Energy Management :: 2007/2008

Size: px
Start display at page:

Download "Energy Management :: 2007/2008"

Transcription

1 :: 2007/2008 Class # 08 Energy balances Prof. Miguel Águas miguel.pn.aguas@igmail.com g g

2 Class objectives Summary The Climaespaço plant Energy balances Class # 08 :: Energy Balances Slide 2 of 53

3 Climaespaço plant Equipment Complete system: Production + Distribution ib ti + Consumption Gas turbine: 4,7 MWe Heat recover steam generator: 10 MWt (10 t/h at 10 bar -> kj/kg x kg / 3600 s) 2 Absorption chillers: 2 x 4,8 MWc (doble effect, COP=~1) 3 Compression chillers: 3 x 5,5 MWc 1 boiler: 15 MWt ELECTRICITY: 5 MW HOT WATER: 25 MW CHILLER WATER: 26 MW Class # 08 :: Energy Balances Slide 3 of 53

4 Recent news Layout Class # 08 :: Energy Balances Slide 4 of 53

5 Climaespaço plant Gas turbine Class # 08 :: Energy Balances Slide 5 of 53

6 Climaespaço plant Building heat exchanger Class # 08 :: Energy Balances Slide 6 of 53

7 Climaespaço plant Energy consumption Vendas de Frio Ano ,0 4,0 Vendas de Energia Térmica 100,0 80,0 60,0 0 40,0 30 3,0 2,0 1,0 0,0 GWh Jan Fev Mar Abr Mai Jun Jul Ago Set Out Nov Dez GWh 20,0 0,0 Vendas de Calor Ano ,5 2, Frio Calor 15 1,5 1,0 GWh 0,5 0,0 Jan Fev Mar Abr Mai Jun Jul Ago Set Out Nov Dez Class # 08 :: Energy Balances Slide 7 of 53

8 CASE STUDY 1: BOILER Consider a boiler represented in the figure. Combustion air Flue gases Steam Heat losses Natural gas Water Purge Is known the following data: Fuel: natural gas Combustion air: temperature Gases: temperature: O2 volume composition Steam: mass flow a) Identify mass and energy flows in an energy balance of a boiler. b) Identify requested data and the way to get it. Class # 08 :: Energy Balances Slide 8 of 53

9 CASE STUDY 1: BOILER The first step is to draw the control volume: Combustion air Flue gases Steam Heat losses Natural gas Water Purge The second step is to write mass and energy balances. Is possible to define 3 mass balances (gases, water and oxygen in gases). b) Identify requested data and the way to get it. First step is to analyze the equations in order to identify unknowns: Equation (1) has 3 unknowns: mcomb air, mnatural gas, mflue gases Equation (2) has 2 additional unknowns: mwater, mpurge Equation (3) has no new unknowns (the percentage of oxygen in air is 21% v/v, and the mass of oxygen per kg Class # 08 :: Energy Balances Slide 9 of 53 f t l i l t t)

10 CASE STUDY 1: BOILER b) Identify requested data and the way to get it. First step is to analyze the equations in order to identify unknowns: Equation (1) has 3 unknowns: mcomb air, mnatural gas, mflue gases Equation (2) has 2 additional unknowns: mwater, mpurge Equation (3) has no new unknowns (the percentage of oxygen in air is 21% v/v, and the mass of oxygen per kg of natural gas is also a constant) Equation (4) has 1 new unknown: Qheat losses The result is: 6 unknowns in 4 equations. This means that is necessary to make more measurements or identify technical equations. Regarding additional measurements, the easiest way would be the measure the combustion air flow and flue gases flow. Regarding additional technical equations, is common practice to consider that heat losses represents around 2% of the heat release and power for purges represents 1% of heat release. Class # 08 :: Energy Balances Slide 10 of 53

11 CASE STUDY 2: ALUMINUM FURNACE Consider a aluminum furnace represented in the figure. Gases Is known the following data: Aluminum: flow and temperatures Air: temperature Combustion air: flow and temperature Gases: temperature, % O2 Surfaces: temperature and areas Ventilator: electrical power Air Aluminum Propane Comb. air Melted alumin a) Identify mass and energy flows in an energy balance of the aluminum furnace. b) Identify requested data and the way to get it. Class # 08 :: Energy Balances Slide 11 of 53

12 CASE STUDY 2: ALUMINUM FURNACE a) Identify mass and energy flows in an energy balance of the aluminum furnace. The first step is to draw the control volume: Gases Heat losses Air Aluminum Propane Comb. air The second step is to write mass and energy balances. Is possible to define 3 mass balances (gases, aluminum and oxygen in gases). Melted aluminum m m& m & m& & Q comb air aluminum in + m& oxygen in comb air propane propane = m& + m& + m& air aluminum out = m& oxygen in air (2) m& flue gases oxygen (1) for propane = m& + W& = Q& + Q& + Q& (4) ventilator aluminum heat losses oxygen in flue gases flue gases (3) Class # 08 :: Energy Balances Slide 12 of 53

13 CASE STUDY 2: ALUMINUM FURNACE b) Identify requested data and the way to get it. First step is to analyze the equations in order to identify unknowns: Equation (1) has 3 unknowns: mnatural gas, mflue gases Equation (2) has 2 additional unknowns: mwater, mpurge Equation (3) has no new unknowns (the percentage of oxygen in air is 21% v/v, and the mass of oxygen per kg of natural gas is also a constant) Equation (4) has 1 new unknown: Qheat losses The result is: 6 unknowns in 4 equations. This means that is necessary to make more measurements or identify technical equations. Regarding additional measurements, the easiest way would be the measure the combustion air flow and flue gases flow. Regarding additional technical equations, is common practice to consider that heat losses represents around 2% of the heat release and power for purges represents 1% of heat release. Class # 08 :: Energy Balances Slide 13 of 53

14 CASE STUDY 3: REFRIGERATION TOWER a) Identify mass and energy flows in an energy balance of the following refrigeration tower b) Identify the request data and the way to get it. c) Calculate dissipated thermal power for: Outside air: Dry temp.=19ºc; RH=33%, Enthalpy=29 kj/kg, mass flow=35 kg/s Exhaust air: Dry temp.=17ºc; RH=80%, Enthalpy=40 kj/kg d) Considering that fun power of 11 kw, compare results with a refrigerator cycle (chiller) Class # 08 :: Energy Balances Slide 14 of 53

15 a) Identify mass and energy flows in an energy balance of the following spring furnace b) Identify requested data and the way to get it. Energy Management CASE STUDY 4: SPRING FURNACE Gases Surfaces Combustion air Propan e Propane Comb. air Losses Spring entrance Air Spring exit b) Define mass and energy balance c) Considering access to the following data (given or measured), what are the unknowns? Springs: flow and temperatures Combustion air: flow and temperature Surfaces: temperature and areas Air: temperature Gases: Temperature, % O2 Fun: electrical power Class # 08 :: Energy Balances Slide 15 of 53

16 a) Identify mass and energy flows in an energy balance of the following spring furnace b) Identify requested data and the way to get it. Energy Management CASE STUDY 5: TEXTILE DRYER Ar chaminé + água evaporada Condensados Perdas pelas paredes Malha (seca) Malha (seca) Malha (água) Malha (água) Ar pelas aberturas Vapor Ventiladores b) Define mass and energy balance c) Considering access to the following data (given or measured), what are the unknowns? Springs: flow and temperatures Combustion air: flow and temperature Surfaces: temperature and areas Air: temperature Gases: Temperature, % O2 Fun: electrical power Class # 08 :: Energy Balances Slide 16 of 53

TransPacific Energy Advantage: Case Studies

TransPacific Energy Advantage: Case Studies TransPacific Energy Advantage: Case Studies Typical Power Plant TPE-ORC 0.60 KWh ORC 2.3 KWh LP steam 0.35 KWh 30% (maximum) 2.05 KWh CHP Typical Power Generated 1.1 KWh Typical Power Wasted 2.31 KWh Typical

More information

Combined cycle with detailed calculation of Cp in the HRSG

Combined cycle with detailed calculation of Cp in the HRSG Combined cycle with detailed calculation of Cp in the HRSG A large, light-oil fired gas turbine with an electrical power output of 171 MW is integrated with a steam cycle, forming a combined cycle. Some

More information

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT UNIT 47: Engineering Plant Technology Unit code: F/601/1433 QCF level: 5 Credit value: 15 OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT 2 Be able to apply the steady flow energy equation (SFEE) to plant and equipment

More information

CHP Case Studies. Midwest CHP Application Center (MAC) .org (312) University of Illinois at Chicago Energy Resources Center UIC

CHP Case Studies. Midwest CHP Application Center (MAC) .org (312) University of Illinois at Chicago Energy Resources Center UIC CHP Case Studies Midwest CHP Application Center (MAC) www.chpcentermw.org.org (312)413-5448 University of Illinois at Chicago Energy Resources Center CHP Case Studies Elgin Community College Presbyterian

More information

Conceptual Design of Nuclear CCHP Using Absorption Cycle

Conceptual Design of Nuclear CCHP Using Absorption Cycle Conceptual Design of Nuclear CCHP Using Absorption Cycle International Conference on Opportunities and Challenges for Water Cooled Reactors in the 21 st Century Vienna, Austria, October 27-30, 2009 Gyunyoung

More information

Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency

Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency S. R. Sunasara 1, J. J. Makadia 2 * 1,2 Mechanical Engineering Department, RK University Kasturbadham, Rajkot-Bhavngar highway,

More information

ENERGY EFFICIENT SYSTEMS Recover & recycle your waste heat

ENERGY EFFICIENT SYSTEMS Recover & recycle your waste heat ENERGY EFFICIENT SYSTEMS Recover & recycle your waste heat Absorption Machines - Heat Pumps & Chillers Thermal Energy Storage Solutions Special Heat Exchangers Italy 65 MW Turnkey Waste-to-energy Plant

More information

16 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS September, 2015

16 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS September, 2015 Note to Evaluator: Please give marks for the steps & logic. A mistake in value in initial step would lead to subsequent steps getting wrong values. Consider 75% marks, if step is right. 16 th NATIONAL

More information

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K.

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K. CHAPTER 2 - FIRST LAW OF THERMODYNAMICS 1. At the inlet to a certain nozzle the enthalpy of fluid passing is 2800 kj/kg, and the velocity is 50 m/s. At the discharge end the enthalpy is 2600 kj/kg. The

More information

WOC 5 - Utilization SG 5.1 Industrial Utilization. Case study: Efficient use of CHP for process & heating in industry in Italy

WOC 5 - Utilization SG 5.1 Industrial Utilization. Case study: Efficient use of CHP for process & heating in industry in Italy WOC 5 - Utilization SG 5.1 Industrial Utilization Case study: Efficient use of CHP for process & heating in industry in Italy Egidio Adamo eni gas & power - Italy Buenos Aires 6 th October 2009 1 Introduction

More information

14 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY AUDITORS August, 2013

14 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY AUDITORS August, 2013 14 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY AUDITORS August, 2013 PAPER 4: Energy Performance Assessment for Equipment and Utility Systems Date: 25.8.2013 Timings: 14:00-16:00 Hrs Duration: 2 Hrs

More information

EFFECT OF INLET AIR COOLING ON GAS TURBINE PERFORMANCE

EFFECT OF INLET AIR COOLING ON GAS TURBINE PERFORMANCE EFFECT OF INLET AIR COOLING ON GAS TURBINE PERFORMANCE WAIEL KAMAL ELSAIED 1,*, ZAINAL AMBRI BIN ABDUL KARIM 2,* Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia UTP_waiel@yahoo.com,

More information

DUBAL Energy Optimization Absorption Chiller Pilot Project

DUBAL Energy Optimization Absorption Chiller Pilot Project DUBAL Energy Optimization Absorption Chiller Pilot Project Global Sustainable Cities Network - 2014 23 January 2014 Tariq Alzarooni Manager: Asset Management: Power and Desalination Innovation in energy-conservation

More information

Cogeneration. Thermal Chillers. and. .. ASHRAE National Capital Chapter. Arlington, VA 10/10/2012

Cogeneration. Thermal Chillers. and. .. ASHRAE National Capital Chapter. Arlington, VA 10/10/2012 Cogeneration and Thermal Chillers.. ASHRAE National Capital Chapter. Arlington, VA 10/10/2012 Agenda Cogeneration Interest and Application Basics Equipment Matching Thermal Chiller Overview Steam Components

More information

16 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS September, 2015

16 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS September, 2015 16 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS September, 2015 PAPER 4:Energy Performance Assessment for Equipment and Utility Systems Date: 20.09.2015 Timings: 14:00-16:00

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41, 42,43 & 44)] QUIZ TEST-1 (Session: )

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41, 42,43 & 44)] QUIZ TEST-1 (Session: ) QUIZ TEST-1 Q.1. In a stage of an impulse turbine provided with a single row wheel, the mean diameter of the blade ring is 80cm and the speed of the rotation is 3000rpm. The steam issues from the nozzle

More information

Turboden ORC technology for the wood industry. 12 Wood technology Conference June , Opatija, Croatia

Turboden ORC technology for the wood industry. 12 Wood technology Conference June , Opatija, Croatia Turboden ORC technology for the wood industry 12 Wood technology Conference June 1-2 2015, Opatija, Croatia Doc.: 15-COM.P-12-rev.0 Update: 01/06/2015 Today s topics What the ORC is ORC reference plants

More information

Lecture No.3. The Ideal Reheat Rankine Cycle

Lecture No.3. The Ideal Reheat Rankine Cycle Lecture No.3 The Ideal Reheat Rankine Cycle 3.1 Introduction We noted in the last section that increasing the boiler pressure increases the thermal efficiency of the Rankine cycle, but it also increases

More information

MCG THERMODYNAMICS II. 22 April 2008 Page 1 of 7 Prof. W. Hallett

MCG THERMODYNAMICS II. 22 April 2008 Page 1 of 7 Prof. W. Hallett Faculté de génie Génie mécanique Faculty of Engineering Mechanical Engineering MCG2131 - THERMODYNAMICS II 22 April 2008 Page 1 of 7 Prof. W. Hallett Closed book. Non-programmable calculators only allowed.

More information

Combined Cooling, Heating and Power (CCHP) in Distributed Generation (DG)

Combined Cooling, Heating and Power (CCHP) in Distributed Generation (DG) Combined Cooling, Heating and Power (CCHP) in Distributed Generation (DG) Ruhai Hao Department of Electrical Engineering Michigan Technological University EE5250 Term Project April 21, 2006 Introduction

More information

Efficient utilization of energy sources

Efficient utilization of energy sources Efficient utilization of energy sources Perspectives for the reduction of fossil primary energy utilization in urban areas March 28 Using the energy content the most efficient way is using COMBINED HEAT

More information

Refrigeration Kylteknik

Refrigeration Kylteknik Värme- och strömningsteknik Thermal and flow engineering Refrigeration 424159.0 Kylteknik Ron Zevenhoven Exam 24-3-2017 4 questions, max. points = 4 + 6 + 10 + 10 = 30 All support material is allowed except

More information

Héctor Rubio Plana Gas Natural, SDG S.A. 18th. June 2009

Héctor Rubio Plana Gas Natural, SDG S.A. 18th. June 2009 1 Héctor Rubio Plana Gas Natural, SDG S.A. 18th. June 2009 Table of contents 1. Introduction 2. How does it work? 3. Experiences 4. Conclusions and future scenario 5. Future previsions 2 3 Solar Cooling

More information

SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN

SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN (EXECUTIVE SESSION) November, 2007 JAPAN EXTERNAL TRADE ORGANIZATION JAPAN CONSULTING INSTITUTE SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN 1. Power Generation

More information

Development of 1MW high efficiency gas engine cogeneration system

Development of 1MW high efficiency gas engine cogeneration system International Gas Union Research Conference 2011 Development of 1MW high efficiency gas engine cogeneration system Main author H. SAITO (Tokyo Gas Co., Ltd.) JAPAN Co-author K. HORIMOTO, T. NOGUCHI, M.

More information

Chapter 2.7: Cogeneration

Chapter 2.7: Cogeneration Chapter 2.7: Cogeneration Part-I: Objective type questions and answers 1. In cogeneration, the system efficiencies can go up to ------ a) 70% b) 80% c) 90% d) 60% 2. Cogeneration is the simultaneous generation

More information

Overview of cogeneration technology and application

Overview of cogeneration technology and application Overview of cogeneration technology and application Cogeneration Week Hanoi, 6 April 2004 Melia Hotel, Hanoi Leif Mortensen, Coal Expert Cogeneration or Combined Heat and Power (CHP) Sequential generation

More information

TECHNIQUES OF CCHP AS A RIGHT WAY TO APPLY THE 2 ND LAW OF THERMODYNAMIC: CASE STUDY (PART ONE)

TECHNIQUES OF CCHP AS A RIGHT WAY TO APPLY THE 2 ND LAW OF THERMODYNAMIC: CASE STUDY (PART ONE) TECHNIQUES OF CCHP AS A RIGHT WAY TO APPLY THE 2 ND LAW OF THERMODYNAMIC: CASE STUDY (PART ONE) Prof. Eng. Francesco Patania Prof. Eng. Antonio Gagliano Prof. Eng. Francesco Nocera Department of Industrial

More information

Cogeneration in a Hospital: a case Study

Cogeneration in a Hospital: a case Study Cogeneration in a Hospital: a case Study C. J. Renedo, A. Ortiz, D. Silió, M. Mañana, S. Pérez and J. Carcedo Department of Electric and Energy Engineering ESTI Industriales y Telecomunicación, University

More information

Performance evaluation of a small-scale polygeneration plant including a desiccant cooling system and an innovative natural gas ICE

Performance evaluation of a small-scale polygeneration plant including a desiccant cooling system and an innovative natural gas ICE Performance evaluation of a small-scale polygeneration plant including a desiccant cooling system and an innovative natural gas ICE Armando Portoraro Energetics Department Politecnico di Torino (Italy)

More information

NTPC, Simhadri, 4X500MW, Visakhapatnam, Andhra Pradesh

NTPC, Simhadri, 4X500MW, Visakhapatnam, Andhra Pradesh NTPC, Simhadri, 4X500MW, Visakhapatnam, Andhra Pradesh Unit Capacity Year of Comml Power Share AP TN Kar Ker Pud Unit-1 500 MW Sep 2002 100% X X X X Unit-2 500 MW Mar 2003 100% X X X X Unit-3 500 MW Sep

More information

TRONDHEIM CCS CONFERENCE

TRONDHEIM CCS CONFERENCE TRONDHEIM CCS CONFERENCE June 15, 2011 6th Trondheim Conference on CO 2 Capture, Transport and Storage Pedro Casero Cabezón (pcasero@elcogas.es) ELCOGAS S.A (www.elcogas.es) 1 SCOPE IGCC & ELCOGAS, S.A

More information

Optimizing Effluent and Sludge Treatment for Kraft Pulp Mills with regards to Energy Production, Consumption and Carbon Footprint.

Optimizing Effluent and Sludge Treatment for Kraft Pulp Mills with regards to Energy Production, Consumption and Carbon Footprint. Optimizing Effluent and Sludge Treatment for Kraft Pulp Mills with regards to Energy Production, Consumption and Carbon Footprint. Hans Peter Zwiefelhofer, Paul Woodhead, Mauro Coutinho and David C. Meissner

More information

Value of Air Source Heat Pumps in Light of Variable Energy Prices. Jeff Haase. Energy Design Conference February 27, 2013

Value of Air Source Heat Pumps in Light of Variable Energy Prices. Jeff Haase. Energy Design Conference February 27, 2013 Value of Air Source Heat Pumps in Light of Variable Energy Prices Jeff Haase Energy Design Conference February 27, 2013 Agenda Overview of Air Source Heat Pump Technologies History, General Comparison

More information

Texas Hospital. Central Plant Redesign. Central Utility Plant SECOND PLACE HEALTH CARE FACILITIES, EXISTING 2013 ASHRAE TECHNOLOGY AWARD CASE STUDIES

Texas Hospital. Central Plant Redesign. Central Utility Plant SECOND PLACE HEALTH CARE FACILITIES, EXISTING 2013 ASHRAE TECHNOLOGY AWARD CASE STUDIES This article was published in ASHRAE Journal, January 2014. Copyright 2014 ASHRAE. Posted at www. ashrae.org. This article may not be copied and/or distributed electronically or in paper form without permission

More information

15 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY AUDITORS August, 2014

15 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY AUDITORS August, 2014 15 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY AUDITORS August, 2014 Paper 4 SET A PAPER 4: Energy Performance Assessment for Equipment and Utility Systems Date: 24.8.2013 Timings: 14:00-16:00 Hrs

More information

Absorption Chillers in Industry

Absorption Chillers in Industry Absorption Chillers in Industry With deregulation and recent advances, absorption can be the best suited chiller option available. For Robust Performance Look to the Horizon Series of Absorption Chillers

More information

Wind Energy Brazil: NEET Workshop - Brasilia. November Considerations on small, intermediate and large size systems

Wind Energy Brazil: NEET Workshop - Brasilia. November Considerations on small, intermediate and large size systems Wind Energy Brazil: Considerations on small, intermediate and large size systems NEET Workshop - Brasilia November 2007 www.cresesb.cepel.br I Introduction Wind energy in the framework of the PNE 2030

More information

Gas turbine power plant. Contacts: Mail: Web:

Gas turbine power plant. Contacts: Mail: Web: Gas turbine power plant Contacts: Mail: poddar05@gmail.com Web: http://www.ajourneywithtime.weebly.com/ Contents Gas turbine power plant Elements of gas turbine power plants Gas turbine fuels Cogeneration

More information

Circulating Fluidized Bed Technology for Large Scale Power Generation Using Coal and Petroleum Coke

Circulating Fluidized Bed Technology for Large Scale Power Generation Using Coal and Petroleum Coke Circulating Fluidized Bed Technology for Large Scale Power Generation Using Coal and Petroleum Coke Timo Jäntti Kalle Nuortimo Foster Wheeler Energia Oy Finland Presented at Russia Power Moscow, Russia

More information

At PowerGen - RENEWABLE ENERGY WORLD Europe - June 2013: Multi-fuel Fired Biomass Cogeneration Plant by

At PowerGen - RENEWABLE ENERGY WORLD Europe - June 2013: Multi-fuel Fired Biomass Cogeneration Plant by At PowerGen - RENEWABLE ENERGY WORLD Europe - June 2013: Multi-fuel Fired Biomass Cogeneration Plant by FSL/31.05.2013 Andrea Bigai, Technical Manager, Zignago Power Frank Scholdann Lund, Area Sales Manager,

More information

ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE AT COVANTA S HAVERHILL FACILITY

ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE AT COVANTA S HAVERHILL FACILITY Proceedings of the 18th Annual North American Waste-to-Energy Conference NAWTEC18 May 11-13, 2010, Orlando, Florida, USA Paper Number: NAWTEC18-3563 ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE

More information

Exergy Analysis of a Power Plant in Abu Dhabi (UAE)

Exergy Analysis of a Power Plant in Abu Dhabi (UAE) Exergy Analysis of a Power Plant in Abu Dhabi (UAE) Omar Mohamed Alhosani 1, Abdulla Ali Alhosani 2, Zin Eddine Dadach 3 1, 2, 3 Chemical Engineering Department, Abu Dhabi Men s College, Higher Colleges

More information

Union College Combined Cooling, Heat and Power Project

Union College Combined Cooling, Heat and Power Project Union College Combined Cooling, Heat and Power Project Presented by: Mark Donovan, PE Union College, Assistant Director of Utilities Aaron Bolhous, PEng CHA, Project Engineer Agenda Introduction to Union

More information

Introduction Table of Contents

Introduction Table of Contents Table of Contents 2 3 4 5 6 9 10 14 1 Energy consumption for different purposes of use and annual and hourly energy consumption patterns of hotels Energy consumption structure of a hotel Ventilation and

More information

November 4, 2010, Rev 1

November 4, 2010, Rev 1 Advanced Power Systems November 4, 2010, Rev 1 Syracuse University Turbine Powered Data Center David R. Blair, P.E. David R. Blair, P.E. November 4, 2010 Serious Growth in Data Center Energy Requirements

More information

K.S. Rawat 1, H. Khulve 2, A.K. Pratihar 3 1,3 Department of Mechanical Engineering, GBPUAT, Pantnagar , India

K.S. Rawat 1, H. Khulve 2, A.K. Pratihar 3 1,3 Department of Mechanical Engineering, GBPUAT, Pantnagar , India Thermodynamic Analysis of Combined ORC-VCR System Using Low Grade Thermal Energy K.S. Rawat 1, H. Khulve 2, A.K. Pratihar 3 1,3 Department of Mechanical Engineering, GBPUAT, Pantnagar-263145, India 2 Department

More information

Energy Analysis of Supercritical Water and Ammonia (Kalina) Power Cycle

Energy Analysis of Supercritical Water and Ammonia (Kalina) Power Cycle OPEN ACCESS World Sustainability Forum 204 Conference Proceedings Paper http://www.sciforum.net/conference/wsf-4 Energy Analysis of Supercritical Water and Ammonia (Kalina) Power Cycle Abtin Ataei, Mehdi

More information

Workshop Industrial application of SOFC systems: the DEMOSOFC project

Workshop Industrial application of SOFC systems: the DEMOSOFC project Workshop Industrial application of SOFC systems: the DEMOSOFC project Prof. Massimo Santarelli, PhD Dipartimento Energia, Politenico di Torino (IT) Politecnico di Torino - Sala Consiglio di Facoltà C.so

More information

ADECOS II. Advanced Development of the Coal-Fired Oxyfuel Process with CO 2 Separation

ADECOS II. Advanced Development of the Coal-Fired Oxyfuel Process with CO 2 Separation Fakultät Maschinenwesen Institut für Energietechnik, Professur für Verbrennung, Wärme- & Stoffübertragung ADECOS II Advanced Development of the Coal-Fired Oxyfuel Process with CO 2 S. Grahl, A. Hiller,

More information

Preparatory study for Steam Boilers Ecodesign

Preparatory study for Steam Boilers Ecodesign www.pwc.com Preparatory study for Steam Boilers Ecodesign Stakeholder Meeting Brussels, Task 1: Scope PwC - ICCS - Fraunhofer ISI Slide 2 Tasks structure Task 1: Scope Task 2: Task 3: Task 4: Markets Users

More information

Application of a cooling tower model for optimizing energy use

Application of a cooling tower model for optimizing energy use Advances in Fluid Mechanics X 305 Application of a cooling tower model for optimizing energy use G. C. O Mary & D. F. Dyer Department of Mechanical Engineering, Auburn University, USA Abstract The overall

More information

Towards New Milestones In CFB Boiler Technology CFB 800MWe

Towards New Milestones In CFB Boiler Technology CFB 800MWe Towards New Milestones In CFB Boiler Technology CFB 800MWe Arto Hotta, Kari Kauppinen, Ari Kettunen Foster Wheeler Energia Oy Finland Presented at Coal Gen Europe Warsaw, Poland February 14 16, 2012 ABSTRACT

More information

Modelling of CO 2 capture using Aspen Plus for EDF power plant, Krakow, Poland

Modelling of CO 2 capture using Aspen Plus for EDF power plant, Krakow, Poland Modelling of CO 2 capture using Aspen Plus for EDF power plant, Krakow, Poland Vipul Gupta vipul.gupta@tecnico.ulisboa.pt Instituto Superior Técnico,Lisboa, Portugal October 2016 Abstract This work describes

More information

Low temperature cogeneration using waste heat from research reactor as a source for heat pump

Low temperature cogeneration using waste heat from research reactor as a source for heat pump National Centre for Nuclear Research in Poland Low temperature cogeneration using waste heat from research reactor as a source for heat pump Anna Przybyszewska International Atomic Energy Agency 14-16

More information

Guidance Document for Cogeneration Emissions. (Cogeneration Guidelines)

Guidance Document for Cogeneration Emissions. (Cogeneration Guidelines) Guidance Document for Cogeneration Emissions (Cogeneration Guidelines) October 2008 Alberta Environment 1 Introduction This document replaces the Guidance Document for Cogeneration Emissions (2006). The

More information

Balance method: How it works in principle and in practice

Balance method: How it works in principle and in practice CEWEP Workshop on EU ETS versus carbon taxes and determination of the biogenic/fossil content of MSW March 3 rd 2011, Spittelau Fernwärme Wien Balance method: How it works in principle and in practice

More information

AN EXERGY COST ANALYSIS OF A COGENERATION PLANT

AN EXERGY COST ANALYSIS OF A COGENERATION PLANT AN EXERGY COST ANALYSIS OF A COGENERATION PLANT L. P. Gonçalves, and F. R. P. Arrieta Pontifícia Universidade Católica de Minas Gerais Programa de Pós-Graduação em Engenharia Mecânica Av. Dom José Gaspar,

More information

CO 2 Refrigeration Development

CO 2 Refrigeration Development Perspectives on the Use of CO CO 2 Refrigeration Development 2 in Light Commercial Refrigeration Cooling with Carbon Dioxide Conference London/UK Mar 07 Ricardo A. Maciel CO 2 Project Manager Outline A

More information

Oxy-Coal for Electric Power Generation: Status and Prospects

Oxy-Coal for Electric Power Generation: Status and Prospects Oxy-Coal for Electric Power Generation: Status and Prospects David Thimsen (dthimsen@epri.com) Senior Project Manager McIlvaine Oxy-fuel Combustion Update August 12, 2010 Why would an Electric Utility

More information

Secondary Systems: Steam System

Secondary Systems: Steam System Secondary Systems: Steam System K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 10 Table of Contents 1 SECONDARY SYSTEM

More information

COMBINED CYCLE OPPORTUNITIES FOR SMALL GAS TURBINES

COMBINED CYCLE OPPORTUNITIES FOR SMALL GAS TURBINES 19 TH SYMPOSIUM OF THE INDUSTRIAL APPLICATION OF GAS TURBINES COMMITTEE BANFF, ALBERTA, CANADA OCTOBER 17-19, 2011 11-IAGT-204 COMBINED CYCLE OPPORTUNITIES FOR SMALL GAS TURBINES Michael Lucente Found

More information

Thomas F. Edgar University of Texas-Austin NSF Workshop on Shale Gas Monetization Montgomery, TX, March 27, 2014

Thomas F. Edgar University of Texas-Austin NSF Workshop on Shale Gas Monetization Montgomery, TX, March 27, 2014 Impact of Shale Gas on Energy Efficiency and Smart Manufacturing Thomas F. Edgar University of Texas-Austin NSF Workshop on Shale Gas Monetization Montgomery, TX, March 27, 2014 1 Outline U.S. energy/environment

More information

COURSE TITLE : POWER PLANT INSTRUMENTATION COURSE CODE : 5215 COURSE CATEGORY : E PERIODS/WEEK : 4 PERIODS/SEMESTER: 52 CREDITS : 4

COURSE TITLE : POWER PLANT INSTRUMENTATION COURSE CODE : 5215 COURSE CATEGORY : E PERIODS/WEEK : 4 PERIODS/SEMESTER: 52 CREDITS : 4 COURSE TITLE : POWER PLANT INSTRUMENTATION COURSE CODE : 5215 COURSE CATEGORY : E PERIODS/WEEK : 4 PERIODS/SEMESTER: 52 CREDITS : 4 TIME SCHEDULE Module Topics Periods 1 Introduction to power plants 14

More information

Panel II Jänschwalde Oxyfuel demonstartion plant.

Panel II Jänschwalde Oxyfuel demonstartion plant. Panel II Jänschwalde Oxyfuel demonstartion plant. IEAGHG 2nd Oxyfuel Conference 2011 11 th 16th of Sept 2011 Yeppoon QLD, Australia Lars Strömberg Vattenfall AB 1 Lars Strömberg, IEA Oxyfuel Combustion

More information

4.1 Introduction 4.2 Kiln System. 4.3 Kiln System Analysis 4.4 Results and Discussion 4.5 Conclusion

4.1 Introduction 4.2 Kiln System. 4.3 Kiln System Analysis 4.4 Results and Discussion 4.5 Conclusion ENERGY AND EXERGY ANALYSIS OF THE KILN SYSTEM IN THE CEMENT PLANT 4 Contents 4.1 Introduction 4.2 Kiln System. 4.3 Kiln System Analysis 4.4 Results and Discussion 4.5 Conclusion 4.1 Introduction The conservation,

More information

Energy Audit of 250 MW Thermal Power Stations PTPS, Panipat

Energy Audit of 250 MW Thermal Power Stations PTPS, Panipat Energy Audit of 250 MW Thermal Power Stations PTPS, Panipat Vikrant Bhardwaj 1, Rohit Garg 2, Mandeep Chahal 3, Baljeet Singh 4 1 Asstt. Professor in Deptt. Of Mechanical Engineering, IIET, (Kinana) Jind

More information

Oxy-fuel combustion integrated with a CO 2 processing unit

Oxy-fuel combustion integrated with a CO 2 processing unit POLISH STRATEGIC PROGRAM ADVANCED TECHNOLOGIES FOR ENERGY GENERATION Oxy-fuel combustion integrated with a CO 2 processing unit coordinator: Wojciech Nowak AGH University of Science and Technology Kraków,

More information

Circulating Fluidized Bed Technology Towards 800 MWe Scale Lagisza 460 MWe Supercritical CFB Operation Experience

Circulating Fluidized Bed Technology Towards 800 MWe Scale Lagisza 460 MWe Supercritical CFB Operation Experience Circulating Fluidized Bed Technology Towards 800 MWe Scale Lagisza 460 MWe Supercritical CFB Operation Experience Timo Jäntti, Kimmo Räsänen Foster Wheeler Energia Oy Varkaus, Finland Presented at Power

More information

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction Improvement of distillation column efficiency by integration with organic Rankine power generation cycle Dmitriy A. Sladkovskiy, St.Petersburg State Institute of Technology (technical university), Saint-

More information

Heat Exchangers. Introduction. Classification of heat Exchangers

Heat Exchangers. Introduction. Classification of heat Exchangers Heat Exchangers Introduction Heat Exchanger is an adiabatic steady flow device in which two flowing fluids exchange or transfer heat between themselves due to a temperature difference without losing or

More information

ENCAP SP4 Chemical looping combustion

ENCAP SP4 Chemical looping combustion ENCAP SP4 Chemical looping combustion CASTOR-ENCAP-CACHET-DYNAMIS workshop Thierry GAUTHIER, IFP 1 Content Background Chemical Looping Combustion (CLC) SP4 objectives SP4 Development of stable reactive

More information

Comparison of Different Gas Turbine Inlet Air Cooling Methods

Comparison of Different Gas Turbine Inlet Air Cooling Methods Comparison of Different Gas Turbine Inlet Air Cooling Methods Ana Paula P. dos Santos, Claudia R. Andrade and Edson L. Zaparoli International Science Index, Aerospace and Mechanical Engineering waset.org/publication/2686

More information

Energysmart Cooling using Waste Heat. Partners in innovation. Leaders in Dehumidification... Worldwide Power Partners, Inc. USA

Energysmart Cooling using Waste Heat. Partners in innovation. Leaders in Dehumidification... Worldwide Power Partners, Inc. USA Energysmart Cooling using Waste Heat Partners in innovation Leaders in Dehumidification... Worldwide Power Partners, Inc. USA www.bryair.com Partners in innovation Customized Solutions Bry-Air, the leader

More information

Energy Efficiency Analysis Using Pinch Technology: A Case Study of Orbit Chemicals Industry

Energy Efficiency Analysis Using Pinch Technology: A Case Study of Orbit Chemicals Industry IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 3 Ver. I (May- Jun. 2014), PP 44-53 Energy Efficiency Analysis Using Pinch Technology:

More information

Oil enhancement Carbon Dioxide Oxygen Power Universal Supply (OCDOPUS project)

Oil enhancement Carbon Dioxide Oxygen Power Universal Supply (OCDOPUS project) Energy Convers. Mgmt Vol. 34, No. 9-11, pp. 1219--1227, 1993 0196-8904/93 $6.00 + 0.00 Printed in Great Britain Pergamon Press Ltd Oil enhancement Carbon Dioxide Oxygen Power Universal Supply (OCDOPUS

More information

Waste Heat Recovery as an Alternative Energy Source

Waste Heat Recovery as an Alternative Energy Source Waste Heat Recovery as an Alternative Energy Source D. Paul Mehta and Ryan Esch, Bradley University ABSTRACT Heat recovery can substantially lower the operating costs for a manufacturing facility by utilizing

More information

Gas Power Systems Energy Efficient CHP Solutions for Commercial and Large-scale Residential Buildings

Gas Power Systems Energy Efficient CHP Solutions for Commercial and Large-scale Residential Buildings Gas Power Systems Energy Efficient CHP Solutions for Commercial and Large-scale Residential Buildings Los Angeles, 2009 March 10 John Ferraro Building Stefan Kohler - MTU Onsite Energy GmbH Page 2 / 3/16/2009

More information

Optimisation and Cost Analysis of a Lithium Bromide Absorption Solar Cooling System

Optimisation and Cost Analysis of a Lithium Bromide Absorption Solar Cooling System Optimisation and Cost Analysis of a Lithium Bromide Absorption Solar Cooling System Georgios A. Florides and Soteris A. Kalogirou Mechanical Engineering Department, Higher Technical Institute, Nicosia,

More information

Benchmarking of power cycles with CO 2 capture The impact of the chosen framework

Benchmarking of power cycles with CO 2 capture The impact of the chosen framework Benchmarking of power cycles with CO 2 capture The impact of the chosen framework 4 th Trondheim Conference on CO 2 Capture, Transport and Storage Kristin Jordal, 1 The benchmarking activity at SINTEF/NTNU

More information

FLEXI BURN CFB WP4: Boiler design and performance

FLEXI BURN CFB WP4: Boiler design and performance Development of High Efficiency CFB Technology to Provide Flexible Air/Oxy Operation for Power Plant with CCS FLEXI BURN CFB WP4: Boiler design and performance 2 nd Project Workshop, 6 th February 2013,

More information

High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture

High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture The MIT Faculty has made this article openly available. Please share how this access benefits you. Your

More information

Gas turbine with a free power turbine

Gas turbine with a free power turbine Gas turbine with a free power turbine A light oil gas turbine plant operates with a free power turbine. The power output is 7 MW when the abient conditions are 308 and 0.9 bars. The turbine inlet teperature

More information

Samcheok Green Power 4 x 550 MW e Supercritical Circulating Fluidized-Bed Steam Generators in South Korea

Samcheok Green Power 4 x 550 MW e Supercritical Circulating Fluidized-Bed Steam Generators in South Korea Samcheok Green Power 4 x 550 MW e Supercritical Circulating Fluidized-Bed Steam Generators in South Korea Timo Jäntti, Kalle Nuortimo, Marko Ruuskanen, Juha Kalenius Foster Wheeler Energia Oy Finland Abstract

More information

PAPER NUMBER 64-GTP-16 S. T. ROBINSON J. W. GLESSNER. Solar, A Division of International Harvester Company, San Diego, Calif. Mems. ASME.

PAPER NUMBER 64-GTP-16 S. T. ROBINSON J. W. GLESSNER. Solar, A Division of International Harvester Company, San Diego, Calif. Mems. ASME. PAPER NUMBER 4-GTP-1 Copyright 194 by ASME AN ASME PUBLICATION Total Turbine Energy in Refrigeration Cycles S. T. ROBINSON J. W. GLESSNER Solar, A Division of International Harvester Company, San Diego,

More information

Pre-Assessment Data. Have there been any major changes to equipment or processes in the past year?

Pre-Assessment Data. Have there been any major changes to equipment or processes in the past year? CEERI Industrial Assessment Center Boise State University Idaho State University University of Idaho Please return to: Kelly Moylan, Operations Manager kellymoylan@boisestate.edu (208) 426-4053 Form completed

More information

Gas vs. Diesel Generator Sets Performance Cost & Application Differences

Gas vs. Diesel Generator Sets Performance Cost & Application Differences Gas vs. Diesel Generator Sets Performance Cost & Application Differences Page 1 Agenda Introduction Distributed Energy Products Diesel, Gas and Turbine generator sets How Engines Accept Loads Gas Product

More information

Gas Turbine Inlet Air Cooling System

Gas Turbine Inlet Air Cooling System Gas Turbine Inlet Air Cooling System Presented by Bob Omidvar Heavy Duty GT - Effects of Ambient Temp 110% 105% 100% 95% 90% 85% 80% 75% 0 5 10 15 20 25 30 35 40 45 GT Inlet Temp (deg C) Heat rate kj/kwh

More information

Advanced Power Plants Coal Fired Steam Power Plant

Advanced Power Plants Coal Fired Steam Power Plant Advanced Power Plants Coal Fired Steam Power Plant Prof. Dr.-Ing. H. Spliethoff Lehrstuhl für Energiesysteme Content 1. Situation today 2. Efficiency: achievements and outlook 3. Future discussion of the

More information

EXERGOECONOMIC ANALYSIS OF A POWER PLANT IN ABU DHABI. Ahmed Nabil Al Ansi, Mubarak Salem Ballaith, Hassan Ali Al Kaabi, Advisor: Zin Eddine Dadach

EXERGOECONOMIC ANALYSIS OF A POWER PLANT IN ABU DHABI. Ahmed Nabil Al Ansi, Mubarak Salem Ballaith, Hassan Ali Al Kaabi, Advisor: Zin Eddine Dadach EXERGOECONOMIC ANALYSIS OF A POWER PLANT IN ABU DHABI Ahmed Nabil Al Ansi, Mubarak Salem Ballaith, Hassan Ali Al Kaabi, Advisor: Zin Eddine Dadach INTRODUCTION Following a previous exergy analysis of a

More information

PTAC PROCESS TECHNOLOGY II - SYSTEMS. Last Reviewed: Page 1 of 10

PTAC PROCESS TECHNOLOGY II - SYSTEMS. Last Reviewed: Page 1 of 10 Systems Overview Water Systems: Potable Water Fire Water Water Systems: Service/Utility Waste Water Storm Water 1. Describe how process industry facilities are divided into systems. Identify the types

More information

A Design of the Organic Rankine Cycle for the Low Temperature Waste Heat

A Design of the Organic Rankine Cycle for the Low Temperature Waste Heat A Design of the Organic Rankine Cycle for the Low Temperature Waste Heat K. Fraňa, M. Müller Abstract A presentation of the design of the Organic Rankine cycle (ORC) with heat regeneration and superheating

More information

LECUTRE 34: Heat flow in furnaces and exchangers

LECUTRE 34: Heat flow in furnaces and exchangers LECUTRE 34: Heat flow in furnaces and exchangers Contents Exercise 1 Exercise 2 Exercise 3 Exercise 4 Exercise 1 a) Regenerator receives hot flue gases at 1400 and cold air at 25, the flue gases leave

More information

COOLING TOWER DESIGN FOR CENTRAL GENERATORS OF CUET, BANGLADESH. Mohammad Sharif Khan, Golam Mainuddin, Abu Sadat Mohammad Sayem, Nadeem Nafis

COOLING TOWER DESIGN FOR CENTRAL GENERATORS OF CUET, BANGLADESH. Mohammad Sharif Khan, Golam Mainuddin, Abu Sadat Mohammad Sayem, Nadeem Nafis Proceedings of the 4 th BSME-ASME International Conference on Thermal Engineering 7-9 December, 008, Dhaka, Bangladesh COOLING TOWER DESIGN FOR CENTRAL GENERATORS OF CUET, BANGLADESH. Mohammad Sharif Khan,

More information

Smart CHP from Biomass and Waste

Smart CHP from Biomass and Waste Smart CHP from Biomass and Waste It Cost Money to Throw Energy Away Gasification Technology Conference William (Bill) Partanen, P.E October 13-16, 2013 Colorado Springs, CO. SRF and RDF and recycled wood

More information

16 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS September, 2016

16 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS September, 2016 Regn No: Name : (To be written by the candidate) 16 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS September, 2016 PAPER 4:Energy Performance Assessment for Equipment and Utility

More information

Importance of Energy Service Demand Representation to Consideration of Range of Technology Choices in Manufacturing

Importance of Energy Service Demand Representation to Consideration of Range of Technology Choices in Manufacturing Importance of Energy Service Demand Representation to Consideration of Range of Technology Choices in Manufacturing R. Neal Elliott, Ph.D., P.E. Industrial Program Director American Council for an Energy

More information

LIFE CYCLE COST ANALYSIS OF WASTE HEAT OPERATED ABSORPTION COOLING SYSTEMS FOR BUILDING HVAC APPLICATIONS

LIFE CYCLE COST ANALYSIS OF WASTE HEAT OPERATED ABSORPTION COOLING SYSTEMS FOR BUILDING HVAC APPLICATIONS LIFE CYCLE COST ANALYSIS OF WASTE HEAT OPERATED ABSORPTION COOLING SYSTEMS FOR BUILDING HVAC APPLICATIONS V. Murugavel and R. Saravanan Refrigeration and Air conditioning Laboratory Department of Mechanical

More information

INNOVATIVE BIOMASS POWER PLANT BASED ON PEBBLE-HEATER TECHNOLOGY AND HOT AIR TURBINE

INNOVATIVE BIOMASS POWER PLANT BASED ON PEBBLE-HEATER TECHNOLOGY AND HOT AIR TURBINE INNOVATIVE BIOMASS POWER PLANT BASED ON PEBBLE-HEATER TECHNOLOGY AND HOT AIR TURBINE Dr. Dragan Stevanović ATZ-EVUS Kropfersrichter Straße 6-8 D-92237 Sulzbach-Rosenberg Introduction The use of biomass

More information

Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine Cycle

Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine Cycle Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2010 Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine

More information