 Pro-Con Structural Study of Alternate Floor Systems Columbia University Broadway & 120 th Street, New York, NY Jonathan R. Torch Pennsylvania State University Architectural Engineering

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

MARTA Rapid Transit Bridges

MARTA Rapid Transit Bridges MARTA Rapid Transit Bridges his precast segmental post-tensioned concrete project for the T Metropolitan Atlanta Rapid Transit Authority demonstrates the ability of the segmental technique to economically

More information

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering, Indian Institute of Technology Madras

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering, Indian Institute of Technology Madras PRESTRESSED CONCRETE STRUCTURES Amlan K. Sengupta, PhD PE Department of Civil Engineering, Indian Institute of Technology Madras Module 9: Special Topics Lecture 40: Circular Prestressing, Conclusion Welcome

More information

Building Construction

Building Construction Building Construction Shallow Foundations Module-III Introduction The foundation can be classified broadly into two types: Shallow foundations Deep foundations Shallow foundations Shallow Foundations When

More information

Concrete Bridge Design and Construction series

Concrete Bridge Design and Construction series 42 Concrete Bridge Design and Construction series This series is authored by the Concrete Bridge Development Group (CBDG) The group aims to promote excellence in the design, construction and management

More information