Specifying a Vehicular Prefabricated Steel Truss Bridge

Size: px
Start display at page:

Download "Specifying a Vehicular Prefabricated Steel Truss Bridge"

Transcription

1 Specifying a Vehicular Prefabricated Steel Truss Bridge By Dennis L. Gonano, P.E., and James G. Bauer August 2012

2 Professional Development Series Specifying a Vehicular Prefabricated Steel Truss Bridge By Dennis L. Gonano, P.E., and James G. Bauer A constant challenge among our nation s infrastructure managers and their engineering partners is to determine the most cost-effective, long-lasting bridge structure that will fit the many constraints of today s bridge replacement project. Many deficient bridges across America can be found on rural, low-volume roads that are ideally suited for prefabricated steel truss bridges. These constraints may include environmentally sensitive stream crossings, or expensive railroad grade separation projects, coalescing public input and support, or projects where the need for speed is imperative. Many of these raise the cost of the project without any tangible benefit. A long, clear span is proven to solve many of these problems. By virtue of an impressive spanto-weight ratio, steel truss bridges can eliminate piers, improve hydraulics and reduce installation costs where other bridge types cannot. Further, an often-repeated reason for specifying steel truss bridges banks on the fact that people like them; they enhance the landscape and create a signature impression to the traveling public. Steel truss advantage Steel truss bridges continue to be one of the most effective and economical bridge types selected by developers and local infrastructure managers for single spans of more than 100 feet. For rural highways over streams or railroads, a steel truss bridge often is the best all-around solution. Because of the arrangement of floor framing members connecting into truss elements, the bridge s structural depth can be minimized as compared to multiline, under-deck girder systems. This arrangement is characterized by below-deck, floor beam members spanning the shorter dimension across the bridge width to Instructions The Professional Development Series is a unique opportunity to earn continuing education credit at no cost to you by reading specially focused, sponsored articles. After reviewing the learning objectives below, read the Professional Development Series article and complete the quiz online at Quiz answers will be graded automatically and, if you answer at least 80 percent of the questions correctly, you can immediately download a certificate of completion and will be awarded 1.0 professional development hour (equivalent to 0.1 continuing education unit in most states). Note: ZweigWhite is an Approved Provider by the American Institute of Architects Continuing Education System (AIA/CES). However, it is the responsibility of the licensee to determine if primary truss girders outside of the bridge s roadway or deck. Because these floor beams span the shorter direction, they are much shallower than would be needed to span the entire gap between abutments. The truss girders that span the gap can be sizable, deep truss members, but because they are beyond the roadway, they project above the roadway allowing for a minimized depth from the roadway surface to the underside of the lowest framing member. This saves costs due to less embankment material, less pavement construction, less impacts to nearby property owners and simpler permitting. Site conditions drive consideration Site conditions and limitations usually drive the search for the shallowest superstructure depth. For rural roads or low-volume city streets where a single span is desired, or where the number of pier structures should be minimized, a steel truss span or spans should be evaluated as a very feasible alternative. In addition to the shallow superstructure depth a truss bridge affords, several other features or cost considerations enter the evaluation. These primarily involve the ability to deliver and erect the bridge members. Because a steel truss bridge can be prefabricated into deliverable segments and spliced together at the job site, it allows for smaller shipments, more simple delivery and less costly trucking permits. Once spliced together, it can also mean much lighter crane lifts. Usually these crane lifts can be made from the approach roadway, again limiting the impacted footprint of the project. For comparison, a single precast box or I-girder may weigh up to three times as much as an equivalent length truss member. This requires a heavier crane for a longer dura- this method of continuing education meets his or her governing board(s) of registration s requirements. Learning Objectives This article will help the reader better understand: When to consider steel truss structures for a bridge project. Common specifications and terminology used to describe a truss bridge structure. Options related to corrosion protection. The general design, fabrication and construction practices for steel truss bridges. Professional Development Series Sponsor 2 PDH Professional Development Advertising Section Contech Engineered Solutions/U.S. Bridge

3 tion and likely will need a crane position and staging area adjacent to the bridge span. For stream crossings this can mean a causeway in the stream; for railroad spans this can mean higher insurance costs for working in the railroad s right-of-way with special flagging controls for having equipment and workers near the tracks. Figure 1: Warren Truss Configuration PANEL LENGTH Figure 2: Pratt Truss Configuration PANEL LENGTH Specifying style Prefabricated steel truss bridges can be fabricated in many different styles, finishes and configurations. They can be utilitarian in their appearance or they can be designed to enhance a developed area or become an aesthetic landmark for users of the facility. There are many possibilities. It is a matter of deciding what is important and what you envision your project to be. The truss style is basically the shape seen in the elevation view of the bridge. Generally speaking, the geometry of today s prefabricated truss bridges vary in two primary ways: the shape of the top chord and the arrangement of the web members. A top chord may be curved in an arc, it may be flat, or it may be segmented to form a polygon or camel-back. They each have different visual impacts. The web members, diagonals and verticals, generally are arranged in either a Warren Truss configuration or a Pratt Truss configuration (see Figures 1 and 2). These web members are spaced regularly across the elevation in panels that usually range from 10 to 18 feet. No matter the style chosen, the loads of the bridge flow generally in the same manner from the deck, into the floor framing and truss, resolving into force reactions on to the bearings. APPROACH SLAB STRINGER BEARING SEAT (BEYOND) TRUSS BEARING SEAT Specifying span and configuration The common span range for prefabricated steel truss bridges is 75 to 250 feet and is defined by the plan dimension between the centerline of each bearing at the forward and rear abutments. This dimension sometimes is confused with bridge length. In general, overall bridge length can be thought of as the gap that needs to be crossed or filled; or the opening between the abutment s backwalls. The difference between span and length requires an understanding of the end-ofbridge details that describe the extension of the structure beyond its bearing points as it reaches to the substructure (Figure 3). This is determined during the abutment design and is influenced by the requirements of any called-for expansion joint. Truss bridges may be oriented in a skewed manner, meaning that the beginning station of the left-side truss is not the same as the right-side truss, as in a staggered configuration. Some flexibility exists in arranging the floor framing of a skewed truss span as it may follow the skewed alignment or it may be arranged orthogonally to the trusses. Each of these attributes is inherent to steel and greatly enhances the flexibility of the bridge to conform to the site geometry while maintaining an economic arrangement. BRIDGE DECK JOINT SYSTEM Figure 3: Common End-of-Bridge Detail TRUSS BRIDGE LENGTH BRIDGE SPAN BOTTOM CHORD CONCRETE ABUTMENT STRINGER (BEYOND) Professional Development Advertising Section Contech Engineered Solutions/U.S. Bridge PDH 3

4 Specifying width Prefabricated steel truss bridges vary in width from one lane up to three lanes, depending on lane width and shoulders, but have a practical width limit of about 50 feet. Bridge width is defined as the transverse dimension between railings, parapets or curbs and needs to be sufficient to accommodate the lanes and shoulders of the approaching roadway. Sidewalks also may be considered part of the bridge width, as shown in the Through and Half-Through Truss sections in Figures 4 and 5. They can be accommodated either between the trusses on an elevated curb, or outside the trusses using cantilevered framing. If an internal sidewalk is desired, the specifier should give some consideration to the separation of traffic and pedestrians either in the form of a barrier or an unmountable curb, depending on the facility and the anticipated amount of pedestrian traffic. Another factor in designing the transverse section of a truss bridge is determining whether the bridge Figure 4: Through Truss Section Figure 5: Half-Through Truss Section will require portal and sway bracing. The Through Truss section shown in Figure 4 typically is utilized on longerspan bridges to brace the truss top chords to allow them to achieve higher capacities without buckling. The combination of span, bridge width, skew and specified loads will determine whether these members are necessary and should be determined early on in preliminary engineering. Once identified, a vertical clearance above the roadway will need to be specified for these overhead bracing members. Specifying construction After defining the span and width, the bridge s floor or deck construction becomes the next key attribute a specifier must decide upon. The selection of a floor or deck construction has the largest effect on the remaining details and the costs to construct the bridge. Here a bridge floor is defined as one made up of concrete, timber or corrugated steel planks. Bridge flooring usually is filled or topped with a driving surface. A bridge deck will mean reinforced concrete deck slab. Varieties of floor or deck options exist and have a large effect on edge details, railing support, durability and longevity. Several questions that should be answered before specifying a floor or deck construction are: Do I want a curbed section to channel drainage off of the bridge? Do I want a crash-tested railing system? Does lower initial cost outweigh the long-term maintenance and performance of higher-grade construction? Does worker safety or speed of construction outweigh the hidden costs of a lesser grade construction? Specifying a steel protection system Longevity of the bridge and the expected maintenance activities are important concerns for a bridge owner. As such, steel bridges require surface protection against aggressive environments. Like other steel bridges, prefabricated bridges may be manufactured using weathering steel (Photo 1), protective hot-dip galvanized steel (Photo 2) or a multi-coat paint system (Photo 3). Each has its merits and limitations and should be specified carefully. Weathering steel has a rustic, natural look that lends itself to scenic settings. Because it has fewer operations to perform in the manufacturing process, it generally is considered the least expensive. Its primary limitation is that of proximity to open water, but also it sometimes is difficult to procure on a short schedule. Photo 1: Weathering Steel Photo 2: Hot-Dip Galvanized Steel Photo 3: Multi-Coat Paint System 4 PDH Professional Development Advertising Section Contech Engineered Solutions/U.S. Bridge

5 Hot-dip galvanizing offers superior corrosion protection and is specified the most. Galvanizing has a silverto-gray appearance and blends into a background scene very well. Some manufacturers offer a 35-year warranty through their galvanizer that ensures a period to first maintenance (See references for additional learning resources). Specifying a paint system also is a viable and oftenused protection method. It provides quality protection with an appearance that otherwise cannot be achieved. Manufacturers should be AISC endorsed and have extensive experience painting bridge structures to ensure a quality application that will last. Painted structures usually are used where aesthetics are important and the bridge is envisioned as a focal point. Corrosion protection systems may even be combined in different ways, e.g. painting over galvanizing, or partial painting of weathering steel areas or even the combining of a galvanized floor framing with weathering steel truss members. The selection of combined systems should be made to enhance a particular advantage from one of these individual systems. Design process When you consider specifying a modern steel truss for your project, it may seem like answers to questions are a little more difficult to come by. How shallow is the floor beam? What kind of railing construction is available? Should I consider a curbed section? How many trucks will it take to deliver? How much do the trusses weigh? What cost range should I assume for my budget? How are these bridges erected? The initial scoping process typically involves the bridge specifier contacting an AISC-certified manufacturer to help scope key dimensions, common details and options. From this initial conversation, an engineer with the manufacturer can begin to develop preliminary member sizes and load reactions for the substructure design. Experienced manufacturers will go an extra step by developing framing plans and transverse sections at this early stage to depict the project schematically. If the Photo 4: Onsite Assistance project will be public, a manufacturer may supply the owner agency with CAD drawings for their use in completing the bid documents. Model specifications also are available for editing and commonly are supplied at this stage. Many times bridge steel needs to be purchased ahead of final approval because of critical lead times related to mill rolling dates. Because of this, accurate specifying of the bridge in the initial contract documents is extremely important. If these documents are vague or incomplete, the prefabricator must sort out the owner s intent with questions, requests for information (RFIs) or interpretations, all which slow the design and procurement steps. To ensure a quality process, the specifications also should require the prefabricator to be AISC-certified as a Major Bridge Fabricator, and have the necessary experience and proven ability to deliver the bridge that is specified. These specifications should be demonstrated in a qualifications package supplied by the prefabricator. The formal design process usually is initiated after a contract award is made. Design criteria will follow AASHTO s design specifications, either Standard Specifications for Design of Highway Bridges, 17th Edition, or LRFD Bridge Design Specifications, 6th Edition. Additionally, state manuals governing DOT requirements must be considered. In these documents are hundreds of requirements that pertain to the bridge design. It is very important to select a bridge prefabricator that has deep knowledge of these design codes and the experience to properly interpret the provisions. This helps prevent delays and ensures a safe and complete design. Installation drawings are prepared and should be thought of as an extension of the contract construction drawings. A project detailer further develops drawings that depict the fabricated members in traditional shop drawings. This dual plan set guides the contractor to complete the field work and it guides the shop production of each steel member. A typical plan set for installation plans and shop drawings will contain anywhere from 15 to 40 sheets, depending on the size, skew, symmetry and features of the bridge. The calculation and drawing package is then sealed by a Professional Engineer licensed to practice in the state where the bridge is located and is submitted to the customer for approval. Fabrication and installation Two tools that are enabling bridge prefabricators to increase productivity and quality are Computer Numerically Controlled (CNC) equipment and Bridge Information Modeling (BrIM) software. Professional Development Advertising Section Contech Engineered Solutions/U.S. Bridge PDH 5

6 Bridge structural components that are processed on CNC equipment are first programmed by software that defines the operations, tooling and quantities for each piece. Bridge Information Modeling (BrIM) allows for a seamless exchange of design data to the machines. Specifying that steel be processed with CNC equipment and programmed with a complete 3D Bridge Information Model will shorten production times and increase the quality of the fabricated bridge. After steel is received from the mills, it is processed in steel fabricating shops using equipment and manpower to drill, cut and curve the components, then weld or bolt the shippable assemblies together. Other items for construction that might be ordered for the project, such as timber floor, guardrail, bearings and light-gage concrete forms, are procured and readied for shipping to the site. Quality control measures are used to verify that pieces are fabricated accurately and assembled according to specified standards. These standards should include the American Institute of Steel Construction (AISC) Steel Construction Manual, AASHTO/NSBA s S2.1 Steel Bridge Fabrication Guide Specifications, the American Welding Society (AWS) D1.5 Bridge Welding Code and the Research Council on Structural Connections (RCSC) Specifications for Structural Joints Using A325 or A490 Bolts. Depending on the size of the bridge, members will be shop assembled into erectable units to speed construction. The size and weight of these units will be shown in the construction drawings to assist the contractor in planning the installation. These units, along with other individual components, will arrive on the site on a series of trucks. The components are marked according to the drawings which are then used to guide the contractor s installation. Technical assistance from the prefabricator s staff, who is experienced in erecting steel bridges, is recommended during determination of the specifications to ensure a smooth installation. Conclusion The history of steel truss bridges dates back to the 1800s, and prefabricated steel truss bridges, back to the 1930s when modular systems were developed for military purposes. A modern steel truss bridge has proven time and time again to be a feasible, attractive and economic solution for bridge sites that have difficult engineering challenges. Specifying a modern steel truss bridge can be simplified with the help of a bridge manufacturer that has the resources and experience to lead the way. For online access to all CE News PDH articles, visit zweigwhite.com References and Resources American Association of State Highway and Transportation Officials (AASHTO): AASHTO, LRFD Bridge Design Specifications, Customary U.S. Units, 6th Edition, AASHTO/NSBA Steel Bridge Collaboration, S Steel Bridge Fabrication Guide Specification, AASHTO, Standard Specifications for Highway Bridges, 17th Edition, AASHTO / American Welding Society (AWS), D1.5M/D1.5:2002, Bridge Welding Code, American Galvanizers Association (AGA): Benefits and longevity of hot-dip galvanized steel. How Long Does HDG Last?, < Hot-Dip Galvanizing for Corrosion Protection, A Specifiers Guide,< Guide.pdf>, American Institute of Steel Construction (AISC), Steel Construction Manual, 14th Edition, Recommendations regarding weathering steel in bridge construction: FHWA, Technical Advisory , Uncoated Weathering Steel in Structures, < Research Council on Structural Connections (RCSC), D-014 RCSC Specification for Structural Joints Using ASTM A325 or A490 Bolts, June Specifying a protective paint system, The Society for Protective Coatings (SSPC), How to Use SSPC Standards and Guides, < Dennis L. Gonano, P.E., is the director of engineering and department manager for U.S. Bridge in Cambridge, Ohio. Contact him at dgonano@usbridge.com. James G. Bauer, B.S./M.B.A., is product manager for Truss Bridge Products for Contech Engineered Solutions. His nine years at Contech has included roles in sales, training and precast concrete bridge product management. Contact him at jbauer@conteches.com. 6 PDH Professional Development Advertising Section Contech Engineered Solutions/U.S. Bridge

7 Quiz instructions Specifying a Vehicular Prefabricated Steel Truss Bridge Go to to take the following quiz online. Quiz answers will be graded automatically and, if you answer at least 80 percent of the questions correctly, you can immediately download a certificate of completion. 1. Which corrosion protection method can be offered with a 35-year warranty? a) Multi-Coat Paint System b) Hot-Dip Galvanized Steel c) Asphaltic Mastic d) Weathering Steel 2. What quality control standard should be specified for the installation of high-strength bolts? a) Federal Highway Administration LRFD Design of Highway Bridges b) AASHTO LRFD Bridge Design Specifications, 6th Edition c) AISC Steel Construction Manual, 14th Edition d) RCSC Specifications for Structural Joints Using A325 or A490 Bolts 3. Which statement is false in describing the advantages of steel truss bridges? a) They may be erected in smaller staging areas b) They may be erected with lighter equipment c) Floor framing produces deeper structural depth than multi-line girder bridges d) They can be oriented along an intersecting skew angle with the feature below 4. Which of the following is not a viable corrosion protection situation? a) Hot-dip galvanizing over a fast moving stream on a rural West Virginia roadway b) Weathering steel over a mainline railroad grade separation in South Carolina c) Three-coat paint system on a highly visible entrance road to a new commercial development, over a busy New England arterial street d) Weathering steel over a rural low-water crossing 6 feet above normal water on a Montana reservoir 5. Pre-bid deliverables from a bridge prefabricator during the specification phase of a project might include: a) CAD drawing files of the bridge to be used in the advertised contract documents including the depth dimensions of floor framing members and deck construction b) Proposed dead and live loads and their associated reactions to the substructure c) An estimated cost to design, fabricate and deliver the bridge superstructure d) Three-dimensional rendering of the bridge, set in its proposed site e) All of the above 6. The diagonal members always slope downward and toward the midline of the span on this type of prefabricated truss style: a) Howe Truss b) Polynesian Truss c) Pratt Truss d) Warren Truss 7. Sway and portal bracing is needed on a truss span when the span, width and loadings of the bridge create high enough: a) Flexural forces in the floor beams to cause top flange buckling b) Compression forces in the top chord members to cause buckling c) Tension forces in the bottom chord to cause shear lag in the spliced members d) Shear forces in the stringers to cause block shear failure 8. Which is not a consideration in specifying an internal sidewalk on a bridge? a) The highway facility s legal speed b) Traffic and pedestrian volumes c) Deck drainage and curb height d) The location and width of approaching sidewalks e) None of the above (they all apply) 9. A steel truss bridge s primary member, the truss girder, can weigh of the weight of a comparable prestressed concrete box or I-girder. a) as much as one-tenth b) as much as one-third c) twice as much d) as much as two-fifths 10. Web members of the truss bridge are spaced to form panels that usually range in length from: a) 5 to 12 feet b) 6 to 16 feet c) 10 to 18 feet d) 12 to 20 feet Professional Development Advertising Section Contech Engineered Solutions/U.S. Bridge PDH 7

8 ENGINEERED SOLUTIONS h ve icular trus s precast Contech Engineered Solutions Contech Engineered Solutions LLC pe de s strian tru s ctural plat ru e t s

STANDARDIZED CONCRETE BRIDGES IN TEXAS. John Holt, PE, Texas Department of Transportation Ronald Medlock, PE, Texas Department of Transportation

STANDARDIZED CONCRETE BRIDGES IN TEXAS. John Holt, PE, Texas Department of Transportation Ronald Medlock, PE, Texas Department of Transportation STANDARDIZED CONCRETE BRIDGES IN TEXAS John Holt, PE, Texas Department of Transportation Ronald Medlock, PE, Texas Department of Transportation ABSTRACT Standardized concrete bridge plans are used extensively

More information

SECTION PREFABRICATED PIPE BRIDGE(s)

SECTION PREFABRICATED PIPE BRIDGE(s) SECTION 13135 - PREFABRICATED PIPE BRIDGE(s) PART 1 - GENERAL 1.01 Scope A. The Contractor is responsible for all engineering design, detailing, fabricating, installation including foundations for the

More information

Design and Construction of the SH58 Ramp A Flyover Bridge over IH70. Gregg A. Reese, PE, CE, Summit Engineering Group, Inc.

Design and Construction of the SH58 Ramp A Flyover Bridge over IH70. Gregg A. Reese, PE, CE, Summit Engineering Group, Inc. Design and Construction of the SH58 Ramp A Flyover Bridge over IH70 Gregg A. Reese, PE, CE, Summit Engineering Group, Inc., Littleton, CO ABSTRACT: The SH58 Ramp A bridge in Golden, CO is the latest on

More information

MICHIGAN DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION FOR PREFABRICATED STEEL PEDESTRIAN BRIDGE, TYPE 2

MICHIGAN DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION FOR PREFABRICATED STEEL PEDESTRIAN BRIDGE, TYPE 2 MICHIGAN DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION FOR PREFABRICATED STEEL PEDESTRIAN BRIDGE, TYPE 2 OFS:MJF 1 of 10 APPR:JAB:POJ:09-29-18 FHWA:APPR:10-01-18 a. Description. This work consists of

More information

MICHIGAN DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION FOR PREFABRICATED STEEL PEDESTRIAN BRIDGE, TYPE 2

MICHIGAN DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION FOR PREFABRICATED STEEL PEDESTRIAN BRIDGE, TYPE 2 MICHIGAN DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION FOR PREFABRICATED STEEL PEDESTRIAN BRIDGE, TYPE 2 OFS:MJF 1 of 10 APPR:JAB:POJ:07-07-17 FHWA:APPR:07-11-17 a. Description. This work consists of

More information

ENGINEERED SOLUTIONS. Contech Bridge Plank

ENGINEERED SOLUTIONS. Contech Bridge Plank ENGINEERED SOLUTIONS Contech Bridge Plank Contech Bridge Plank for Rehabilitation Make unsound bridges safe with Contech Bridge Plank Every state is faced with the problem of replacing old bridges. In

More information

MICHIGAN DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION FOR PREFABRICATED STEEL PEDESTRIAN BRIDGE, TYPE 1

MICHIGAN DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION FOR PREFABRICATED STEEL PEDESTRIAN BRIDGE, TYPE 1 MICHIGAN DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION FOR PREFABRICATED STEEL PEDESTRIAN BRIDGE, TYPE 1 OFS:MJF 1 of 10 APPR:JAB:POJ:09-29-18 FHWA:APPR:10-01-18 a. Description. This work consists of

More information

PREFABRICATED STEEL TRUSS SPECIFICATIONS

PREFABRICATED STEEL TRUSS SPECIFICATIONS PREFABRICATED STEEL TRUSS SPECIFICATIONS 1. GENERAL 1.1 Scope All engineering design and related detailing of the bridge(s) shall be provided by the supplier. The design and detailing shall conform to

More information

OCTAGONAL SHAPE REDUCES AIRPLANE HANGAR COSTS

OCTAGONAL SHAPE REDUCES AIRPLANE HANGAR COSTS OCTAGONAL SHAPE REDUCES AIRPLANE HANGAR COSTS While a square hangar would have been simpler to design, an octagonal building substantially reduced life cycle costs By Charles Sacre, P.E. THE PROGRAM FOR

More information

Chapter 1. General Design Information. Section 1.02 Structure Selection and Geometry. Introduction

Chapter 1. General Design Information. Section 1.02 Structure Selection and Geometry. Introduction Chapter 1 Bridge Design Manual General Design Information Section 1.02 Selection and Geometry Introduction Selection or Rehabilitation Report This section of the design manual provides guidance on the

More information

ERRATA for G12.1, Guidelines to Design for Constructability, 2016 Edition

ERRATA for G12.1, Guidelines to Design for Constructability, 2016 Edition ERRATA for December 2016 Dear Customer: Recently, we were made aware of some technical revisions that need to be applied to the Guidelines to Design for Constructability, 2016 Edition. Please scroll down

More information

MASTER AGREEMENT FOR BRIDGE DESIGN SERVICES SCOPE OF WORK

MASTER AGREEMENT FOR BRIDGE DESIGN SERVICES SCOPE OF WORK MASTER AGREEMENT FOR BRIDGE DESIGN SERVICES SCOPE OF WORK The professional services to be provided by the Consultant under this Agreement shall be as necessary to complete the required analyses, layouts,

More information

ENHANCING STEEL BRIDGES

ENHANCING STEEL BRIDGES ENHANCING STEEL BRIDGES A series of NSBA focus groups brings to light methods to improve the cost, speed and quality of steel bridges By Andy Johnson and Bill McElency Of critical importance to designers

More information

Ministry of Forests & Range

Ministry of Forests & Range Ministry of Forests & Range DRAWING SCHEDULE DRAWING No. / MODEL TYPE STD-EC-040-01 STD-EC-040-02 STD-EC-040-03 STD-EC-040-04 STD-EC-040-05 STD-EC-040-06 STD-EC-040-07 STD-EC-040-08 DESCRIPTION REV. DATE

More information

AREMA 2008 Annual Conference. LOW PROFILE RAILROAD BRIDGE Steve K. Jacobsen, PE NNW, Inc. Rochester, Minnesota

AREMA 2008 Annual Conference. LOW PROFILE RAILROAD BRIDGE Steve K. Jacobsen, PE NNW, Inc. Rochester, Minnesota AREMA 2008 Annual Conference LOW PROFILE RAILROAD BRIDGE Steve K. Jacobsen, PE NNW, Inc. Rochester, Minnesota 55904 507-281-5188 Steve K. Jacobsen, PE 2 LOW PROFILE RAILROAD BRIDGE Steve K. Jacobsen, PE

More information

PRECAST CONCRETE GIRDER ERECTION

PRECAST CONCRETE GIRDER ERECTION 7.1 Precast Concrete Girder Erection - General Erection of precast concrete girders includes transporting the girders to the site, handling and temporary storage, installing anchor bolts, shear blocks

More information

New Jersey Turnpike Authority

New Jersey Turnpike Authority New Jersey Turnpike Authority DOCUMENT UPDATE REQUEST Forward to Assistant Chief Engineer, Design Initiator Russell Saputo, PE Submittal Date 6/21/16 Firm Stantec Consulting Services Inc. Telephone 201-587-9040

More information

Cross Frame Design for Curved and Skewed Bridges

Cross Frame Design for Curved and Skewed Bridges Cross Frame Design for Curved and Skewed Bridges Using AASHTO LRFD, 8 th Edition Travis Butz, PE To View Presentation on Your Mobile Device: www.burgessniple.com/event/2018/otec Cross frames in the 8 th

More information

Copyright 2015 American Institute of Steel Construction. All rights reserved.

Copyright 2015 American Institute of Steel Construction. All rights reserved. Notice: Copyright 2015 American Institute of Steel Construction. All rights reserved. This presentation is provided solely for informational purposes and does not constitute conveyance of any intellectual

More information

DESIGN AND LAUNCHING OF A REDUNDANT TRUSS OVER RAILROAD YARD

DESIGN AND LAUNCHING OF A REDUNDANT TRUSS OVER RAILROAD YARD 2018 Purdue Road School Transportation Conference Rendering by Touchstone Architecture Martin Furrer, PE, SE March 6, 2018 DESIGN AND LAUNCHING OF A REDUNDANT TRUSS OVER RAILROAD YARD Project Location

More information

SINGLE STEEL BOX GIRDER BRIDGES FOR THE TERMINAL DEVELOPMENT PROJECT AT TORONTO PEARSON INTERNATIONAL AIRPORT. Srdjan Brasic, M.Sc., P.Eng.

SINGLE STEEL BOX GIRDER BRIDGES FOR THE TERMINAL DEVELOPMENT PROJECT AT TORONTO PEARSON INTERNATIONAL AIRPORT. Srdjan Brasic, M.Sc., P.Eng. SINGLE STEEL BOX GIRDER BRIDGES FOR THE TERMINAL DEVELOPMENT PROJECT AT TORONTO PEARSON INTERNATIONAL AIRPORT Srdjan Brasic, M.Sc., P.Eng. UMA Engineering Ltd. Paper prepared for presentation at the Technical

More information

Introduction.» Demolition Concepts» Concept Design» Final Design» Construction» Health Monitoring

Introduction.» Demolition Concepts» Concept Design» Final Design» Construction» Health Monitoring Location of Project Introduction» Demolition Concepts» Concept Design» Final Design» Construction» Health Monitoring Existing Bridge» Built in 1928» 255-foot Open Spandrel Concrete Arch Bridge» 24-foot

More information

SR 0136-G10 ABC BRIDGE REPLACEMENT in Eighty Four, PA

SR 0136-G10 ABC BRIDGE REPLACEMENT in Eighty Four, PA ASHE NATIONAL PROJECT OF THE YEAR SR 0136-G10 ABC BRIDGE REPLACEMENT in Eighty Four, PA For the PENNSYLVANIA DEPARTMENT OF TRANSPORTATION Engineering District 12-0 Submitted By: January 29, 2018 AMERICAN

More information

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS, CENTER FOR ENVIRONMENTAL EXCELLENCE, HISTORIC BRIDGES COMMUNITY OF PRACTICE

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS, CENTER FOR ENVIRONMENTAL EXCELLENCE, HISTORIC BRIDGES COMMUNITY OF PRACTICE AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS, CENTER FOR ENVIRONMENTAL EXCELLENCE, HISTORIC BRIDGES COMMUNITY OF PRACTICE HISTORIC BRIDGE REHABILITATION AND MAINTENANCE CASE STUDY

More information

BRIDGE CONSTRUCTION USING SELF-PROPELLED MODULAR TRANSPORTERS (SPMT)

BRIDGE CONSTRUCTION USING SELF-PROPELLED MODULAR TRANSPORTERS (SPMT) SPECIAL PROVISION August 31, 2009 PROJECT # S-R399(42) PROJECT # S-R399(59) PIN # 6697/7236 SECTION 03253S BRIDGE CONSTRUCTION USING SELF-PROPELLED MODULAR TRANSPORTERS (SPMT) Add Section 03253S: PART

More information

Accelerated Bridge Construction in USA

Accelerated Bridge Construction in USA Accelerated Bridge Construction in USA Abstract Rush hour traffic is a common daily occurrence in the USA. Highway and bridge construction further aggravates the situation. The Federal Highway Administration

More information

Alberta Bridge Inventory STANDARD BRIDGE & CULVERT COMPONENTS. Standard Bridges. Typical Bridge Components. In Alberta there are about 13,300 bridges.

Alberta Bridge Inventory STANDARD BRIDGE & CULVERT COMPONENTS. Standard Bridges. Typical Bridge Components. In Alberta there are about 13,300 bridges. STANDARD BRIDGE & CULVERT COMPONENTS Alberta Bridge Inventory In Alberta there are about 13,300 bridges. Types of bridges in Alberta: Standard bridges 3521 (26%) Bridge size culverts 8348 (63%) Major bridges

More information

SIBLEY POND DESIGN-BUILD BRIDGE REPLACEMENT ROUTE 2 CANAAN/PITTSFIELD, MAINE

SIBLEY POND DESIGN-BUILD BRIDGE REPLACEMENT ROUTE 2 CANAAN/PITTSFIELD, MAINE SIBLEY POND DESIGN-BUILD BRIDGE REPLACEMENT ROUTE 2 CANAAN/PITTSFIELD, MAINE Keith Donington, P.E. October 2012 1 Sibley Pond - Bridge Elevation 2 Bridge Open to Traffic November 2011 3 Bridge Highlights

More information

SECTION PLATE CONNECTED WOOD TRUSSES

SECTION PLATE CONNECTED WOOD TRUSSES SECTION 06173 PLATE CONNECTED WOOD TRUSSES PART 1 GENERAL 1.01 SUMMARY A. Section Includes: 1. Shop fabricated wood trusses for roof and floor framing. 2. Bridging, bracing, and anchorage. B. Related Sections:

More information

DESIGN OF CAMPBELL ROAD OVERPASS IN KELOWNA. Yulin Gao, M.A.Sc., P.Eng., SNC-Lavalin Inc. Samson Chan, M.Eng., P. Eng., SNC-Lavalin Inc.

DESIGN OF CAMPBELL ROAD OVERPASS IN KELOWNA. Yulin Gao, M.A.Sc., P.Eng., SNC-Lavalin Inc. Samson Chan, M.Eng., P. Eng., SNC-Lavalin Inc. DESIGN OF CAMPBELL ROAD OVERPASS IN KELOWNA Yulin Gao, M.A.Sc., P.Eng., SNC-Lavalin Inc. Samson Chan, M.Eng., P. Eng., SNC-Lavalin Inc. Paper prepared for presentation at the Bridges in a Climate of Change

More information

Faced with the prospect of

Faced with the prospect of RE-DECKING the M. Harvey Taylor Bridge Innovative Deck System Design Will Keep Traffic Flowing Roger B. Stanley, P.E., M.S.C.E. Fig. 1: Downstream elevation viewed looking eastward towards Harrisburg.

More information

PEDESTRIAN BRIDGE 866/

PEDESTRIAN BRIDGE 866/ 866/258-3401 WWW.BRIDGEBROTHERSINC.COM 1 Purpose and Scope These specifications are for a fully engineered clear span bridge of welded steel construction and shall be regarded as minimum standards for

More information

Newton Group CANADACAR SYSTEM. Basic Construction of the CANADACAR System. CANADACAR Module Format

Newton Group CANADACAR SYSTEM. Basic Construction of the CANADACAR System. CANADACAR Module Format Basic Construction of the CANADACAR System The CANADACAR System is a prefabricated, engineered and constructed freestanding parking garage structure that utilizes superior technology combining pre-cast

More information

OHIO DEPARTMENT OF TRANSPORTATION CENTRAL OFFICE, 1980 W. BROAD ST., COLUMBUS, OHIO

OHIO DEPARTMENT OF TRANSPORTATION CENTRAL OFFICE, 1980 W. BROAD ST., COLUMBUS, OHIO OHIO DEPARTMENT OF TRANSPORTATION CENTRAL OFFICE, 1980 W. BROAD ST., COLUMBUS, OHIO 43216-0899 July 20, 2018 To: Users of the Bridge Design Manual From: Tim Keller, Administrator, Office of Structural

More information

DIVISION 5 - STRUCTURAL STEEL AND IRON WORK

DIVISION 5 - STRUCTURAL STEEL AND IRON WORK DIVISION 5 - STRUCTURAL STEEL AND IRON WORK SECTION 05100 STRUCTURAL METAL FRAMING PART 1.00 GENERAL 1.01 SCOPE OF WORK A. Work Included: 1. 2. Structural steel complete in place. Steel joists complete

More information

FABRICATED BRIDGE PRODUCTS CATALOG

FABRICATED BRIDGE PRODUCTS CATALOG FABRICATED BRIDGE PRODUCTS CATALOG 2 0 1 8 CONTENTS INCLUDE: - Steel Bridge Grid Decking - Stay-in-Place Metal Bridge Deck Forms - Aluminum Bridge Decking - Bridge Railing Systems Project Photo: Peace

More information

KANSAS. Crossover. The Kansas Department of Transportation finds a new solution for stream crossings.

KANSAS. Crossover. The Kansas Department of Transportation finds a new solution for stream crossings. The Kansas Department of Transportation finds a new solution for stream crossings. KANSAS Crossover BY TIM LEAF, P.E., AND SCOTT UHL, P.E. JUST WEST OF TOPEKA, KAN., where Highway K-4 crosses Blacksmith

More information

Steve Haines, P.E., Parsons, (303) , James Studer, Kiewit, (926) ,

Steve Haines, P.E., Parsons, (303) , James Studer, Kiewit, (926) , PLACEMENT OF PRECAST PRESTRESSED CONCRETE GIRDER BRIDGE SPANS WITH SELF PROPELLED MODULAR TRANSPORTERS PIONEER CROSSING DESIGN/BUILD PROJECT, AMERICAN FORK, UT Steve Haines, P.E., Parsons, (303) 831-8100,

More information

xiii Preface to the Fifth Edition Preface to the Second Edition Factors for Conversion to SI Units of

xiii Preface to the Fifth Edition Preface to the Second Edition Factors for Conversion to SI Units of Structural Steel Designer's Handbook Table Of Contents: Contributors xiii Preface to the Fifth Edition xv Preface to the Second Edition xvii Factors for Conversion to SI Units of xix Measurement Chapter

More information

It must be lowered 5 feet (1.5 meters) onto the bearings. Waterway clearance is decreased.

It must be lowered 5 feet (1.5 meters) onto the bearings. Waterway clearance is decreased. CHAPTER 12 DECK-TYPE BRIDGES Deck-type panel bridges are normally twolane, class 50 or higher bridges assembled to replace single-lane bridges. A deck-type panel bridge has the following advantages over

More information

Red Wing Bridge Alternates

Red Wing Bridge Alternates Alternate 1 Tied Arch Alternate 2 Simple Span Truss Alternate 1 Design Drawing Alternate 2 Design Drawing Similar Bridge Design to Alternate 1 Similar Bridge Design to Alternate 2 Evaluation Matrix for

More information

USE OF HIGH PERFORMANCE STEEL IN TEXAS BRIDGES

USE OF HIGH PERFORMANCE STEEL IN TEXAS BRIDGES David P. Hohmann, P.E., and John M. Holt, P.E. 1 USE OF HIGH PERFORMANCE STEEL IN TEXAS BRIDGES Submission Date: July 31, 2002 Word Count: 2529 David P. Hohmann, P.E. Director, Bridge Design Branch Bridge

More information

Highway Bridge Structure Components

Highway Bridge Structure Components Highway Bridge Structure Components Basic Bridge Components 1 Deck and 2 Stringer 3 Bearing 4 Pedestal 5 Footing 6 Piles 7 Underpass 8 Embakment 9 Live Loading Basic Bridge Components 1-Deck & wearing

More information

SECTION PRE-ENGINEERED COLD-FORMED METAL ROOF AND FLOOR TRUSSES

SECTION PRE-ENGINEERED COLD-FORMED METAL ROOF AND FLOOR TRUSSES SECTION 05440- PRE-ENGINEERED COLD-FORMED METAL ROOF AND FLOOR TRUSSES PART 1 GENERAL 1.01 SUMMARY A. Section includes pre-engineered, pre-fabricated cold formed steel framing elements. Work includes:

More information

MICHIGAN DEPARTMENT OF TRANSPORTATION BRIDGE DESIGN GUIDES TABLE OF CONTENTS

MICHIGAN DEPARTMENT OF TRANSPORTATION BRIDGE DESIGN GUIDES TABLE OF CONTENTS MICHIGAN DEPARTMENT OF TRANSPORTATION BRIDGE DESIGN GUIDES TABLE OF CONTENTS SECTION 1 - MISCELLANEOUS STANDARDS 1.00.01 -.05 Table of Contents 1.11.01 Decimal Parts of a Foot and Inch 1.21.01 Factors

More information

Superstructure Guidelines

Superstructure Guidelines Superstructure Guidelines The following are additional guidelines on using the following types of superstructure. Pre-stressed Concrete Beams To check beam size use the beam size chart. The chart was created

More information

Engineering Design Process: Structural Design

Engineering Design Process: Structural Design Engineering Design Process: Structural Design Introduction Structural engineering is the design of structural elements and their connections that work together to support loads and maintain stability within

More information

STATE OF NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION LOAD RATING REPORT GENERAL SULLIVAN BRIDGE - DOVER 200/023 OVER THE LITTLE BAY

STATE OF NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION LOAD RATING REPORT GENERAL SULLIVAN BRIDGE - DOVER 200/023 OVER THE LITTLE BAY STATE OF NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION LOAD RATING REPORT GENERAL SULLIVAN BRIDGE - DOVER 200/023 OVER THE LITTLE BAY NEWINGTON-DOVER, 11238S August 15, 2016 Vanasse Hangen Brustlin, Inc.

More information

Chapter 4 Bridge Program Drawings

Chapter 4 Bridge Program Drawings Chapter 4 Bridge Program Drawings Section 4.10-Bridge Railing Introduction Steel bridge railing and concrete bridge barrier rail are installed along the edge of the bridge roadway to keep errant vehicles

More information

K. ASTM F436- Standard Specification for Hardened Steel Washers; 2011.

K. ASTM F436- Standard Specification for Hardened Steel Washers; 2011. DIVISION 05 METALS 05 12 00 STRUCTURAL STEEL FRAMING PART 1 GENERAL 1.1 SECTION INCLUDES A. Structural steel framing members, support members. 1.2 RELATED REQUIREMENTS A. Section 05 50 00 - Metal Fabrications:

More information

Structural Steel: An Industry Overview

Structural Steel: An Industry Overview Structural Steel: An Industry Overview A White Paper by the American Institute of Steel Construction October 2017 The United States structural steel industry supplied fabricated and erected structural

More information

Insulating Cellular Concrete Steel Joists Painting. A. America Society for Testing and Materials (ASTM):

Insulating Cellular Concrete Steel Joists Painting. A. America Society for Testing and Materials (ASTM): SECTION 05120 STRUCTURAL STEEL PART 1 GENERAL 1.01 SUMMARY A. Related Sections: 1. 03342 - Insulating Cellular Concrete. 2. 05210 - Steel Joists. 3. 09900 - Painting. 1.02 REFERENCES A. America Society

More information

ADDENDUM NO. 3. A. Attached is the updated Revision of Section 509 Prefabricated Structural Steel Bridge.

ADDENDUM NO. 3. A. Attached is the updated Revision of Section 509 Prefabricated Structural Steel Bridge. Purchasing Division ADDENDUM NO. 3 DATE: March 26, 2019 FROM: City of Grand Junction Purchasing Division TO: All Offerors RE: 2019 Monument Road Bicycle Path Trail IFB-4618-19-DH Offerors responding to

More information

Short Span Steel Bridges

Short Span Steel Bridges Short Span Steel Bridges MINK 2015 Michael Barker, PE University of Wyoming & SSSBA Bridge Technology Center Outline of Today s Presentation SSSBA & espan140 Design Competitiveness of Steel Bridges Economics

More information

3/21/2012. Dave Conkel State Aid Bridge Engineer. Brian Homan State Aid Bridge Plans Engineer

3/21/2012. Dave Conkel State Aid Bridge Engineer. Brian Homan State Aid Bridge Plans Engineer 3/21/2012 Dave Conkel State Aid Bridge Engineer Brian Homan State Aid Bridge Plans Engineer 1 3/21/2012 Check Q100, V100 and drainage area versus up and down stream bridges. Check proposed channel bottom

More information

SECTION ELEVATED BLEACHERS (Angle Frame Semi-Closed Deck)

SECTION ELEVATED BLEACHERS (Angle Frame Semi-Closed Deck) SECTION 13125 ELEVATED BLEACHERS (Angle Frame Semi-Closed Deck) PART 1 GENERAL 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and

More information

NORFOLK SOUTHERN RAILWAY COMPANY FILES: BR & BR

NORFOLK SOUTHERN RAILWAY COMPANY FILES: BR & BR NORFOLK SOUTHERN RAILWAY COMPANY FILES: BR0013844 & BR0013129 COLUMBIA, CHEROKEE COUNTY, SOUTH CAROLINA I-85 UNDERPASS PROJECT (1) REPLACEMENT OF EXISTING I-85 UNDERPASS BRIDGE MILEPOST SB-141.35 DOT/AAR

More information

STRUCTURAL STEEL FRAMING

STRUCTURAL STEEL FRAMING SECTION 05 12 00 - STRUCTURAL STEEL FRAMING PART 1 - GENERAL 1.1 SUMMARY A. Section includes 1. Structural steel framing 2. Structural steel framing required for support and framing of rooftop mechanical

More information

Bridge and Culvert Design Standards

Bridge and Culvert Design Standards 3004 ROADWAY DESIGN STANDARDS 3004.1 Roadway Design Roadway planning and design for the public road system shall conform to the following guidelines and referenced specifications. Use the most current

More information

How Loads Are Distributed

How Loads Are Distributed LOAD DISTRIBUTION 1 LOAD DISTRIBUTION This section illustrate how load will transmit from the deck to the stringers. Determining the fraction of load carried by a loaded member and the remainder distributed

More information

Design Challenges and Construction Benefits of Precast Segmental Rail Bridges

Design Challenges and Construction Benefits of Precast Segmental Rail Bridges Design Challenges and Construction Benefits of Precast Segmental Rail Bridges by Amy R. Kohls, P.E., S.E. Director Texas Office Figg Bridge Engineers, Inc. 10000 North Central Expressway Suite 1300 Dallas,

More information

SECTION COLD-FORMED METAL TRUSSES

SECTION COLD-FORMED METAL TRUSSES SECTION 054400 COLD-FORMED METAL TRUSSES PART 1 - GENERAL 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification

More information

Rt. 15/29 (SBL) Bridge Superstructure Replacement and Roadway Widening

Rt. 15/29 (SBL) Bridge Superstructure Replacement and Roadway Widening Rt. 15/29 (SBL) Bridge Superstructure Replacement and Roadway Widening March 5, 2009 Nicholas J. Roper NOVA District Bridge Engineer Robert F. Price Resident Administrator of Loudoun/ Prince William Construction

More information

DMS-7370 Steel Bridge Member Fabrication Plant Qualification

DMS-7370 Steel Bridge Member Fabrication Plant Qualification Steel Bridge Member Fabrication Plant Qualification Effective Date: January 2015 1. DESCRIPTION This Specification describes the qualification processes for fabrication plants producing steel bridge members,

More information

bridges that last. Steel bridges and bridge flooring

bridges that last. Steel bridges and bridge flooring bridges that last. Steel bridges and bridge flooring The design of the U.S. Bridge is an adaptation of tried and proven technology for modern highway loadings. We refined this design over 70 years of our

More information

D D TYPE A1, A2 & B MICHIGAN DEPARTMENT OF TRANSPORTATION 5-40 CONNECTION. L4" x 4" x 3/8" Brace. C8 x 4.25 Strut. WT9 x 17.5.

D D TYPE A1, A2 & B MICHIGAN DEPARTMENT OF TRANSPORTATION 5-40 CONNECTION. L4 x 4 x 3/8 Brace. C8 x 4.25 Strut. WT9 x 17.5. Sign length minus Adjust to avoid interference with sign legend A Deck fascia A 6" Equal Equal 6" Sign length (L) varies 6 to 12 PLAN 0 CONNECTION (DECK FASCIA) Angle connection assembly F Face of concrete

More information

Appendix A. Sample Inspection Report

Appendix A. Sample Inspection Report Appendix A Sample Inspection Report This page intentionally left blank. PORT AUTHORITY OF ALLEGHENY COUNTY PITTSBURGH, PENNSYLVANIA REPORT ON THE INITIAL NBIS INSPECTION OF CHARTIERS CREEK BRIDGE BMS No.

More information

Presenter: Contributing Authors: Guy C. Nelson PE, SE TEG Engineering, LLC Structural Engineer

Presenter: Contributing Authors: Guy C. Nelson PE, SE TEG Engineering, LLC Structural Engineer Presenter: Guy C. Nelson PE, SE TEG Engineering, LLC Structural Engineer Contributing Authors: Bill Hazelton St. Clair County Road Commission Director of Engineering Dewayne Rogers St. Clair County Road

More information

Anchor bolts ASTM F1554, Gr. 36 Wide flange beams ASTM A992, Fy = 50 ksi Misc. structural steel ASTM A36, Fy = 36 ksi

Anchor bolts ASTM F1554, Gr. 36 Wide flange beams ASTM A992, Fy = 50 ksi Misc. structural steel ASTM A36, Fy = 36 ksi STRUCTURAL NOTES MATERIAL STRENGTHS Structural Steel Reinforcing Steel Concrete Masonry Structural Lumber Anchor bolts ASTM F1554, Gr. 36 Wide flange beams ASTM A992, Fy = 50 ksi Misc. structural steel

More information

Innovative, Cost-Effective Options for Short Span Steel Bridge Design

Innovative, Cost-Effective Options for Short Span Steel Bridge Design Innovative, Cost-Effective Options for Short Span Steel Bridge Design Infrastructure Week 2015 May 12, 2015 Gregory K. Michaelson, Ph.D. Marshall University, Weisberg Div. of Engr. Short-Span Steel Bridge

More information

Office Building-G. Thesis Proposal. Carl Hubben. Structural Option. Advisor: Dr. Ali Memari

Office Building-G. Thesis Proposal. Carl Hubben. Structural Option. Advisor: Dr. Ali Memari Office Building-G Thesis Proposal Structural Option December 10, 2010 Table of Contents Executive Summary... 3 Introduction... 4 Gravity System...4 Lateral System:...6 Foundation System:...6 Problem Statement...

More information

Canadian Consulting Engineering Awards 2016 CANADIAN NIAGARA POWER FOREBAY BRIDGE RECONSTRUCTION

Canadian Consulting Engineering Awards 2016 CANADIAN NIAGARA POWER FOREBAY BRIDGE RECONSTRUCTION Canadian Consulting Engineering Awards 2016 CANADIAN NIAGARA POWER FOREBAY BRIDGE RECONSTRUCTION April 2016 ELLIS Engineering Inc. 214 Martindale Road, Suite 201 St. Catharines, Ontario L2S 0B2 www.ellis.on.ca

More information

Ironton Russell Bridge Project

Ironton Russell Bridge Project Construction Update September 1, 2014 Rendering by URS Responsible for Construction Inspection & Engineering Prepared by: Brian Davidson, P.E. Ironton Russell Bridge Project Project Summary: September

More information

2010 STATE BRIDGE ENGINEERS QUESTIONNAIRE

2010 STATE BRIDGE ENGINEERS QUESTIONNAIRE Gusset Plates 2010 STATE BRIDGE ENGINEERS QUESTIONNAIRE (50 Responses) Page 1 of 11 1) How many trusses are in your state? 2302 trusses owned by the state 8202 trusses owned by local agencies 2) What percentage

More information

Structural - Engineering Review Checklist

Structural - Engineering Review Checklist Structural - Engineering Review Checklist Project: List Corridor Criteria ID Review Priority (H,M,L) TOPICS S-_-## Structural Design Codes, Manuals and Specifications 6.1.0 REFERENCES DESIRED Criteria

More information

Conceptual Design Report

Conceptual Design Report Conceptual Design Report I-244/Arkansas River Multimodal Bridge Tulsa, Oklahoma Prepared for the Oklahoma Department of Transportation Prepared by: August 2009 I-244 / ARKANSAS RIVER MULTIMODAL BRIDGE

More information

STANDARD PLAN SYMBOLS & STANDARD LEGEND

STANDARD PLAN SYMBOLS & STANDARD LEGEND EXISTING NEW STANDARD PLAN SYMBOLS & STANDARD LEGEND GENERAL NOTES: DRAINAGE AND EROSION CONTROL NOTES: DRAINAGE AND EROSION CONTROL NOTES (CONTINUED): UTILITY NOTES: STANDARD NOTES - 1 LANDSCAPE NOTES:

More information

Cumberland Viaduct Rehabilitation Project Contract No. AL R Presenter Bob Bofinger MDSHA Office of Structures

Cumberland Viaduct Rehabilitation Project Contract No. AL R Presenter Bob Bofinger MDSHA Office of Structures Cumberland Viaduct Rehabilitation Project Contract No. AL4095180R Presenter Bob Bofinger MDSHA Office of Structures Project Justification & Improvements Condition State The deck, superstructure and substructure

More information

STEEL STRUCTURAL SYSTEMS

STEEL STRUCTURAL SYSTEMS STEEL STRUCTURAL SYSTEMS Steel elements are of two basic types: Structural steel shapes are formed into their final shapes by hot-rolling. This method produces such common elements as wide flange sections,

More information

Review of Plans and Specs from a Constructability Perspective

Review of Plans and Specs from a Constructability Perspective Review of Plans and Specs from a Constructability Perspective The Executive Regional Manager and the Project Manager, with approval of the Director of Project Management, may request the Constructability

More information

Chicago. Crossing. A new Chicago bridge takes over the duties of a former Centurion.

Chicago. Crossing. A new Chicago bridge takes over the duties of a former Centurion. A new Chicago bridge takes over the duties of a former Centurion. Chicago by Robert Hong, S.E., P.E., P. Eng., Soliman Khudeira, S.E., P.E., Ph.D., and Joseph Glennon, P.E. Crossing A few years ago, the

More information

REHABILITATION PACKAGE 4-a

REHABILITATION PACKAGE 4-a 4-a WINONA BRIDGE (BRIDGE 5900) REHABILITATION PACKAGE 4-a Rehab option 4-a is a rehabilitation package whereby all spans of the existing steel truss structure would be rehabilitated and strengthened.

More information

Chapter 13 Bridge Load Rating

Chapter 13 Bridge Load Rating Chapter 13 Bridge Load Rating Contents 13.1 General 13.1-1 13.1.1 WSDOT Rating (LRFR) 13.1-2 13.1.2 NBI Rating (LFR) 13.1-8 13.2 Special Rating Criteria 13.2-1 13.2.1 Dead Loads 13.2-1 13.2.2 Live Load

More information

Ironton Russell Bridge Project

Ironton Russell Bridge Project Construction Update October 1, 2014 Rendering by URS Responsible for Construction Inspection & Engineering Prepared by: Brian Davidson, P.E. Ironton Russell Bridge Project Project Summary: October 1, 2014

More information

NORFOLK SOUTHERN CORPORATION UNDERPASS GRADE SEPARATION DESIGN CRITERIA

NORFOLK SOUTHERN CORPORATION UNDERPASS GRADE SEPARATION DESIGN CRITERIA NORFOLK SOUTHERN CORPORATION UNDERPASS GRADE SEPARATION DESIGN CRITERIA PURPOSE AND SCOPE These criteria modify and supplement the applicable sections of the AREMA Manual of Recommended Practice in connection

More information

MANUAL OF THE STRUCTURE AND BRIDGE DIVISION

MANUAL OF THE STRUCTURE AND BRIDGE DIVISION MANUAL OF THE STRUCTURE AND BRIDGE DIVISION DESIGN AIDS AND TYPICAL DETAILS VIRGINIA DEPARTMENT OF TRANSPORTATION VDOT GOVERNANCE DOCUMENT VDOT Manual of the Structure and Bridge Division: Part 02: Design

More information

SCCRTC- MP San Lorenzo River Bridge Walkway Widening Feasibility Report

SCCRTC- MP San Lorenzo River Bridge Walkway Widening Feasibility Report SCCRTC- MP 19.43 San Lorenzo River Bridge Walkway Widening Feasibility Report May 19, 2016 INTRODUCTION Jacobs Engineering Group was selected to provide a feasibility report for the Santa Cruz County Regional

More information

SECTION COMPOSITE METAL DECKING

SECTION COMPOSITE METAL DECKING PART 1 GENERAL 1.1 DESCRIPTION SECTION 05 36 00 1. Use this section only for NCA projects. 2. Delete between // ---- // if not applicable to project. Also delete any other item or paragraph not applicable

More information

CHAPTER 11: WALLS.

CHAPTER 11: WALLS. CHAPTER 11: WALLS MODULAR BLOCK WALL (DRY CAST) Rather than being pre-approved as systems, the components of Modular block walls (dry cast) are pre-approved separately. The approved MBW components are

More information

High Bridge Re-Deck Project

High Bridge Re-Deck Project High Bridge Re-Deck Project MnDOT Contract No. 1000532 Presented to: Minnesota Department of Transportation Bridge Repair Recommendations - September 22, 2016 Bridge Overview 11 Total Spans, 2755-0 Long

More information

SO-DEEP, 9/2015 (703) VA. Group I-DL. Group I-DL

SO-DEEP, 9/2015 (703) VA. Group I-DL. Group I-DL LIMITED ACCESS HIGHWAY By Resolution of Commonwealth Transportation Board dated January 18, 2001 PROJECT MANAGER: SURVEYED BY, DATE: TIMOTHY HARTZELL, P.E. (703) 259-2749 (NOVA District) PRECISION MEASUREMENTS,

More information

Guidelines for Checking Final Design Bridge Plans

Guidelines for Checking Final Design Bridge Plans MNDOT BRIDGE OFFICE Guidelines for Checking Final Design Bridge Plans Edited by the MnDOT Bridge Office ES ESS Committee February 2018 Disclaimer: This document is meant to be used as a checklist for the

More information

PLUMAS COUNTY DEPARTMENT OF PUBLIC WORKS

PLUMAS COUNTY DEPARTMENT OF PUBLIC WORKS PLUMAS COUNTY DEPARTMENT OF PUBLIC WORKS 1834 East Main Street, Quincy, CA 95971 Telephone (530) 283-6268 Facsimile (530) 283-6323 Robert A. Perreault Jr., P.E., Director John Mannle, P.E., Asst. Director

More information

STATE UNIVERSITY CONSTRUCTION FUND. UNIVERSITY CON DIRECTIVE 5-1 Issue date: October 2014

STATE UNIVERSITY CONSTRUCTION FUND. UNIVERSITY CON DIRECTIVE 5-1 Issue date: October 2014 STATE STRUCTION FUND DIRECTIVE 5-1 Issue date: October 2014 STRUCTURAL STEEL 1. General: It is the Fund's policy that the design of the structural steel is the prime responsibility of the project's Structural

More information

ACHD Bridge and Culvert Policy DRAFT

ACHD Bridge and Culvert Policy DRAFT ACHD Bridge and Culvert Policy DRAFT Standard Drawings and additional construction details are contained in the separate ACHD Bridge Design Guide and are hereto made part of this policy by reference. DEFINITIONS

More information

Replacing the Aging US 52 Mississippi River Bridge

Replacing the Aging US 52 Mississippi River Bridge 2019 TRANSPORTATION & HIGHWAY ENGINEERING CONFERENCE F. Duncan, PE, G. Hasbrouck, PE and A. Dour, PE Replacing the Aging US 52 Mississippi River Bridge February 26, 2019 Project Overview US 52 / IL 64

More information

Innovations in Tied Arch Bridges

Innovations in Tied Arch Bridges Innovations in Tied Arch Bridges Why are tied arches important? R. Shankar Nair Chicago Nair 2 Typical span ranges for various long-span bridge types Composite steel girders Segmental concrete box Steel

More information

1/26/2015 DETAILS CIP DETAIL EXAMPLES WHY SIMPLIFY DETAILS? CIP DETAIL EXAMPLES DETAILING FOR SIMPLICITY

1/26/2015 DETAILS CIP DETAIL EXAMPLES WHY SIMPLIFY DETAILS? CIP DETAIL EXAMPLES DETAILING FOR SIMPLICITY Detailing of ABC Bridges for Simplicity and Durability Michael P. Culmo, P.E. CME Associates, Inc. East Hartford, CT DETAILS This presentation contains many preferred details My favorite details will be

More information

DESIGN AND FLOAT-IN CONSTRUCTION OF A 500 FT. TRUSS SPAN

DESIGN AND FLOAT-IN CONSTRUCTION OF A 500 FT. TRUSS SPAN DESIGN AND FLOAT-IN CONSTRUCTION OF A 500 FT. TRUSS SPAN Kevin R. Eisenbeis, PE, SE Harrington & Cortelyou, Inc. 911 Main Street, Suite 1900, Kansas City, MO 64105 Phone: 816 421 8386 Fax: 816 471 6109

More information

Bridge articulation No. 1.04

Bridge articulation No. 1.04 Bridge articulation Scope This Guidance Note gives advice on the selection of the articulation arrangements, the choice of bearing types and dispositions of bearings, for bridges where relative movement

More information