Kolmetz Handbook of Process Equipment Design STEAM TURBINE SYSTEMS (ENGINEERING DESIGN GUIDELINE)

Size: px
Start display at page:

Download "Kolmetz Handbook of Process Equipment Design STEAM TURBINE SYSTEMS (ENGINEERING DESIGN GUIDELINE)"

Transcription

1 Guidelines for Processing Plant KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama Johor Bahru Malaysia, Standards and Software Kolmetz Handbook of Process Equipment Design (ENGINEERING DESIGN GUIDELINE) Page : 1 of 70 Rev 01 Co Author Rev 01 Aprilia Jaya Editor / Author Karl Kolmetz KLM Technology has developed; 1) Process Engineering Equipment Design Guidelines, 2) Equipment Design Software, 3) Project Engineering Standards and Specifications, and 4) Unit Operations Manuals. Each has many hours of engineering development. KLM is providing the introduction to this guideline for free on the internet. Please go to our website to order the complete document. TABLE OF CONTENT INTRODUCTION 4 Scope 4 General Design Consideration 5 DEFINITIONS 30 NOMENCLATURE 33 THEORY OF THE DESIGN 34

2 Page 2 of 70 Specific Volume 34 Enthalpy 34 Entropy 36 Steam 38 Rankine Cycle 43 Design Characteristics 47 Steam Turbine Calculation Sizing 48 Efficiency 55 Steam Consumption 58 APPLICATION Example 1: Steam Turbine Sizing 62 Example 2: Calculation of ASR and total steam for multi and single stage 65 REFEREENCES 68 CALCULATION SPREADSHEET 69 LIST OF TABLE Table 1: Steam Turbine Blading Failure Mechanisms 24 Table 2: Steam Characteristics 39 Table 3: Important features of different heating media. 42

3 LIST OF FIGURE Page 3 of 70 Figure 1: Steam turbine blades arrangement of reaction blades 8 Figure 2: Single Stage Impulse Steam Turbine Cutaway 9 Figure 3: Principle of impulse turbine 10 Figure 4: Section of reaction turbine blading 11 Figure5: Principle of reaction turbine 11 Figure 6: Diagram of simple impulse and reaction turbine stages. 12 Figure 7: Operating Range of Steam Turbines 13 Figure 8: Condensing steam turbine for approximately 65-MW output. 14 Figure 9: Backpressure steam turbine for approximately 28-MW output. 15 Figure 10: Extraction condensing steam turbine. 16 Figure 11: Non-Condensing Steam Turbine, Extraction Steam Turbine 17 Figure 12: Schematics of typical (a) high-, (b) intermediate-, and (c) low-pressure steam turbine sections. 20 Figure13: Turbine steam chest and valve assembly. 21 Figure14: Single Valve with Hand Valves 22 Figure 15: Multi-Valve Inlet 23 Figure 16: Double-flow low-pressure turbine showing variation in blade size. 26 Figure17: the effect of temperature to entropy 38 Figure 18: Steam Phase Diagram 40 Figure 19: Components of a Boiler/Steam Turbine System 43 Figure 20: A theoretical Rankine Cycle 44 Figure 21: Turbine base diameter selection and maximum blade height. 51 Figure 22: Basic Efficiency of Multi-Valve, Multi-Stage Condensing Turbines 52 Figure 23: Basic Efficiency of Multi-Valve, Multi-Stage Non-Condensing Turbines 53 Figure 24: Steam rate in single stage application 54 Figure 25: Stages Required per 100 Btu/lb of Available Energy as a Factor of Normal Turbine Speed 55

4 Page 4 of 70 Figure 26: Efficiency of Reaction Turbine 57 Figure 27: Mechanical Efficiency 58 Figure 28: Output power, speed and enthalpy range for several design of Curtis Turbine 60 Figure 29: Output power, speed and enthalpy range for several design of Rateau Turbine 61

5 INTRODUCTION Scope Page 5 of 70 Steam is used for large industrial process heating. One of pieces of equipment which uses steam is the steam turbine, as a heat engine. Steam turbines are used in industry for several critical purposes: 1) to generate electricity by driving an electric generator and 2) to drive equipment such as compressors, fans, and pumps. Steam turbines are available in a wide range of steam conditions, horsepower, and speeds. The design of Steam Turbine is influenced by factors, including process requirements, economics and safety. This engineering design guideline covers the basic elements of Steam Turbines in sufficient detail to allow an engineer to design a Steam Turbine with the suitable inlet and exhaust diameter, Steam rate, enthalpy change and number of stages. The theory section explains properties of steam, types of steam turbine and their characteristics, steam turbine efficiencies and how to calculate the sizing and selection of a steam turbine. General Design Consideration A heat engine is one that converts heat energy into mechanical energy. The steam turbine is classified as a heat engine. Other heat engines are the internal combustion engine and the gas turbine. Steam turbines are used in industry for several critical purposes: to generate electricity by driving an electric generator and to drive equipment such as compressors, fans, and pumps. Steam turbines are available for a wide range of steam conditions, horsepower, and speeds. Typical ranges for each design parameter are: Inlet Pressure, psig Inlet Temperature, F saturated 1000 Exhaust Pressure, psig saturated 700 Horsepower 5 100,000 Speed, rpm ,000 The steam turbine has a stationary set of blades (called nozzles) and a moving set of adjacent blades (called buckets or rotor blades) installed within a casing. The two sets of blades work together such that the steam turns the shaft of the turbine and the connected load. The stationary nozzles accelerate the steam to a high velocity by expanding it to lower pressure. A rotating bladed disc changes the direction of the

6 Page 6 of 70 steam flow, thereby creating a force on the blades that, because of the wheeled geometry, manifests itself as torque on the shaft on which the bladed wheel is mounted. The combination of torque and speed is the output power of the turbine. Steam turbines used as process drivers are usually required to operate over a range of speeds, in contrast to a turbine used to drive an electric generator which runs at nearly constant speed. The steam turbine permits the steam to expand and attain high velocity. It then converts this velocity energy into mechanical energy. Mechanical drive steam turbines are categorized as: Single-stage or multi-stage Condensing or non-condensing exhausts Extraction or admission Impulse or reaction Based on Stage 1. Single stage In a single-stage turbine, steam is accelerated through one cascade of stationary nozzles and guided into the rotating blades or buckets on the turbine wheel to produce power. A Rateau design has one row of buckets per stage. A Curtis design has two rows of buckets per stage and requires a set of turning vanes between the first and second row of buckets to redirect the steam flow. Single-stage turbines are usually limited to about 2500 horsepower and for larger units need special designs. Below 2500 horsepower the choice between a single and a multistage turbine is usually an economic one. A single-stage turbine will have a lower capital cost for a given shaft horsepower but will require more steam than a multi-stage turbine because of the lower efficiency of the single-stage turbine.

7 2. Multi Stage Page 7 of 70 A multi-stage turbine utilizes either a Curtis or Rateau first stage followed by one or more Rateau stages. The following criteria are used for selection steam turbine type 1. Curtis (Stand alone or Single Stage) a. Compact b. Power is relative small (up to 2000 kw). c. Speed is relative low (up to 6000 rpm, except for special design up to rpm). d. Enthalpy drop is high. 2. Rateau (Multi rows) a. Efficiency is higher than Curtis b. Power is high (up to 30,000 kw) c. Generally, speed is higher than Curtis (up to15000 rpm) d. Enthalpy drop for each row lower than Curtis but still high, higher than Reaction 3. Reaction (Multi row reaction + 1 row impulse for control stage) a. More efficient b. Power is high c. Speed is high (up to15000 rpm) d. Enthalpy drop each row is low e. For low steam pressure.

8 Page 8 of 70 Reteau Curtis Reaction Figure1: Steam turbine blades arrangement

9 Page 9 of 70 Based on Blade Geometry / Stage Design In a steam turbine, high-enthalpy (high pressure and temperature) steam is expanded in the nozzles (stationary blades) where the kinetic energy is increased at the expense of pressure energy (increase in velocity due to decrease in pressure). The kinetic energy (high velocity) is converted into mechanical energy (rotation of a shaft increase of torque or speed) by impulse and reaction principles. In the case of the fire hose, as the stream of water issued from the nozzle, its velocity was increased, and because of this impulse, it struck the window glass with considerable force. A turbine that makes use of the impulsive force of high-velocity steam is known as an impulse turbine. While the water issuing from the nozzle of the fire hose is increased in velocity, a reactionary force is exerted on the nozzle. This reactionary force is opposite in direction to the flow of the water. A turbine that makes use of the reaction force produced by the flow of steam through a nozzle is a reaction turbine. 1. Impulse Turbine The impulse principle consists of changing the momentum of the flow, which is directed to the moving blades by the stationary blades. The jet s impulse force pushes the moving blades forward. This energy is converted into mechanical energy by rotating the shaft in turbine nozzle. Kinetic energy to be converted to blade become mechanical energy and transferred through rotor, shaft and coupling to the load. Enthalpy drop is high for each moving blades. It has one velocity-compounded stage (the velocity is absorbed in stages) and four pressure-compounded stages. The velocity is reduced in two steps through the first two rows of moving blades. In the moving blades, velocity decreases while the pressure remains constant. Impulse blades are usually symmetrical and have an entrance and exit angle of approximately 20 o. They are generally installed in the higher pressure sections of the turbines where the specific volume of steam is low and requires much smaller flow areas than that at lower pressures. The impulse blades are short and have a constant cross section In a pure impulse turbine, when the steam passes through the stationary blades, it incurs a pressure drop. There is no pressure drop in the steam as it passes through the rotating blades. Therefore, in an impulse turbine, all the change of pressure energy into

10 Page 10 of 70 kinetic energy occurs in the stationary blades, while the change of kinetic energy into mechanical energy takes place in the moving blades of the turbine. Figure 2: Single Stage Impulse Steam Turbine Cutaway (1)

11 Page 11 of Reaction Turbine Figure 3: Principle of impulse turbine The reaction principle consists of a reaction force on the moving blades due to the steam accelerating through the nozzles. The nozzles are actually created by the blades. In reaction turbine, there is no nozzle to convert steam energy to mechanical energy. Each stage of the turbine consists of a stationary set of blades and a row of rotating blades on a shaft. Moving blades work due to differential pressure of steam between front and at behind of moving blades. Since there is a continuous drop of pressure throughout each stage, steam is admitted around the entire circumference of the blades and, therefore, the stationary blades extend around the entire circumference. Steam passes through a set of stationary blades that direct the steam against the rotating blades. As the steam passes through these rotating blades, there is a pressure drop from the entrance side to the exit side that increases the velocity of the steam and produces rotation by the reaction of the steam on the blades. In general, reaction turbine is not stand alone, but works at behind impulse turbine whether constructed in one rotor or at separated rotor, but still connected by coupling.

12 Page 12 of 70 The purpose of impulse turbine is to control speed and reduce steam enthalpy to specified level. Reaction turbine is just receiving steam condition from impulse blades. The reaction stages are preceded by an initial velocity-compounded impulse stage where a large pressure drop occurs. This results in a shorter, less expensive turbine. Figure 4: Section of reaction turbine blading Figure5: Principle of reaction turbine

13 Page 13 of 70 Figure 6: Diagram of simple impulse and reaction turbine stages. (11)

14 Page 14 of 70 Operating range of steam turbines can be shown in Speed Power chart such as the following figure. Stand alone rateau stages Speed (rpm) Stand alone high speed curtis Rateau stages + Reaction stages Stand alone curtis Power (KW) Figure 7: Operating Range of Steam Turbines

15 Page 15 of 70 Based on Steam Supply When classifying steam turbines by their steam supply and exhaust conditions, they are categorized as condensing, non-condensing or backpressure, reheat-condensing, and extraction and induction. 1. Condensing turbine. This type of steam turbine is used primarily as a drive for an electric generator in a power plant. These units exhaust steam at less than atmospheric pressure to a condenser Figure 8: Condensing steam turbine for approximately 65-MW output. (12)

16 Page 16 of Noncondensing or backpressure turbine. This type of turbine is used primarily in process plants, where the exhaust steam pressure is controlled by a regulating station that maintains the process steam at the required pressure. Figure 9 shows a typical arrangement of a backpressure turbine. Figure 9: Backpressure steam turbine for approximately 28-MW output. (12)

17 Page 17 of Reheat-condensing turbine. This type of turbine is used primarily in electricity-producing power plants. In these units, the main steam exhausts from the high-pressure section of the turbine and is returned to the boiler, where it is reheated with the associated increase in steam temperature. The steam is now at a lower pressure but often at the same superheat temperature as the initial steam conditions, and it is returned to the intermediate- and/or low-pressure sections of the turbine for further expansion. 4. Extraction and induction turbine. This type of turbine is also found primarily in process plants. On extraction turbines, steam is taken from the turbine at various extraction points and is used as process steam. In induction turbines, low-pressure steam is introduced into the unit at an intermediate stage to produce additional power. Figure 10: Extraction condensing steam turbine. (12)

18 Page 18 of 70 High pressure steam High pressure steam Turbine Power out Turbine Power out Low pressure steam to process Medium/low pressure steam to Condenser Figure 11: Non-Condensing (Back-Pressure) Steam Turbine, Extraction Steam Turbine Casing or shaft arrangement. Steam turbines are also classified by their casing or shaft arrangement as being single, tandem-compound, or cross-compound and are described as follows: 1. Single casing. This is the basic arrangement for smaller units, where a single casing and shaft are used. 2. Tandem-compound casing. This arrangement has two or more casings on one shaft that drives a generator 3. Cross-compound casing. This arrangement has two or more shafts that are not in line, with each shaft driving a generator. These units are found in large electric utility power plants.

19 Page 19 of 70 Steam Turbine Components The turbine consists of a shaft, which has one or more disks to which are attached moving blades, and a casing in which the stationary blades and nozzles are mounted. The shaft is supported within the casing by means of bearings that carry the vertical and circumference loads and by axial thrust bearings that resist the axial movement caused by the flow of steam through the turbine. Seals are provided in the casing to prevent the steam from bypassing the stages of the turbine. The major portions of a turbine are shown in Figure 12. (a)

20 Page 20 of 70 (b)

21 Page 21 of 70 (c) Figure 12: Schematics of typical (a) high-, (b) intermediate-, and (c) low-pressure steam turbine sections. (11) Trip and Throttle Valve/Stop (Block) Valve A trip-and-throttle valve or stop valve, or both, may be positioned between the steam supply and the turbine inlet control valve(s). During normal operation this valve remains fully open and its primary function is to shut off the steam supply in response to a trip (shutdown) signal. In addition a trip-and-throttle valve can be used to modulate the steam flow during startup and can be either manually or hydraulically positioned from zero lift to 100% lift. The stop valve can only be positioned either in the closed or fully open positions. In order to minimize the pressure drop through the trip-and-throttle valve, maximum inlet velocities

22 Page 22 of 70 are usually limited to 150 ft/sec. Velocities above this level will usually result in high pressure drops which will reduce turbine efficiency. Important to any turbine is the ability to start and stop the machine under normal (controlled) and emergency conditions. For steam turbines, being able to shut off the steam supply quickly and reliably is required. This is normally accomplished by either main steam (MS) stop valves or trip and throttle (T&T) valves which are usually installed in the inlet piping to the steam turbine or on the turbine shell. The valves are designed to be leak tight otherwise any steam leakage may keep the turbine turning at low speed after shutdown or causing an overspeed because the valve did not close completely after a shutdown or trip. Figure13: Turbine steam chest and valve assembly (12)

23 Inlet Control Valves Page 23 of 70 The primary function of the inlet control valve(s) is regulation of the steam flow to provide the appropriate horsepower and speed. These valves may also close in response to a shutdown signal. Throttling which occurs across the control valve(s) reduces the thermal performance of the turbine. This efficiency loss is a function of the control valve design and overall turbine pressure ratio. For a given amount of throttling, turbines with large pressure ratios suffer smaller efficiency losses than turbines with smaller pressure ratios. Multi-stage turbines may have a single inlet control valve or several control valves to regulate the inlet steam. Typical multi-valve steam turbines will have from three to eight control valves. Multi-valve turbines have higher efficiencies at reduced loads because only the flow through one of the control valves is incurring a throttling loss. Turbines with a single control valve will often employ hand valves to improve efficiency at reduced loads. For the turbine shown in Figure 14 both hand valves would be open at or near full load. As the load on the unit is reduced one or both of these hand valves can be closed to reduce throttling loss. Figure14: Single Valve with Hand Valves (3)

24 Page 24 of 70 Figure 15: Multi-Valve Inlet (3) Nozzles/Blades (Buckets) Steam turbines produce power by converting the energy in steam provided from a boiler or heat recovery steam generator (HRSG) into rotational energy as the steam passes through a turbine stage. A turbine stage consists of a row of stationary blading and a row of rotating blading. Stationary blading is to direct the flow of the passing steam to the rotating blading at the proper angle and velocity for the highest efficiency and extraction of power while the rotating blading is to convert the directed mass flow and steam velocity into rotational speed and torque. The turbine efficiency depends on the design and construction of the blades. Stationary blading may be referred to as nozzles, vanes, stators, partitions, and stationary blading while rotating blades may be referred to as buckets, blades, and rotating blading. Steam turbine blading have different shapes which are referred to as either impulse blading or reaction blading.

25 Page 25 of 70 Reaction blading is characterized by high velocity fluids entering the turbine blade. Typical reaction blading has tear-drop shaped leading edges with a tapered thickness to the trailing edge. The blades may have twist to their shape which may range from low amounts of twist or reaction at the base of the blade to high twist or reaction at the tip of the blade. Impulse blading is characterized by high velocity fluids (higher than reaction blade) entering the turbine blade. Typical impulse blades are crescent or U-shaped and may not always be symmetrical. Impulse type blading is typically utilized in the high pressure or front sections of the steam turbine while reaction blading is utilized in the lower pressure or aft sections of the turbine. On constant speed turbines a design objective is to avoid all bucket resonances at the operating speed. On variable speed turbines, although the design objectives remain the same, it is seldom possible to avoid all blade resonance because of the wide operating speed range. In these cases it is important to identify all blade resonance and to verify that all stresses are well below the material strength. The blade tips may be covered with bands peened to their tips which connect several blades together in groups, or the blades may have integral shrouds which are part of the blades, or may have no tip cover bands or shrouds (free standing). The blade shrouds and cover bands are utilized to keep the passing steam from leaking over the tip of the blades which reduces efficiency and power output and to reduce or dampen the vibration characteristics of the blading. Both stationary and rotating blading can have shrouds or covers depending on the turbine design. Steam turbine blading can be subjected to several failure mechanisms in service. Table 1 Steam Turbine Blading Failure Mechanisms (Latcovich et al, 2005) Failure Mechanism Corrosion Creep Erosion Resultant Damage Extensive pitting of airfoils, shrouds, covers, blade root surfaces Airfoils, shrouds, covers permanently deformed Thinning of airfoils, shrouds, covers, Cause(s) of Failure Chemical attack from corrosive elements in the steam provided to the turbine Deformed parts subjected to steam temperatures in excess of design limits 1) Solid particle erosion from very fine debris and scale in the steam provided

26 Page 26 of 70 Failure Mechanism Fatigue Foreign/Domestic Object Damage (FOD/DOD) Stress Corrosion Cracking (SCC) Resultant Damage blade roots Cracks in airfoils, shrouds, covers, blade roots Impact damage (dents, dings, etc.) to any part of the blading Cracks in highly stressed areas of the blading Thermal Fatigue Cracks in airfoils, shrouds, covers, and blade roots Cause(s) of Failure in the turbine 2) Water droplet erosion from steam which is transitioning from vapor to liquid phase in the flowpath 1) Parts operated at a vibratory natural frequency 2) Loss of part dampening (cover, tie wire, etc.) 3) Exceeded part fatigue life design limit 4) Excited by water induction incident water flashes to steam in the flowpath Damage from large debris in steam supplied to the turbine (foreign) or damage from debris generated from an internal turbine failure (domestic) which causes downstream impact damage to components Specialized type of cracking caused by the combined presence of corrosive elements and high stresses in highly loaded locations Parts subjected to rapidly changing temperature gradients where thick sections are subjected to high alternating tensile and compressive stresses during heat-ups and cooldowns or when a water induction incident occurs where the inducted cool water quenches hot parts

27 Page 27 of 70 Figure 16: Double-flow low-pressure turbine showing variation in blade size. (11) Exhaust Casings Turbine exhaust casings are categorized by pressure service (condensing or noncondensing) and number of rows of the last stage buckets (single flow, double flow, triple flow). Non-condensing exhausts are usually cast steel with most of the applications between 50 and 700 psig exhaust pressure. Most condensing exhausts are steel fabrications although some utilize cast iron construction. Maximum exhaust flange velocities are typically 450 ft/sec. Velocities above this level will usually result in substantial increases in exhaust hood losses and will decrease turbine efficiency. Moisture Protection As steam expands through the turbine both the pressure and temperature are reduced. On most condensing and some non-condensing exhaust applications, the steam crosses the saturation line thereby introducing moisture into the steam path. The water droplets which are formed strike the buckets and can cause erosion of the blades. In

28 Page 28 of 70 addition, as the water is centrifuged from the blades, the water droplets strike the stationary components, also causing erosion. Where the moisture content is greater than 4%, moisture separators, which are internal to the turbine, can be used to remove a large percentage of the moisture, improving the turbine efficiency and reducing the impact erosion on the buckets. Stainless steel moisture shields can also be used to minimize the impact erosion of the stationary components. Control Systems Mechanical governors were the first generation control systems employed on mechanical drive turbines. Shaft speed is sensed by a fly-ball governor with hydraulic relays providing the input to the control valve. A second generation control system was developed and utilized analog control circuitry with the fly-ball governor replaced by speed pick-ups and the hydraulic relays with electronic circuit boards. A third generation control system was developed and replaced the electronic circuitry with digital logic. A microprocessor is used and the control logic is programmed into the governor. The major advantage of this system is the ability to utilize two governors simultaneously, each capable of governing the turbine alone. If the primary governor incurs a fault, the back-up governor assumes control of the turbine and provides diagnostic information to the operator. Discs, Rotors, Shafts, Blade Rings, Shells, and Diaphragms To transmit the torque produced in each stage of the turbine, the rotating blading is fastened to discs or wheels through a specially designed attachment shape at the blade base or root. The root shape may be fir-tree, T-slot, or semi-circular fir-tree shaped or may use multiple pins to hold the blades to the discs. The turbine discs may be shrunk fit onto a shaft with an anti-rotation key or the discs may have been forged with the shaft as an integral assembly. The output shaft from the shrunk fit or integral disc rotor is then connected to the driven equipment through a flange connection or flexible coupling. Similarly, stationary blading roots may be attached to slots in shells, casings, or blade rings or where the stationary blading is welded to support rings to create a stationary blading assembly referred to as a diaphragm. Depending on the pressure and temperature of the steam to the turbine, there may be dual sets of shells or casings; an inner shell which holds the stationary blading and an outer shell which acts as pressure boundary for the turbine as well as accommodating attachment of blade rings.

29 Page 29 of 70 Bearings and Lubrication Systems Bearings are utilized to support the turbine rotor inside housings installed in the turbine shells. Depending on the size and number of stages of the steam turbine, different types of bearings may be utilized. It is common for smaller steam turbines to utilize rolling element bearings while larger turbines will utilize journal and multi-pad thrust bearings. There needs to be a complete lubrication system that reliably provides clean, cool lube oil to the turbine bearings. For many large steam turbines, shaft lift oil systems are utilized to lift the shaft in their journal bearings during starting and to keep the shaft lubricated during coast down of the turbine rotor after steam to the turbine is shut off. For some turbines, lube oil (usually mineral oil) is utilized to power servomotors and actuators for stop and control valves. Steam and Oil Seals In order to keep the steam from going around the stationary and rotating blading, steam turbines utilize seals to keep the steam confined to the flowpath. Depending on the size and type of steam turbine, various types of steam seal designs (carbon rings, labyrinth, retractable labyrinth, brush) may be utilized. These systems are usually pressurized with steam to minimize the pressure differential across these seals so that leakage from the higher pressure parts of the turbine is less likely to occur. Similar type seals are utilized to keep bearing oil confined to the bearing housing. As such, seal systems may have filters, pressure regulators, coolers, and the like to maintain a seal pressure as required. Steam Line Connections and Drains Proper connections and support of the steam lines to the turbine are important as well as the steam drains. If the steam supply lines are putting a load on the turbine, it is likely to cause the turbine to vibrate and will cause mechanical distress to the attachment locations. Similarly, when steam turbines are started, there is a warm-up time to heat the turbine to the proper temperature level before admitting full starting steam. Removal of condensed steam from the stop valve and T&T valves, the turbine shells, and any sealing steam locations during this period of operation is important to prevent damage to the turbine. As such, low point drains, steam traps and drain valves, vents, and the like need to be functioning properly and piping runs orientated so that the water drains out

30 Page 30 of 70 General Advantages of Steam Turbines Compared with reciprocating engines 1. Require less floor space, lighter foundations, and less attendance; 2. Have a lower lubricating-oil consumption, with no internal lubrication, the exhaust steam being free from oil; 3. Have no reciprocating masses with their resulting vibrations; 4. Have uniform torque; 5. have no rubbing parts excepting the bearings; have great overload capacity, great reliability, low maintenance cost, and excellent regulation; 6. Capable of operating with higher steam temperature and of expanding to lower exhaust pressure than the reciprocating steam engine. 7. Their efficiencies may be as good as steam engines for small powers, and much better at large capacities. 8. Single units can be built of greater capacity than can any other type of prime mover. 9. Small turbines cost about the same as reciprocating engines; 10. Larger turbines cost much less than corresponding sizes of reciprocating engines, and they can be built in capacities never reached by reciprocating engines. 11. Combustion gas turbines possess many of the advantages of steam turbines but are not available in ratings much exceeding 175 and 225 MW for 60- and 50-Hz service, respectively.

31 DEFINITIONS Page 31 of 70 Blowdown - High pressure water at the steam saturation temperature released from a steam boiler to control sludge and total dissolved solids. Boiling Point - The temperature at which water boils to form steam. This temperature increases as the pressure is increased. Boiler - a closed vessel or arrangement of vessels and tubes, together with a furnace or other heat source, in which steam or other vapor is generated from water to drive turbines or engines, supply heat, process certain materials, etc. Backpressure - Pressure developed in opposition to the flow of liquid or gas in a pipe, duct, conduit, etc.; due to friction, gravity, or some other restriction to flow of the conveyed fluid. Backpressure turbine - the type of turbine used in turbo chargers it utilizes the back pressure from ones engine to created more horse power. The back pressure turbine discharges the steam into a pressurized piping system to be used for process heating elsewhere or as the supply to other turbines. For instance a turbine may receive steam at 600 psig and discharge into a 100 psig system. Check Valves - Non-return valves inserted into lines to prevent everse flow. Condensate - The liquid which is formed as steam condenses. Ideally pure water. Compounding of steam turbines - the method in which energy from the steam is extracted in a number of stages rather than a single stage in a turbine. A compounded steam turbine has multiple stages i.e. it has more than one set of nozzles and rotors, in series, keyed to the shaft or fixed to the casing, so that either the steam pressure or the jet velocity is absorbed by the turbine in number of stages. Control Valves - valves used to control conditions such as flow, pressure, temperature, and liquid level by fully or partially opening or closing in response to signals received from controllers that compare a "setpoint" to a "process variable" whose value is provided by sensors that monitor changes in such conditions. [1] Control Valve is also termed as the Final Control Element.

32 Page 32 of 70 Desuperheater - A device where water is added to return steam to saturated conditions. Enthalpy drop - the difference in steam enthalpy between turbine inlet conditions and turbine outlet conditions. This is applicable to individual turbine sections such as high pressure section or intermediate pressure section. Electric generator - a generator is a device that converts mechanical energy to electrical energy for use in an external circuit. Exhaust steam - to be emitted or to escape from an engine after being expanded Flash Steam - The steam produced when the pressure of hot condensate is reduced. Generator - a machine that converts one form of energy into another, especially mechanical energy into electrical energy, as a dynamo, or electrical energy into sound, as an acoustic generator. Heat rate Heat consumption per hour per unit output. The turbine is charged with the aggregate enthalpy of the steam supplied plus any chargeable aggregate enthalpy added by the reheaters. It is credited with the aggregated enthalpy of feed water returned from the cycle to the steam generator. Heat engine - a mechanical device designed to transform part of the heat entering it into work Impulse Turbine Type of steam turbine where there is no change in the pressure of the steam as it passes through the moving blades. There is change only in the velocity of the steam flow. Kinetic energy - the energy of a body or a system with respect to the motion of the body or of the particles in the system. Latent Heat - Heat that changes the state of a substance with no accompanying temperature rise. When water is changed into steam, the heat is also known as the Enthalpy of Evaporation. Mechanical energy - the sum of potential energy and kinetic energy. It is the energy associated with the motion and position of an object. The principle of conservation of

33 Page 33 of 70 mechanical energy states that in an isolated system that is only subject to conservative forces the mechanical energy is constant. Nozzles - A projecting part with an opening, as at the end of a hose, for regulating and directing a flow of fluid. a device designed to control the direction or characteristics of a fluid flow (especially to increase velocity) as it exits (or enters) an enclosed chamber or pipe. Power the useful energy per unit of time, delivered by the turbine or turbine-generator unit Reaction Turbine - Type of steam turbine where there is change in both pressure and velocity as the steam flows through the moving blades Steam rate Steam consumption per hour per unit output in which the turbine is charged with the steam quantity supplied Steam turbine - turbine in which steam strikes blades and makes them turn. Turbine is rotary engine in which the kinetic energy of a moving fluid is converted into mechanical energy by causing a bladed rotor to rotate Sensible Heat (Specific Enthalpy) - Heat that increases the temperature of the water or steam with no change of state. Superheated Steam - Steam to which sensible heat has been added to increase its temperature to above its boiling point. Thermal Fluids - Generally mineral oils with high heat capacities that can be used as alternatives to steam or hot water for process heating in the range C. Throttle Valve - a valve designed to regulate the supply of a fluid (as steam or gas and air) to an engine and operated by a handwheel, a lever, or automatically by a governor; especially : the valve in an internal-combustion engine incorporated in or just outside the carburetor and controlling the volume of vaporized fuel charge delivered to the cylinders

34 NOMENCLATURES Page 34 of 70 An ASR Dex Din Eff hex hf hg hin Pin Pout Pwr RPM S sf sg sin Tin TSR vex vin W x y Nozzle area, in² Actual steam rate, lb/hp.hr Exhaust diameter, in Inlet diameter, in Efficiency,% Exhaust enthalpy, btu/lb Specific enthalpy of saturated water, btu/lb Specific enthalpy of saturated steam, btu/lb Specific enthalpy of superheated steam, btu/lb inlet pressure, psia exhaust pressure, psia Horsepower, HP Speed, rpm number of stages Specific entropy of saturated water, btu/lb.f Specific entropy of saturated steam, btu/lb.f Specific entropy of superheated steam, btu/lb. F inlet temperature, F Theoretical steam rate, lb/hp.hr velocity of exhaust, ft/s velocity of inlet steam, ft/s Mass flowrate, lb/hr liquid fraction in the exhaust vapor fraction in the exhaust Greek Leters Δh ρgex ρgin Enthalpy change, btu/lb Density steam in exhaust, lb/ft³ Density steam inlet, lb/ft³ Superscript ASR RPM TSR Actual steam rate, lb/hp.hr Speed, rpm Theoretical steam rate, lb/hp.hr

Appendix B. Glossary of Steam Turbine Terms

Appendix B. Glossary of Steam Turbine Terms Operator s Guide to General Purpose Steam Turbines: An Overview of Operating Principles, Construction, Best Practices, and Troubleshooting. Robert X. Perez and David W. Lawhon. 2016 Scrivener Publishing

More information

NUCLEAR TRAINING CENTRE COURSE 134 FOR ONTARIO HYDRO USE ONLY

NUCLEAR TRAINING CENTRE COURSE 134 FOR ONTARIO HYDRO USE ONLY NUCLEAR TRAINING CENTRE COURSE 134 FOR ONTARIO HYDRO USE ONLY NUCLEAR TRAINING COURSE COURSE 134 1 - Level 3 - Equipment & System Principles 4 - TURBINE, GENERATOR & AUXILIARIES Index 134.00-0 Objectives

More information

PEMP RMD & Cycle Performance. M.S.Ramaiah School of Advanced Studies

PEMP RMD & Cycle Performance. M.S.Ramaiah School of Advanced Studies Steam Se Turbine ub ecyces Cycles & Cycle Performance Session delivered by: Prof. Q.H. Nagpurwala 1 Session Objectives This session is intended to discuss the following: Basic construction and classification

More information

semester + ME6404 THERMAL ENGINEERING UNIT III NOZZLES, TURBINES & STEAM POWER CYCLES UNIT-III

semester + ME6404 THERMAL ENGINEERING UNIT III NOZZLES, TURBINES & STEAM POWER CYCLES UNIT-III ME6404 THERMAL ENGINEERING UNIT III NOZZLES, TURBINES & STEAM POWER CYCLES UNIT-III 3. 1 CONTENTS 3.1 Flow of steam through nozzles: 3.2 Continuity and steady flow energy equations 3.3 Types of Nozzles

More information

Recent Technologies for Steam Turbines

Recent Technologies for Steam Turbines Recent Technologies for Steam Turbines Kenji Nakamura Takahiro Tabei Tetsu Takano A B S T R A C T In response to global environmental issues, higher efficiency and improved operational reliability are

More information

R13. (12M) efficiency.

R13. (12M) efficiency. SET - 1 II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2016 THERMAL AND HYDRO PRIME MOVERS (Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper

More information

THERMAL AND HYDRAULIC MACHINES UNIT 2

THERMAL AND HYDRAULIC MACHINES UNIT 2 THERMAL AND HYDRAULIC MACHINES UNIT 2 A steam turbine is a device that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft. Its modern manifestation

More information

Turbo Machines Pumps and Turbines ME 268

Turbo Machines Pumps and Turbines ME 268 Turbo Machines Pumps and Turbines ME 268 Turbo Machines Turbo machines are dynamic fluid machines that either extract energy from a fluid (turbine) or add energy to a fluid (pump) as a result of dynamic

More information

SUMMER 15 EXAMINATION

SUMMER 15 EXAMINATION SUMMER 15 EXAMINATION Subject Code: 17413 ( EME ) Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

CHAPTER THREE Maintenance and Overhaul of Steam Turbines

CHAPTER THREE Maintenance and Overhaul of Steam Turbines CHAPTER THREE Maintenance and Overhaul of Steam Turbines Introduction Steam turbines are utilized in numerous industries to drive boiler fans, boiler feed and water pumps, process and chiller compressors,

More information

Fuji Electric s Medium-capacity Steam Turbines FET Series

Fuji Electric s Medium-capacity Steam Turbines FET Series Fuji Electric s Medium-capacity Steam Turbines FET Series Koya Yoshie Michio Abe Hiroyuki Kojima 1. Introduction Recently, de-regulation of the electric power industry and rising needs for advanced solutions

More information

S.Y. Diploma : Sem. III [PG/PT/ME] Thermal Engineering

S.Y. Diploma : Sem. III [PG/PT/ME] Thermal Engineering S.Y. Diploma : Sem. III [PG/PT/ME] Thermal Engineering Time: 3 Hrs. Prelim Question Paper Solution [Marks : 70 Q.1 Attempt any FIVE of the following. [10] Q.1(a) Explain difference between Thermodynamic

More information

Alpha College of Engineering

Alpha College of Engineering Alpha College of Engineering Department of Mechanical Engineering TURBO MACHINE (10ME56) QUESTION BANK PART-A UNIT-1 1. Define a turbomahcine. Write a schematic diagram showing principal parts of a turbo

More information

Unit No.4-1 Higashi Niigata Thermal Power Station Operating Status O C Class Gas Turbine Operation -

Unit No.4-1 Higashi Niigata Thermal Power Station Operating Status O C Class Gas Turbine Operation - 101 Unit No.4-1 Higashi Niigata Thermal Power Station Operating Status - 1450 O C Class Gas Turbine Operation - Yoshiaki Tsukuda *1 Eiji Akita *1 Yoichi Iwasaki *1 Koichiro Yanou *1 Yutaka Kawata *2 Toshihide

More information

Evaluating Performance of Steam Turbine using CFD

Evaluating Performance of Steam Turbine using CFD Evaluating Performance of Steam Turbine using CFD Sivakumar Pennaturu Department of Mechanical Engineering KL University, Vaddeswaram, Guntur,AP, India Dr P Issac prasad Department of Mechanical Engineering

More information

Steam Turbine Bingo Instructions

Steam Turbine Bingo Instructions Steam Turbine Bingo Instructions Host Instructions: Decide when to start and select your goal(s) Designate a judge to announce events Cross off events from the list below when announced Goals: First to

More information

C. heating turbine exhaust steam above its saturation temperature. D. cooling turbine exhaust steam below its saturation temperature.

C. heating turbine exhaust steam above its saturation temperature. D. cooling turbine exhaust steam below its saturation temperature. P74 (B2277) Condensate depression is the process of... A. removing condensate from turbine exhaust steam. B. spraying condensate into turbine exhaust steam. C. heating turbine exhaust steam above its saturation

More information

A Research paper on Design and Analysis of Shaftless Steam Turbine

A Research paper on Design and Analysis of Shaftless Steam Turbine A Research paper on Design and Analysis of Shaftless Steam Turbine Bhavin Bhanushali 1, Prince Vishwakarma 2 1Undergraduate, Alpha College of Eng. and Tech., Gandhinagar-382721, Gujarat, India 2Assistance

More information

R13 SET - 1 '' ''' '' ' '''' Code No: RT31035

R13 SET - 1 '' ''' '' ' '''' Code No: RT31035 R13 SET - 1 III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2016 THERMAL ENGINEERING II (Mechanical Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists

More information

PERFORMANCE ANALYSIS OF A STEAM POWER PLANT OPERATING UNDER SUPERHEATED AND ISENTROPIC CONDITIONS

PERFORMANCE ANALYSIS OF A STEAM POWER PLANT OPERATING UNDER SUPERHEATED AND ISENTROPIC CONDITIONS Equatorial Journal of Engineering (2018) 22-28 Journal Homepage: www.erjournals.com ISSN: 0184-7937 PERFORMANCE ANALYSIS OF A STEAM POWER PLANT OPERATING UNDER SUPERHEATED AND ISENTROPIC CONDITIONS Kingsley

More information

ES Fluid & Thermal Systems Page 1 of 6 STEAM TURBINE LABORATORY

ES Fluid & Thermal Systems Page 1 of 6 STEAM TURBINE LABORATORY ES 202 - Fluid & Thermal Systems Page 1 of 6 STEAM TURBINE LABORATORY Objective The objective of this laboratory experience is to demonstrate how mechanical power can be generated using a steam turbine

More information

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET 1. A vessel of volume 0.04m 3 contains a mixture of saturated water and steam at a temperature of 250 0 C. The mass of the liquid present is 9 kg. Find the pressure, mass, specific volume, enthalpy, entropy

More information

HW-1: Due Tuesday 13 Jun 2017 by 2:00:00 pm EDT to Your Division s GradeScope Site

HW-1: Due Tuesday 13 Jun 2017 by 2:00:00 pm EDT to Your Division s GradeScope Site HW-1: Due Tuesday 13 Jun 2017 by 2:00:00 pm EDT to A residential ceiling fan is shown in the photograph below. It consists of an electric motor, the fan blades, and the light. Sketch each of these three

More information

Appendix A. An Introduction to Steam Turbine Selection

Appendix A. An Introduction to Steam Turbine Selection Operator s Guide to General Purpose Steam Turbines: An Overview of Operating Principles, Construction, Best Practices, and Troubleshooting. Robert X. Perez and David W. Lawhon. 2016 Scrivener Publishing

More information

A RATIONAL APPROACH TO EVALUATE A STEAM TURBINE ROTOR GRABBING AND LOCKING EVENT

A RATIONAL APPROACH TO EVALUATE A STEAM TURBINE ROTOR GRABBING AND LOCKING EVENT Proceedings of PVP2007 2007 ASME Pressure Vessels and Piping Division Conference July 22-26, 2007, San Antonio, Texas PVP2007-26598 Proceedings of PVP2007 2007 ASME Pressure Vessels and Piping Division

More information

UC Davis - Facilities O&M Cogeneration Plant Bid Package October, 2007

UC Davis - Facilities O&M Cogeneration Plant Bid Package October, 2007 UC Davis - Facilities O&M Cogeneration Plant Bid Package October, 2007 I. Cogeneration Plant Overview The University has owned and operated a cogeneration system since 1981, though nearly all of the original

More information

Chapters 5, 6, and 7. Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa.

Chapters 5, 6, and 7. Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa. Chapters 5, 6, and 7 Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa. 5-1. Steam enters a steady-flow device at 16 MPa and 560 C with

More information

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT UNIT 47: Engineering Plant Technology Unit code: F/601/1433 QCF level: 5 Credit value: 15 OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT 2 Be able to apply the steady flow energy equation (SFEE) to plant and equipment

More information

STEAM TURBINE-GENERATOR & AUXILLIARY SYSTEMS Presentation by: RANA NASIR ALI General Manager, Power Plants Projects, at PITCO November 02, 2017

STEAM TURBINE-GENERATOR & AUXILLIARY SYSTEMS Presentation by: RANA NASIR ALI General Manager, Power Plants Projects, at PITCO November 02, 2017 STEAM TURBINE-GENERATOR & AUXILLIARY SYSTEMS Presentation by: RANA NASIR ALI General Manager, Power Plants Projects, at PITCO November 02, 2017 CO-GENERTATION POWER PLANT CONCEPT For dimensioning, design

More information

MECHANICAL ENGINEERING DEPARTMENT, OITM

MECHANICAL ENGINEERING DEPARTMENT, OITM Sem.:4 th Subject: Energy Conversion Paper: ME-201E UNIT-1 Q1. Explain the seismometer with its working principle. (Important Question) (20) Q2. Classify the fuels and define calorific value of fuels.

More information

Steam Power Station (Thermal Station)

Steam Power Station (Thermal Station) Steam Power Station (Thermal Station) A generating station which converts heat energy into electrical energy through turning water into heated steam is known as a steam power station. A steam power station

More information

Introduction to the mechanical design of aircraft engines

Introduction to the mechanical design of aircraft engines Introduction to the mechanical design of aircraft engines Reference : AERO0015-1 - MECHANICAL DESIGN OF TURBOMACHINERY - 5 ECTS - J.-C. GOLINVAL 2 Principles of jet propulsion Comparison between the working

More information

Code No: R31034 R10 Set No: 1

Code No: R31034 R10 Set No: 1 Code No: R31034 R10 Set No: 1 JNT University Kakinada III B.Tech. I Semester Regular/Supplementary Examinations, Dec - 2014/Jan -2015 THERMAL ENGINEERING-II (Com. to Mechanical Engineering and Automobile

More information

Secondary Systems: Steam System

Secondary Systems: Steam System Secondary Systems: Steam System K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 10 Table of Contents 1 SECONDARY SYSTEM

More information

20/06/2011 Seminar on Geothermal Exploitation Santiago de Chile

20/06/2011 Seminar on Geothermal Exploitation Santiago de Chile Contents Power Plants Steam Power plants Binary Power plants Geothermal Power Plants Single flash systems Binary systems 1 Equipment Well head Gathering piping system Steam separators and moisture separators

More information

Development of Measurement Method for Verification of Multi-Stage Axial Compressor with Improved Performance

Development of Measurement Method for Verification of Multi-Stage Axial Compressor with Improved Performance Development of Measurement Method for Verification of Multi-Stage Axial Compressor with Improved Performance 108 SATOSHI YAMASHITA *1 RYOSUKE MITO *2 MASAMITSU OKUZONO *3 SHINJI UENO *1 Gas turbine power

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

YARWAY HANCOCK CONTINUOUS BLOWDOWN GLOBE VALVE SERIES 5505

YARWAY HANCOCK CONTINUOUS BLOWDOWN GLOBE VALVE SERIES 5505 Advanced construction features of this high pressure drop angle globe valve provide quality and long service life. FEATURES GENERAL APPLICATION In addition to continuous blowdown service, the Yarway high

More information

T.E. (Mech., Mech. S/W) (Semester II) Examination, 2011 TURBOMACHINES (New) (2008 Pattern)

T.E. (Mech., Mech. S/W) (Semester II) Examination, 2011 TURBOMACHINES (New) (2008 Pattern) *4063218* [4063] 218 T.E. (Mech., Mech. S/W) (Semester II) Examination, 2011 TURBOMACHINES (New) (2008 Pattern) Time : 3 Hours Marks : 100 Instructions : 1) Answer any three questions from each Section.

More information

Code No: RR Set No. 1

Code No: RR Set No. 1 Code No: RR310303 Set No. 1 III B.Tech I Semester Regular Examinations, November 2006 THERMAL ENGINEERING-II (Mechanical Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions

More information

[4163] T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II)

[4163] T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II) Total No. of Questions : 12] P1061 SEAT No. : [Total No. of Pages : 7 [4163] - 218 T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II) Time : 3 Hours] [Max. Marks :100 Instructions

More information

MEC-MOS-E-2004 Gas Turbine Maintenance Engineer PERSONAL DATA EDUCATION LANGUAGES COMPUTER SKILLS TRAINING COURSES AND CERTIFICATIONS

MEC-MOS-E-2004 Gas Turbine Maintenance Engineer PERSONAL DATA EDUCATION LANGUAGES COMPUTER SKILLS TRAINING COURSES AND CERTIFICATIONS 100771-MEC-MOS-E-2004 Gas Turbine Maintenance Engineer Holds a B. Sc. and M. Sc. in Mechanical Power Engineering. Has about 11 years hands-on experience in power plant projects including installation for

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41, 42,43 & 44)] QUIZ TEST-1 (Session: )

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41, 42,43 & 44)] QUIZ TEST-1 (Session: ) QUIZ TEST-1 Q.1. In a stage of an impulse turbine provided with a single row wheel, the mean diameter of the blade ring is 80cm and the speed of the rotation is 3000rpm. The steam issues from the nozzle

More information

Recent Rehabilitation Technology for Aging Thermal Power Generation Equipment

Recent Rehabilitation Technology for Aging Thermal Power Generation Equipment Recent Rehabilitation Technology for Aging Thermal Power Generation Equipment Satoru Imaichi Mitsuhiro Uemura Yutaka Tamaya 1. Introduction Having successfully delivered many power generating plants both

More information

6.1. PRINCIPLE OF OPERATION OF STEAM TURBINE

6.1. PRINCIPLE OF OPERATION OF STEAM TURBINE Fig. 6.1. Turbine Blade. Attached on a rotor which is mounted on a shaft supported on bearings, and here steam undergoes a change in direction of motion due to curvature of blades which gives rise to a

More information

2/24/2011. Energy Efficiency. Fluid Sealing Association. The Beginning. Fluid Sealing Association

2/24/2011. Energy Efficiency. Fluid Sealing Association. The Beginning. Fluid Sealing Association Sealing Systems Energy Efficiency Fluid Sealing Association Friction is Only The Beginning Fluid Sealing Association 1 Sealing Systems Impact Efficiency Friction losses are only the beginning There is

More information

Chapter 10 POWER CYCLES. Department of Mechanical Engineering

Chapter 10 POWER CYCLES. Department of Mechanical Engineering Chapter 10 VAPOR AND COMBINED POWER CYCLES Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University it 2 Objectives Analyze vapor power cycles in which h the working fluid is alternately

More information

Steam Turbines. Leading Technology for Efficient, Reliable Generation Siemens Steam Turbines from 90 MW up to 1,900 MW.

Steam Turbines. Leading Technology for Efficient, Reliable Generation Siemens Steam Turbines from 90 MW up to 1,900 MW. Steam Turbines Leading Technology for Efficient, Reliable Generation Siemens Steam Turbines from 90 MW up to 1,900 MW Power Generation A comprehensive product line with proven experience Proven modular

More information

INCOMPRESSIBLE FLOW TURBOMACHINES Design, Selection, Applications,

INCOMPRESSIBLE FLOW TURBOMACHINES Design, Selection, Applications, INCOMPRESSIBLE FLOW TURBOMACHINES Design, Selection, Applications, George F. Round Professor Emeritus McMaster University Hamilton, Ontario Canada ELSEVIER BUTTERWORTH HEINEMANN Amsterdam Boston Heidelberg

More information

CHAPTER 1 BASIC CONCEPTS

CHAPTER 1 BASIC CONCEPTS GTU Paper Analysis CHAPTER 1 BASIC CONCEPTS Sr. No. Questions Jan 15 Jun 15 Dec 15 May 16 Jan 17 Jun 17 Nov 17 May 18 Differentiate between the followings; 1) Intensive properties and extensive properties,

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 MECHANICAL ENGINEERING ASSIGNMENT Course Name : THERMAL ENGINEERING II Course Code : A50518 Class : III B. Tech I Semester

More information

Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard

Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard Introduction SRU s (Sulfur Recovery Units) are critical pieces of equipment in refineries and gas plants. SRUs remove sulfur compounds from certain

More information

Hydraulic Machines, K. Subramanya

Hydraulic Machines, K. Subramanya Hydraulic Machines power point presentation Slides has been adapted from Hydraulic Machines, K. Subramanya 2016-2017 Prepared by Dr. Assim Al-Daraje 1 Chapter (1 Part 1) Prepared by Dr. Assim Al-Daraje

More information

UNIT I: UNIFORM FLOW PART B

UNIT I: UNIFORM FLOW PART B UNIT I: UNIFORM FLOW PART-A 1 Define open channel flow with example BT-1-1 2 Distinguish between open channel flow and pipe flow. BT-4-1 3 Compute the hydraulic mean depth of a small channel 1m wide, 0.5m

More information

Chapter 1 STEAM CYCLES

Chapter 1 STEAM CYCLES Chapter 1 STEAM CYCLES Assoc. Prof. Dr. Mazlan Abdul Wahid Faculty of Mechanical Engineering Universiti Teknologi Malaysia www.fkm.utm.my/~mazlan 1 Chapter 1 STEAM CYCLES 1 Chapter Objectives To carry

More information

DESIGN OPTIMIZATION AND STATIC & THERMAL ANALYSIS OF GAS TURBINE BLADE Ganta Nagaraju 1, Venkata Ramesh Mamilla 2, M.V.

DESIGN OPTIMIZATION AND STATIC & THERMAL ANALYSIS OF GAS TURBINE BLADE Ganta Nagaraju 1, Venkata Ramesh Mamilla 2, M.V. International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Engineering, Business and Enterprise

More information

Hitachi Turbine Generator Technology for Nuclear Applications

Hitachi Turbine Generator Technology for Nuclear Applications Hitachi Turbine Generator Technology for Nuclear Applications Udo Zirn, P.E. Hitachi Power Systems America, Ltd. Motonari Haraguchi Hitachi Ltd., Japan Hitachi Power Systems America, Ltd 645 Martinsville

More information

Magnetically Coupled Submerged Cryogenic Pumps and Expanders for Ammonia Applications

Magnetically Coupled Submerged Cryogenic Pumps and Expanders for Ammonia Applications Paper 4d Magnetically Coupled Submerged Cryogenic Pumps and Expanders for Ammonia Applications Liquefied Ammonia, or Liquid NH3, is (like LNG or liquefied natural gas) a cryogenic fluid and production

More information

Course 0101 Combined Cycle Power Plant Fundamentals

Course 0101 Combined Cycle Power Plant Fundamentals Course 0101 Combined Cycle Power Plant Fundamentals Fossil Training 0101 CC Power Plant Fundamentals All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any

More information

ANALYSIS OF DIFFERENT TYPES OF REGULATION AND ITS EFFICIENCY IN STEAM POWER CYCLES MASTER THESIS

ANALYSIS OF DIFFERENT TYPES OF REGULATION AND ITS EFFICIENCY IN STEAM POWER CYCLES MASTER THESIS ANALYSIS OF DIFFERENT TYPES OF REGULATION AND ITS EFFICIENCY IN STEAM POWER CYCLES MASTER THESIS Author: Ricardo Sánchez Pereiro Advisor: Piotr Krzyslak Poznan University of Technology 11/06/2012 INDEX

More information

A. the temperature of the steam at the turbine exhaust increases. B. additional moisture is removed from the steam entering the turbine.

A. the temperature of the steam at the turbine exhaust increases. B. additional moisture is removed from the steam entering the turbine. P77 Overall nuclear power plant thermal efficiency will decrease if... A. the temperature of the steam at the turbine exhaust increases. B. additional moisture is removed from the steam entering the turbine.

More information

ASSIGNMENT 2 Coal and Ash Handling System and Draught Systems

ASSIGNMENT 2 Coal and Ash Handling System and Draught Systems ASSIGNMENT 1 Thermal Power Plant & High Pressure Boiler 1. State the factors to be considered for selection of site for thermal power plant 2. State desirable to control the super heat temperature. Explain

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Ç engel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Objectives Develop the conservation

More information

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Copyright The McGraw-Hill Companies,

More information

Power Engineering II. Technological circuits of thermal power plants

Power Engineering II. Technological circuits of thermal power plants Technological circuits of thermal power plants Lay out scheme of coal power plant climatetechwiki.com Technological circuits 2 Coal and ash circuit Air and gas circuit Feed water and steam circuit Cooling

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM VI(ME-61,62,63 & 64)] QUIZ TEST-1 Q-1). A jet strikes a smooth curved vane moving in the same direction as the jet and the jet get reversed in the direction. Show that the maximum efficiency

More information

Two-Phase-Flow Turbines as Stand-Alone Throttle Replacement Units in Large Ton Centrifugal Chiller Installations

Two-Phase-Flow Turbines as Stand-Alone Throttle Replacement Units in Large Ton Centrifugal Chiller Installations Purdue University Purdue e-pubs nternational Compressor Engineering Conference School of Mechanical Engineering 1998 Two-Phase-Flow Turbines as Stand-Alone Throttle Replacement Units in Large 2000-5000

More information

UNIT 5 HYDRAULIC MACHINES. Lecture-01

UNIT 5 HYDRAULIC MACHINES. Lecture-01 1 UNIT 5 HYDRAULIC MACHINES Lecture-01 Turbines Hydraulic machines which convert hydraulic energy into mechanical energy. This mechanical energy is used to run electric generator which is directly coupled

More information

Thermodynamic Considerations for Large Steam Turbine Upgrades and Retrofits

Thermodynamic Considerations for Large Steam Turbine Upgrades and Retrofits POWER-GEN Asia 2011 Kuala-Lumpur, Malaysia September 27-29, 2011 Thermodynamic Considerations for Large Steam Turbine Upgrades and Retrofits Leonid Moroz, Kirill Grebennik 15 New England Executive Park,

More information

(a) the inlet and exit vane angles, (b) work done (c) Efficiency of the system. [16]

(a) the inlet and exit vane angles, (b) work done (c) Efficiency of the system. [16] Code No: R05310302 Set No. 1 III B.Tech I Semester Regular Examinations, November 2007 HYDRAULIC MACHINERY AND SYSTEMS ( Common to Mechanical Engineering and Automobile Engineering) Time: 3 hours Max Marks:

More information

Pumps, Turbines, and Pipe Networks, part 2. Ch 11 Young

Pumps, Turbines, and Pipe Networks, part 2. Ch 11 Young Pumps, Turbines, and Pipe Networks, part 2 Ch 11 Young Pump and Turbine Dimensional Analysis (11.5 Young) Say we want to replace turbines on the Hoover Dam Want to have a good design Essentially impossible

More information

Screw Engine as Expansion Machine Applied in an ORC- Test-Installation - the First Operating Experiences

Screw Engine as Expansion Machine Applied in an ORC- Test-Installation - the First Operating Experiences Screw Engine as Expansion Machine Applied in an ORC- Test-Installation - the First Operating Experiences Lubrication system for a screw machine in reverse rotation Dipl.-Ing. Albrecht Eicke, University

More information

Applied Thermodynamics - II

Applied Thermodynamics - II Gas Turbines - Sudheer Siddapureddy sudheer@iitp.ac.in Department of Mechanical Engineering Auxiliary Devices Other components/arrangements Intercoolers between the compressors Reheat combustion chambers

More information

High Bridge Combined Cycle Plant

High Bridge Combined Cycle Plant High Bridge Combined Cycle Plant Location: Down town St. Paul, on the Mississippi River Plant Description: High Bridge is a combined cycle generating facility. A combined cycle plant produces electricity

More information

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Copyright The McGraw-Hill Companies, Inc.

More information

Combined Cycle Power Plants. Combined Cycle Power Plant Overview (Single- and Multi-Shaft) Training Module. ALSTOM (Switzerland) Ltd )*+,

Combined Cycle Power Plants. Combined Cycle Power Plant Overview (Single- and Multi-Shaft) Training Module. ALSTOM (Switzerland) Ltd )*+, Power Plant Overview Training Module ALSTOM (Switzerland) Ltd )*+, We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without

More information

Recent Technology for Improving Corrosion- Resistance and Performance of Geothermal Turbines

Recent Technology for Improving Corrosion- Resistance and Performance of Geothermal Turbines Recent Technology for Improving Corrosion- Resistance and Performance of Geothermal Turbines MORITA Kohei SATO Masahiro ABSTRACT Geothermal energy is a clean form of energy that produces almost no CO 2

More information

VVER-440/213 - The reactor core

VVER-440/213 - The reactor core VVER-440/213 - The reactor core The fuel of the reactor is uranium dioxide (UO2), which is compacted to cylindrical pellets of about 9 height and 7.6 mm diameter. In the centreline of the pellets there

More information

Operator s Guide to General Purpose Steam Turbines

Operator s Guide to General Purpose Steam Turbines Operator s Guide to General Purpose Steam Turbines Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106 Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com)

More information

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Mehmet Kanoglu University of

More information

Power Recovery in LNG Regasification Plants

Power Recovery in LNG Regasification Plants Power Recovery in LNG Regasification Plants Harry K. Clever Director of Sales hclever@ebaraintl.com Hans E. Kimmel Executive Director R&D hkimmel@ebaraintl.com Ebara International Corporation Sparks, Nevada,

More information

DIVISION 33 UTILITIES SECTION PACKAGED SEWAGE GRINDER PUMPING UNITS

DIVISION 33 UTILITIES SECTION PACKAGED SEWAGE GRINDER PUMPING UNITS DIVISION 33 UTILITIES PART 1 GENERAL 1.01 SUMMARY A. Section Includes: The work specified in this Section consists of providing an Environmental One grinder pump(s) unit with tank, internal piping and

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05310302 Set No. 1 III B.Tech I Semester Regular Examinations, November 2008 HYDRAULIC MACHINERY AND SYSTEMS ( Common to Mechanical Engineering and Automobile Engineering) Time: 3 hours Max Marks:

More information

SIMPACK - MODEL DEVELOPMENT PACKAGE FOR POWER PLANTS

SIMPACK - MODEL DEVELOPMENT PACKAGE FOR POWER PLANTS SIMPACK - MODEL DEVELOPMENT PACKAGE FOR POWER PLANTS 1.0 OVERVIEW SIMPACK is a totally integrated set of simulation software development modules for power plants. It is template based modeling tool and

More information

2. In terms of operating as a machine, a sail boat energy from the air. A. Extracts B. Adds

2. In terms of operating as a machine, a sail boat energy from the air. A. Extracts B. Adds CHAPTER 12 1.Turbomachines are mechanical devices that either energy from a fluid, in the case of a turbine, or energy to a fluid, in the case of a pump. YOUR ANSWER: Extract, add 2. In terms of operating

More information

Heat exchanger equipment of TPPs & NPPs

Heat exchanger equipment of TPPs & NPPs Heat exchanger equipment of TPPs & NPPs Lecturer: Professor Alexander Korotkikh Department of Atomic and Thermal Power Plants TPPs Thermal power plants NPPs Nuclear power plants Content Steam Generator

More information

Overall nuclear power plant thermal efficiency will decrease if... A. the temperature of the steam at the turbine exhaust increases.

Overall nuclear power plant thermal efficiency will decrease if... A. the temperature of the steam at the turbine exhaust increases. P77 Overall nuclear power plant thermal efficiency will decrease if... A. the temperature of the steam at the turbine exhaust increases. B. additional moisture is removed from the steam entering the turbine.

More information

ME 215. Mass and Energy Analysis of Control Volumes CH-6 ÇANKAYA UNIVERSITY. Mechanical Engineering Department. Open Systems-Control Volumes (CV)

ME 215. Mass and Energy Analysis of Control Volumes CH-6 ÇANKAYA UNIVERSITY. Mechanical Engineering Department. Open Systems-Control Volumes (CV) ME 215 Mass and Energy Analysis of Control Volumes CH-6 ÇANKAYA UNIVERSITY Mechanical Engineering Department Open Systems-Control Volumes (CV) A CV may have fixed size and shape or moving boundaries Open

More information

Preface to the First Edition Preface to the Second Edition. Acknowledgment

Preface to the First Edition Preface to the Second Edition. Acknowledgment Dedication Preface to the First Edition Preface to the Second Edition Forewords Acknowledgment iii xiii xv xvii xix Chapter 1 Introduction to Pipeline Systems 1 1.1 Introduction 1 1.2 Liquid Pipelines

More information

Chapter Two. The Rankine cycle. Prepared by Dr. Shatha Ammourah

Chapter Two. The Rankine cycle. Prepared by Dr. Shatha Ammourah Chapter Two The Rankine cycle Prepared by Dr. Shatha Ammourah 1 The Ideal Rankine Cycle Schematic Diagram of ideal simple Rankine 2 Superheater Economizer line 3 Heat Addition Types In The Steam Generator

More information

R13. II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max.

R13. II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. SET - 1 1. a) Discuss about PMM I and PMM II b) Explain about Quasi static process. c) Show that the COP of a heat pump is greater than the COP of a refrigerator by unity. d) What is steam quality? What

More information

SHREE RAMCHANDRA EDUCATION SOCIETY S LONIKAND, PUNE DEPARTMENT OF MECHANICAL ENGINEERING LAB MANUAL

SHREE RAMCHANDRA EDUCATION SOCIETY S LONIKAND, PUNE DEPARTMENT OF MECHANICAL ENGINEERING LAB MANUAL SHREE RAMCHANDRA EDUCATION SOCIETY S SHREE RAMCHANDRA COLLEGE OF ENGINEERING, LONIKAND, PUNE 412 216 DEPARTMENT OF MECHANICAL ENGINEERING LAB MANUAL TURBO MACHINES(TM) TE (ME) Semester-VI Prepared by Prof.

More information

3. Design of Generation Equipment. 3.1 Turbine (1) Turbine Types Turbines are classified into two types according to their water energy utility:

3. Design of Generation Equipment. 3.1 Turbine (1) Turbine Types Turbines are classified into two types according to their water energy utility: 3. Design of Generation Equipment 3.1 Turbine (1) Turbine Types Turbines are classified into two types according to their water energy utility: Impulse Turbines: all available water energy is converted

More information

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Basic Science and Humanities

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Basic Science and Humanities USN 1 P E PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Basic Science and Humanities INTERNAL ASSESSMENT TEST 1 Date : 28/08/2017 Marks: 40 Subject &

More information

Model EVMS Vertical Multistage Pumps for the Global Market

Model EVMS Vertical Multistage Pumps for the Global Market New Products & New Techniques Model EVMS Vertical Multistage Pumps for the Global Market Hiroyuki KAWASAKI*, and So KUROIWA* Abstract As key products for the global market, new model EVMS stainless vertical

More information

DEPARTMENT OF CIVIL ENGINEERING CE6403/ APPLIED HYDRAULIC ENGINEERING QUESTION BANK TWO MARKS UNIT I UNIFORM FLOW 1. Differentiate open channel flow from pipe flow. 2. What is specific energy and is the

More information

SEMPELL HP PREHEATER PROTECTION VALVES TYPE AVS 4/5

SEMPELL HP PREHEATER PROTECTION VALVES TYPE AVS 4/5 Typical feed water heater isolation system FEATURES Body of forged steel Body in form piece to reduce a number of welds and fittings Body also available as a single block type thereby eliminating the nozzle

More information

CROSBY H-SERIES DIRECT SPRING SAFETY VALVES

CROSBY H-SERIES DIRECT SPRING SAFETY VALVES DIRECT SPRING SAFETY VALVES Direct spring safety valves that provide comprehensive overpressure protection for ASME Boiler and Pressure Vessel Code Section I, and Section VIII steam safety applications

More information

Geothermal Power Plant

Geothermal Power Plant Geothermal Power Plant The Tokyo Electric Power Co., Inc., Japan Hachijo-jima Geothermal Power Plant 3,300kW 0A3-E-009 Outline All equipment and system except for the civil work and geothermal wells were

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information