Dye-Sensitized Solar Cells Carl C. Wamser Portland State University

Size: px
Start display at page:

Download "Dye-Sensitized Solar Cells Carl C. Wamser Portland State University"

Transcription

1 Dye-Sensitized Solar Cells Carl C. Wamser Portland State University Nanomaterials Course - June 28, 2006

2 Energy & Global Warming M.I. Hoffert et al., Nature,, 1998, 395,, p 881 Energy Implications of Future Atmospheric Stabilization of CO 2 Content M.I. Hoffert et al., Science,, 2002, 298,, p 981 Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet

3 The Kaya Identity N = population GDP/N E/GDP C/E = gross domestic product per person = energy intensity (per GDP unit) = carbon intensity (per energy unit) Annual Energy = N*(GDP/N)*(E/GDP) Annual CO 2 = N*(GDP/N)*(E/GDP)*(C/E)

4 Global Totals/Future Trends Annual Energy = N*(GDP/N)*(E/GDP) 10 TW TW by 2050 ( 1990 data cited in Hoffert s Nature paper ) 5.3 billion ~9 billion by 2050 $4100 rising 1.6%/yr 4.3 kwh/$ falling 1.0%/yr Annual CO 2 6 Gtons 350 ppm rising to?? = N*(GDP/N)*(E/GDP)*(C/E) 64 gc/kwh falling by??

5 Conclusions Stabilization of atmospheric carbon will require immense amounts of carbon-free energy in the near future (2050): 550 ppm - about 15 TW 450 ppm - about 25 TW 350 ppm - over 30 TW M.I. Hoffert et al., Nature, 1998, 395,, p 881

6 The ENERGY REVOLUTION (The Terawatt Challenge) Sources of Energy Supply - Worldwide Oil Coal Gas Source: Internatinal Energy Agency Fission Partners in Science January 18, Terawatts Terawatts Biomass Hydroelectric 0.5% Solar, wind, geothermal R. E. Smalley Rice University Oil Coal Gas 2050 Fission Biomass Hydroelectric Solar, wind, geothermal

7 Conclusions Researching, developing and commercializing carbon-free primary power technologies capable of TW by the mid- 21st century could require efforts, perhaps international, pursued with the urgency of the Manhattan Project or the Apollo space programme. M.I. Hoffert et al., Nature, 1998, 395,, p 881

8 Photovoltaic Land Area Requirements 3 TW = approx total energy currently used in U.S. 3 TW 20 TW 20 TW = minimum carbon-free total energy needed by 2050 Graphic from Nate Lewis Caltech

9 Photovoltaic Land Area Requirements 6 Boxes at 3.3 TW Each

10 Photosynthesis ( 1961 Nobel Prize )

11 Photosynthetic Reaction Center ( 1988 Nobel Prize )

12 Artificial Photosynthesis Any solar energy conversion method that uses some aspects of nature s strategy, compounds, or both Strategy Photoinduced electron transfer across a membrane Compounds Chlorophyll dyes and electron- transfer mediators

13 Thermodynamic Criteria Optimize energy conversion (photopotential) e - Match the dye bandgap to the solar spectrum optimum λ bg ~ 1000 nm, efficiency ~ 30% hν h + Match the redox potentials (valence/conduction bands) ETM dye HTM

14 Kinetic Criteria Optimize quantum yield (photocurrent) Fast forward reactions: a) Light absorption b) Charge separation c) Hole and electron mobilities Slow back reactions: d) Excited state deactivation e) Charge neutralization ETM dye HTM

15 Dye-Sensitized Solar Cell Dyes Ru(bipy) 3 derivatives (N3) Porphyrins Electron-transport media n-type semiconductors Nanoparticulate TiO 2 Hole-transport media p-type semiconductors Redox electrolytes ( I - / I 3 - ) Conductive polymers

16 The Grätzel Cell B. O Regan & M. Grätzel, Nature (1991) 353,

17 The Grätzel Cell Optimized output Short-circuit current I sc ~ 20 ma/cm 2 ( V vs SCE ) Open-circuit voltage V oc ~ 0.7 V Quantum yield ~ 1 ~ Efficiency ~ 11% TiO N3 2 I - /I - 3

18 hν Preparation of a Grätzel Cell I - /I 3 - I SC ~ 20 ma/cm2 ITO or FTO ITO or FTO V OC ~ Φ ~ Volts Efficiency ~ 11% TiO 2 Porphyrin

19 Operation of a Grätzel Cell ITO TiO 2 TCPP I - 3 / I- ITO Porphyrin LUMO hv P + Porphyrin HOMO V oc = 0.7 V ; I sc = 20 ma/cm 2

20 Photopolymerization - Proposed Mechanism e - hv e - Stage I x10 10n H + HOOC NH 2 NH 2 NH 2 5n H 2 TiO 2 NH N N HN e - Stage II H N H N e - HOOC COOH N H N H n 5,10,15-tris(4-carboxyphenyl)-20-(4-aminophenyl)porphyrin (TC 3 APP)

21 DSSC Expt: Procedures 1. Prepare Working Electrode TiO 2 underlayer / nanoparticles / overlayer Dye adsorption ( TCPP in EtOH ) 2. Prepare Counter Electrode Graphite on FTO (F-doped tin oxide) 3. Assemble Cell Redox electrolyte solution ( I - - / I 3 ) 4. Irradiate Cell Monitor light intensity / photocurrent / photovoltage

22 DSSC Expt: Procedures 1. Prepare Working Electrode TiO 2 underlayer - dip in Ti(iOPr) 4 Nanoparticle layer - dip in TiO 2 slurry Overlayer (skipped this time) Bake at 450 for 30 minutes ( A pre-prepared electrode will be provided for testing while your electrode is baking )

23 DSSC Expt: Procedures 2. Prepare Counter Electrode Graphite on FTO (F-doped tin oxide) (catalyst for iodide/triiodide reaction )

24 DSSC Expt: Procedures 3. Dye Adsorption Pre-prepared electrode will have TCPP, adsorbed from EtOH (takes overnight) You will soak your electrode in blackberry juice (natural anthocyanine dyes) takes about 15 minutes

25 DSSC Expt: Procedures 4. Assemble Cell Working electrode (with dye) a) TCPP pre-prepared electrode b) Blackberry electrode, rinsed and dried Add redox electrolyte solution ( I - / I 3- ) Assemble sandwich cell

26 Slide and back electrode in test fixture

27 DSSC Expt: Procedures 5. Irradiate Cell Install cell in test fixture Install test fixture in Vertical Optical Bench (VOB) Scan applied voltage from -700 to +100 mv Monitor light intensity Monitor photocurrent vs. applied voltage (iv curve) Capture data on PC, export to Excel Save to your personal USB drive

28 Slide being tested in the VOB

29 Light from the VOB Through 16mm hole

30 Light shining through test slide

31 Cell being tested on VOB

32 iv Curve for TCPP Cell Re-Test of KJ0216 NB KJ216_22 DipCoat FKJ0172 Pt (NB-80-85) microamps mvolts

33 Power Curve for TCPP Cell Re-Test of KJ0216 NB KJ216_22 DipCoat FKJ0172 Pt (NB-80-85) mwatts mvolts

34 iv Curve for TCPP Cell microamps Re-Test of KJ0216 NB KJ216_22 DipCoat FKJ0172 Pt (NB-80-85) Voc Pmax mvolts Fill Factor Isc

35 Test and Performance Parameters Light source: Tungsten halide lamp Intensity = 97 mw/cm 2 = 0.97 Sun Irradiated area = 0.71 cm 2 P in = 69 mw V oc = 652 mv I sc = 1.3 ma P max = 0.47 mw Fill Factor = P max / ( V oc * I sc ) = 0.55 Efficiency = P max / P in = 0.68 %

36 DSSC Expt: Report Check the class website for updated info Title / Abstract Introduction / Background Experimental Procedure / Apparatus Results / Discussion Conclusions Compare all performance data for both types of cells you tested

37 DSSC Expt: References Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter, G. P. Smestad and M. Grätzel, J. Chem. Educ., 1998, 75(6), Adsorption and Photoactivity of Tetra(4-carboxyphenyl) porphyrin on Nanoparticulate TiO2, S. Cherian and C. C. Wamser, J. Phys. Chem. B, 2000, 104, Basic Research Needs for Solar Energy Conversion, U.S. Department of Energy, Note - all of the above references can be found as.pdf files on Professor Wamser s website:

The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell

The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell , pp.66-71 http://dx.doi.org/10.14257/astl.2016.140.14 The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell Don-Kyu Lee Electrical Engineering, Dong-Eui University,

More information

Electricity from the Sun (photovoltaics)

Electricity from the Sun (photovoltaics) Electricity from the Sun (photovoltaics) 0.4 TW US Electricity Consumption 100 100 square kilometers of solar cells could produce all the electricity for the US. But they are still too costly. The required

More information

Dye sensitized solar cells

Dye sensitized solar cells Dye sensitized solar cells What is DSSC A dye sensitized solar cell (DSSC) is a low cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo

More information

[Ragab, 5(8): August 2018] ISSN DOI /zenodo Impact Factor

[Ragab, 5(8): August 2018] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES THE VALUE OF EFFICIENCY & ENERGY GAP FOR DIFFERENT DYE SOLAR CELLS Nserdin A. Ragab* 1, Sawsan Ahmed Elhouri Ahmed 2, Ahmed Hassan Alfaki 3, Abdalsakhi

More information

Optical Absorption and Adsorption of Natural Dye Extracts on TiO 2. Scaffolds: Comparison between Green Leaf- and Red Fruit-Extracts

Optical Absorption and Adsorption of Natural Dye Extracts on TiO 2. Scaffolds: Comparison between Green Leaf- and Red Fruit-Extracts Journal of Materials Science and Engineering B 7 (7-8) (2017) 166-170 doi: 10.17265/2161-6221/2017.7-8.006 D DAVID PUBLISHING Optical Absorption and Adsorption of Natural Dye Extracts on TiO 2 Scaffolds:

More information

Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline TiO 2 Solar Cells. Abstract

Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline TiO 2 Solar Cells. Abstract Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline TiO 2 Solar Cells Kyung Hee Park, Chonnam National University, Electric Eng., Gwangju, Kr Kyung Jun Hwang,

More information

Influence of nanostructured TiO 2 film thickness on photoelectrode structure and performance of flexible Dye- Sensitized Solar Cells

Influence of nanostructured TiO 2 film thickness on photoelectrode structure and performance of flexible Dye- Sensitized Solar Cells JNS 2 (2012) 327-332 Influence of nanostructured TiO 2 film thickness on photoelectrode structure and performance of flexible Dye- Sensitized Solar Cells M. Malekshahi Byranvand 1 *, A. Nemati Kharat 1,

More information

Professor Jonathan Rochford Department of Chemistry University of Massachusetts, Boston

Professor Jonathan Rochford Department of Chemistry University of Massachusetts, Boston Artificial Photosynthesis Professor Jonathan Rochford Department of Chemistry University of Massachusetts, Boston Global Energy Consumption vs. CO 2 Emissions Quadrillion BTU 800.0 700.0 600.0 500.0 400.0

More information

Nanoscience in (Solar) Energy Research

Nanoscience in (Solar) Energy Research Nanoscience in (Solar) Energy Research Arie Zaban Department of Chemistry Bar-Ilan University Israel Nanoscience in energy conservation: TBP 10 TW - PV Land Area Requirements 10 TW 3 TW 10 TW Power Stations

More information

A Comparative Performance Study of Plasmon-induced Charge Separation of 2, 2 O 3, and Photocell Thin-films

A Comparative Performance Study of Plasmon-induced Charge Separation of 2, 2 O 3, and Photocell Thin-films Available Online Publications J. Sci. Res. 5 (2), 245-254 (2013) JOURNAL OF SCIENTIFIC RESEARCH www.banglajol.info/index.php/jsr A Comparative Performance Study of Plasmon-induced Charge Separation of

More information

A NEW COUNTER ELECTRODE BASED ON COPPER SHEET FOR FLEXIBLE DYE SENSITIZED SOLAR CELLS

A NEW COUNTER ELECTRODE BASED ON COPPER SHEET FOR FLEXIBLE DYE SENSITIZED SOLAR CELLS Chalcogenide Letters Vol. 7, No. 8, August 2010, p. 515-519 A NEW COUNTER ELECTRODE BASED ON COPPER SHEET FOR FLEXIBLE DYE SENSITIZED SOLAR CELLS M. H. BAZARGAN, M. MALEKSHAHI BYRANVAND a*, A. NEMATI KHARAT

More information

Course schedule. Universität Karlsruhe (TH)

Course schedule. Universität Karlsruhe (TH) Course schedule 1 Preliminary schedule 1. Introduction, The Sun 2. Semiconductor fundamentals 3. Solar cell working principles / pn-junction solar cell 4. Silicon solar cells 5. Copper-Indiumdiselenide

More information

Development of Dye-Sensitized Solar Cell (DSSC) Using Patterned Indium Tin Oxide (ITO) Glass

Development of Dye-Sensitized Solar Cell (DSSC) Using Patterned Indium Tin Oxide (ITO) Glass Development of Dye-Sensitized Solar Cell (DSSC) Using Patterned Indium Tin Oxide (ITO) Glass Fabrication and testing of DSSC M. Mazalan*, M. Mohd Noh, Y.Wahab, M. N. Norizan, I. S. Mohamad Advanced Multidisciplinary

More information

J. Bandara and H. C. Weerasinghe. Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka I. INTRODUCTION

J. Bandara and H. C. Weerasinghe. Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka I. INTRODUCTION J. Bandara and H. C. Weerasinghe Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka Abstract A dye sensitized solid-state solar cell (DSSC) was fabricated consisting of a dense TiO 2 (D)

More information

Nanotechnologies. National Institute for Materials Science (NIMS)

Nanotechnologies. National Institute for Materials Science (NIMS) Dye-Sensitized Solar Cells with Nanotechnologies Liyuan Han Advanced Photovoltaics Center National Institute for Materials Science (NIMS) Expectations to PV market 12,000 World mark ket scale (MW) 10,000

More information

Overview of Photovoltaic Energy Conversion

Overview of Photovoltaic Energy Conversion Overview of Photovoltaic Energy Conversion Topics Solar Energy Economics Photovoltaic Technologies Challenges and Opportunities II-VI Solar Cells November 20, 2006 U.S. Energy Overview (Quadrillion BTU)

More information

SOLAR ENERGY CONVERSION

SOLAR ENERGY CONVERSION NGSS ELEMENTARY SCHOOL LESSON PLAN How does a solar cell convert light into electricity? This lesson is designed to help teachers educate students about the chemistry of solar energy. SOLAR ENERGY Juice

More information

Dye-Sensitized Solar Cells Using Dyes Extracted From Flowers, Leaves, Parks, and Roots of Three Trees

Dye-Sensitized Solar Cells Using Dyes Extracted From Flowers, Leaves, Parks, and Roots of Three Trees Monzir S. Abdel-Latif et al., Vol.5, No.1, 2015 Dye-Sensitized Solar Cells Using Dyes Extracted From Flowers, Leaves, Parks, and Roots of Three Trees Monzir S. Abdel-Latif *,** Mahmoud B. Abuiriban ***,

More information

Development of TiO 2 Nanoparticle-Based Solar Cells

Development of TiO 2 Nanoparticle-Based Solar Cells Development of TiO 2 Nanoparticle-Based Solar Cells Joseph Minutillo, Brandon Lundgren, Jason Lane, and Dr. Justyna Widera 9/07-11/08 Department of Chemistry, Adelphi University, Garden City, N.Y., 11530

More information

Low-temperature fabrication of dye-sensitized solar cells by transfer. of composite porous layers supplementary material

Low-temperature fabrication of dye-sensitized solar cells by transfer. of composite porous layers supplementary material Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers supplementary material Michael Dürr, Andreas Schmid, Markus Obermaier, Silvia Rosselli, Akio Yasuda, and

More information

Beta-Carotene Dye of Daucus Carota as Sensitizer on Dye-Sensitized Solar Cell Risa Suryana, 1,a Khoiruddin 1 and Agus Supriyanto 1

Beta-Carotene Dye of Daucus Carota as Sensitizer on Dye-Sensitized Solar Cell Risa Suryana, 1,a Khoiruddin 1 and Agus Supriyanto 1 Materials Science Forum Online: 2013-01-25 ISSN: 1662-9752, Vol. 737, pp 15-19 doi:10.4028/www.scientific.net/msf.737.15 2013 Trans Tech Publications, Switzerland Beta-Carotene Dye of Daucus Carota as

More information

Molecular Design of Organic Dyes. for Hybrid Solar Cells. Institute of Molecular Sciences - University of Bordeaux -

Molecular Design of Organic Dyes. for Hybrid Solar Cells. Institute of Molecular Sciences - University of Bordeaux - Molecular Design of Organic Dyes for Hybrid Solar Cells Céline OLIVIER Institute of Molecular Sciences - University of Bordeaux - Symposium on Quantum Modeling of Electronic Processes in Optoelectronic

More information

Application of Hibiscus Sabdariffa and leaves of Azardirachta Indica calyxes as sensitizers in Dyesensitized

Application of Hibiscus Sabdariffa and leaves of Azardirachta Indica calyxes as sensitizers in Dyesensitized International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 8, Issue 12 (October 2013), PP. 38-42 Application of Hibiscus Sabdariffa and leaves

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. ARTICLE NUMBER: 16178 DOI: 10.1038/NENERGY.2016.178 Enhanced Stability and Efficiency in Hole-Transport Layer Free CsSnI3 Perovskite Photovoltaics Supplementary

More information

Supplementary Information

Supplementary Information Supplementary Information Facile Preparation of Fe 2 O 3 Thin Film with Photoelectrochemical Properties Hyun Gil Cha, Jieun Song, Hyun Sung Kim *, Woonsup Shin, Kyung Byung Yoon, Young Soo Kang * Korea

More information

Study on Titanium Dioxide Nanocrystals with Specific Crystal Facet on Surface for High Performance Photocatalyst and Dye-Sensitized Solar Cells

Study on Titanium Dioxide Nanocrystals with Specific Crystal Facet on Surface for High Performance Photocatalyst and Dye-Sensitized Solar Cells Study on Titanium Dioxide Nanocrystals with Specific Crystal Facet on Surface for High Performance Photocatalyst and Dye-Sensitized Solar Cells Changdong Chen Kagawa University Japan December 2014 Contents

More information

CHARACTERISTICS OF DYE-SENSITIZED SOLAR CELLS USING MUCUNA FLAGELLIPES AND ZEAMAIZE COMB NATURAL DYES

CHARACTERISTICS OF DYE-SENSITIZED SOLAR CELLS USING MUCUNA FLAGELLIPES AND ZEAMAIZE COMB NATURAL DYES Fundamental J. Modern Physics, Vol., Issue 1, 011, Pages 7-13 This paper is available online at http://www.frdint.com/ CHARACTERISTICS OF DYE-SENSITIZED SOLAR CELLS USING MUCUNA FLAGELLIPES AND ZEAMAIZE

More information

IMPROVING THE EFFICIENCY AND THE LONG TERM STABILITY OF A DYE SENSITIZED SOLAR CELL. Delta State University Abraka 2 Department of Chemistry,

IMPROVING THE EFFICIENCY AND THE LONG TERM STABILITY OF A DYE SENSITIZED SOLAR CELL. Delta State University Abraka 2 Department of Chemistry, IMPROVING THE EFFICIENCY AND THE LONG TERM STABILITY OF A DYE SENSITIZED SOLAR CELL 1 Ezeh, M.I; 2 Dare, E.O; 3 Eyekpegha, O.F 1,3 Department of Physics, Delta State University Abraka 2 Department of Chemistry,

More information

New Applications of Old Materials From Paint to Solar Cells

New Applications of Old Materials From Paint to Solar Cells New Applications of Old Materials From Paint to Solar Cells Peter Peumans Integrated Circuits Lab, Stanford University ppeumans@stanford.edu Sponsored by NSF Solar Energy At earth s surface average solar

More information

Fabrication of Dye-Sensitized Solar Cells Using Dried Plant Leaves

Fabrication of Dye-Sensitized Solar Cells Using Dried Plant Leaves Fabrication of Dye-Sensitized Solar Cells Using Dried Plant Leaves Sofyan A. Taya*, Taher M. El-Agez1*, Monzir S. Abdel-Latif **, Hatem S. El-Ghamri*, Amal Y. Batniji *, Islam R. El-Sheikh * *Physics Department,

More information

Solar Hydrogen Production

Solar Hydrogen Production Solar Hydrogen Production University of Oslo Centre for Materials and Nanotechnology Athanasios Chatzitakis a.e.chatzitakis@smn.uio.no Japan-Norway Energy Science Week 2015 27-28 May 2015 Oslo Innovation

More information

Flexible Dye-Sensitized Nanocrystalline TiO2 Solar Cells

Flexible Dye-Sensitized Nanocrystalline TiO2 Solar Cells Flexible Dye-Sensitized Nanocrystalline TiO2 Solar Cells P.M. (Paul) Sommeling, Martin Späth, Jan Kroon, Ronald Kinderman, John van Roosmalen ECN Solar Energy, P.O. Box 1, 1755 ZG Petten, The Netherlands,

More information

Improvement in Efficiency of Organic Solar Cells by Using TiO 2 Layer

Improvement in Efficiency of Organic Solar Cells by Using TiO 2 Layer Improvement in Efficiency of Organic Solar Cells by Using TiO 2 Layer Osamu Yoshikawa*, Akinobu Hayakawa, Takuya Fujieda, Kaku Uehara, SusumuYoshikawa Institute of Advanced Energy Kyoto University Introduction

More information

BUILT DYE-SENSITIZED SOLAR CELLS- A CONFIRMATORY TEST OF A MATHEMATICAL MODEL

BUILT DYE-SENSITIZED SOLAR CELLS- A CONFIRMATORY TEST OF A MATHEMATICAL MODEL BUILT DYE-SENSITIZED SOLAR CELLS- A CONFIRMATORY TEST OF A MATHEMATICAL MODEL Efurumibe, E.L. 1*, Asiegbu, A.D. 2 and Onuu, M.U. 3 1 Physics Department, College of Natural and Physical Sciences, Michael

More information

Fabrication Of Dye Sensitized Solar Cell Using Various Counter Electrode Thickness

Fabrication Of Dye Sensitized Solar Cell Using Various Counter Electrode Thickness Fabrication Of Dye Sensitized Solar Cell Using Various Counter Electrode Thickness N.Gomesh 1, A.H.Ibrahim 1, R.Syafinar 1, M.Irwanto 1, M.R.Mamat 1, Y.M Irwan 1, U.Hashim 2, N.Mariun 3 1 Centre of Excellence

More information

Preparation of Bi-Based Ternary Oxide Photoanodes, BiVO 4,

Preparation of Bi-Based Ternary Oxide Photoanodes, BiVO 4, Preparation of Bi-Based Ternary Oxide Photoanodes, BiVO 4, Bi 2 WO 6 and Bi 2 Mo 3 O 12, Using Dendritic Bi Metal Electrodes Donghyeon Kang, a, Yiseul Park, a, James C. Hill, b and Kyoung-Shin Choi a,*

More information

FABRICATION OF LOW COST SENSITIZED SOLAR CELL USING NATURAL PLANT PIGMENT DYES

FABRICATION OF LOW COST SENSITIZED SOLAR CELL USING NATURAL PLANT PIGMENT DYES FABRICATION OF LOW COST SENSITIZED SOLAR CELL USING NATURAL PLANT PIGMENT DYES Muhamad Azwar Azhari 1, Faiz Arith 2, Fadzillah Ali 2, Shekin Rodzi 2 and Khalilah Karim 2 1 Faculty of Engineering Technology,

More information

COMMENT UTILISER DES NANOPARTICULES D OR POUR PRODUIRE DE L ÉNERGIE?

COMMENT UTILISER DES NANOPARTICULES D OR POUR PRODUIRE DE L ÉNERGIE? COMMENT UTILISER DES NANOPARTICULES D OR POUR PRODUIRE DE L ÉNERGIE? Julien Barrier, Simon Lottier, Baptiste Michon INTRODUCTION Light CB e e 2 e D*/D + i Pt 2 Coated Electrode Magnified 1,000 x Load Magnified

More information

Fabrication and Characterization of Natural Dye Sensitized Solar Cell based on CdSe nanorods

Fabrication and Characterization of Natural Dye Sensitized Solar Cell based on CdSe nanorods IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 9, Issue 6 Ver.III (Nov. - Dec. 2017), PP 22-27 www.iosrjournals.org Fabrication and Characterization of Natural Dye Sensitized Solar

More information

Cubic CeO 2 Nanoparticles as Mirror-like Scattering Layer for Efficient Light Harvesting in Dye-Sensitized Solar Cells

Cubic CeO 2 Nanoparticles as Mirror-like Scattering Layer for Efficient Light Harvesting in Dye-Sensitized Solar Cells Supplementary Material (ESI for Chemical Communications This journal is (c The Royal Society of Chemistry 2011 Supplementary Material (ESI for Chemical Communications Cubic CeO 2 Nanoparticles as Mirror-like

More information

Preparation and Characterization of Anthocyanin Dye and Counter Electrode Thin Film with Carbon Nanotubes for Dye-Sensitized Solar Cells

Preparation and Characterization of Anthocyanin Dye and Counter Electrode Thin Film with Carbon Nanotubes for Dye-Sensitized Solar Cells Materials Transactions, Vol. 52, No. 10 (2011) pp. 1977 to 1982 #2011 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Preparation and Characterization of Anthocyanin Dye and Counter Electrode Thin

More information

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Christopher E. D. Chidsey Department of Chemistry Stanford University Collaborators: Paul C. McIntyre, Y.W. Chen, J.D. Prange,

More information

Dye-sensitized solar cell using natural dyes from Ecuador

Dye-sensitized solar cell using natural dyes from Ecuador 1 st INTERNATIONAL CONGRESS ISEREE 2013 Quito Ecuador November, 2013 Javier C. Ramirez Perez, Ph.D., P.E. Prometheus Research Professor CIBE-ESPOL Dye-sensitized solar cell using natural dyes from Ecuador

More information

All Silicon Electrode Photo-Capacitor for Integrated Energy Storage and Conversion

All Silicon Electrode Photo-Capacitor for Integrated Energy Storage and Conversion Supporting Information All Silicon Electrode Photo-Capacitor for Integrated Energy Storage and Conversion Adam P. Cohn 1,, William R. Erwin 3,,, Keith Share 1,2, Landon Oakes 1,2, Andrew S. Westover 1,2,

More information

Synthesis, Characterization and Optical Properties of ZnS Thin Films

Synthesis, Characterization and Optical Properties of ZnS Thin Films Synthesis, Characterization and Optical Properties of ZnS Thin Films H. R. Kulkarni KJ College of Engineering and Management Research, Pune, India Abstract: ZnS thin films were prepared by pulsed electrodeposition

More information

Impedance spectroscopy study of solid-state dye-sensitized solar cells with varying Spiro-OMeTAD concentration

Impedance spectroscopy study of solid-state dye-sensitized solar cells with varying Spiro-OMeTAD concentration Impedance spectroscopy study of solid-state dye-sensitized solar cells with varying Spiro-OMeTAD concentration Márcio S. Góes, 1 Francisco Fabregat-Santiago, 2 Paulo R. Bueno, 1 Juan Bisquert 2 1 Departamento

More information

Photoelectrochemical Cells for a Sustainable Energy

Photoelectrochemical Cells for a Sustainable Energy Photoelectrochemical Cells for a Sustainable Energy Dewmi Ekanayake Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States With the increasing demand of the energy, researches

More information

ARTIFICIAL SOLAR FUELS GENERATORS

ARTIFICIAL SOLAR FUELS GENERATORS ARTIFICIAL SOLAR FUELS GENERATORS Rachel Segalman Acting Division Director, Materials Science Division Lawrence Berkeley National Laboratories And Professor of Chemical Engineering, UC Berkeley NATURE

More information

The effect of Cu doping into Oriza sativa L. indica dye as photosensitizer for dye sensitized solar cell (DSSC)

The effect of Cu doping into Oriza sativa L. indica dye as photosensitizer for dye sensitized solar cell (DSSC) Journal of Physics: Conference Series PAPER OPEN ACCESS The effect of Cu doping into Oriza sativa L. indica dye as photosensitizer for dye sensitized solar cell (DSSC) To cite this article: U. M. Fadli

More information

Structure, Design and Fabrication of a Novel Conducting Polypyrrole- Based Photovoltaic Cell and Storage Device

Structure, Design and Fabrication of a Novel Conducting Polypyrrole- Based Photovoltaic Cell and Storage Device Structure, Design and Fabrication of a Novel Conducting Polypyrrole- Based Photovoltaic Cell and Storage Device Maria Carla Manzano 1, *, Enrique Manzano 1, Chiara Rosario Julia Lanuza 1, and Reuben Quiroga

More information

Krokot (Portulaca oleracea. L) As a Natural Sensitizer for TiO2 Dye-sensitized Solar Cells: The Effect of Temperature Extract

Krokot (Portulaca oleracea. L) As a Natural Sensitizer for TiO2 Dye-sensitized Solar Cells: The Effect of Temperature Extract Biology, Medicine, & Natural Product Chemistry ISSN: 2089-6514 Volume 4, Number 2, 2015 Pages: 25-29 DOI: 10.14421/biomedich.2015.42.25-29 Krokot (Portulaca oleracea. L) As a Natural Sensitizer for TiO2

More information

Electrodeposited PEDOT-on-Plastic Cathodes for Dye-Sensitized Solar Cells. Jennifer M. Pringle,* Vanessa Armel and Douglas R.

Electrodeposited PEDOT-on-Plastic Cathodes for Dye-Sensitized Solar Cells. Jennifer M. Pringle,* Vanessa Armel and Douglas R. Supplementary Information. Electrodeposited PEDOT-on-Plastic Cathodes for Dye-Sensitized Solar Cells Jennifer M. Pringle,* Vanessa Armel and Douglas R. MacFarlane Experimental. 3,4-ethylenedioxythiophene

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION An electrodeposited inhomogeneous metal insulator semiconductor junction for efficient photoelectrochemical water oxidation James C. Hill, Alan T. Landers, Jay A. Switzer * Missouri University of Science

More information

Why does pyrite have a low photovoltage?

Why does pyrite have a low photovoltage? Why does pyrite have a low photovoltage? August 25, 2011 Hypothesis I: metallic phase impurities Pyrite always contains metallic FeS-type phase impurities, which somehow reduce the photovoltage Evidence

More information

Solar Cells. Mike McGehee Materials Science and Engineering

Solar Cells. Mike McGehee Materials Science and Engineering Solar Cells Mike McGehee Materials Science and Engineering Why solar cells are likely to provide a significant fraction of our power We need ~ 30 TW of power, the sun gives us 120,000 TW. Solar cells are

More information

Solid or Liquid? By Dr Damion Milliken, CTO, and Dr Hans Desilvestro, Chief Scientist - July 2013

Solid or Liquid? By Dr Damion Milliken, CTO, and Dr Hans Desilvestro, Chief Scientist - July 2013 Solid or Liquid? By Dr Damion Milliken, CTO, and Dr Hans Desilvestro, Chief Scientist - July 2013 Introduction Natural photosynthesis, based on complex organic photoactive antennae and metal organic redox

More information

MAI (methylammonium iodide) was synthesized by reacting 50 ml hydriodic acid

MAI (methylammonium iodide) was synthesized by reacting 50 ml hydriodic acid Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry Electronic Supplementary Information Stable semi-transparent CH 3 NH 3 PbI 3 planar

More information

Supporting Information. Fabrication, Optimization and Characterization of Natural Dye Sensitized Solar Cell

Supporting Information. Fabrication, Optimization and Characterization of Natural Dye Sensitized Solar Cell Supporting Information Fabrication, Optimization and Characterization of Natural Dye Sensitized Solar Cell William Ghann, Hyeonggon Kang,Tajbik Sheikh, Sunil Yadav, Tulio Chavez-Gil, Fred Nesbitt and Jamal

More information

Our Energy Challenge. Woodrow Wilson Institute Washington, DC. June 10, R. E. Smalley Rice University

Our Energy Challenge. Woodrow Wilson Institute Washington, DC. June 10, R. E. Smalley Rice University Our Energy Challenge Woodrow Wilson Institute Washington, DC. June 10, 2003 R. E. Smalley Rice University Humanity s Top Ten Problems for next 50 years 1. ENERGY 2. WATER 3. FOOD 4. ENVIRONMENT 5. POVERTY

More information

Dye Sysentized Solar Cell (Dyssc)

Dye Sysentized Solar Cell (Dyssc) RESEARCH ARTICLE OPEN ACCESS Dye Sysentized Solar Cell (Dyssc) A. Dileep, Dr. M. Damodar Reddy. M. Tech, Department of Electrical and Electronics Engineering, S.V. University college of Engineering, Andhra

More information

Topics Relevant to CdTe Thin Film Solar Cells

Topics Relevant to CdTe Thin Film Solar Cells Topics Relevant to CdTe Thin Film Solar Cells March 13, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals

More information

Organic Photonics Displays, Lighting & Photovoltaics. Electrochemistry for Energy. 25th. June 2008 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Organic Photonics Displays, Lighting & Photovoltaics. Electrochemistry for Energy. 25th. June 2008 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Laboratoire de la photonique et des interfaces - EPFL Lausanne Electrochemistry for Energy Organic Photonics Displays, Lighting & Photovoltaics 25th. June 2008

More information

Thermally-Enhanced Generation of Solar Fuels

Thermally-Enhanced Generation of Solar Fuels Thermally-Enhanced Generation of Solar Fuels Xiaofei Ye, Liming Zhang, Madhur Boloor, Nick Melosh, William Chueh Materials Science & Engineering, Precourt Institute for Energy Stanford University Fundamentals

More information

Solar Energy Conversion: A very brief introduc8on. Chem 204 April 7, 2014

Solar Energy Conversion: A very brief introduc8on. Chem 204 April 7, 2014 Solar Energy Conversion: A very brief introduc8on Chem 204 April 7, 2014 Worldwide energy usage Worldwide energy usage Now: about 15 TW (15 x 10 12 J/s) From Chemistry: the Central Science, 12 th ed. Quick

More information

Porphyrin dye-sensitised solar cells utilising a solid-state electrolyte

Porphyrin dye-sensitised solar cells utilising a solid-state electrolyte Porphyrin dye-sensitised solar cells utilising a solid-state electrolyte Vanessa Armel,* Jennifer M. Pringle, Pawel Wagner, Maria Forsyth, David Officer and Douglas R. MacFarlane Materials and methods

More information

CHAPTER 3 EXPERIMENTAL METHODS

CHAPTER 3 EXPERIMENTAL METHODS CHAPTER 3 3.1 Introduction Four different types of iodide based polymer electrolyte films were prepared by solution casting technique using poly (vinylidene fluoride-co-hexafluoropropylene) or PVDF-HFP

More information

The Improvement in Energy Efficiency Based on Nano-structure Materials

The Improvement in Energy Efficiency Based on Nano-structure Materials International Workshop on 1iGO Science and Technology 2010 The Improvement in Energy Efficiency Based on Nanostructure Materials Chien Chon Chen Department of Energy and Resources, National United University,

More information

Organic-based light harvesting electronic devices

Organic-based light harvesting electronic devices Organic-based light harvesting electronic devices Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 15-18th, 2011 Organic-based light harvesting devices From signal

More information

Supporting Information

Supporting Information Supporting Information Amorphous Metal Oxide Blocking Layers for Highly Efficient Low Temperature Brookite TiO 2 -based Perovskite Solar Cells Atsushi Kogo,*, Yoshitaka Sanehira, Youhei Numata, Masashi

More information

New generation of solar cell technologies

New generation of solar cell technologies New generation of solar cell technologies Emerging technologies and their impact on the society 9th March 2017 Dhayalan Velauthapillai Professor, Faculty of Engineering and Business Administration Campus

More information

Metal oxide based Natural Dye-sensitized solar cell

Metal oxide based Natural Dye-sensitized solar cell Metal oxide based Natural Dye-sensitized solar cell *Mridula Tripathi 1) and Ruby Upadhyay 2) 1) Department of Chemistry, C. M. P. Degree College, Allahabad, India 1), 2) Department of Chemistry, M.N.N.I.T.,

More information

Photoelectrochemical cells based on CdSe films brush plated on high-temperature substrates

Photoelectrochemical cells based on CdSe films brush plated on high-temperature substrates Solar Energy Materials & Solar Cells 90 (2006) 753 759 www.elsevier.com/locate/solmat Photoelectrochemical cells based on CdSe films brush plated on high-temperature substrates K.R. Murali a,, A. Austine

More information

Solar Photovoltaic Technologies: Past, Present and Future

Solar Photovoltaic Technologies: Past, Present and Future Solar Photovoltaic Technologies: Past, Present and Future Xihua Wang, Ph.D., P.Eng. Assistant Professor of Electrical & Computer Engineering University of Alberta April 18, 2018 Outline History of photovoltaic

More information

Energy & Sustainability

Energy & Sustainability Energy & Sustainability Lecture 24: Renewable Energy April 23, 2009 Renewable Energy Sources Solar the mother of all renewables Direct solar plus wind and wave power, hydroelectricity and biomass (indirect

More information

A Comparative Study of Quasi-solid Nanoclay Gel Electrolyte. and Liquid Electrolyte Dye Sensitized Solar Cells. Laura Main

A Comparative Study of Quasi-solid Nanoclay Gel Electrolyte. and Liquid Electrolyte Dye Sensitized Solar Cells. Laura Main A Comparative Study of Quasi-solid Nanoclay Gel Electrolyte and Liquid Electrolyte Dye Sensitized Solar Cells by Laura Main A Thesis Presented in Partial Fulfillment of the Requirements for the Degree

More information

Photovoltaic Solar Cell Based on Chlorophyll Dye Pigments Obtained from Brassica oleracea

Photovoltaic Solar Cell Based on Chlorophyll Dye Pigments Obtained from Brassica oleracea International Journal of Engineering Research and Advanced Technology (IJERAT) DOI: http://dx.doi.org/10.7324/ijerat.2018.3181 E-ISSN : 2454-6135 Volume.4, Issue 2 February-2018 Photovoltaic Solar Cell

More information

CLEAN AND RENEWABLE ENERGY FROM DYE-SENSITIZED SOLAR CELLS USING FRUIT EXTRACTS. André Sarto Polo and Neyde Yukie Murakami Iha

CLEAN AND RENEWABLE ENERGY FROM DYE-SENSITIZED SOLAR CELLS USING FRUIT EXTRACTS. André Sarto Polo and Neyde Yukie Murakami Iha RI 3 - World Climate & Energy Event, 1-5 December 2003, Rio de Janeiro, Brazil 91 CLEAN AND RENEWABLE ENERGY FRM DYE-SENSITIZED SLAR CELLS USING FRUIT EXTRACTS André Sarto Polo and Neyde Yukie Murakami

More information

Novel sol gel method of synthesis of pure and Aluminium doped TiO2 nano particles useful for dye sensitized solar cell applications

Novel sol gel method of synthesis of pure and Aluminium doped TiO2 nano particles useful for dye sensitized solar cell applications Novel sol gel method of synthesis of pure and Aluminium doped TiO2 nano particles useful for dye sensitized solar cell applications Kirti Sahu 1, V.V.S. Murty 2 1 Research scholar, Department of Physics,

More information

Michael Grätzel on Light and Energy, Molecular Photovoltaics Mimic Photosynthesis. Perhaps the greatest challenge for our global society is to find

Michael Grätzel on Light and Energy, Molecular Photovoltaics Mimic Photosynthesis. Perhaps the greatest challenge for our global society is to find Michael Grätzel on Light and Energy, Molecular Photovoltaics Mimic Photosynthesis. Perhaps the greatest challenge for our global society is to find ways to replace the slowly, but inevitably vanishing

More information

EFFECT OF EXTRACTING SOLVENTS ON THE STABILITY AND PERFORMANCES OF DYE-SENSITIZED SOLAR CELL PREPARED USING EXTRACT FROM LAWSONIA INERMIS

EFFECT OF EXTRACTING SOLVENTS ON THE STABILITY AND PERFORMANCES OF DYE-SENSITIZED SOLAR CELL PREPARED USING EXTRACT FROM LAWSONIA INERMIS Fundamental J. Modern Physics, Vol. 1, Issue 2, 2011, Pages 261-268 Published online: October 19, 2011 EFFECT OF EXTRACTING SOLVENTS ON THE STABILITY AND PERFORMANCES OF DYE-SENSITIZED SOLAR CELL PREPARED

More information

Low Temperature Atomic Layer Deposition for Flexible Dye Sensitized Solar Cells

Low Temperature Atomic Layer Deposition for Flexible Dye Sensitized Solar Cells ALD4PV workshop 20-03-2014 Low Temperature Atomic Layer Deposition for Flexible Dye Sensitized Solar Cells V. Zardetto, D. Garcia-Alonso, A.J.M. Mackus, M.A. Verheijen, T. Brown*, W.M.M. Kessels, M. Creatore

More information

High Aspect Ratio Silicon Wire Array Photoelectrochemical Cells

High Aspect Ratio Silicon Wire Array Photoelectrochemical Cells S1 Supporting Information High Aspect Ratio Silicon Wire Array Photoelectrochemical Cells James R. Maiolo III, Brendan M. Kayes, Michael A. Filler, Morgan C. Putnam, Michael D. Kelzenberg, Harry A. Atwater*,

More information

Extraction and Absorption Study of Natural Plant Dyes for DSSC

Extraction and Absorption Study of Natural Plant Dyes for DSSC International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 97-9 Vol.9, No. pp 5-58, 6 Extraction and Absorption Study of Natural Plant Dyes for DSSC Bharath K V, Arjun J, Shoumitra Biswas, T.Ramachandran,

More information

RSC Advances.

RSC Advances. This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after

More information

POWERING THE PLANET WITH FUELS FROM SUNLIGHT

POWERING THE PLANET WITH FUELS FROM SUNLIGHT POWERING THE PLANET WITH FUELS FROM SUNLIGHT Nathan S. Lewis California Institute of Technology Pasadena, CA 91125 DOE, NSF, BP, GCEP Power Units: The Terawatt Challenge Power 1 10 3 10 6 10 9 10 12 1

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Agar, David; Korppi-Tommola, Jouko Title: Standard testing

More information

Supporting Information

Supporting Information Supporting Information Distance Dependence of Plamson-Enhanced Photocurrent in Dye-Sensitized Solar Cells Stacey D. Standridge, George C. Schatz, and Joseph T. Hupp Department of Chemistry, Northwestern

More information

Synthesis of solar cells sensitized using natural photosynthetic pigments & study for the cell performance under different synthesis parameters

Synthesis of solar cells sensitized using natural photosynthetic pigments & study for the cell performance under different synthesis parameters Journal of Physics: Conference Series PAPER OPEN ACCESS Synthesis of solar cells sensitized using natural photosynthetic pigments & study for the cell performance under different synthesis parameters To

More information

Dye-sensitized solar cell based on TiO 2. /MnO 2 composite film as working electrode. Journal of Physics: Conference Series.

Dye-sensitized solar cell based on TiO 2. /MnO 2 composite film as working electrode. Journal of Physics: Conference Series. Journal of Physics: Conference Series PAPER OPEN ACCESS Dye-sensitized solar cell based on TiO 2 /MnO 2 composite film as working electrode To cite this article: A Prasetio et al 2017 J. Phys.: Conf. Ser.

More information

Supporting information for. Insights into the Liquid State of Organo-Lead Halide. Perovskites and Their New Roles. in Dye-sensitized Solar Cells

Supporting information for. Insights into the Liquid State of Organo-Lead Halide. Perovskites and Their New Roles. in Dye-sensitized Solar Cells Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supporting information for Insights into the Liquid State of Organo-Lead

More information

NANOTECHNOLOGY FOR POWERFUL SOLAR ENERGY

NANOTECHNOLOGY FOR POWERFUL SOLAR ENERGY International Journal of Advanced Biotechnology and Research ISSN 0976-2612, Vol 2, Issue 1, 2011, pp 208-212 http://www.bipublication.com NANOTECHNOLOGY FOR POWERFUL SOLAR ENERGY *Mahesh V. Jadhav, A.

More information

Introduction to Solar Cell Materials-I

Introduction to Solar Cell Materials-I Introduction to Solar Cell Materials-I 23 July 2012 P.Ravindran, Elective course on Solar Rnergy and its Applications Auguest 2012 Introduction to Solar Cell Materials-I Photovoltaic cell: short history

More information

Titanium oxide Films Prepared by Sputtering, Sol Gel and Dip Coating Methods for Photovoltaic Application

Titanium oxide Films Prepared by Sputtering, Sol Gel and Dip Coating Methods for Photovoltaic Application Available online at www.sciencedirect.com Energy Procedia 34 (2013 ) 589 596 10th Eco-Energy and Materials Science and Engineering (EMSES2012) Titanium oxide Films Prepared by Sputtering, Sol Gel and Dip

More information

Solar Cells. Jong Hak Kim Chemical & Biomolecular Engineering Yonsei University

Solar Cells. Jong Hak Kim Chemical & Biomolecular Engineering Yonsei University Solar ells Jong Hak Kim hemical & Biomolecular Engineering Yonsei University omparison of Solar ells 반도체태양전지장점 고효율 (30% 이상 ) 태양전지제조가능 단점 고효율태양전지제조시원료비용및제조비용부담이매우큼고순도를요하는공정이므로제조공정이복잡하고어려움환경에유해한물질발생 광감응염료태양전지장점

More information

Dr. Christopher Hebling ( Ulf Groos (

Dr. Christopher Hebling (  Ulf Groos ( ISE Solar Cells for Portable Electronic Devices Dr. Christopher Hebling (email: hebling@ise.fhg.de) Ulf Groos (email: groos@ise.fhg.de) Micro-Energy Technology Fraunhofer Institute for Solar Energy Systems

More information

TiO 2 Nanorods Prepared from Anodic Aluminum Oxide Template and Their Applications in Dye- Sensitized Solar Cells

TiO 2 Nanorods Prepared from Anodic Aluminum Oxide Template and Their Applications in Dye- Sensitized Solar Cells International Letters of Chemistry, Physics and Astronomy Online: 2015-01-26 ISSN: 2299-3843, Vol. 46, pp 30-36 doi:10.18052/www.scipress.com/ilcpa.46.30 2015 SciPress Ltd., Switzerland TiO 2 Nanorods

More information

Nanostructured Solar Cells: From Academic Research to Commercial Devices

Nanostructured Solar Cells: From Academic Research to Commercial Devices Nanostructured Solar Cells: From Academic Research to Commercial Devices V. Mitin 1,2, A. Sergeev 1,2, N. Vagidov 1,2, K. A. Sablon 3, J. W. Little 3 and K. Reinhardt 4 1 OPEN, OptoElectronic Nanodevices

More information

Supporting Information. Development of thiocyanate-free, charge-neutral Ru(II) sensitizers for dye-sensitized solar cells

Supporting Information. Development of thiocyanate-free, charge-neutral Ru(II) sensitizers for dye-sensitized solar cells Supporting Information Development of thiocyanate-free, charge-neutral Ru(II) sensitizers for dye-sensitized solar cells Kuan-Lin Wu, a Hui-Chu Hsu, a Kellen Chen, a Yun Chi,*,a Min-Wen Chung, b Wei-Hsin

More information

Low-Temperature Sintering of TiO 2 Colloids: Application to Flexible Dye-Sensitized Solar Cells

Low-Temperature Sintering of TiO 2 Colloids: Application to Flexible Dye-Sensitized Solar Cells 5626 Langmuir 2000, 16, 5626-5630 Low-Temperature Sintering of TiO 2 Colloids: Application to Flexible Dye-Sensitized Solar Cells François Pichot, J. Roland Pitts, and Brian A. Gregg* National Renewable

More information

INVESTIGATION OF PHOTOELECTRODE MATERIALS INFLUENCES IN TITANIA-BASED-DYE-SENSITIZED SOLAR CELLS. Natalita M. Nursama, Lia Muliani

INVESTIGATION OF PHOTOELECTRODE MATERIALS INFLUENCES IN TITANIA-BASED-DYE-SENSITIZED SOLAR CELLS. Natalita M. Nursama, Lia Muliani International Journal of Technology (2012) 2: 129-139 ISSN 2086-9614 IJTech 2012 INVESTIGATION OF PHOTOELECTRODE MATERIALS INFLUENCES IN TITANIA-BASED-DYE-SENSITIZED SOLAR CELLS Natalita M. Nursama, Lia

More information