Nature Neuroscience: doi: /nn Supplementary Figure 1

Size: px
Start display at page:

Download "Nature Neuroscience: doi: /nn Supplementary Figure 1"

Transcription

1 Supplementary Figure 1 Nanoscale localization precision and relative quantification of CB 1 receptors by 3D-STORM imaging (a) Schematic representation of the experimental paradigm for combined confocal/storm imaging in HEK cells. Intrinsic fluorescence intensity of EGFP linked to the extracellular N-terminus of CB 1 receptors was measured by confocal microscopy. The same CB 1 proteins were immunolabeled by an antibody raised against the intracellular C-terminus, and subsequently by a secondary antibody tagged with an activator-reporter dye pair Cy3-A647, which was detected by STORM microscopy. (b) Confocal image of a representative HEK cell reveals CB 1 receptor accumulation within the plasma membrane. (c) At lower magnification, STORM superresolution image of the same HEK cell depicts a similar subcellular CB 1 localization pattern as confocal imaging. (d) To study whether the Number of Localization Points (NLP) obtained by STORM imaging and measured in a given anatomical profile reliably predicts relative protein quantity, randomly selected HEK cells (n = 46) expressing an EGFP-CB 1 fusion construct at various expression levels were imaged by both confocal and STORM microscopy. Intrinsic EGFP fluorescence intensity (FI) values were measured by confocal microscopy and determined by subtracting mean background level (assessed from 3-3 Regions of Interest (ROIs), located in the extracellular blank regions (n=138) from every image) from the mean pixel intensity. These values are plotted against the number of localization points (NLP) obtained by STORM microscopy in each imaged cell. The strong positive linear correlation between the two imaging readouts confirms that NLP values reliably predict relative protein quantity (n = 46 cells, Spearman s rank order correlation, p < 0.001). (e) The high magnification confocal image of the boxed plasma membrane segment in b illustrates the diffraction-limited blurred nature of the EGFP fluorescence signal. (f) In contrast, at higher magnification, the nanoscale localization precision of fluorophores representing CB 1 receptors by STORM imaging results in crisp visualization of the same boxed plasma membrane segment compared to the confocal image shown in e. As determined from the same images, the high resolution of the STORM image was the consequence of a fluorophore localization precision of 5 nm in the lateral (x-y), and 32 nm in the axial (z) dimensions (measured as the standard deviation of localization distribution).

2 Supplementary Figure 2 Quantitative evaluation of the quality of STORM imaging in brain sections (a-c) Localization precision displayed only a modest variation (1 nm or 5 nm at x-y or z directions, respectively) as a function of axial position ie. at different z distances from the focal plane. Clusters resulting from the multiple blinking of isolated fluorophores in the STORM images of CB 1-immunostaining were identified, and the distribution of the distances of individual localization points from the center of mass of the clusters was plotted. (d) Histogram shows the distribution of the number of detected photons per localization point (n = 1341 LP) above the peak detection threshold in STORM images of cycles taken from CB 1-immunostaining in hippocampal sections at 5 µm depth.

3 Supplementary Figure 3 Comparative analysis of the passive and active electrophysiological properties of regular-spiking CB 1-positive perisomatic and dendritic interneurons in the CA1 subfield of the mouse hippocampus (a-e) Whole-cell patch-clamp recordings from multipolar interneurons which were post-hoc classified as either perisomatic or dendritic interneurons based on their axonal distribution and their corresponding BDI value. Electrophysiological characterization reveals that these GABAergic interneuron types do not differ in their resting membrane potential (p = 0.19, t(30) = 1.34 summarized in a), input resistance (p = 0.17, t(30) = 1.4) (b), relative sag amplitude (p = 0.24, U = 94.5) (c), rebound potential (p = 0.25, U = 89) (d), and action potential amplitude (p = 0.15, t(30) = 1.47) (e). (f-h) However, dendritic interneurons fire faster action potentials (p = , U = 48.5) (f), show a more marked afterhyperpolarization (p = 0.037, t(30) = 2.18) (g), and exhibit more adaptation of firing upon current injection (p = 0.013, t(30) = 2.63)) (h). Statistical comparisons of 14 perisomatic and 18 dendritic cells were performed by unpaired two-sided t-test (a,b,e,g,h) or by Mann-Whitney U test (c,d,f). Graphs show raw data and median±iqr. The measured data for each cell and for each parameter are presented in Supplementary Table.

4 Supplementary Figure 4 The quantitative power of CB 1-immunostaining and subsequent STORM imaging is robust to various experimental conditions (a) Electrophysiological recordings from acute hippocampal slices, tissue processing and immunostaining were carried out in parallel in two different laboratories in Irvine, CA, USA and in Budapest, Hungary. Undertaking all STORM imaging on the same setup in the latter laboratory resulted in similar normalized distribution of the number of CB 1 localization points per boutons, as demonstrated in the cumulative probability plot showing the NLP values per bouton, normalized for the cell mean. Statistical analysis was done by Kolmogorov-Smirnov test, p > 0.05, n = 150 and n = 279 boutons from n = 7 and n = 6 basket cells filled and processed in Irvine and Budapest, respectively, were used in the experiment. (b) Immunostaining with two independent primary antibodies raised either in a guinea-pig 52, or a transgenic (Tg) rabbit that overexpress the neonatal Fc receptor (FcRn) and have improved humoral immune responses 58, and with the two corresponding secondary antibodies custom-labeled with fluorophore pairs for STORM imaging, resulted in similar normalized distribution of the number of CB 1 localization points per bouton (n = 279 and n = 302 boutons from n = 6 6 basket cells stained with anti-cb 1 antibody produced in guinea-pig and rabbit, respectively, Kolmogorov-Smirnov test, p > 0.1). (c-d) Wholecell patch-clamp recordings and biocytin-filling did not affect bouton size or CB 1 NLP. Biocytin-filled boutons, and an equal number of neighboring biocytin-negative, randomly chosen boutons were selected from the same images for analysis. The size of the boutons was determined by using the CB 1 STORM signal outlining the terminals. No significant differences were found in the number of CB 1 localization points, or in the size of boutons with or without biocytin-labeling (n = axon terminals, Mann-Whitney U test, p = 0.20, U = and p = 0.31, U = 29232, respectively). Graphs show raw data and median±iqr.

5 Supplementary Figure 5 Comparative morphological analysis of the axon terminals of CB 1-positive perisomatic and dendritic interneurons (a-c) Deconvolved confocal images of n = 279 and n = 334 biocytin-filled boutons from n = 6 perisomatic and n = 6 dendritic cells, respectively, were analyzed for their shape descriptors. (a) Circularity describes how close the relation between the area and perimeter of the bouton shape is to that of a perfect circle. (b) Aspect ratio reflects the degree of elongation. (c) Solidity measures the area of the shape divided by its convex area, thereby describing convexity and smoothness of edges of the bouton shape. No significant differences are detected between cell types in either the circularity (p = 0.82, U = 16), aspect ratio (p = 0.70, U = 15), or solidity (p = 0.94, U = 17) of their boutons (Mann-Whitney U test). Graphs show raw data and median±iqr.

6 Supplementary Figure 6 CB 1 density distribution on axon terminals of identified interneurons can be reliably determined under the specific imaging conditions used throughout the study (a) To assess whether the local density of STORM labeling on axon terminals is within the dynamic range of the measurement, ROIs (30 by 30 confocal pixels each; pixel size= µm 2 ) were placed on the plasma membrane of HEK cells and biocytin-filled axon terminals to measure labeling density. Comparison of the labeling density did not reveal significant difference between boutons of perisomatic and dendritic interneurons (n = 6 cells/cell type, Mann-Whitney U test, p = 0.59, U = 14), and the vast majority of boutons fell within the range defined by the two HEK cells with the highest and lowest expression levels. Graphs show raw data and median±iqr. (b) The NLP values of boutons were averaged for each interneuron, and the mean±sd range of NLP density for interneurons was determined. This range well represents the STORM CB 1 labeling density found on GABAergic axon terminals, as it includes 10 of the 12 interneurons. HEK cells (n = 20) within this range show highly linear positive correlation between intrinsic fluorescence intensity and NLP (Spearman s rank order correlation, p < ). (c) The distribution of local densities (neighboring localizations within 50 nm 3D distance from each localization point) on the boutons from (a) shows a heavy right tail indicating that the signal is not likely to be saturated. (d) The different size of perisomatic and dendritic boutons is evident regardless of the duration of the imaging. Using the same data set as in Figure 3, the perimeter of a 2D-convex hull fitted on the localization points detected before the given period of imaging was measured, and was plotted as the ratio of the perimeter of dendritic axon terminals over perisomatic boutons (median±iqr of the mean values of 6 cells per cell type is shown). The difference was significant at every time point after 250 cycles (n = 6 cells/cell type, Mann-Whitney U test, p = 0.015, U = 3). (e) Similarly, the finding that axon terminals of dendritic cells had less CB 1 receptors than perisomatic boutons was also independent of the imaging duration after 350 cycles, as the difference was significant at every time point afterwards (n = 6 cells/cell type, Mann-Whitney U test, p = 0.041, U = 5). The same approach was used to compare the number of CB 1 localization points per bouton between interneuron types. (f) The variance of nearest-neighbor distances between CB 1 localization points within boutons was constant in both cell types after 400 cycles into imaging, indicating that running the imaging for up to 1000 cycles for each image provides reliable measurement of CB 1 distribution within GABAergic axon terminals.

7 Supplementary Figure 7 Layer-specific electron microscopic analysis of CB 1-containing GABAergic axon terminals (a,b) To test whether quantitative information collected by 3D-STORM microscopy is comparable with data acquired by other wellestablished quantitative anatomical approaches, hippocampal sections were processed for immunogold labeling of CB 1 receptors and analyzed by transmission electron microscopy (TEM). Random cross-sections of CB 1-positive GABAergic boutons were selected from the stratum pyramidale and stratum radiatum of the CA1 subfield. The presumed GABAergic nature of an axon terminal was established by the presence of symmetrical synapses (arrowheads). Note that the vast majority of silver-intensified gold particles representing CB 1 receptors are attached to the intracellular surface of the plasma membrane of axon terminals. (c,d) CB 1-positive boutons found in the pyramidal layer are significantly larger (n = 3 animals, 100 boutons per layer per animal, paired two-sided t-test, p = 0.025, t(2) = 6.26 and p = 0.033, t(2) = 5.33 for area and perimeter, respectively). (g) In addition, the number of gold particles (NGP) on the plasma membrane of these perisomatic axon terminals is considerably higher than on boutons observed in the stratum radiatum (paired two-sided t-test, p = 0.036, t(2) = 5.13). (h) In contrast, the density of gold particles was not significantly different on boutons located in the two hippocampal layers (paired two-sided t-test, p = 0.064, t(2) = 3.76). These observations obtained at the synaptic population level are in general agreement with the cell-type-specific findings obtained by STORM imaging (see Figure 4). Graphs show raw data and median±iqr.

8 Supplementary Figure 8 Visualization of the localization coordinates of the STORM signal by 3D rendering and calculation of membrane surface distances (a) Analysis of nanoscale distribution of STORM data was carried out using the x, y and z coordinates of each individual localization point. Their 3D positions are illustrated as atoms in Visual Molecular Dynamics. (b) First, a convex hull was fitted on the localization points, giving an approximation of the structure surface. Note that single-molecule localization-microscopy gives a more precise estimate of structural dimensions than electron microscopy 22, which underestimates these parameters due to anisotropic shrinkage during tissue dehydration, as well as compared to confocal microscopy, which overestimates size due to light diffraction 25. Indeed, the average bouton size based on the cross-sectional area of the polyhedrons of perisomatic and dendritic terminals are 1.33±0.04 µm 2 and 0.97±0.03 µm 2, respectively (mean±sem), when measured by 3D-STORM microscopy. These values fall in between the range of electron microscopic (0.29±0.01 µm 2 and 0.22±0.01 µm 2 ); and confocal measurements (1.65±0.04 µm 2 and 1.20±0.03 µm 2 ). These data independently indicate that the convex hull approach resulted in a realistic representation of the imaged part of the bouton. This feature has previously been an exclusive advantage of the laborious serial reconstruction of electron micrographs. (c) Secondly, the distance of each localization point from the convex hull was measured, and only localizations within 80 nm from the surface were included in further analysis. This approach could also be utilized to measure the proportion of membrane-attached localization points and those which are likely intracellular receptors. These subcellularly segregated receptor populations presumably represent functionally different receptor pools, hence it is important to distinguish between them, when quantifying receptor distribution or pathological redistribution in a cell-type-specific manner. (d) Finally, the distance of each localization point from the active zone was measured as the shortest route on the polyhedron surface.

9 Supplementary Figure 9 Validation of the hull surface distance calculations and density measurements on model boutons (a) To measure the sensitivity of the local density analysis on the polyhedron surface, a simulation of homogeneous and artificially enriched receptor distribution was conducted. CB 1 localization points were randomly placed on model bouton comprising a sphere of 1000 nm radius, excluding a 230 nm radius area of the surface as the active zone. A convex hull was fitted onto these points. (b-c) To model different levels of potential perisynaptic enrichment, an increasing number of localization points were placed in random positions of the surface within a 250 nm radius of the active zone. (d) To measure localization point density on the surface, reference points were also placed at 40 nm spacing over the entire sphere, excluding the active zone. CB 1 density, defined as the number of localization points within 200 nm distance of each reference point, was determined along with the distance from the edge of the active zone measured on the hull surface. The entire process was repeated 50 times for each enrichment condition. Finally, reference points per individual boutons were binned based on the distance from the synapse and averaged by bin. Altogether 50 mean values per bin per condition were used for generating graphs (median±iqr) and calculating p values using unpaired two-sided t-tests to compare perisynaptic and extrasynaptic regions. The difference between the nm and the nm bins is already significant at 20% (p < ), but not at 10% enrichment (p = 0.84). The graph for 1000% is not shown for sake of clarity, but was also highly significant (p < ).

10 Supplementary Figure 10 Combination of in vivo single neuron recording in a behaving mouse with post-hoc anatomical characterization and molecular imaging at the nanoscale (a) Example traces from juxtacellular recording of a CA1 interneuron in an anesthesia-free mouse running on a spherical treadmill. A 1 sec-long recording, filtered for local field potential, and, spikes, and the raw trace are shown below each other, respectively. (b) After the recording, the cell was filled with neurobiotin. Morphological analysis of the labeled neuron was performed by confocal microscopy. Part of the axonal arbor (red), as well as its soma and some dendrites (blue), were reconstructed from four consecutive 20 µm thick sections by Neurolucida. (c) Laminar distribution analysis of more than 3000 axonal varicosities recovered from 14 serial sections classifies this cell as a dendritic interneuron (BDI < 0.5). (d) Maximum intensity projection of a deconvolved confocal image stack of individual axon terminals from the same in vivo recorded interneuron. (e) CB 1-immunolabeling on these identified axon terminals is visualized by overlaying the corresponding confocal and STORM images. (f) Magnification of the boxed region of the STORM image in e illustrates the intraterminal distribution of CB 1 localization points at the nanoscale level and reveals a qualitatively similar pattern as that observed in the case of in vitro-labeled interneurons in Figure 3. (g) Cumulative probability plots of normalized CB 1 NLP found on individual terminals of in vivo- or in vitro-filled dendritic interneurons. The distribution of data obtained from the two experimental preparations were identical (Kolmogorov-Smirnov test, p > 0.1). Data were collected from single CB 1 STORM imaging of 129 boutons from one in vivo, and of 141 boutons from 5 in vitro-filled cells and were normalized to the mean NLP value of the respective cell. (h) The variance of CB 1 nearest neighbor distances is also comparable under the different experimental conditions indicating similar CB 1 distribution at the nanoscale level in boutons of in vivo- or in vitro-filled dendritic interneurons (Kolmogorov-Smirnov test, p > 0.1). (i) In line with the in vitro findings, at the single bouton level, the number of CB 1 localization points correlates linearly with bouton size (n = 129 axon terminals, Spearman s rank order correlation, p < 0.001). The experiment was performed on a single in vivo neurobiotin-filled

11 neuron.

Nature Neuroscience: doi: /nn Supplementary Figure 1

Nature Neuroscience: doi: /nn Supplementary Figure 1 Supplementary Figure 1 PCR-genotyping of the three mouse models used in this study and controls for behavioral experiments after semi-chronic Pten inhibition. a-c. DNA from App/Psen1 (a), Pten tg (b) and

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES Supplementary Figure S1. Generation of a synaptobrevin2-mrfp knock-in mouse. (a) Targeting strategy of Syb2-mRFP knock-in mouse leaving the synaptobrevin2 gene locus intact except

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Comprehensive opto-mechanical design of the dual-axis microscope.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Comprehensive opto-mechanical design of the dual-axis microscope. Supplementary Figure 1 Comprehensive opto-mechanical design of the dual-axis microscope. (a) The complete microscope is shown to scale. The laser beam is depicted in light red. (b) A close-up view of the

More information

Supplemental figures (1-9) Gu et al. ADF/Cofilin-Mediated Actin Dynamics Regulate AMPA Receptor Trafficking during Synaptic Plasticity

Supplemental figures (1-9) Gu et al. ADF/Cofilin-Mediated Actin Dynamics Regulate AMPA Receptor Trafficking during Synaptic Plasticity Supplemental figures (1-9) Gu et al. ADF/Cofilin-Mediated Actin Dynamics Regulate AMPA Receptor Trafficking during Synaptic Plasticity Supplemental figure 1. The quantification method to determine the

More information

Supplementary Figure 1. Serial deletion mutants of BLITz.

Supplementary Figure 1. Serial deletion mutants of BLITz. Supplementary Figure 1 Serial deletion mutants of BLITz. (a) Design of TEVseq insertion into J -helix. C-terminal end of J -helix was serially deleted and replaced by TEVseq. TEV cleavage site is labeled

More information

Supplementary Figure 1. Screening for monoclonal antibodies against GluA1 by immunoblotting.

Supplementary Figure 1. Screening for monoclonal antibodies against GluA1 by immunoblotting. Supplementary Figure 1 Screening for monoclonal antibodies against GluA1 by immunoblotting. Hippocampal extract was subjected to western blotting with the hybridoma supernatants of candidate monoclonal

More information

Long-term dynamics of CA1 hippocampal place codes

Long-term dynamics of CA1 hippocampal place codes Long-term dynamics of CA1 hippocampal place codes Yaniv Ziv, Laurie D. Burns, Eric D. Cocker, Elizabeth O. Hamel, Kunal K. Ghosh, Lacey J. Kitch, Abbas El Gamal, and Mark J. Schnitzer Supplementary Fig.

More information

Cell position. Edge. Core Mean Std. Deviation

Cell position. Edge. Core Mean Std. Deviation Diameter (um) 20 *** 15 10 5 0 Edge Cell position Core Mean Std. Deviation Edge 10.69 2.664 Core 12.61 2.632 Supplementary Figure S1: Measuring cell diameter. Cell diameters were obtained by ImageJ using

More information

Stargazin regulates AMPA receptor trafficking through adaptor protein. complexes during long term depression

Stargazin regulates AMPA receptor trafficking through adaptor protein. complexes during long term depression Supplementary Information Stargazin regulates AMPA receptor trafficking through adaptor protein complexes during long term depression Shinji Matsuda, Wataru Kakegawa, Timotheus Budisantoso, Toshihiro Nomura,

More information

T H E J O U R N A L O F C E L L B I O L O G Y

T H E J O U R N A L O F C E L L B I O L O G Y Supplemental material Moutin et al., http://www.jcb.org/cgi/content/full/jcb.201110101/dc1 T H E J O U R N A L O F C E L L B I O L O G Y Figure S1. Tagged Homer1a and Homer are functional and display different

More information

Supplementary Figure 1: Expression of RNF8, HERC2 and NEURL4 in the cerebellum and knockdown of RNF8 by RNAi (a) Lysates of the cerebellum from rat

Supplementary Figure 1: Expression of RNF8, HERC2 and NEURL4 in the cerebellum and knockdown of RNF8 by RNAi (a) Lysates of the cerebellum from rat Supplementary Figure 1: Expression of RNF8, HERC2 and NEURL4 in the cerebellum and knockdown of RNF8 by RNAi (a) Lysates of the cerebellum from rat pups at P6, P14, P22, P30 and adult (A) rats were subjected

More information

Fast, three-dimensional super-resolution imaging of live cells

Fast, three-dimensional super-resolution imaging of live cells Nature Methods Fast, three-dimensional super-resolution imaging of live cells Sara A Jones, Sang-Hee Shim, Jiang He & Xiaowei Zhuang Supplementary Figure 1 Supplementary Figure 2 Supplementary Figure 3

More information

Genetically targeted all-optical electrophysiology with a transgenic Credependent

Genetically targeted all-optical electrophysiology with a transgenic Credependent Genetically targeted all-optical electrophysiology with a transgenic Credependent Optopatch mouse Short title: Transgenic Optopatch mouse Shan Lou 1, Yoav Adam 1, Eli N. Weinstein 1,4, Erika Williams 2,

More information

Figure legends for supplement

Figure legends for supplement Figure legends for supplement Supplemental Figure 1 Characterization of purified and recombinant proteins Relevant fractions related the final stage of the purification protocol(bingham et al., 1998; Toba

More information

T H E J O U R N A L O F C E L L B I O L O G Y

T H E J O U R N A L O F C E L L B I O L O G Y T H E J O U R N A L O F C E L L B I O L O G Y Supplemental material Kanaani et al., http://www.jcb.org/cgi/content/full/jcb.200912101/dc1 Figure S1. The K2 rabbit polyclonal antibody is specific for GAD67,

More information

Supplementary Information

Supplementary Information Supplementary Information Selective control of inhibitory synapse development by Slitrk3-PTPδ trans-synaptic interaction Hideto Takahashi 1, Kei-ichi Katayama 2, Kazuhiro Sohya 3,4, Hiroyuki Miyamoto 4,5,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10016 Supplementary discussion on binding site density for protein complexes on the surface: The density of biotin sites on the chip is ~10 3 biotin-peg per µm 2. The biotin sites are

More information

Visualizing mechanical tension across membrane receptors with a fluorescent sensor

Visualizing mechanical tension across membrane receptors with a fluorescent sensor Nature Methods Visualizing mechanical tension across membrane receptors with a fluorescent sensor Daniel R. Stabley, Carol Jurchenko, Stephen S. Marshall, Khalid S. Salaita Supplementary Figure 1 Fabrication

More information

Multiplexed 3D FRET imaging in deep tissue of live embryos Ming Zhao, Xiaoyang Wan, Yu Li, Weibin Zhou and Leilei Peng

Multiplexed 3D FRET imaging in deep tissue of live embryos Ming Zhao, Xiaoyang Wan, Yu Li, Weibin Zhou and Leilei Peng Scientific Reports Multiplexed 3D FRET imaging in deep tissue of live embryos Ming Zhao, Xiaoyang Wan, Yu Li, Weibin Zhou and Leilei Peng 1 Supplementary figures and notes Supplementary Figure S1 Volumetric

More information

Masayoshi Honda, Jeehae Park, Robert A. Pugh, Taekjip Ha, and Maria Spies

Masayoshi Honda, Jeehae Park, Robert A. Pugh, Taekjip Ha, and Maria Spies Molecular Cell, Volume 35 Supplemental Data Single-Molecule Analysis Reveals Differential Effect of ssdna-binding Proteins on DNA Translocation by XPD Helicase Masayoshi Honda, Jeehae Park, Robert A. Pugh,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature26159 Supplementary Notes Fluorescence-based single neuron reconstructions Supplementary Note 1: Abrupt terminations in GFP filled The mapping of axonal processes by fluorescence-based

More information

Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution

Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution SUPPLEMENTARY INFORMATION for Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution Yanjie Zhao 1,2, Tingting Yu 1,2, Chao Zhang 1,2, Zhao Li 1,2, Qingming Luo 1,2,

More information

Super Resolution Imaging Solution Provider. Imaging Future

Super Resolution Imaging Solution Provider. Imaging Future Super Resolution Imaging Solution Provider Imaging Future Imaging Solution More Than Equipment NanoBioImaging(NBI) is the Industrial Partner of HKUST Super Resolution Imaging Center (SRIC). NBI aims to

More information

Nature Immunology: doi: /ni Supplementary Figure 1

Nature Immunology: doi: /ni Supplementary Figure 1 Supplementary Figure 1 BALB/c LYVE1-deficient mice exhibited reduced lymphatic trafficking of all DC subsets after oxazolone-induced sensitization. (a) Schematic overview of the mouse skin oxazolone contact

More information

Supplementary Figure 1. APP cleavage assay. HEK293 cells were transfected with various

Supplementary Figure 1. APP cleavage assay. HEK293 cells were transfected with various Supplementary Figure 1. APP cleavage assay. HEK293 cells were transfected with various GST-tagged N-terminal truncated APP fragments including GST-APP full-length (FL), APP (123-695), APP (189-695), or

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Integrative Biology. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Table S1. Definition of quantitative cellular features

More information

* The Howard Hughes Medical Institute, The Salk Institute for

* The Howard Hughes Medical Institute, The Salk Institute for In: J. M. Bower, (Ed.) CornpuPational Neuroscience: Trends In Research 1985, Sen DIsga. G cedernfc Press, 53-58 ( 1896). COMPUTATIONAL MODELS CONSTRAINED BY VOLTAGE-CLAMP DATA FOR INVESTIGATING DENDRITIC

More information

Post-expansion antibody delivery, after epitope-preserving homogenization.

Post-expansion antibody delivery, after epitope-preserving homogenization. Supplementary Figure 1 Post-expansion antibody delivery, after epitope-preserving homogenization. (a, b) Wide-field fluorescence images of Thy1-YFP-expressing mouse brain hemisphere slice before expansion

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI:.38/ncb327 a b Sequence coverage (%) 4 3 2 IP: -GFP isoform IP: GFP IP: -GFP IP: GFP Sequence coverage (%) 4 3 2 IP: -GFP IP: GFP 33 52 58 isoform 2 33 49 47 IP: Control IP: Peptide Sequence Start

More information

Figures and figure supplements

Figures and figure supplements RESEARCH ARTICLE Figures and figure supplements Dendritic mitochondria reach stable positions during circuit development Michelle C Faits et al Faits et al. elife 2015;5:e11583. DOI: 10.7554/eLife.11583

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Figure 1. Mechanism for signal-induced opening of the DNA box. a, An atomic model of the DNA box held closed by locks (orange and blue) that are double helices formed by two short strands

More information

Brightfield and Fluorescence Imaging using 3D PrimeSurface Ultra-Low Attachment Microplates

Brightfield and Fluorescence Imaging using 3D PrimeSurface Ultra-Low Attachment Microplates A p p l i c a t i o n N o t e Brightfield and Fluorescence Imaging using 3D PrimeSurface Ultra-Low Attachment Microplates Brad Larson, BioTek Instruments, Inc., Winooski, VT USA Anju Dang, S-BIO, Hudson,

More information

Supplementary Figure 1. Pathologically phosphorylated Tau is localized to the presynaptic terminals of Alzheimer s disease (AD) patient brains.

Supplementary Figure 1. Pathologically phosphorylated Tau is localized to the presynaptic terminals of Alzheimer s disease (AD) patient brains. Supplementary Figure 1. Pathologically phosphorylated Tau is localized to the presynaptic terminals of Alzheimer s disease (AD) patient brains. Ultrathin (70 nm) sections of healthy control or AD patient

More information

Supplemental Information. A Versatile Tool for Live-Cell Imaging. and Super-Resolution Nanoscopy Studies. of HIV-1 Env Distribution and Mobility

Supplemental Information. A Versatile Tool for Live-Cell Imaging. and Super-Resolution Nanoscopy Studies. of HIV-1 Env Distribution and Mobility Cell Chemical Biology, Volume 24 Supplemental Information A Versatile Tool for Live-Cell Imaging and Super-Resolution Nanoscopy Studies of HIV-1 Env Distribution and Mobility Volkan Sakin, Janina Hanne,

More information

Methods of Characterizing Neural Networks

Methods of Characterizing Neural Networks Methods of Characterizing Neural Networks Ashley Nord University of Minnesota Minneapolis, MN 55414 Advisors: Katsushi Arisaka, Adrian Cheng University of California Los Angeles Los Angeles, CA 90024 September

More information

BIO 315 Lab Exam I. Section #: Name:

BIO 315 Lab Exam I. Section #: Name: Section #: Name: Also provide this information on the computer grid sheet given to you. (Section # in special code box) BIO 315 Lab Exam I 1. In labeling the parts of a standard compound light microscope

More information

Acoustically targeted chemogenetics for the non-invasive control of neural circuits

Acoustically targeted chemogenetics for the non-invasive control of neural circuits SUPPLEMENTARY INFORMATION Articles https://doi.org/10.1038/s41551-018-0258-2 In the format provided by the authors and unedited. Acoustically targeted chemogenetics for the non-invasive control of neural

More information

ab CFSE Fluorescent Cell Labeling Kit

ab CFSE Fluorescent Cell Labeling Kit ab113853 CFSE Fluorescent Cell Labeling Kit Instructions for Use For the durable fluorescent labeling of live cells for fluorescent microscopy and flow cytometry, population growth studies and within sample

More information

ab CFSE Fluorescent Cell Labeling Kit

ab CFSE Fluorescent Cell Labeling Kit ab113853 CFSE Fluorescent Cell Labeling Kit Instructions for Use For the durable fluorescent labeling of live cells for fluorescent microscopy and flow cytometry, population growth studies and within sample

More information

STORM/PALM. Super Resolution Microscopy 10/31/2011. Looking into microscopic world of life

STORM/PALM. Super Resolution Microscopy 10/31/2011. Looking into microscopic world of life Super Resolution Microscopy STORM/PALM Bo Huang Department of Pharmaceutical Chemistry, UCSF CSHL Quantitative Microscopy, 1/31/211 Looking into microscopic world of life 1 µm 1 µm 1 nm 1 nm 1 nm 1 Å Naked

More information

Panx2 expression modulates neuronal differentiation SUPPLEMENTAL DATA. Figure Legends

Panx2 expression modulates neuronal differentiation SUPPLEMENTAL DATA. Figure Legends Panx2 expression modulates neuronal differentiation SUPPLEMENTAL DATA Figure Legends Suppl. Fig. S1. Antigenic determinants of the Panx2 antibodies employed in this study. (A) Schematic of mouse Panx2

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/325/5941/756/dc1 Supporting Online Material for Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle Matthew E. Larkum,* Thomas

More information

Confocal Microscopy Analyzes Cells

Confocal Microscopy Analyzes Cells Choosing Filters for Fluorescence A Laurin Publication Photonic Solutions for Biotechnology and Medicine November 2002 Confocal Microscopy Analyzes Cells Reprinted from the November 2002 issue of Biophotonics

More information

Supplementary Materials for

Supplementary Materials for www.sciencemag.org/cgi/content/full/science.1245533/dc1 Supplementary Materials for A Mechanism for Reorientation of Cortical Microtubule Arrays Driven by Microtubule Severing Jelmer J. Lindeboom, Masayoshi

More information

Special Techniques 1. Mark Scott FILM Facility

Special Techniques 1. Mark Scott FILM Facility Special Techniques 1 Mark Scott FILM Facility SPECIAL TECHNIQUES Multi-photon microscopy Second Harmonic Generation FRAP FRET FLIM In-vivo imaging TWO-PHOTON MICROSCOPY Alternative to confocal and deconvolution

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. Retention of RNA with LabelX.

Nature Methods: doi: /nmeth Supplementary Figure 1. Retention of RNA with LabelX. Supplementary Figure 1 Retention of RNA with LabelX. (a) Epi-fluorescence image of single molecule FISH (smfish) against GAPDH on HeLa cells expanded without LabelX treatment. (b) Epi-fluorescence image

More information

Supporting Information

Supporting Information Supporting Information Stavru et al. 0.073/pnas.357840 SI Materials and Methods Immunofluorescence. For immunofluorescence, cells were fixed for 0 min in 4% (wt/vol) paraformaldehyde (Electron Microscopy

More information

JCB. Supplemental material THE JOURNAL OF CELL BIOLOGY. Prospéri et al.,

JCB. Supplemental material THE JOURNAL OF CELL BIOLOGY. Prospéri et al., Supplemental material JCB Prospéri et al., http://www.jcb.org/cgi/content/full/jcb.201501018/dc1 THE JOURNAL OF CELL BIOLOGY Figure S1. Myo1b Tail interacts with YFP-EphB2 coated beads and genistein inhibits

More information

Regulation of Acetylcholine Receptor Clustering by ADF/Cofilin- Directed Vesicular Trafficking

Regulation of Acetylcholine Receptor Clustering by ADF/Cofilin- Directed Vesicular Trafficking Regulation of Acetylcholine Receptor Clustering by ADF/Cofilin- Directed Vesicular Trafficking Chi Wai Lee, Jianzhong Han, James R. Bamburg, Liang Han, Rachel Lynn, and James Q. Zheng Supplementary Figures

More information

T H E J O U R N A L O F C E L L B I O L O G Y

T H E J O U R N A L O F C E L L B I O L O G Y Supplemental material Prashar et al., http://www.jcb.org/cgi/content/full/jcb.201304095/dc1 T H E J O U R N A L O F C E L L B I O L O G Y Figure S1. FBT phagocytosis in cells expressing PM-GFP. (A) T-PC

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/2/e1601966/dc1 Supplementary Materials for Ultraflexible nanoelectronic probes form reliable, glial scar free neural integration Lan Luan, Xiaoling Wei, Zhengtuo

More information

QImaging Camera Application Notes Multicolor Immunofluorescence Imaging

QImaging Camera Application Notes Multicolor Immunofluorescence Imaging QImaging Camera Application Notes Multicolor Immunofluorescence Imaging In order to image localization of intracellular proteins with high specificity, it is frequently necessary to multiplex antibody

More information

Supplementary Figure 1: (a) 3D illustration of the mobile phone microscopy attachment, containing a 3D movable sample holder (red piece for z

Supplementary Figure 1: (a) 3D illustration of the mobile phone microscopy attachment, containing a 3D movable sample holder (red piece for z Supplementary Figure 1: (a) 3D illustration of the mobile phone microscopy attachment, containing a 3D movable sample holder (red piece for z movement and blue piece for x-y movement). Illumination sources

More information

To examine the silencing effects of Celsr3 shrna, we co transfected 293T cells with expression

To examine the silencing effects of Celsr3 shrna, we co transfected 293T cells with expression Supplemental figures Supplemental Figure. 1. Silencing expression of Celsr3 by shrna. To examine the silencing effects of Celsr3 shrna, we co transfected 293T cells with expression plasmids for the shrna

More information

Nature Methods: doi: /nmeth.4396

Nature Methods: doi: /nmeth.4396 Supplementary Figure 1 Comparison of technical replicate consistency between and across the standard ATAC-seq method, DNase-seq, and Omni-ATAC. (a) Heatmap-based representation of ATAC-seq quality control

More information

Supplementary Figure 1. Two activation pathways and four conformations of β 2 integrins. KIM127 (red) can specifically detect

Supplementary Figure 1. Two activation pathways and four conformations of β 2 integrins. KIM127 (red) can specifically detect Supplementary Figure 1 Two activation pathways and four conformations of β 2 integrins. KIM127 (red) can specifically detect integrin extension (E + ) and mab24 (green) can specifically detect headpiece-opening

More information

NOGO-A/RTN4A and NOGO-B/RTN4B are simultaneously expressed in. epithelial, fibroblast and neuronal cells and maintain ER morphology

NOGO-A/RTN4A and NOGO-B/RTN4B are simultaneously expressed in. epithelial, fibroblast and neuronal cells and maintain ER morphology SREP-16-11884B Supplementary information NOGO-A/RTN4A and NOGO-B/RTN4B are simultaneously expressed in epithelial, fibroblast and neuronal cells and maintain ER morphology Olli Rämö a*, Darshan Kumar a*,

More information

A 256-by-256 CMOS Microelectrode Array for Extracellular Neural Stimulation of Acute Brain Slices. Columbia University, New York, NY

A 256-by-256 CMOS Microelectrode Array for Extracellular Neural Stimulation of Acute Brain Slices. Columbia University, New York, NY A 256-by-256 CMOS Microelectrode Array for Extracellular Neural Stimulation of Acute Brain Slices Na Lei 1, K L Shepard 1, Brendon O Watson 2, Jason N MacLean 2, Rafael Yuste 2 1 Department of Electrical

More information

Direct Imaging of APP Proteolysis in Living Cells

Direct Imaging of APP Proteolysis in Living Cells Direct Imaging of APP Proteolysis in Living Cells Niccoló Parenti, Ambra Del Grosso, Claudia Antoni, Marco Cecchini, Renato Corradetti, Francesco S. Pavone, Martino Calamai Supplementary Information Supplementary

More information

T H E J O U R N A L O F C E L L B I O L O G Y

T H E J O U R N A L O F C E L L B I O L O G Y Supplemental material Haberman et al., http://www.jcb.org/cgi/content/full/jcb.201108088/dc1 T H E J O U R N A L O F C E L L B I O L O G Y Figure S1. Loss of neurotransmitter release in Drosophila photoreceptors

More information

Introduction to N-STORM

Introduction to N-STORM Introduction to N-STORM Dan Metcalf Advanced Imaging Manager Outline Introduction Principles of STORM Applications N-STORM overview Biological Scale Mitochondrion Microtubule Amino Acid 1Å Kinesin 1nm

More information

MiniTEM. Designed for nanoparticle characterization

MiniTEM. Designed for nanoparticle characterization MiniTEM Designed for nanoparticle characterization MiniTEM revolutionizes access to transmission Transmission electron microscopy (TEM) is unmatched in providing high resolution images that allow visual

More information

DEPArray Technology. Sorting and Recovery of Rare Cells

DEPArray Technology. Sorting and Recovery of Rare Cells DEPArray Technology Sorting and Recovery of Rare Cells Delivering pure, single, viable cells The DEPArray system from Silicon Biosystems is the only automated instrument that can identify, quantify, and

More information

3D Multicolor Super-Resolution Imaging Offers Improved Accuracy in Neuron Tracing

3D Multicolor Super-Resolution Imaging Offers Improved Accuracy in Neuron Tracing 3D Multicolor Super-Resolution Imaging Offers Improved Accuracy in Neuron Tracing The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

More information

Supplementary Figure 1. The integrity of myelin sheaths is not affected in MAP6 KO mice

Supplementary Figure 1. The integrity of myelin sheaths is not affected in MAP6 KO mice Supplementary Figure 1. The integrityy of myelin sheaths is i not affected in MAP6 KO mice (A) Representativee ultrastructural imagess of cross-sectioned axons within the corpus callosum from WT and KO

More information

Automatic detection of plasmonic nanoparticles in tissue sections

Automatic detection of plasmonic nanoparticles in tissue sections Automatic detection of plasmonic nanoparticles in tissue sections Dor Shaviv and Orly Liba 1. Introduction Plasmonic nanoparticles, such as gold nanorods, are gaining popularity in both medical imaging

More information

Localization Microscopy

Localization Microscopy Localization Microscopy Theory, Sample Prep & Practical Considerations Patrina Pellett & Ann McEvoy Applications Scientist GE Healthcare, Cell Technologies May 27 th, 2015 Localization Microscopy Talk

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature06293 SUPPLEMENTARY INFORMATION a Testing the incompatibility of Lox2272 and LoxP Construct Expected Lox2272 promoter (CMV) c Testing the incompatibility of LoxN with Lox2272 and LoxP

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 CITE-seq library preparation. (a) Illustration of the DNA-barcoded antibodies used in CITE-seq. (b) Antibody-oligonucleotide complexes appear as a high-molecular-weight smear when

More information

Supporting Information for. Bongseo Choi, 1, Hyojin Moon, 1, Sung Joon Hong, 1 Changsik Shin, 1 Yoonkyung Do, 1 Seongho Ryu, 2,* Sebyung Kang 1,*

Supporting Information for. Bongseo Choi, 1, Hyojin Moon, 1, Sung Joon Hong, 1 Changsik Shin, 1 Yoonkyung Do, 1 Seongho Ryu, 2,* Sebyung Kang 1,* Supporting Information for Effective Delivery of Antigen-Encapsulin Nanoparticle Fusions to Dendritic Cells Leads to Antigen-Specific Cytotoxic T Cell Activation and Tumor Rejection Bongseo Choi, 1, Hyojin

More information

Supplementary Figures

Supplementary Figures 1 Supplementary Figures Supplementary Figure 1 Dynamics of DCL cell division and its relation to cell dispersion during epiboly of A. nigripinnis. (a) Temporal changes in the cumulative number of DCL cell

More information

BIO 315 Lab Exam I. Section #: Name:

BIO 315 Lab Exam I. Section #: Name: Section #: Name: Also provide this information on the computer grid sheet given to you. (Section # in special code box) BIO 315 Lab Exam I 1. In labeling the parts of a standard compound light microscope

More information

Supplemental Information. Dynamic Organization of Chromatin Domains. Revealed by Super-Resolution Live-Cell Imaging

Supplemental Information. Dynamic Organization of Chromatin Domains. Revealed by Super-Resolution Live-Cell Imaging Molecular Cell, Volume 67 Supplemental Information Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging Tadasu Nozaki, Ryosuke Imai, Mai Tanbo, Ryosuke Nagashima, Sachiko

More information

Chapter One. Construction of a Fluorescent α5 Subunit. Elucidation of the unique contribution of the α5 subunit is complicated by several factors

Chapter One. Construction of a Fluorescent α5 Subunit. Elucidation of the unique contribution of the α5 subunit is complicated by several factors 4 Chapter One Construction of a Fluorescent α5 Subunit The significance of the α5 containing nachr receptor (α5* receptor) has been a challenging question for researchers since its characterization by

More information

Figure S1 is related to Figure 1B, showing more details of outer segment of

Figure S1 is related to Figure 1B, showing more details of outer segment of Supplemental Information Supplementary Figure legends and Figures Figure S1. Electron microscopic images in Sema4A +/+ and Sema4A / retinas Figure S1 is related to Figure 1B, showing more details of outer

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION a 14 12 Densitometry (AU) 1 8 6 4 2 t b 16 NMHC-IIA GAPDH NMHC-IIB Densitometry (AU) 14 12 1 8 6 4 2 1 nm 1 nm 1 nm 1 nm sirna 1 nm 1 nm Figure S1 S4 Quantification of protein levels. (a) The microtubule

More information

Dynamic Re-organization of Individual Adhesion Nanoclusters in Living Cells by Ligand Patterned Surfaces**

Dynamic Re-organization of Individual Adhesion Nanoclusters in Living Cells by Ligand Patterned Surfaces** Supplementary information: SMALL Dynamic Re-organization of Individual Adhesion Nanoclusters in Living Cells by Ligand Patterned Surfaces** Ruth Diez-Ahedo, Davide Normanno, Olga Esteban, GertJan Bakker,

More information

Introduction to Electron Microscopy Andres Kaech

Introduction to Electron Microscopy Andres Kaech Center for Microscopy and Image Analysis Introduction to Electron Microscopy Andres Kaech The types of electron microscopes Transmission electron microscope (TEM) Scanning electron microscope (SEM) 1 The

More information

Fluorescence Light Microscopy for Cell Biology

Fluorescence Light Microscopy for Cell Biology Fluorescence Light Microscopy for Cell Biology Why use light microscopy? Traditional questions that light microscopy has addressed: Structure within a cell Locations of specific molecules within a cell

More information

GM130 Is Required for Compartmental Organization of Dendritic Golgi Outposts

GM130 Is Required for Compartmental Organization of Dendritic Golgi Outposts Current Biology, Volume 24 Supplemental Information GM130 Is Required for Compartmental Organization of Dendritic Golgi Outposts Wei Zhou, Jin Chang, Xin Wang, Masha G. Savelieff, Yinyin Zhao, Shanshan

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Nanomechanical mapping of first binding steps of a virus to animal cells David Alsteens, Richard Newton, Rajib Schubert, David Martinez-Martin, Martin Delguste, Botond Roska and Daniel J. Müller This PDF

More information

7/14/2015. Single-cell-level measurements of transcription heterogeneity of highly mobile identical genes. Enrico Gratton and Paolo Annibale

7/14/2015. Single-cell-level measurements of transcription heterogeneity of highly mobile identical genes. Enrico Gratton and Paolo Annibale 7//5 Single-cell-level measurements of transcription heterogeneity of highly mobile identical genes Enrico Gratton and Paolo Annibale Laboratory for Florescence Dynamics University of California, Irvine

More information

Asymmetric endocytosis and remodeling of β1-integrin adhesions during growth cone chemorepulsion by MAG

Asymmetric endocytosis and remodeling of β1-integrin adhesions during growth cone chemorepulsion by MAG Asymmetric endocytosis and remodeling of β1-integrin adhesions during growth cone chemorepulsion by MAG Jacob H. Hines, Mohammad Abu-Rub and John R. Henley Supplementary Figure 1. Validation of FM 5-95

More information

From light microscopy to multi-photon imaging:

From light microscopy to multi-photon imaging: From light microscopy to multi-photon imaging: Old and novel approaches for systems biology Frederick Klauschen Program in Systems Immunology and Disease Modeling National Institutes of Health and Institute

More information

Supplementary Fig. 1: Ultrastructural localization of Hh, Ihog and Disp in wing discs. A) Thawed 200 nm thick cryosections of wing disc expressing

Supplementary Fig. 1: Ultrastructural localization of Hh, Ihog and Disp in wing discs. A) Thawed 200 nm thick cryosections of wing disc expressing Supplementary Fig. 1: Ultrastructural localization of Hh, Ihog and Disp in wing discs. A) Thawed 200 nm thick cryosections of wing disc expressing Hh-GFP were immunostained with an anti-gfp antibody followed

More information

Monday: Y42 G53 Tuesday: Y42 G53 Wednesday: Y42 J11

Monday: Y42 G53 Tuesday: Y42 G53 Wednesday: Y42 J11 Locations: Irchel building 42, Level H and F Locations: Irchel building 42, Level H and F Self-study sessions: Monday: Y42 G53 Tuesday: Y42 G53 Wednesday: Y42 J11 1 Center for Microscopy and Image Analysis

More information

In vivo recording, forepaw denervation, and isolation of slices: Methods for mapping the forepaw/lower jaw border in anesthetized adult rat primary

In vivo recording, forepaw denervation, and isolation of slices: Methods for mapping the forepaw/lower jaw border in anesthetized adult rat primary Supplementary Methods In vivo recording, forepaw denervation, and isolation of slices: Methods for mapping the forepaw/lower jaw border in anesthetized adult rat primary somatosensory cortex (S1), forepaw

More information

PALM/STORM, BALM, STED

PALM/STORM, BALM, STED PALM/STORM, BALM, STED Last class 2-photon Intro to PALM/STORM Cyanine dyes/dronpa This class Finish localization super-res BALM STED Localization microscopy Intensity Bins = pixels xx 2 = ss2 + aa 2 /12

More information

Methanol fixation allows better visualization of Kal7. To compare methods for

Methanol fixation allows better visualization of Kal7. To compare methods for Supplementary Data Methanol fixation allows better visualization of Kal7. To compare methods for visualizing Kal7 in dendrites, mature cultures of dissociated hippocampal neurons (DIV21) were fixed with

More information

Light microscopy mapping of connections in the intact brain

Light microscopy mapping of connections in the intact brain Light microscopy mapping of connections in the intact brain The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

204 Part 3.3 SUMMARY INTRODUCTION

204 Part 3.3 SUMMARY INTRODUCTION 204 Part 3.3 Chapter # METHODOLOGY FOR BUILDING OF COMPLEX WORKFLOWS WITH PROSTAK PACKAGE AND ISIMBIOS Matveeva A. *, Kozlov K., Samsonova M. Department of Computational Biology, Center for Advanced Studies,

More information

The Nuclear Area Factor (NAF): a measure for cell apoptosis using microscopy and image analysis

The Nuclear Area Factor (NAF): a measure for cell apoptosis using microscopy and image analysis The Nuclear Area Factor (NAF): a measure for cell apoptosis using microscopy and image analysis Mark A. DeCoster Department of Biomedical Engineering and Institute for Micromanufacturing, Louisiana Tech

More information

Supplementary Information:

Supplementary Information: Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2015 Supplementary Information: 3D Printed Nervous System on a Chip Blake N. Johnson, a,b Karen

More information

Kazuki N. Sugahara, Tambet Teesalu, Priya Prakash Karmali, Venkata Ramana Kotamraju, Lilach

Kazuki N. Sugahara, Tambet Teesalu, Priya Prakash Karmali, Venkata Ramana Kotamraju, Lilach Cancer Cell, Volume 16 Supplemental Data Tissue-Penetrating Delivery of Compounds and Nanoparticles into Tumors Kazuki N. Sugahara, Tambet Teesalu, Priya Prakash Karmali, Venkata Ramana Kotamraju, Lilach

More information

Visualizing Cells Molecular Biology of the Cell - Chapter 9

Visualizing Cells Molecular Biology of the Cell - Chapter 9 Visualizing Cells Molecular Biology of the Cell - Chapter 9 Resolution, Detection Magnification Interaction of Light with matter: Absorbtion, Refraction, Reflection, Fluorescence Light Microscopy Absorbtion

More information

Supplementary Figure 1 Sizing and Relaxometry of Derivatized Ferumoxytol. a, Dynamic light scattering shows no change in diameter between the

Supplementary Figure 1 Sizing and Relaxometry of Derivatized Ferumoxytol. a, Dynamic light scattering shows no change in diameter between the Supplementary Figure 1 Sizing and Relaxometry of Derivatized Ferumoxytol. a, Dynamic light scattering shows no change in diameter between the clinical specimen (Ferumoxytol) after buffer exchange and the

More information