High-Temperature Gas Generator with Ceramic Components for Stationary Equipment Gas Turbine Unit

Size: px
Start display at page:

Download "High-Temperature Gas Generator with Ceramic Components for Stationary Equipment Gas Turbine Unit"

Transcription

1 THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 E. 47 St., New York, N.Y GT The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings of the Society or of Its Divisions or Sections, or printed in its publications. Discussion rs printed only If the paper is published in an ASME Journal, Papers are available from ASME for fifteen months after the meeting. Printed in USA Copyright 1991 by ASME High-Temperature Gas Generator with Ceramic Components for Stationary Equipment Gas Turbine Unit G. A. SHISHOV, dr.-ing., director A. V. SUDAREV, dr.tech.sc., prof. V. N. DUBERSHTEIN, dr.-ing. A. N. TSURIKOV, dr.-ing. VNITI EM, Leningrad, USSR Abstract The paper gives description of the systematic analysis algorythm for multi actor matrix of partial solutions, namely, aerodynamic, thermodynamic, strength, processing, design, operation, and other aspects of designing the assemblies and parts of the gas generator with ceramic components. Interrelations between structural ceramics thermophysical and strength parameters, joint techniques (ceramic- -ceramic and ceramic-metal components) has been aetermined at an optimum selection of turbine and compressor types and characteristics. The complex of processing, design, and operation factors influencing the design of the components and assemblies of the gas generator has been studied. The efforts on creation of high -temperature gas turbine unit (GTU) with structural ceramics fabricated assemblies and parts has been exerted in the UuSR since The gas turbine unit is intended for operation on the sites of natural gas and oil production and pumping. n good few of organizations and institutes engagea in the studies of problems related to creation of temperature-resistant non-metallic materials and processing,techniques as well as gaining experience in the field of designing and fabricating the stationary and automotive GTUs has joined the aforesaid project. The all-union Science-Technological Institute of rower Engineering (VNITI EM) in Leningrad has been nominated as the head organization aimed to run the abovementioned complex of operations. VNITI EM is affiliated with the Interbranch state Merger " nergomash". Principal Challenges and Factors of resigning Unlike the transportion gas turbine engines with ceramic components which are nowadays the goal of engineers in Uax, West Germany, Japan, the GTU, which we are pursuing to design, has some essential perculiarities characterized, mainly, by the operation conditions. Among these, the most important issues are an absence of pulsed operation and noticably lesser number of "start-shutdown" cycles during the operation hours, absence of rigid size-mass limitations, operation duty small range, and some others..all this necessitates to carry out a number of computation-analyti- Presented at the International Gas Turbine and Aeroengine Congress and Exposition Orlando, FL June 3-6, 1991

2 cal and test design-technological operations, beginning from a detailed study of the thermodynamic cycles, occurred in the GTU, and including the complete analysis of feasible solutions. Main Characteristics of Gas Generator and GTU rower (by working medium parameters at the outlet of gas generator) is 2.5 Mw; maximum mean-mass temperature of gas in cycle is 1573 K; effeciency of gas turbine unit with high-temperature gas generator is percent (depending on application of the designed GTU). The GTU layoct also envisages two or more gas generators (according to GTU specified power), both running for one common power turbine. Below, some main aspects be considered at designing, are listed. 1)esign when aetermining an optimum (or rational) approach to select the conceptual aspects of designing the gas turbine engine flow part or its cascades (provided the multishaft version is applied), all the variety of factors, characterizing the design features, might be divided into two categories. The first group is the factors which effects upon the design features can be predicted beforehand. The other group is the factors, estimation of effects of which bears a conjunctive imprint. The following factors could be attributed to the first group. 1. Procceding from the fundamental properties of the ceramic materials, and admitting the units to have a considerable specified guaranteed life, one should confine the level of turbine stage loading in accordance with the flowrates, mach numbers, excluding shock waves buildup at all operation duties. 2. It is advisable to admit such a version of the flow part, through which a minimum dynamic effect upon the turbine blading is imposed. 3. The statistical-probabilistic approach to estimate the reliability of the ceramic components demands the design accomplishment of the component shapes be thoroughly conducted to minimize the stresses and "to alleviate" the effects of the probable stress concentrators, since a compromise between the aerodynamic and strength demands can be achieved (the latter being preferable). 4. The abovementioned approach presupposes a certain requirement of minimizing the ceramic components' number in the flow part, i.e., the aesign must include only those ceramic components which are vitally necessary for normal functioning of the uncooled high-temperature flow part. The second group of factors could be determineu in the following manner. 1. Lack of aevelopment of the total solution of the processing procedures and design of the loaded joints of "ceramic-ceramic" and "ceramic-metal" types brings about a practical need to locate in one shaft no more than one ceramic turbine stage. PN

3 2. A quite explicable intention to obtain a higher power on the turbine- -wheel let it possible, when estimating the alternatives (axial or axiradial flow part), to give preference to the latter one. 3. The evident desire to reduce (to zero, if possible) the cooling agent flow for provision of the support servicability within the turbine zone results in a conclusion in relation to advisability to use the gas or magnet bearings of non-conventional, though found in service types. This leads to additional higher requirements for improving the procedure of the rotor balancing, and causes a need to obtain quite certain dynamic characteristics which actually excludes a possibility to use the axial compressor. 4. Availability of the ceramic components and assemblies makes the structure maintanability, as it is cor..monly understood, a rather problematic ussue. The preferance is given to the block-module version of the unit, where the maintanability must be provided at the expense of replacing the totally undismountable turbo-compressor blocks characteri - zed by comparatively low fubrication expenditures. At the fabrication of structu - res having more shafts than one, it is extremely desirable to minimize the gas path length in the benefits of both the design reliability and reduction of heat losses from the cycle. This analysis permits to formulate the basic features of an optimum solution of the gas generator with components made from structural ceramics for a stationary type GTU, which operation duties are characterized by absence of impulse loads, This solution can be exemplified by the design where each rotor in manufactured by the simplest schematic, i.e., double-support shaft, including one centrifugal compressor impeller and one centripetal turbine (with subsonic flow saris ). The turbine flow part, which experiences the greatest thermal loading, consists of the intake scroll and the turbine-wheel, The distinctive feature is the absence of the nozzle set. The rotor equipped with the appropriate stator parts, i.e., intake and outlet arrangements of turbine and compressor, and the bearing assemblies as well, constitutes a unique undismountable block. The turbocuenressor blocks, interconnected with air and gas pipelines, form a spatial multishaft structure. Thereat, the axes of blocks are positioned in the co-perpendicular planes which promote to minimizing the lengths of the "hot" branch-pipes, thus to the utmost simplifying the diagram of the module components' thermal expansions (Fig.1). Thermal Cycle The technology's peculiarties indicating the effects of the scale factor on the turbine-wheel's reliability characteristics, determine (at the selection of thermal cycle) the dominant effect of parameter characterizing the servicability of the working medium flowrate unit. 3

4 B) z T3 Y x C) 9{!D f 8f T Fig.1. Gas generator gas-air path diagram a - thermodynamic diagram of gas generator; 8 - version of spatial layout of turbocompressor shaft axes positions; C - diagram of gas path length minimization; 1, 2, 3 - shafts of turbocompressors of low, mean, and high pressures, relatively; 4 - combustion chamber; 5 - intermediate air cooler between compressors of low and mean pressures; 6 - atmospheric air; 7 - gas from gas generator low pressure turbine to power turbine; 8, 9, 10 - turbine of high, mean, and low pressure, relatively. 60 fide ^7 Sao #a8 yy ^id zoo f 2 3 y 5 36! 2 3 ^/ 5 Fig.2. Comparative characteristics of ti rmal cycles for gas turbine units ( t mqj( 1300 C) r I - Bryton cycle,eopt--30); 2 - cycle intermediate cooling (9.t, % 55) ; 3- cycle with end reg:neration 0.85,fi t = ; 4 - cycle with intermediate regeneration (Z016/...18, = 0.85;) 5 - cycle with intermediate cooling and end regeneration (V T 12, ( =

5 ^2 - specific servicability of workin medium;?e- cycle maximum efficiency; 40MAW - maximum mean-mass temperature of gas; tvat- optimum level of pressure increase; - regeneration level. The thermal cycle, providing a maximum specific power per flowrate unit, should be considered as optimum for GTU of the specified power. Fig.2 shows the comparative characteristics of the most widely applied thermal cycles. It results from this analysis that the intermediate cooling cycle is the most desirable one. This selection permits (when other conditions are similar) to obtain a minimum size for turbine-wheels and, therefore, better characteristics for GTU reliability. The abovementioned reasons are valid for gas turbine units of more than 1 MW power. When gas generator power is less than 1 NW, minimization of turbine-wheels on the basis of the principles abovecited can result in augmentation of thickness of edges, clearances etc., as for both turbine and compressor, i.e., for small (up to 1 MW) powers, it is reasonable to have a cycle which would promote to optimization (not minimization) of she turbine-wheels' sizes. One should not overlook a by- -work, though rather essential positive effect of the intermediate cooling thermal cycle for high temperature GTU. At a relevant distribution of pressure rise stages among sections upstream and downstream of the air cooler and at an appropriate selection of its characteristics in the diagram 5 one can obtain water steam condensate from atmospheric air which could be used to reduce the intensity of nitrogen oxides' formation in the combustion products; this is a fairly important ussue for high-temperature GI U with ceramic components. Kinematic Aspects of Gas Generator Turbomachines ran approach to optimize and design the kinematics diagrams of the turbo-wheels and compressor impellers considering their level reactivity differs from the conventional "metallic" solutions, bide by side with the reasons taking into account their economic efficiency, it is necessary to consider a number of factors illustra -'Uing the specific features of the plants of the type under discussion. Thus, the operation conditions and reliability of characteristics of the bearing assemly positioned between the compressor impeller and the turbine-wheel are, to a considerable extent, determined by the temperature factors, which "governing" can be conducted mostly reliably at a positive differential of the static pressures between the sections behind the compressor impeller and prior to the turbine-wheel. This differential is a function, in particular, of the levels of reactivities of impellers and wheels. Minimization of the total axial ro. rce acting upon the rotor can be achieved through changing the reactivity of the impeller and wheel and the design of both the turbine and compressor main discs, and the compressor cover disc. Furthermore, when selecting

6 the compressor reactivity level, it is advisable to consider a rather important consequences, i.e., at similar conditions concerning the pre$sure ratio and the working medium flowrate the reactivity increase results in an increase of the rotor speed which, in its turn, leads (at expansion ratio in the turbine, working medium flowrate, speed value being constant) to a reduction of the turbine-wheel outer diameter. Conclusions The concept of designing the gas turbine units for drive of the stationary equipment with uncooled high-temperature flow part designed on the basis of the structural ceramics application has been formulated. The discussed GTU must include single turbocompressor blocks positioned in train along the gas and air pathes and made as simple as possible, i.e., consisting of single shaft, single centrifugal compressor, and single centripetal turbine. It was illustrated that the current level of structural ceramics development stipulates to give preference to the intermediate air cooling cycle (for gas turbine units of more than 1 Mw power). The solutions presented in the paper can find a further development through utilization of the exhaust gas heat which would promote to obtaining the economic efficiency of the plant not less than that obtained through application of the combined cycle co-generation plants. 6

New equipment layouts of combined cycle power plants and their influence on the combined cycle units performance

New equipment layouts of combined cycle power plants and their influence on the combined cycle units performance Open Access Journal Journal of Power Technologies 91 (4) (2011) 206 211 journal homepage:papers.itc.pw.edu.pl New equipment layouts of combined cycle power plants and their influence on the combined cycle

More information

Latest Simulation Technologies for Improving Reliability of Electric Power Systems

Latest Simulation Technologies for Improving Reliability of Electric Power Systems Latest Simulation Technologies for Improving Reliability of Electric Power Systems 386 Latest Simulation Technologies for Improving Reliability of Electric Power Systems Kiyoshi Segawa Yasuo Takahashi

More information

Alpha College of Engineering

Alpha College of Engineering Alpha College of Engineering Department of Mechanical Engineering TURBO MACHINE (10ME56) QUESTION BANK PART-A UNIT-1 1. Define a turbomahcine. Write a schematic diagram showing principal parts of a turbo

More information

Thermodynamic Considerations for Large Steam Turbine Upgrades and Retrofits

Thermodynamic Considerations for Large Steam Turbine Upgrades and Retrofits POWER-GEN Asia 2011 Kuala-Lumpur, Malaysia September 27-29, 2011 Thermodynamic Considerations for Large Steam Turbine Upgrades and Retrofits Leonid Moroz, Kirill Grebennik 15 New England Executive Park,

More information

Experience and Examples of Optimization of Axial Turbines Flow Paths

Experience and Examples of Optimization of Axial Turbines Flow Paths 7 Experience and Examples of Optimization of Axial Turbines Flow Paths In this chapter, as an example of practical use of the developed theory of optimal design of axial turbines flow paths, the results

More information

R13. (12M) efficiency.

R13. (12M) efficiency. SET - 1 II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2016 THERMAL AND HYDRO PRIME MOVERS (Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper

More information

[4163] T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II)

[4163] T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II) Total No. of Questions : 12] P1061 SEAT No. : [Total No. of Pages : 7 [4163] - 218 T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II) Time : 3 Hours] [Max. Marks :100 Instructions

More information

2. In terms of operating as a machine, a sail boat energy from the air. A. Extracts B. Adds

2. In terms of operating as a machine, a sail boat energy from the air. A. Extracts B. Adds CHAPTER 12 1.Turbomachines are mechanical devices that either energy from a fluid, in the case of a turbine, or energy to a fluid, in the case of a pump. YOUR ANSWER: Extract, add 2. In terms of operating

More information

Efficient and Flexible AHAT Gas Turbine System

Efficient and Flexible AHAT Gas Turbine System Efficient and Flexible AHAT Gas Turbine System Efficient and Flexible AHAT Gas Turbine System 372 Jin ichiro Gotoh, Dr. Eng. Kazuhiko Sato Hidefumi Araki Shinya Marushima, Dr. Eng. OVERVIEW: Hitachi is

More information

"Leveraging Cross-Industry Know-How for Thermodynamic Cycles & Turbomachinery Component Innovation"

Leveraging Cross-Industry Know-How for Thermodynamic Cycles & Turbomachinery Component Innovation "Leveraging Cross-Industry Know-How for Thermodynamic Cycles & Turbomachinery Component Innovation" Wednesday, June 17, 2015 Stage Presentation ASME TURBOEXPO 2015 1 About SoftInWay Founded in 1999, we

More information

Operating Status of Uprating Gas Turbines and Future Trend of Gas Turbine Development

Operating Status of Uprating Gas Turbines and Future Trend of Gas Turbine Development Operating Status of Uprating Gas Turbines and Future Trend of Gas Turbine Development KEIZO TSUKAGOSHI* 1 JUNICHIRO MASADA* 1 AKIMASA MUYAMA*1 YOICHI IWASAKI* 1 EISAKU ITO* 2 Large frame gas turbines for

More information

Modular Concept of a Gas Turbine Power Plant

Modular Concept of a Gas Turbine Power Plant THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 E. 47 St., New York, N.Y. 10017 The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings of the Society

More information

POWER-GEN MIDDLE EAST DOHA, QATAR FEBRUARY 4th -6th 2013

POWER-GEN MIDDLE EAST DOHA, QATAR FEBRUARY 4th -6th 2013 POWER-GEN MIDDLE EAST DOHA, QATAR FEBRUARY 4th -6th 2013 Siemens Expands Footprint in the Middle East with SGT6-5000F Power Plant Solutions and New Gas Turbine Manufacturing Facility Adam Foust Siemens

More information

T.E. (Mech., Mech. S/W) (Semester II) Examination, 2011 TURBOMACHINES (New) (2008 Pattern)

T.E. (Mech., Mech. S/W) (Semester II) Examination, 2011 TURBOMACHINES (New) (2008 Pattern) *4063218* [4063] 218 T.E. (Mech., Mech. S/W) (Semester II) Examination, 2011 TURBOMACHINES (New) (2008 Pattern) Time : 3 Hours Marks : 100 Instructions : 1) Answer any three questions from each Section.

More information

OPERATIONAL EXPERIENCE ON ORC USE FOR WASTE HEAT VALORIZATION IN BIOGAS POWER PLANT ABSTRACT

OPERATIONAL EXPERIENCE ON ORC USE FOR WASTE HEAT VALORIZATION IN BIOGAS POWER PLANT ABSTRACT Paper ID: 105, Page 1 OPERATIONAL EXPERIENCE ON ORC USE FOR WASTE HEAT VALORIZATION IN BIOGAS POWER PLANT Coline Gazet 1, Arthur Leroux 1, Benoit Paillette 1, Antonin Pauchet 1 1 ENOGIA SAS, www.enogia.com

More information

New Power Plant Concept for Moist Fuels, IVOSDIG

New Power Plant Concept for Moist Fuels, IVOSDIG ES THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 91-GT-293 345 E. 47 St., New York, N.Y. 10017 The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings

More information

1. The Energy Content of Fuels

1. The Energy Content of Fuels Heat Engines 1. The Energy Content of Fuels How heat is derived from fuels? For example, we may consider the burning process for heptane, C 7 H 16, colorless liquid constituent of gasoline. C 7 H 16 +

More information

Actual Gas-Turbine Cycle

Actual Gas-Turbine Cycle Actual Gas-urbine Cycle Fresh air at ambient conditions is drawn into the compressor, where its temperature and pressure are raised. he highpressure air proceeds into the combustion chamber, where the

More information

Fuji Electric s Medium-capacity Steam Turbines FET Series

Fuji Electric s Medium-capacity Steam Turbines FET Series Fuji Electric s Medium-capacity Steam Turbines FET Series Koya Yoshie Michio Abe Hiroyuki Kojima 1. Introduction Recently, de-regulation of the electric power industry and rising needs for advanced solutions

More information

CHAPTER 1 BASIC CONCEPTS

CHAPTER 1 BASIC CONCEPTS GTU Paper Analysis CHAPTER 1 BASIC CONCEPTS Sr. No. Questions Jan 15 Jun 15 Dec 15 May 16 Jan 17 Jun 17 Nov 17 May 18 Differentiate between the followings; 1) Intensive properties and extensive properties,

More information

Fabrication and Study of the Parameters Affecting the Efficiency of a Bladeless Turbine

Fabrication and Study of the Parameters Affecting the Efficiency of a Bladeless Turbine 2017 IJSRST Volume 3 Issue 3 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Engineering and Technology Fabrication and Study of the Parameters Affecting the Efficiency of a Bladeless Turbine

More information

20/06/2011 Seminar on Geothermal Exploitation Santiago de Chile

20/06/2011 Seminar on Geothermal Exploitation Santiago de Chile Contents Power Plants Steam Power plants Binary Power plants Geothermal Power Plants Single flash systems Binary systems 1 Equipment Well head Gathering piping system Steam separators and moisture separators

More information

Unit No.4-1 Higashi Niigata Thermal Power Station Operating Status O C Class Gas Turbine Operation -

Unit No.4-1 Higashi Niigata Thermal Power Station Operating Status O C Class Gas Turbine Operation - 101 Unit No.4-1 Higashi Niigata Thermal Power Station Operating Status - 1450 O C Class Gas Turbine Operation - Yoshiaki Tsukuda *1 Eiji Akita *1 Yoichi Iwasaki *1 Koichiro Yanou *1 Yutaka Kawata *2 Toshihide

More information

Contents. Part I Design: Theory and Practice 1

Contents. Part I Design: Theory and Practice 1 Contents Preface to the Fourth Edition Preface to the Third Edition Preface to the Second Edition Preface to the First Edition Foreword to the First Edition About the Author xix xxiii xxvii xxix xxxi xxxiii

More information

MEC-MOS-E-2004 Gas Turbine Maintenance Engineer PERSONAL DATA EDUCATION LANGUAGES COMPUTER SKILLS TRAINING COURSES AND CERTIFICATIONS

MEC-MOS-E-2004 Gas Turbine Maintenance Engineer PERSONAL DATA EDUCATION LANGUAGES COMPUTER SKILLS TRAINING COURSES AND CERTIFICATIONS 100771-MEC-MOS-E-2004 Gas Turbine Maintenance Engineer Holds a B. Sc. and M. Sc. in Mechanical Power Engineering. Has about 11 years hands-on experience in power plant projects including installation for

More information

PEMP RMD & Cycle Performance. M.S.Ramaiah School of Advanced Studies

PEMP RMD & Cycle Performance. M.S.Ramaiah School of Advanced Studies Steam Se Turbine ub ecyces Cycles & Cycle Performance Session delivered by: Prof. Q.H. Nagpurwala 1 Session Objectives This session is intended to discuss the following: Basic construction and classification

More information

IJARI. Nomenclature. 1. Introduction. Volume 2, Issue 2 (2014) ISSN International Journal of Advance Research and Innovation

IJARI. Nomenclature. 1. Introduction. Volume 2, Issue 2 (2014) ISSN International Journal of Advance Research and Innovation Thermodynamic Analysis of Alternative Regeneration Gas Turbine Cycle with Twin Shaft System P. V. Ram Kumar *, a, S. S. Kachhwaha b a Department of Mechanical Engineering, Delhi College of Engineering,

More information

Electricity generation, electricity consumption, system integration, production and consumption balance

Electricity generation, electricity consumption, system integration, production and consumption balance Prof. Dr. Andrej Gubina University of Ljubljana, Faculty of Electrical Engineering Electricity generation, electricity consumption, system integration, production and consumption balance Maribor, Slovenia,

More information

BCE Program March-2017 Electrical Power Systems Time: min Quiz 1 Model A رقم المجموعة:

BCE Program March-2017 Electrical Power Systems Time: min Quiz 1 Model A رقم المجموعة: Quiz 1 Model A (A) it is discovered since very long time (B) it can be generated by different power stations (C) it can be easy controlled 2. To install Nuclear Power plants it is required to have a very

More information

Code No: R31034 R10 Set No: 1

Code No: R31034 R10 Set No: 1 Code No: R31034 R10 Set No: 1 JNT University Kakinada III B.Tech. I Semester Regular/Supplementary Examinations, Dec - 2014/Jan -2015 THERMAL ENGINEERING-II (Com. to Mechanical Engineering and Automobile

More information

Matching of a Gas Turbine and an Upgraded Supercritical Steam Turbine in Off-Design Operation

Matching of a Gas Turbine and an Upgraded Supercritical Steam Turbine in Off-Design Operation Open Access Journal Journal of Power Technologies 95 (1) (2015) 90 96 journal homepage:papers.itc.pw.edu.pl Matching of a Gas Turbine and an Upgraded Supercritical Steam Turbine in Off-Design Operation

More information

Thermodynamic Analysis on Gas Turbine Unit

Thermodynamic Analysis on Gas Turbine Unit Gas Turbine Exhaust Super Heater Economiser HRB Exhaust IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 02 July 2015 ISSN (online): 2349-6010 Thermodynamic Analysis

More information

Code No: RR Set No. 1

Code No: RR Set No. 1 Code No: RR310303 Set No. 1 III B.Tech I Semester Regular Examinations, November 2006 THERMAL ENGINEERING-II (Mechanical Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions

More information

R13 SET - 1 '' ''' '' ' '''' Code No: RT31035

R13 SET - 1 '' ''' '' ' '''' Code No: RT31035 R13 SET - 1 III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2016 THERMAL ENGINEERING II (Mechanical Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists

More information

Design Mode Analysis of Reheaters in Nuclear Steam Secondary Cycles

Design Mode Analysis of Reheaters in Nuclear Steam Secondary Cycles Design Mode Analysis of Reheaters in Nuclear Steam Secondary Cycles By Gene L. Minner, PhD SCIENTECH, Inc. 440 West Broadway Idaho Falls, Idaho 83402 (208) 524-9281 Abstract This paper presents a new design

More information

SUMMER 15 EXAMINATION

SUMMER 15 EXAMINATION SUMMER 15 EXAMINATION Subject Code: 17413 ( EME ) Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

STEAM TURBINE-GENERATOR & AUXILLIARY SYSTEMS Presentation by: RANA NASIR ALI General Manager, Power Plants Projects, at PITCO November 02, 2017

STEAM TURBINE-GENERATOR & AUXILLIARY SYSTEMS Presentation by: RANA NASIR ALI General Manager, Power Plants Projects, at PITCO November 02, 2017 STEAM TURBINE-GENERATOR & AUXILLIARY SYSTEMS Presentation by: RANA NASIR ALI General Manager, Power Plants Projects, at PITCO November 02, 2017 CO-GENERTATION POWER PLANT CONCEPT For dimensioning, design

More information

by Osamu Isumi Turbine Designing Section Manager Takashi Niiyama Design Engineer Mitsubishi Heavy Industries, Ltd. Hiroshima, Japan Kazushi Mori

by Osamu Isumi Turbine Designing Section Manager Takashi Niiyama Design Engineer Mitsubishi Heavy Industries, Ltd. Hiroshima, Japan Kazushi Mori VERIFICATION FULL LOAD TEST OF 900 T/H (1,980,000 LB/H) LARGE MECHANICAL DRIVE STEAM TURBINE FOR ASU UP TO 200 MW (268,000 HP) BASED ON THE PRINCIPLE OF HIGH SCALE MODEL SIMILARITY by Osamu Isumi Turbine

More information

Characteristics of Cycle Components for CO 2 Capture

Characteristics of Cycle Components for CO 2 Capture Characteristics of Cycle Components for CO 2 Capture Flavio J. Franco 1, Theo Mina 1, Gordon Woollatt 1, Mike Rost 2, Olav Bolland 3 1 ALSTOM (LE8 6LH,UK), 2 Siemens Power Generation (Germany), 3 The Norwegian

More information

Course 0101 Combined Cycle Power Plant Fundamentals

Course 0101 Combined Cycle Power Plant Fundamentals Course 0101 Combined Cycle Power Plant Fundamentals Fossil Training 0101 CC Power Plant Fundamentals All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any

More information

Recent Technologies for Steam Turbines

Recent Technologies for Steam Turbines Recent Technologies for Steam Turbines Kenji Nakamura Takahiro Tabei Tetsu Takano A B S T R A C T In response to global environmental issues, higher efficiency and improved operational reliability are

More information

Turbo Machines Pumps and Turbines ME 268

Turbo Machines Pumps and Turbines ME 268 Turbo Machines Pumps and Turbines ME 268 Turbo Machines Turbo machines are dynamic fluid machines that either extract energy from a fluid (turbine) or add energy to a fluid (pump) as a result of dynamic

More information

Design and Testing of a Rotating Detonation Engine for Open-Loop Gas Turbine Integration

Design and Testing of a Rotating Detonation Engine for Open-Loop Gas Turbine Integration 25 th ICDERS August 2 7, 2015 Leeds, UK Design and Testing of a Rotating Detonation Engine for Open-Loop Gas Turbine Integration Andrew Naples 1, Matt Fotia 2, Scott Theuerkauf 2, John L. Hoke 1, Fred

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM VI(ME-61,62,63 & 64)] QUIZ TEST-1 Q-1). A jet strikes a smooth curved vane moving in the same direction as the jet and the jet get reversed in the direction. Show that the maximum efficiency

More information

Design Details of a 600 MW Graz Cycle Thermal Power Plant for CO 2

Design Details of a 600 MW Graz Cycle Thermal Power Plant for CO 2 Institute for Thermal Turbomaschinery and Machine Dynamics Graz University of Technology Erzherzog-Johann-University Design Details of a 600 MW Graz Cycle Thermal Power Plant for CO 2 Capture Presentation

More information

Study on Advanced Micro disk Gas Turbine Using Hydrogen Fuel Produced by Very High Temperature Nuclear Reactor

Study on Advanced Micro disk Gas Turbine Using Hydrogen Fuel Produced by Very High Temperature Nuclear Reactor Study on Advanced Micro disk Gas Turbine Using Hydrogen Fuel Produced by Very High Temperature Nuclear Reactor Sri Sudadiyo 1 * 1 PTRKN BATAN, Tangerang, Indonesia *E-mail: sudadiyo@batan.go.id Abstract

More information

Hydraulic Machines, K. Subramanya

Hydraulic Machines, K. Subramanya Hydraulic Machines power point presentation Slides has been adapted from Hydraulic Machines, K. Subramanya 2016-2017 Prepared by Dr. Assim Al-Daraje 1 Chapter (1 Part 1) Prepared by Dr. Assim Al-Daraje

More information

Process Compressors. Designed to optimize your business. Answers for energy.

Process Compressors. Designed to optimize your business. Answers for energy. Process Compressors Designed to optimize your business Answers for energy. Turbocompressors from Siemens covering the complete spectrum Siemens offers a full range of turbocompressors to meet the needs

More information

M-Tech Scholar (Turbo-Machinery), MATS University, (C.G) INDIA 2 Asst. Prof., Department of Aeronautical Engineering, MATS University, (C.

M-Tech Scholar (Turbo-Machinery), MATS University, (C.G) INDIA 2 Asst. Prof., Department of Aeronautical Engineering, MATS University, (C. Performance investigation of axial flow compressor at different climatic conditions Prabhat Singh 1, Kalpit P. Kaurase 2, Brijesh Patel 3 1 M-Tech Scholar (Turbo-Machinery), MATS University, (C.G) INDIA

More information

Advanced Gas Turbine Concept, Design and Evaluation Methodology. Preliminary Design of Highly Loaded Low Pressure Gas Turbine of Aircraft Engine

Advanced Gas Turbine Concept, Design and Evaluation Methodology. Preliminary Design of Highly Loaded Low Pressure Gas Turbine of Aircraft Engine International Journal of Gas Turbine, Propulsion and Power Systems December 2008, Volume 2, Number 1 Advanced Gas Turbine Concept, Design and Evaluation Methodology. Preliminary Design of Highly Loaded

More information

Appendix B. Glossary of Steam Turbine Terms

Appendix B. Glossary of Steam Turbine Terms Operator s Guide to General Purpose Steam Turbines: An Overview of Operating Principles, Construction, Best Practices, and Troubleshooting. Robert X. Perez and David W. Lawhon. 2016 Scrivener Publishing

More information

Advanced Gas Turbine Concept, Design and Evaluation Methodology. Preliminary Design of Highly Loaded Low Pressure Gas Turbine of Aircraft Engine

Advanced Gas Turbine Concept, Design and Evaluation Methodology. Preliminary Design of Highly Loaded Low Pressure Gas Turbine of Aircraft Engine Proceedings of the International Gas Turbine Congress 2007 Tokyo December 3-7, 2007 IGTC2007 Tokyo TS-058 Advanced Gas Turbine Concept, Design and Evaluation Methodology. Preliminary Design of Highly Loaded

More information

Introduction to the mechanical design of aircraft engines

Introduction to the mechanical design of aircraft engines Introduction to the mechanical design of aircraft engines Reference : AERO0015-1 - MECHANICAL DESIGN OF TURBOMACHINERY - 5 ECTS - J.-C. GOLINVAL 2 Principles of jet propulsion Comparison between the working

More information

Completion of Hitachi Rinkai Power Station Unit-2

Completion of Hitachi Rinkai Power Station Unit-2 Completion of Hitachi Rinkai Power Station Unit-2 94 Completion of Hitachi Rinkai Power Station Unit-2 Hidekazu Takai Fumiharu Moriwaki Tsutomu Tanakadate Makoto Funaki OVERVIEW: In recent years, thanks

More information

Development of Measurement Method for Verification of Multi-Stage Axial Compressor with Improved Performance

Development of Measurement Method for Verification of Multi-Stage Axial Compressor with Improved Performance Development of Measurement Method for Verification of Multi-Stage Axial Compressor with Improved Performance 108 SATOSHI YAMASHITA *1 RYOSUKE MITO *2 MASAMITSU OKUZONO *3 SHINJI UENO *1 Gas turbine power

More information

Development and performance analysis of a hybrid solar gas turbine. Lars-Uno Axelsson and Darsini Kathirgamanathan, OPRA Turbines, the Netherlands

Development and performance analysis of a hybrid solar gas turbine. Lars-Uno Axelsson and Darsini Kathirgamanathan, OPRA Turbines, the Netherlands Development and performance analysis of a hybrid solar gas turbine Lars-Uno Axelsson and Darsini Kathirgamanathan, OPRA Turbines, the Netherlands With the increased amount of non-controllable renewables

More information

Applying Independent Power Sources Based on Small-Capacity Micro Turbo-Expander Generators

Applying Independent Power Sources Based on Small-Capacity Micro Turbo-Expander Generators Applying Independent Power Sources Based on Small-Capacity Micro Turbo-Expander Generators by Georgy Fokin, Gazprom transgaz St. Petersburg LLC, RUSSIA As the total and specific demand for in energy of

More information

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K.

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K. CHAPTER 2 - FIRST LAW OF THERMODYNAMICS 1. At the inlet to a certain nozzle the enthalpy of fluid passing is 2800 kj/kg, and the velocity is 50 m/s. At the discharge end the enthalpy is 2600 kj/kg. The

More information

Thermodynamics of. Turbomachinery. Fluid Mechanics and. Sixth Edition. S. L. Dixon, B. Eng., Ph.D. University of Liverpool, C. A. Hall, Ph.D.

Thermodynamics of. Turbomachinery. Fluid Mechanics and. Sixth Edition. S. L. Dixon, B. Eng., Ph.D. University of Liverpool, C. A. Hall, Ph.D. Fluid Mechanics and Thermodynamics of Turbomachinery Sixth Edition S. L. Dixon, B. Eng., Ph.D. Honorary Senior Fellow, Department of Engineering, University of Liverpool, UK C. A. Hall, Ph.D. University

More information

IMPROVING STEAM TURBINE EFFICIENCY: AN APPRAISAL

IMPROVING STEAM TURBINE EFFICIENCY: AN APPRAISAL RESEARCH JOURNAL OF MECHANICAL OPERATIONS An International Open Free Access, Peer Reviewed Research Journal ISSN: 0184 7937; 2018, Volume 1, No. (1): Page (s) 24-30 IMPROVING STEAM TURBINE EFFICIENCY:

More information

Combined Cycle Power Plants. Combined Cycle Power Plant Overview (Single- and Multi-Shaft) Training Module. ALSTOM (Switzerland) Ltd )*+,

Combined Cycle Power Plants. Combined Cycle Power Plant Overview (Single- and Multi-Shaft) Training Module. ALSTOM (Switzerland) Ltd )*+, Power Plant Overview Training Module ALSTOM (Switzerland) Ltd )*+, We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without

More information

Computational Fluid Dynamics Technology Applied to High Performance, Reliable Axial Compressors for Power Generation Gas Turbines

Computational Fluid Dynamics Technology Applied to High Performance, Reliable Axial Compressors for Power Generation Gas Turbines Mitsubishi Heavy Industries Technical Review Vol. 52 No. 1 (March 2015) 1 Computational Fluid Dynamics Technology Applied to High Performance, Reliable Axial Compressors for Power Generation Gas Turbines

More information

Engineering Thermodynamics

Engineering Thermodynamics Unit 61: Engineering Thermodynamics Unit code: D/601/1410 QCF level: 5 Credit value: 15 Aim This unit will extend learners knowledge of heat and work transfer. It will develop learners understanding of

More information

Mark-II and Mark-IIE Turbo-Meters

Mark-II and Mark-IIE Turbo-Meters Mark-II and Mark-IIE Turbo-Meters OIML SPECIFICATIONS OIML 1070 Metric Rev. 1 Mark-II and Mark-IIE Turbo-Meters are true axial flow turbine meters. The entire gas flow is directed through an annular area

More information

Aircraft Gas Turbine Engines

Aircraft Gas Turbine Engines Unit 83: Aircraft Gas Turbine Engines Unit code: QCF Level 3: Credit value: 10 Guided learning hours: 60 Aim and purpose J/600/7271 BTEC Nationals This unit will give learners an understanding of the scientific

More information

Design Optimisation of the Graz Cycle Prototype Plant

Design Optimisation of the Graz Cycle Prototype Plant Institute for Thermal Turbomaschinery and Machine Dynamics Graz University of Technology Erzherzog-Johann-University Design Optimisation of the Graz Cycle Prototype Plant Presentation at the ASME Turbo

More information

Chapter Two. The Rankine cycle. Prepared by Dr. Shatha Ammourah

Chapter Two. The Rankine cycle. Prepared by Dr. Shatha Ammourah Chapter Two The Rankine cycle Prepared by Dr. Shatha Ammourah 1 The Ideal Rankine Cycle Schematic Diagram of ideal simple Rankine 2 Superheater Economizer line 3 Heat Addition Types In The Steam Generator

More information

Principles of. Turbomachinery. Seppo A. Korpela. The Ohio State University WILEY A JOHN WILEY & SONS, INC., PUBLICATION

Principles of. Turbomachinery. Seppo A. Korpela. The Ohio State University WILEY A JOHN WILEY & SONS, INC., PUBLICATION Principles of Turbomachinery Seppo A. Korpela The Ohio State University WILEY A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Foreword xiii Acknowledgments xv 1 Introduction 1 1.1 Energy and fluid machines

More information

2. TECHNICAL DESCRIPTION OF THE PROJECT

2. TECHNICAL DESCRIPTION OF THE PROJECT 2. TECHNICAL DESCRIPTION OF THE PROJECT 2.1. What is a Combined Cycle Gas Turbine (CCGT) Plant? A CCGT power plant uses a cycle configuration of gas turbines, heat recovery steam generators (HRSGs) and

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 MECHANICAL ENGINEERING ASSIGNMENT Course Name : THERMAL ENGINEERING II Course Code : A50518 Class : III B. Tech I Semester

More information

Chapter 3.7: Cooling Towers

Chapter 3.7: Cooling Towers Part-I: Objective type questions and answers Chapter 3.7: Cooling Towers 1. The type of cooling towers with maximum heat transfer between air to water is. a) Natural draft b) Mechanical draft c) Both a

More information

Radial Inflow Gas Turbine Flow Path Design

Radial Inflow Gas Turbine Flow Path Design International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn : 2278-800X, www.ijerd.com Volume 5, Issue 9 (January 2013), PP. 41-45 Radial Inflow Gas Turbine Flow Path Design

More information

Dye Penetrant Inspection Technique of Turbine Rotating Component

Dye Penetrant Inspection Technique of Turbine Rotating Component Dye Penetrant Inspection Technique of Turbine Rotating Component Alexander Nana Kwesi Agyenim-Boateng 1, Edward Kumi Diawuo 2, Psalmiel Nana Nti Agyei 3 1 Research Scientist, National Nuclear Research

More information

Turbo machinery Aerodynamics Prof: Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Turbo machinery Aerodynamics Prof: Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Turbo machinery Aerodynamics Prof: Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Lecture No. # 29 Turbine Blade Design: Turbine Profiles, Airfoil

More information

A turbine based domestic micro ORC system

A turbine based domestic micro ORC system A turbine based domestic micro ORC system Piotr Klonowicz, Łukasz Witanowski, Łukasz Jędrzejewski, Tomasz Suchocki, Piotr Lampart The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences

More information

FINAL Examination Paper (COVER PAGE) Programme : Diploma in Mechanical Engineering. Time : 8.00 am am Reading Time : 10 Minutes

FINAL Examination Paper (COVER PAGE) Programme : Diploma in Mechanical Engineering. Time : 8.00 am am Reading Time : 10 Minutes Session : May 2013 FINAL Examination Paper (COVER PAGE) Programme : Diploma in Mechanical Engineering Course : EGR2180 : FLUIDS MECHANICS 2 Date of Examination : July 25, 2013 Time : 8.00 am 10.10 am Reading

More information

Radial Turbine Preliminary Design and Modelling

Radial Turbine Preliminary Design and Modelling Radial Turbine Preliminary Design and Modelling Shadreck M. Situmbeko University of Botswana, Gaborone, Botswana; University of KwaZulu-Natal, Durban, RSA; Freddie L. Inambao University of KwaZulu-Natal,

More information

Secondary Systems: Steam System

Secondary Systems: Steam System Secondary Systems: Steam System K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 10 Table of Contents 1 SECONDARY SYSTEM

More information

ORCHID Turbine. Fluid-dynamic design and characterization of a mini-orc turbine for laboratory experiments

ORCHID Turbine. Fluid-dynamic design and characterization of a mini-orc turbine for laboratory experiments Prof. ORCHID Turbine Fluid-dynamic design and characterization of a mini-orc turbine for laboratory experiments M. Pini, C. De Servi, M. Burigana, S. Bahamonde, A. Rubino, S. Vitale, P. Colonna ORC2017-14/09/2017

More information

NUCLEAR TRAINING CENTRE COURSE 134 FOR ONTARIO HYDRO USE ONLY

NUCLEAR TRAINING CENTRE COURSE 134 FOR ONTARIO HYDRO USE ONLY NUCLEAR TRAINING CENTRE COURSE 134 FOR ONTARIO HYDRO USE ONLY NUCLEAR TRAINING COURSE COURSE 134 1 - Level 3 - Equipment & System Principles 4 - TURBINE, GENERATOR & AUXILIARIES Index 134.00-0 Objectives

More information

Design considerations on a small scale supercritical CO 2 power system for industrial high temperature waste heat to power recovery applications

Design considerations on a small scale supercritical CO 2 power system for industrial high temperature waste heat to power recovery applications on Supercritical CO 2 (sco 2 ) Power Systems Design considerations on a small scale supercritical CO 2 power system for industrial high temperature waste heat to power recovery applications, S. A. Tassou,

More information

Heat recovery from diesel engines and gas turbines

Heat recovery from diesel engines and gas turbines Environmentally friendly For high temperature applications, AQYLON s organic working fluids have a very low Global Warming Potential (3-20). Rugged AQYLON s ORC modules are designed for durability and

More information

Your partner for the right solution

Your partner for the right solution Your partner for the right solution Project engineering of power stations Environment protection in energy sector Equipment supplying Supervision of installation of the equipment supplied Commissioning

More information

Testing of a 1 kw-class Cryogenic Turboalternator

Testing of a 1 kw-class Cryogenic Turboalternator 426 Brayton Cryocooler Developments 1 Testing of a 1 kw-class Cryogenic Turboalternator D. Deserranno, A. Niblick, M. Zagarola Creare Hanover, NH 03755, USA ABSTRACT Future NASA missions will require hydrogen

More information

MLNG DUA DEBOTTLENECKING PROJECT

MLNG DUA DEBOTTLENECKING PROJECT MLNG DUA DEBOTTLENECKING PROJECT Yahya Ibrahim Senior General Manager Malaysia LNG Malaysia yahyai@petronas.com.my Tariq Shukri LNG Consultant Foster Wheeler Energy Limited Reading, U.K. Tariq_shukri@fwuk.fwc.com

More information

A RATIONAL APPROACH TO EVALUATE A STEAM TURBINE ROTOR GRABBING AND LOCKING EVENT

A RATIONAL APPROACH TO EVALUATE A STEAM TURBINE ROTOR GRABBING AND LOCKING EVENT Proceedings of PVP2007 2007 ASME Pressure Vessels and Piping Division Conference July 22-26, 2007, San Antonio, Texas PVP2007-26598 Proceedings of PVP2007 2007 ASME Pressure Vessels and Piping Division

More information

η P/ρ/ρg Then substituting for P and rearranging gives For a pump

η P/ρ/ρg Then substituting for P and rearranging gives For a pump Benha University College of Engineering at Benha Department of Mechanical Eng. Subject : Turbo machine Date20/5/2013 Model Answer of the Final Exam Elaborated by: Dr. Mohamed Elsharnoby المادة : أالت تربينية

More information

By: Mr. Sujit Chakravarty and Ms. Tanusree Chakravarty Mukherjee

By: Mr. Sujit Chakravarty and Ms. Tanusree Chakravarty Mukherjee By: Mr. Sujit Chakravarty and Ms. Tanusree Chakravarty Mukherjee Oil & Gas Industries are facing challenges due to economic downturn. Energy Market is shifting more towards eco friendly sources of energy.

More information

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Copyright The McGraw-Hill Companies, Inc.

More information

Development of 3,600-rpm 50-inch/3,000-rpm 60-inch Ultra-long Exhaust End Blades

Development of 3,600-rpm 50-inch/3,000-rpm 60-inch Ultra-long Exhaust End Blades 18 Development of 3,600-rpm 50-inch/3,000-rpm 60-inch Ultra-long Exhaust End Blades HISASHI FUKUDA HIROHARU OHYAMA TOSHIHIRO MIYAWAKI KAZUSHI MORI YOSHIKUNI KADOYA YUICHI HIRAKAWA Mitsubishi Heavy Industries,

More information

REACTOR TECHNOLOGY DEVELOPMENT UNDER THE HTTR PROJECT

REACTOR TECHNOLOGY DEVELOPMENT UNDER THE HTTR PROJECT REACTOR TECHNOLOGY DEVELOPMENT UNDER THE HTTR PROJECT Takakazu TAKIZUKA Japan Atomic Energy Research Institute The 1st COE-INES International Symposium, INES-1 October 31 November 4, 2004 Keio Plaza Hotel,

More information

(12) (10) Patent No.: US 7,331,757 B2. Janssen et al. (45) Date of Patent: Feb. 19, 2008

(12) (10) Patent No.: US 7,331,757 B2. Janssen et al. (45) Date of Patent: Feb. 19, 2008 United States Patent USOO733177B2 (12) () Patent No.: Janssen et al. () Date of Patent: Feb. 19, 2008 (4) TURBINE SHAFT AND PRODUCTION OF A,7,797 A 4/199 Marliere et al. TURBINE SHAFT.487,082 A * 1/1996

More information

Performance Evaluation Of Gas Turbine By Reducing The Inlet Air Temperature

Performance Evaluation Of Gas Turbine By Reducing The Inlet Air Temperature International Journal of Technology Enhancements and Emerging Engineering Research, VOL 1, ISSUE 1 20 Performance Evaluation Of Gas Turbine By Reducing The Inlet Air Temperature V. Gopinath 1, G. Navaneethakrishnan

More information

THE GEOTHERMAL POWER PLANT AT SANJACINTO-TIZATE

THE GEOTHERMAL POWER PLANT AT SANJACINTO-TIZATE 2 New Zealand Workshop THE GEOTHERMAL POWER PLANT AT SANJACINTO-TIZATE 'Geoterm SC, Moscow, 111250Russia SC Kaluga Turbine Plant KTZ), Kaluga, Russia 2 The Nicaraguan-Russian held company INTERGEOTERM

More information

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET 1. A vessel of volume 0.04m 3 contains a mixture of saturated water and steam at a temperature of 250 0 C. The mass of the liquid present is 9 kg. Find the pressure, mass, specific volume, enthalpy, entropy

More information

Design analysis of Tesla micro-turbine operating on a low-boiling medium

Design analysis of Tesla micro-turbine operating on a low-boiling medium Design analysis of Tesla micro-turbine operating on a low-boiling medium Piotr Lampart, Krzysztof Kosowski, Marian Piwowarski, Łukasz Jędrzejewski POLISH MARITIME RESEARCH, Special issue 2009/S1; pp. 28-33

More information

Trial Operation Results of Steam Cooled M501H Type Gas Turbine

Trial Operation Results of Steam Cooled M501H Type Gas Turbine Trial Operation Results of Steam Cooled M501H Type Gas Turbine 85 Keizo Tsukagoshi Atsushi Maekawa Eisaku Ito Yoshinori Hyakutake Yutaka Kawata The H series gas turbine is a high efficiency and high power

More information

Jawaharlal Nehru Engineering College

Jawaharlal Nehru Engineering College MGM s Jawaharlal Nehru Engineering College Laboratory Manual ELECTRICAL POWER GENERATION & Its ECONOMICs. For Second Year (EEP) Students Manual made by Prof. T.S.JADHAV Ó Author JNEC, Aurangabad. FORWARD

More information

ANALYSIS OF COOLING TECHNIQUES OF A GAS TURBINE BLADE

ANALYSIS OF COOLING TECHNIQUES OF A GAS TURBINE BLADE ANALYSIS OF COOLING TECHNIQUES OF A GAS TURBINE BLADE G. Anil Kumar 1, Dr. I.N. Niranjan Kumar 2, Dr. V. Nagabhushana Rao 3 1 M.Tech Marine Engineering and Mechanical Handling, Andhra University College

More information

Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008

Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES SUMMARY 1 CONSERVATION OF MASS Conservation

More information