POWERING THE PLANET WITH FUELS FROM SUNLIGHT

Size: px
Start display at page:

Download "POWERING THE PLANET WITH FUELS FROM SUNLIGHT"

Transcription

1 POWERING THE PLANET WITH FUELS FROM SUNLIGHT Nathan S. Lewis California Institute of Technology Pasadena, CA DOE, NSF, BP, GCEP

2 Power Units: The Terawatt Challenge Power W 1 kw 1 MW 1 GW 1 TW

3 % TW World Energy Demand 2100: TW 2050: TW World Energy Demand total energy gap ~ 14 TW by 2050 ~ 33 TW by industrial developing US ee/fsu oil World Fuel Mix gas coal nucl renew 0 85% fossil EIA Intl Energy Outlook Hoffert et al Nature 395, 883,1998

4 T relative to present ( C) Fossil: Climate Change CO 2 CH 4 (ppmv) (ppmv) CO 2 in 2004: 380 ppmv CO CH 4 -- T Thousands of years before present (Ky BP) 0 Climate Change 2001: T he Scientific Basis, Fig 2.22 Intergovernmental Panel on Climate Change, N. Oreskes, Science 306, 1686, 2004 D. A. Stainforth et al, Nature 433, 403, 2005 Relaxation time transport of CO 2 or heat to deep ocean: >3000 years

5 Greenland Ice Sheet Permafrost Coral Bleaching

6 Carbon dioxide level, Coral reef distribution, and chemical conditions helping drive reef formation Cao and Caldeira, 2008 Corrosive Ω Aragonite Optimal

7 Carbon dioxide level, Coral reef distribution, and chemical conditions helping drive reef formation Cao and Caldeira, 2008 Corrosive Ω Aragonite Optimal

8 Carbon dioxide level, Coral reef distribution, and chemical conditions helping drive reef formation Cao and Caldeira, 2008 Corrosive Ω Aragonite Optimal

9 Carbon dioxide level, Coral reef distribution, and chemical conditions helping drive reef formation Cao and Caldeira, 2008 Corrosive Ω Aragonite Optimal

10 The Energy Gap ~ 14 TW of additional power by 2050 ~ 33 TW of additional power by capacity: 13 TW fossil energy after oil production peaks, switch to gas and coal capture/store 22 Gtonnes of CO 2 /yr (current emissions) 12,500 km 3 at atmospheric pressure = volume of Lake Superior 600 times CO 2 injected in oil wells/yr to spur production 100 times the natural gas drawn in and out of geologic storage/yr to smooth demand 20,000 times CO 2 stored/yr in Norway s Sleipner offshore reservior no leaks: 1% leak rate nullifies storage in 100 yrs nuclear energy 14,000 1 GW e fission reactors - 1 new reactor/day for 38 years

11 Renewable Energy Solar 120,000 TW at Earth s surface energy gap ~ 14 TW by 2050 ~ 33 TW by 2100 Wind 2-4 TW extractable Tide/Ocean Currents 2 TW gross Geothermal 12 TW gross over land small fraction recoverable Biomass 5-7 TW gross all cultivatable land not used for food Hydroelectric 4.6 TW gross 1.6 TW technically feasible 0.9 TW economically feasible 0.6 TW installed capacity

12 Foresightful Energy Analysis We are like tenant farmers chopping down the fence around our house for fuel when we should be using Nature's inexhaustible sources of energy sun, wind and tide.... Sunshine is spread out thin and so is electricity. Perhaps they are the same, but we will take that up later. Now the trick was, you see, to concentrate the juice and liberate it as you needed it. The old-fashioned way inaugurated by Jove, of letting it off in a clap of thunder, is dangerous, disconcerting and wasteful. It doesn t fetch up anywhere. My task was to subdivide the current and use it in a great number of little lights, and to do this I had to store it. And we haven t really found out how to store it yet and let it off real easy-like and cheap. Why, we have just begun to commence to get ready to find out about electricity. This scheme of combustion to get power makes me sick to think of it is so wasteful. It is just the old, foolish Prometheus idea, and the father of Prometheus was a baboon.

13 Foresightful Energy Analysis I'd put my money on the sun and solar energy. What a source of power! I hope we don't have to wait until oil and coal run out before we tackle that..

14 Foresightful Energy Analysis I'd put my money on the sun and solar energy. What a source of power! I hope we don't have to wait until oil and coal run out before we tackle that.. Thomas A. Edison, 1931

15 Energy Conversion Strategies Fuel Light Electricity CO 2 Sugar Fuels SC Electricity e H O 2 O H 2 2 sc SC O 2 Photosynthesis H 2 O Semiconductor/Liquid Junctions Photovoltaics

16 Fuel from Sunlight

17 solar fuels A FULLY ARTIFICIAL VERSION OF PHOTOSYNTHESIS

18 JCAP: DOE s Solar Fuels Energy Innovation Hub km-scale Flow channel building blocks m-scale cm-scale mm-scale nm-scale

19 Rapid Prototyping Capabilities JCAP has a prototyping tool for rapid chassis fabrication: Objet Connex 350 Layer by layer 3D printer Multi-material capabilities Net build size 342x342x200 mm ( ipad mm) Resolution: X-Y: 600 microns Z: 16 microns

20 Top and side view of the shared square chassis of the absorber-in-membrane and the PV-based prototype (PV-based interior shown) Ruler indicates the prototypes housed in this chassis will be 10x10cm Top (shown left) and side (shown right) view of the PV-based prototype measured with a ruler

21 Dual Wire Array Membrane 100 µm 20 µm Josh Spurgeon, Lewis group, Caltech

22 Benchmarking of Catalysts Comprehensive identification of catalyst activity and stability

23 Ultra-high throughput experimentation Printer Input UV-Vis Absorbance Non-aqueous IPCE Characterization (e.g., XPS) Characterization (e.g., XRD) Aqueous CV Development of world-class tools for high-throughput characterization and analysis

24 Beamline Capabilities on Advanced Light Sources Proximity to the JCAP-North site. Development of beamline instrumentation for solar energy research. Streamlined access to the beamlines. Samples can be analyzed with multiple X ray techniques. Mission-critical, unique experimental capabilities designed for JCAP research. Ambient pressure XPS Hard X-ray XAS/XES/RIXS Soft X-ray XAS/XES/RIXS Hard X-ray XAS/XES Soft/Hard X-ray SAXS Combination of X-ray techniques is critical for understanding the structure/function of each component as well as how each component functions after been assembled. JCAP JCAP/KCAP DOE Site Seoul, Review Korea, 2013

25 JCAP in 2012 JCAP in March, 2012

26 Need for Additional Primary Energy is Apparent Case for Significant (Daunting?) Carbon-Free Energy Seems Plausible (Imperative?): CO 2 emissions growth: : 1.1%/yr; : 3.1%/yr Scientific/Technological Challenges Energy efficiency: energy security and environmental security Coal/sequestration; nuclear/breeders; Cheap Solar Fuel Inexpensive conversion systems, effective storage systems Is Failure an Option? Summary Policy Challenges Will there be the needed commitment? In the remaining time?

ARTIFICIAL PHOTOSYNTHESIS: DIRECT PRODUCTION

ARTIFICIAL PHOTOSYNTHESIS: DIRECT PRODUCTION NSF CCI, DOE BES, AFOSR, Moore Foundation ARTIFICIAL PHOTOSYNTHESIS: DIRECT PRODUCTION OF FUELS FROM SUNLIGHT NATHAN S. LEWIS Division of Chemistry and Chemical Engineering JOINT CENTER FOR ARTIFICIAL

More information

Energy the U.S. and World and Carbon

Energy the U.S. and World and Carbon Energy the U.S. and World and Carbon Henry W. Brandhorst, Jr. June 25, 2007 The World at Night The Terrestrial Energy Situation Per Capita Power Usage 2000 (W/pp) 10000 1000 100 No. America Middle East

More information

Sustainability at Shedd Energy

Sustainability at Shedd Energy Sustainability at Shedd Energy Shedd Aquarium Conservation at Shedd Project Framework Sustainability at Shedd Energy Water Waste Purchasing Chemical Management Construction Materials Animal Diet Coral

More information

Solar Energy Utilization

Solar Energy Utilization Solar Energy Utilization H 2 O O 2 CO 2 QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. sugar natural photosynthesis 50-200 C space, water heating 500-3000 C heat engines

More information

Technologies to Mitigate Climate Change

Technologies to Mitigate Climate Change IOM Roundtable on Environmental Health, San Francisco September 11, 2007 Stanford University Global Climate & Energy Project Technologies to Mitigate Climate Change Lynn Orr Stanford University The Punchlines

More information

Powering the Planet Nathan S. Lewis, California Institute of Technology

Powering the Planet Nathan S. Lewis, California Institute of Technology Powering the Planet Nathan S. Lewis, California Institute of Technology Global Energy Perspective Present Energy Perspective Future Constraints Imposed by Sustainability Challenges in Exploiting Carbon-Neutral

More information

Our Energy Challenge. Woodrow Wilson Institute Washington, DC. June 10, R. E. Smalley Rice University

Our Energy Challenge. Woodrow Wilson Institute Washington, DC. June 10, R. E. Smalley Rice University Our Energy Challenge Woodrow Wilson Institute Washington, DC. June 10, 2003 R. E. Smalley Rice University Humanity s Top Ten Problems for next 50 years 1. ENERGY 2. WATER 3. FOOD 4. ENVIRONMENT 5. POVERTY

More information

08 Energy, Power and climate change review answers

08 Energy, Power and climate change review answers 08 Energy, Power and climate change review answers Power generation 1. Copy and complete: Thermal energy may be completely converted into work in a single process such as the adiabatic expansion of a gas

More information

Dipl. Ing. Stefan Schurig Director Climate Energy. November 2011 Dipl. Ing. Stefan Schurig Director Climate Energy

Dipl. Ing. Stefan Schurig Director Climate Energy. November 2011 Dipl. Ing. Stefan Schurig Director Climate Energy Dipl. Ing. Stefan Schurig Director Climate Energy 4 Muir Glacier, Alaska, 1941-2004 SOURCE: NSIDC/WDC for Glaciology, Boulder, compiler. 2002, updated 2006. Online glacier photograph database. Boulder,

More information

Alternative Energy Resources. Environmental Earth Science Rev 2018, Spds 2011

Alternative Energy Resources. Environmental Earth Science Rev 2018, Spds 2011 Alternative Energy Resources Environmental Earth Science Rev 2018, Spds 2011 Energy Sources Sun is the ultimate source of most energy on Earth. The Sun s energy is transferred from photosynthetic organisms

More information

Chapter 1 Overview of Energy Use

Chapter 1 Overview of Energy Use MAE 493R/593V- Devices Outline Today s energy use - world energy consumption is demanding and increasing Chapter 1 Overview of Energy Use Fossil fuels and environmental impact - Oil and coal will be used

More information

ENERGY To be or not to be sustainable?

ENERGY To be or not to be sustainable? ENERGY To be or not to be sustainable? AESc 210: Globalization Spring 2018 OUR AGENDA Physical concepts of energy Renewable and non-renewable energy types Issues with non-renewables Issues with renewables

More information

SOLAR PHOTOVOLTAICS Part 1

SOLAR PHOTOVOLTAICS Part 1 SOLAR PHOTOVOLTAICS Part 1 Solar Energy Contents Irradiance, Solar Constant Solar Window & tilt effects Atmospheric effects, air mass Solar spectrum, sensitivity of PV materials to various wavelengths

More information

Be a Scientist or Engineer, Save the World

Be a Scientist or Engineer, Save the World Be a Scientist or Engineer, Save the World Joan F. Brennecke Department of Chemical and Biomolecular Engineering University of Notre Dame Hypatia Day St. Mary s College February 19, 2005 - A little about

More information

TOWARDS A 100% RENEWABLE ENERGY FUTURE Roundtable B: Transforming Energy Beyond the Cheap vs Green Dilemma SIEW 2018

TOWARDS A 100% RENEWABLE ENERGY FUTURE Roundtable B: Transforming Energy Beyond the Cheap vs Green Dilemma SIEW 2018 TOWARDS A 100% RENEWABLE ENERGY FUTURE Roundtable B: Transforming Energy Beyond the Cheap vs Green Dilemma SIEW 2018 Name: Nicolas Leong Date: 1 November 2018 1 Contents 1. Smart energy vision executive

More information

The Energy Challenge

The Energy Challenge The Energy Challenge Joan F. Brennecke Dept. of Chemical and Biomolecular Engineering Director, Notre Dame Energy Center Siemens Westinghouse Science and Technology Competition November 12, 2005 ENERGY

More information

FIT for Future - How a Feed in Tariff (FIT) and SDR s can boost the renewable energy sector

FIT for Future - How a Feed in Tariff (FIT) and SDR s can boost the renewable energy sector FIT for Future - How a Feed in Tariff (FIT) and SDR s can boost the renewable energy sector 2 Fossil Fuel based industrialisation 3 Fossil Fuel based industrialisation 4 5 Source: Garve Scott-Lodge, www.oilrig-photos.com

More information

Global Climate Change. The sky is falling! The sky is falling!

Global Climate Change. The sky is falling! The sky is falling! Global Climate Change The sky is falling! The sky is falling! 1 Global Climate Change Radiative Equilibrium, Solar and Earth Radiation Atmospheric Greenhouse Effect Greenhouse Gases Global Climate Change

More information

Energy. Some facts 2/6/2012. Total Primary Power vs Year 1990: 12 TW 2050: 28 TW. What are the facts?!

Energy. Some facts 2/6/2012. Total Primary Power vs Year 1990: 12 TW 2050: 28 TW. What are the facts?! Energy What are the facts?! Some facts Energy consumption has increased dramatically except for a brief dip in the 1980 s Total Primary Power vs Year 1990: 12 TW 2050: 28 TW 1 Primary Energy Sources by

More information

Dii Desertec Industrial Initiative Enabling the DESERTEC Concept

Dii Desertec Industrial Initiative Enabling the DESERTEC Concept Dii Desertec Industrial Initiative Enabling the DESERTEC Concept Bringing the Desertec concept into reality: Solar- and Wind Energy from the Deserts in North Africa and the Middle East Paul van Son (CEO

More information

Photovoltaic Solar: Market and Technology Trends (Industrial Application of Organic Photonics)

Photovoltaic Solar: Market and Technology Trends (Industrial Application of Organic Photonics) Photovoltaic Solar: Market and Technology Trends (Industrial Application of Organic Photonics) June 24, 2008 Fachri Atamny Photovoltaic Solar Environment and Issues: Outline Solar Cell Market Environment

More information

Physics 171, Physics and Society Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1.

Physics 171, Physics and Society Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1. Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1. Maria is riding her bicycle on a flat road at 10 mi/hr. Then she squeezes the brakes and comes

More information

Activity 3 Information sheet

Activity 3 Information sheet Activity 3 Information sheet Type of energy Solar Where is it from Energy from sunlight is caught in solar panels and turned into electricity. Advantages The sun will always be there during our lifetime.

More information

MAE 119 W2018 FINAL EXAM PROF. G.R..TYNAN Part I: MULTIPLE CHOICE SECTION 2 POINTS EACH

MAE 119 W2018 FINAL EXAM PROF. G.R..TYNAN Part I: MULTIPLE CHOICE SECTION 2 POINTS EACH MAE 119 W2018 FINAL EXAM PROF. G.R..TYNAN Part I: MULTIPLE CHOICE SECTION 2 POINTS EACH 1. Which best describes the working definition of energy used in class: a. Energy can be transformed and in doing

More information

UNIT 10: ENERGY ISABEL CORONADO ROMERO

UNIT 10: ENERGY ISABEL CORONADO ROMERO UNIT 10: ENERGY ISABEL CORONADO ROMERO 1. WHAT IS ENERGY? Definition: Energy is a physical quantity which produces a change or an effect Unit: International System Joule (J) Other Calorie (cal) 1cal =4,19J

More information

M1. allow 1 mark for each correct line if more than one line goes from an energy source then all lines from that energy source are wrong [3]

M1. allow 1 mark for each correct line if more than one line goes from an energy source then all lines from that energy source are wrong [3] M. allow mark for each correct line if more than one line goes from an energy source then all lines from that energy source are wrong [3] M2. (a) gas (burning) (b) (i) (transmission) cables and (step-up

More information

Carbon Reduction Strategies

Carbon Reduction Strategies Carbon Reduction Strategies Energy from Sustainable Resources Increasing amounts of carbon (as CO 2 ) in the atmosphere is rapidly changing Earth s climate. One method of reducing carbon emissions is to

More information

L I D E. Earth s Ultimate Energy Source. Hydroelectric Power. Chemistry in Focus 3rd edition Tro

L I D E. Earth s Ultimate Energy Source. Hydroelectric Power. Chemistry in Focus 3rd edition Tro Chemistry in Focus 3rd edition Tro Chapter 0 nergy for Tomorrow: olar and Other Renewable nergy Resources arth s Ultimate nergy ource Provides more energy than we need to solve all of our energy needs

More information

85% of energy is generated using fossil fuels. Nuclear, biomass and hydroelectric make up most of the rest.

85% of energy is generated using fossil fuels. Nuclear, biomass and hydroelectric make up most of the rest. EART 265 Lecture Notes: Energy 1. Energy Production 85% of energy is generated using fossil fuels. Nuclear, biomass and hydroelectric make up most of the rest. Fossil fuels Fossil fuel energy is derived

More information

Renewable Energy Corporation RIGHT HERE IN COPENHAGEN

Renewable Energy Corporation RIGHT HERE IN COPENHAGEN RIGHT HERE IN COPENHAGEN THE ERA OF THE SUN RIGHT HERE IN ITALY Winery with 228 REC solar panels installed in Barbaresco, Italy. Annual capacity 54 000 kwh 26 tons of CO 2 saved annually Agenda Why is

More information

Energy Yesterday, Today, and Tomorrow

Energy Yesterday, Today, and Tomorrow Energy Yesterday, Today, and Tomorrow Gateway Energy and the Environment 2011 Project Lead The Way, Inc. Sustainable Energy Meets the needs of the present without compromising the ability of future generations

More information

Introduction to Renewable energies

Introduction to Renewable energies Introduction to Renewable energies RE Content Introduction to RE 1 Contents 1. Why Renewable energy? 1) Reserves of Fossil Energy Sources 2) Greenhouse Effect 3) Nuclear Power is not the answer 2. What

More information

Biomass. Coal. 10 Intermediate Energy Infobook Activities. Description of biomass: Renewable or nonrenewable: Description of photosynthesis:

Biomass. Coal. 10 Intermediate Energy Infobook Activities. Description of biomass: Renewable or nonrenewable: Description of photosynthesis: Biomass Description of biomass: Description of photosynthesis: Ways we turn biomass into energy we can use: Who uses biomass and for what purposes: Effect of using biomass on the environment: Important

More information

Chapter: Conserving Resources

Chapter: Conserving Resources Table of Contents Chapter: Conserving Resources Section 1: Resources Section 2: Pollution Section 3: The Three Rs of Conservation Chapter 19 Section 1- Natural Resources What are fossil fuels? *Fossil

More information

Large gas reserves are found in: The Arctic Islands Beaufort Sea-Mackenzie Delta Eastern Canada offshore basin Western Canada

Large gas reserves are found in: The Arctic Islands Beaufort Sea-Mackenzie Delta Eastern Canada offshore basin Western Canada 1 12. Natural Gas It is formed from the remains of plankton that fell to the bottom of the sea, which were changed into gases over millions of years Since natural gas is lighter than both oil and water

More information

Review for Carbon cycle, Hydrosphere and Space and Energy Types Test

Review for Carbon cycle, Hydrosphere and Space and Energy Types Test Review for Carbon cycle, Hydrosphere and Space and Energy Types Test Cycles and Greenhouse effect 1. Which of the following statements about the Greenhouse effect is true? A) An increase in greenhouse

More information

WORK Potential Kinetic

WORK Potential Kinetic Energy What is energy? - Ability to do WORK - The transfer of energy is work, power is the rate at which energy is transferred. - There are many forms of energy (chemical, mechanical, nuclear, thermal,

More information

Unit 4 Energy Review. Student. 1. Which is a problem with using wind turbines to produce energy? A. Wind turbines are efficient only in certain areas.

Unit 4 Energy Review. Student. 1. Which is a problem with using wind turbines to produce energy? A. Wind turbines are efficient only in certain areas. Unit 4 Energy Review Student 1. Which is a problem with using wind turbines to produce energy? A. Wind turbines are efficient only in certain areas. B. Wind turbines occupy a small area of land. C. Wind

More information

Renewable. Renewable resources can be replenished over fairly short spans of time, such as months, years, or decades.

Renewable. Renewable resources can be replenished over fairly short spans of time, such as months, years, or decades. Energy Resources Renewable Renewable resources can be replenished over fairly short spans of time, such as months, years, or decades. Nonrenewable Resources Nonrenewable resources take millions of years

More information

Have We Had an Impact? Global Warming. 3 Forms of Heat Transfer. Thickness of Earth s Atmosphere. The Impact on Engineering

Have We Had an Impact? Global Warming. 3 Forms of Heat Transfer. Thickness of Earth s Atmosphere. The Impact on Engineering Have We Had an Impact? Global Warming The Impact on Engineering Have We Had an Impact? Have We Had an Impact? Thickness of Earth s Atmosphere 3 Forms of Heat Transfer The Earth s atmosphere is very thin.

More information

Roughly 4.6 billion years ago... Let there be light

Roughly 4.6 billion years ago... Let there be light The Past Roughly 4.6 billion years ago... Let there be light 1839 Edmund Becquerel discovers the photovoltaic effect. 1860-1881 Auguste Mouchout was the first man to patent a design for a motor running

More information

ALTERNATIVE ENERGY. Four Solar Systems. Solar. Carbon Dioxide and Global Warming. Alternative Energy Sources. Beyond Petroleum and Coal

ALTERNATIVE ENERGY. Four Solar Systems. Solar. Carbon Dioxide and Global Warming. Alternative Energy Sources. Beyond Petroleum and Coal ALTERNATIVE ENERGY Beyond Petroleum and Coal Reading: STM Ch. 11, p. 249-257 Carbon Dioxide and Global Warming February 2007 Intergovernmental Panel on Climate Change http://www.ipcc.ch/spm2feb07.pdf Present

More information

Where is Transportation Going?

Where is Transportation Going? Where is Transportation Going? Conventional Engines Biofuels Electricity Hydrogen George Crabtree Materials Science Division Argonne National Laboratory Big Picture: Major Energy Challenges 25.00 2100:

More information

The Sustainable Energy Challenge

The Sustainable Energy Challenge Colloquium Center for Energy Efficient Materials University of California Santa Barbara November 2, 2011 The Sustainable Energy Challenge Outline the challenges: oil, the economy and carbon dioxide what

More information

Envisioning a Renewable Electricity Future for the United States

Envisioning a Renewable Electricity Future for the United States Envisioning a Renewable Electricity Future for the United States Trieu Mai, Ph.D. GCEP Net Energy Analysis Workshop April 1, 215 Stanford University, CA NREL is a national laboratory of the U.S. Department

More information

Energy Energy is the ability to do work or move something.

Energy Energy is the ability to do work or move something. Energy Energy is the ability to do work or move something. www.mrcjcs.com 1 There are 2 main groups of Energy, 1. Stored energy Forms of Energy Energy is the ability to do work or move something. Potential

More information

Electric Power Systems An Overview. Y. Baghzouz Professor of Electrical Engineering University of Nevada, Las Vegas

Electric Power Systems An Overview. Y. Baghzouz Professor of Electrical Engineering University of Nevada, Las Vegas Electric Power Systems An Overview Y. Baghzouz Professor of Electrical Engineering University of Nevada, Las Vegas Overview Power Generation Conventional and renewable power generation Power transmission

More information

BP Academic Centers, November 2002

BP Academic Centers, November 2002 BP Academic Centers, November 2002 Cambridge University The objective of the BP Institute is to conduct fundamental research into multiphase flow. We apply experimental, theoretical and numerical methods

More information

Electric Power Systems An Overview

Electric Power Systems An Overview Electric Power Systems An Overview Y. Baghzouz Professor of Electrical Engineering University of Nevada, Las Vegas Overview Power Generation Conventional and renewable power generation Power transmission

More information

RENEWABLE ENERGY TOWARDS SUSTAINABLE FUTURE. SURENDRA BAJPAI ENERGY EXPERT Date: Friday, August 17, 2012

RENEWABLE ENERGY TOWARDS SUSTAINABLE FUTURE. SURENDRA BAJPAI ENERGY EXPERT Date: Friday, August 17, 2012 RENEWABLE ENERGY TOWARDS SUSTAINABLE FUTURE SURENDRA BAJPAI ENERGY EXPERT Date: Friday, August 17, 2012 AGENDA Introduction Energy Renewable Energy SOLAR ENERGY WIND ENERGY BIO-ENERGY HYDROENERGY GEOTHERMAL

More information

Renewable Energies and Low-Carbon Society: Application of CGE Model to Toyohashi City in Japan

Renewable Energies and Low-Carbon Society: Application of CGE Model to Toyohashi City in Japan Renewable Energies and Low-Carbon Society: Application of CGE Model to Toyohashi City in Japan Yuzuru Miyata Department of Architecture and Civil Engineering, Toyohashi University of Technology and Shuai

More information

Exploring Energy Science Texts for Close Reading

Exploring Energy Science Texts for Close Reading Science Texts for Close Reading Solar Energy Solar energy is a way to harness sunlight for heating or electricity. There are different ways to convert sunlight into usable energy. Concentrated solar power

More information

Dye-Sensitized Solar Cells Carl C. Wamser Portland State University

Dye-Sensitized Solar Cells Carl C. Wamser Portland State University Dye-Sensitized Solar Cells Carl C. Wamser Portland State University Nanomaterials Course - June 28, 2006 Energy & Global Warming M.I. Hoffert et al., Nature,, 1998, 395,, p 881 Energy Implications of Future

More information

Section 2: Energy and Resources

Section 2: Energy and Resources Section 2: Energy and Resources Preview Key Ideas Bellringer The Search for Resources Making Oil Worldwide Energy Use by Fuel Type Alternative Sources of Energy The Efficiency of Energy Conversion Key

More information

Physics 171, Physics and Society Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1.

Physics 171, Physics and Society Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1. Physics 171, Physics and Society Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1. Maria is riding her bicycle on a flat road at 10 mi/hr. Then

More information

Electric Power from Sun and Wind

Electric Power from Sun and Wind Electric Power from Sun and Wind Fred Loxsom Eastern Connecticut State University Willimantic, Connecticut Many environmental problems are related to energy consumption. A college-level environmental science

More information

A Global View of Sustainable Energy and Deregulation

A Global View of Sustainable Energy and Deregulation GE Energy A Global View of Sustainable Energy and Deregulation Eric Gebhardt April 2008 Global trends Population Consumption Energy security Environment Create big challenges 2 2008 2030 And the challenges

More information

Period 26 Solutions: Using Energy Wisely

Period 26 Solutions: Using Energy Wisely Period 26 Solutions: Using Energy Wisely Activity 26.1: Comparison of Energy Sources for Generating Electricity 1) Comparison of energy sources a) Fill in the table below to describe the advantages and

More information

ALTERNATIVE ENERGY. Beyond Petroleum and Coal

ALTERNATIVE ENERGY. Beyond Petroleum and Coal ALTERNATIVE ENERGY Beyond Petroleum and Coal http://geothermal.marin.org/geopresentation/sld121.htm Alternative Energy Sources Solar Biomass Rivers, winds and tides Geothermal Other fossil fuels Advancing

More information

Four Solar Systems Passive heating Active heating Photovoltaic Water heating

Four Solar Systems Passive heating Active heating Photovoltaic Water heating ALTERNATIVE ENERGY Beyond Petroleum and Coal http://geothermal.marin.org/geopresentation/sld121.htm Alternative Energy Sources Solar Biomass Rivers, winds and tides Other fossil fuels Advancing Technologies

More information

FOSSIL FUELS THEY PROVIDE AROUND 66% OF THE WORLD'S ELECTRICAL POWER, AND 95% OF THE WORLD'S TOTAL ENERGY DEMANDS.

FOSSIL FUELS THEY PROVIDE AROUND 66% OF THE WORLD'S ELECTRICAL POWER, AND 95% OF THE WORLD'S TOTAL ENERGY DEMANDS. ENERGY SOURCES FOSSIL FUELS COAL, OIL AND NATURAL GAS ARE CALLED "FOSSIL FUELS" BECAUSE THEY HAVE BEEN FORMED FROM THE FOSSILIZED REMAINS OF PREHISTORIC PLANTS AND ANIMALS. THEY PROVIDE AROUND 66% OF THE

More information

Topic 8: Energy, power and climate change

Topic 8: Energy, power and climate change Topic 8: Energy, power and climate change 8.1 Energy degradation and power generation 8.1.1 State that thermal energy may be completely converted to work in a single process, but that continuous conversion

More information

Electrifica3on. Demand

Electrifica3on. Demand Electrifica3on Fuels Demand Electricity The realis3c poten3al of electricity supply technologies in California Nuclear: GENIII technology Fossil fuel w/ccs: either coal or gas Renewables : 80% intermigent

More information

The Sustainable Energy Challenge

The Sustainable Energy Challenge The Sustainable Energy Challenge Outline the challenges: oil, the economy and carbon dioxide what is sustainability? George Crabtree Departments of Physics, Electrical and Mechanical Engineering University

More information

Natural Resources. Mr. Dvorin Muir Middle School

Natural Resources. Mr. Dvorin Muir Middle School Natural Resources Mr. Dvorin Muir Middle School NONRENEWABLE AND RENEWABLE RESOURCES HMMMM... What do you think nonrenewable resources are? Break it down... Nonrenewable? Resource? NONRENEWABLE RESOURCES

More information

Introduction to Renewable Technologies

Introduction to Renewable Technologies Course Syllabus Introduction to Renewable Technologies Course Description Interested in transforming energy? With concerns about climate change and growing populations effects on traditional energy supplies,

More information

Power Technologies. Question. Answer. Energy is the ability to do work or change the system. Answer. Question. What are the various sources of energy?

Power Technologies. Question. Answer. Energy is the ability to do work or change the system. Answer. Question. What are the various sources of energy? What is energy? Energy is the ability to do work or change the system. What are the various sources of energy? Fossil fuels Oil (Petroleum) Propane Natural gas Coal Alternative fuels Nuclear Wind Solar

More information

gas oil Sun tides waves wind

gas oil Sun tides waves wind Methods we use to generate electricity 1. (a) Different energy sources are used to generate electricity. Which two of the energy sources in the box are likely to be used up first? Draw a ring around each

More information

Sixth Grade Energy and Conservation Unit Parent Background Information

Sixth Grade Energy and Conservation Unit Parent Background Information Sixth Grade Energy and Conservation Unit Parent Background Information WHAT IS ENERGY? The nature of energy is very complex, but it is best described by these characteristics: energy is the ability to

More information

Background. Atmospheric Concentration CO 2 (ppmv) year

Background. Atmospheric Concentration CO 2 (ppmv) year Background Concerns about the global warming issue due to the increases in the atmospheric CO 2 concentration Rapidly growing energy demand projected in developing countries 38 Atmospheric Concentration

More information

A Sustainable Energy Future?

A Sustainable Energy Future? Slide - 1 We should start by asking what we mean by sustainable energy? We need energy sources that won t run out. We need energy sources that won t degrade our planetary environment. Slide - 2 We need

More information

Information card 1. Traditional coal. FACT Coal

Information card 1. Traditional coal. FACT Coal Information card 1 Traditional coal How was it formed? Most coal deposits were formed around 300 million years ago during the Carboniferous period. The world was covered in tropical forest then. In some

More information

Energy and Global Issues

Energy and Global Issues Energy and Global Issues Chemical reactions Reactions that release heat are exothermic Reactions that absorb heat from surroundings are endothermic The energy involved in chemical reactions is measured

More information

RENEWABLE ENERGY AND ALTERNATIVE FUELS

RENEWABLE ENERGY AND ALTERNATIVE FUELS RENEWABLE ENERGY AND ALTERNATIVE FUELS There is absolutely no doubt the entire world is dependent upon the generation and transmission of electricity. Those countries without electrical power are considered

More information

Ch. 9 RTB - Energy Sources & Conversions

Ch. 9 RTB - Energy Sources & Conversions Ch. 9 RTB - Energy Sources & Conversions A. Types of Energy Sources 1. There are many different types of sources for energy 2. Energy comes from plants & Animals when living & Digested by another life

More information

Energy Tutorial: Geoengineering 101

Energy Tutorial: Geoengineering 101 GLOBAL CLIMATE AND ENERGY PROJECT STANFORD UNIVERSITY Energy Tutorial: Geoengineering 101 GCEP RESEARCH SYMPOSIUM 2012 STANFORD, CA Ken Caldeira Staff Scientist Carnegie Institution Professor (by courtesy)

More information

Greenhouse Effect & Climate Change

Greenhouse Effect & Climate Change Greenhouse Effect & Climate Change Greenhouse Effect Light energy from the sun (solar radiation) is either reflected or absorbed by the Earth. Greenhouse Effect When it is absorbed by the Earth (or something

More information

Renewable Energy Options Solar Photovoltaic Technologies. Lecture-1. Prof. C.S. Solanki Energy Systems Engineering, IIT Bombay

Renewable Energy Options Solar Photovoltaic Technologies. Lecture-1. Prof. C.S. Solanki Energy Systems Engineering, IIT Bombay Renewable Energy Options Solar Photovoltaic Technologies Lecture-1 Prof. C.S. Solanki Energy Systems Engineering, IIT Bombay chetanss@iitb.ac.in Contents Energy Energy Conversion processes Direct and indirect

More information

Energy. Solar Energy. Energy Resource A natural resource that. humans use to generate energy. Can be renewable are nonrenewable.

Energy. Solar Energy. Energy Resource A natural resource that. humans use to generate energy. Can be renewable are nonrenewable. Energy Solar Energy Energy Resource A natural resource that humans use to generate energy. Can be renewable are nonrenewable. energy sources are replaced by natural processes at least as quickly as they

More information

Sustainability a global outlook

Sustainability a global outlook Sustainability a global outlook Humberto D. Rosa hdrosa@fc.ul.pt Univ. of Lisbon, Faculty of Sciences Secretary of State of the Environment Sustainability a global outlook Summary human development versus

More information

Presentations are at Credits / sources

Presentations are at   Credits / sources Weizmann Institute s Alternative Sustainable Energy Research Initiative http://www.weizmann.ac.il/aeri/ Presentations are at http://www.weizmann.ac.il/aeri/presentations.html Credits / sources many slides

More information

To Hydrogen or not to Hydrogen. Potential as a Ship Fuel. Dr. John Emmanuel Kokarakis. Emmanuel John Kokarakis University of Crete

To Hydrogen or not to Hydrogen. Potential as a Ship Fuel. Dr. John Emmanuel Kokarakis. Emmanuel John Kokarakis University of Crete To Hydrogen or not to Hydrogen. Potential as a Ship Fuel Dr. John Emmanuel Kokarakis Emmanuel John Kokarakis University of Crete THE VISION "I believe that water will one day be employed as fuel, that

More information

WHAT ENGINEERS AND SCIENTISTS SHOULD KNOW ABOUT SCALES FOR MEASURING PRIMARY ENERGY: WHY THEY ARE NECESSARY AND HOW TO USE THEM

WHAT ENGINEERS AND SCIENTISTS SHOULD KNOW ABOUT SCALES FOR MEASURING PRIMARY ENERGY: WHY THEY ARE NECESSARY AND HOW TO USE THEM WHAT ENGINEERS AND SCIENTISTS SHOULD KNOW ABOUT SCALES FOR MEASURING PRIMARY ENERGY: WHY THEY ARE NECESSARY AND HOW TO USE THEM H. Douglas Lightfoot Global Environmental Climate Change Centre, McGill University,

More information

Coal. Biomass. Advantages. Disadvantages. Disadvantages. Advantages

Coal. Biomass. Advantages. Disadvantages. Disadvantages. Advantages Biomass Renewable energy source Can be quickly regrown Can be used to make ethanol, a cleaner fuel than gasoline Doesn't have as much energy as fossil fuels, so more biomass must be burned to get the same

More information

Presented to Stanford University Physics and Applied Physics Department Colloquium

Presented to Stanford University Physics and Applied Physics Department Colloquium Presented to Stanford University Physics and Applied Physics Department Colloquium October 5, 2004 Burton Richter Paul Pigott Professor in the Physical Sciences Stanford University Director Emeritus Stanford

More information

Shell Renewables & Hydrogen. Tim O Leary. External Affairs

Shell Renewables & Hydrogen. Tim O Leary. External Affairs Shell Renewables & Hydrogen Tim O Leary External Affairs A global presence Shell Renewables: 1,100 employees 90 Countries Wind farms - operational Solar marketing operations Solar production facilities

More information

The Global Climate and Energy Project

The Global Climate and Energy Project Stanford University Global Climate & Energy Project Advanced Electricity Infrastructure Workshop November 1-2, 2007 Overview of The Global Climate and Energy Project Lynn Orr, GCEP Director The Need for

More information

1901 Pan American Exhibition

1901 Pan American Exhibition Renewable Energy Development: Impact on Western New York Robert E. Knoer, Esq. The Knoer Group, PLLC rknoer@knoergroup.com 1901 Pan American Exhibition 1922 AUTOMATIC ELECTRIC Manufactured by the Automatic

More information

Geological Storage of Carbon Dioxide in Nova Scotia

Geological Storage of Carbon Dioxide in Nova Scotia Geological Storage of Carbon Dioxide in Nova Scotia Andrew Henry Executive Director Carbon Storage Research Consortium Dalhousie University NS Energy R&D Forum Antigonish, May 22, 2008 Geological Storage

More information

GREENHOUSE GASES 3/14/2016. Water Vapor, CO 2, CFCs, Methane and NO x all absorb radiation Water vapor and CO 2 are the primary greenhouse gases

GREENHOUSE GASES 3/14/2016. Water Vapor, CO 2, CFCs, Methane and NO x all absorb radiation Water vapor and CO 2 are the primary greenhouse gases GREENHOUSE EFFECT The earth is like a greenhouse The atmosphere acts like the glass which lets the sun s rays pass through. The earth absorbs this as heat energy and keeps it in, only letting a little

More information

Classification. Types. Non renewable. Renewable. Sustainable

Classification. Types. Non renewable. Renewable. Sustainable Energy Resources Classification Types Renewable Non renewable Sustainable Types of energy sources Renewable Wind Wave Solar Hydro-power Fuel-cells Biofuels: biomass, biodiesel, methane from organic waste,

More information

Section 2: Sources of Energy

Section 2: Sources of Energy Section 2: Sources of Energy Types of Energy¹ All the things we use every day to meet our needs and wants are provided through the use of natural resources.natural resources are either renewable or nonrenewable.

More information

Renewable Energy Sources. Lesson Plan: NRES F1-2

Renewable Energy Sources. Lesson Plan: NRES F1-2 Renewable Energy Sources Lesson Plan: NRES F1-2 1 Anticipated Problems 1. What are renewable energy sources? 2. What are advantages and disadvantages of renewable energy sources? 2 Terms biomass biopower

More information

Renewable Energy Sources II: Alternatives Part II. Lecture #11 HNRS 228 Energy and the Environment

Renewable Energy Sources II: Alternatives Part II. Lecture #11 HNRS 228 Energy and the Environment Renewable Energy Sources II: Alternatives Part II Lecture #11 HNRS 228 Energy and the Environment 1 Hydroelectric Power Wind Power Chapter 5 Summary Ocean Thermal Energy Conversion Biomass as Energy Geothermal

More information

There would be a lot more. (600 times as much)

There would be a lot more. (600 times as much) 21. If we were able to convert all of the sun s energy that reaches the surface of the US into electricity, would this be more, less or about the same amount of electricity as we currently generate? There

More information

Australia s clean energy: The future is now

Australia s clean energy: The future is now Australia s clean energy: The future is now Clean Energy Council 3 November 2010 The Energy Equation 2 Australia has some of the best renewable energy resources in the world We also have plentiful fossil

More information

Issues with petroleum

Issues with petroleum Issues with petroleum Limited reserves (near peak in Hubbert curve) Trade deficit (most oil imported) Externalities (military costs, environmental impacts) Environmental pollution (persistent combustion

More information

INTRODUCTION Energy in a complete sense, is hard to define. however to start with, the word energy may be understood as the capability to do work.

INTRODUCTION Energy in a complete sense, is hard to define. however to start with, the word energy may be understood as the capability to do work. INTRODUCTION in a complete sense, is hard to define. however to start with, the word energy may be understood as the capability to do work. FORMS OF ENERGY Various forms of energy is shown in Fig 1.1.

More information

What Can We Do About It?

What Can We Do About It? THE CARBON PROBLEM What Can We Do About It? A Venture Capitalist s Perspective Dr. Robert W. Shaw, Jr. President Aretê Corporation Stanford University Woods Institute and Precourt Institute Energy Seminar

More information

Name Date Class. How do fuels provide energy? What are the three major fossil fuels? Why are fossil fuels considered nonrenewable resources?

Name Date Class. How do fuels provide energy? What are the three major fossil fuels? Why are fossil fuels considered nonrenewable resources? Chapter 12 Energy and Material Resources Section 1 Summary Fossil Fuels How do fuels provide energy? What are the three major fossil fuels? Why are fossil fuels considered nonrenewable resources? A fuel

More information