Recovery of Nutrients

Size: px
Start display at page:

Download "Recovery of Nutrients"

Transcription

1 2012 NWRI Clarke Prize Conference Research and Innovations in Urban Water Sustainability Recovery of Nutrients Friday, November 2, 2012 James L Barnard, Ph.D., D.Ing. h.c. BCEE, WEF Fellow

2 DRIVERS The Looming Food Crises Lee Kuan Yew Water Prize 2011

3 World Population Growth 10,000 BC 5 million Year million billion billion billion billion billion billion Today Today 6.9 Billion Billion

4 Age Distribution of the World s Population Population Structures by Age and Sex, 2005 Millions Less Developed Regions Age More Developed Regions Male Female Male Female Source: United Nations, World Population Prospects: The 2004 Revision,

5 Urbanization in the world 60% 50% 40% 30% 20% 10% 0% Within % of the global population will live in cities World Watch Institute 2007: > 50 % is already living in urban areas

6 Foreign Policy May/June 2011 As the new year begins, the price of wheat is setting an all-time high in the United Kingdom. Food riots are spreading across Algeria. Russia is importing grain to sustain its cattle herds until spring grazing begins. India is wrestling with an 18-percent annual food inflation rate, sparking protests. China is looking abroad for potentially massive quantities of wheat and corn. The Mexican government is buying corn futures to avoid unmanageable tortilla price rises. the U.N. Food and Agricultural organization announced that its food price index for December hit an all-time high.

7 Other salient information 219,000 more mouths to feed every night US & Canada supply 2/3 of surplus food US now use 40% of grains for bio-fuel The world food safety net has evaporated Food production in some countries rely on water bubbles Once bubbles are depleted these would become grain importers Increased affluence requires more water and nutrients Increasing cost of fertilizers

8 Possible Resource Recovery Cooling Towers Urine Separation Potable Water Used Water BNR Protein Recovery Gas Power Irrigation Heat Recovery Composting Fertilizer

9 Abundance of Chemicals on Earth

10 The Nitrogen Cycle Precipitation Nitrogen in atmosphere (N 2 ) Plants Nitrogen fixing bacteria in root nodules of legumes Nitrogen fixing soil bacteria Assimilation Denitrifying bacteria Decomposers Nitrates (NO 3 ) (aerobic and anaerobic bacteria and fungi) Nitrifying bacteria Ammonification Nitrification Ammonium (NH 4+ ) Nitrites (NO 2 ) Nitrifying bacteria

11 Recovery of Nitrogen Pre-industrial revolution, many animals fewer people manure used as fertilizer Post industrial revolution, fewer animals more people Malthus wrote thesis Essay on principle of population predicting mass starvation - Rwanda Discovery of Haber-Bosch process to fix nitrogen from the atmosphere for munitions saved the world - BUT IT CONSUMES MORE THAN 1% OF ALL ENERGY AND OF NATURAL GAS Every kg produced needs 12 kwh or energy as natural gas and power.

12 Opportunities at wastewater treatment plants Ion exchange was proposed in the late 60ties for removing and capturing of ammonia not successful Nitrification/denitrification returns nitrogen to atmosphere but remains most cost effective Ammonia in return streams can be captured by Stripping and capture Struvite formation Composting Removed with phosphorus

13 Clinoptilite Ion Exchange for Ammonia Recovery

14 Ammonia Stripping and capture from return streams - Oslo Norway From Evans 2009 HNO 3 used for absorption

15 Lower portion of adsorption column Final Product 54% NH 4 NO 3 90% nitrogen removal

16 COST EFFECTIVE TOTAL NITROGEN REMOVAL

17 Nitrogen recovery Only viable if less energy is used than fixing Nitrogen from the atmosphere Haber-Bosch process uses about 12 kwh/kg nitrogen fertilizer `

18 Phosphorus recovery

19 The Local Phosphorus Cycle Animal Manures and Biosolids Plant Residues Crop Harvest Atmospheric Deposition Mineral Fertilizers Component Input to Soil Loss from Soil Plant Uptake Runoff and erosion Primary Minerals (Apatite) Organic Phosphorus Microbial Plant residue Humus Leaching (usually minor) Immobilization Mineralization Soil Solution Phosphorus HPO 4 2 H 2 PO 4 1 Weathering Adsorption Desorption Dissolution Precipitation Mineral Surfaces (Clays, Fe and AI oxides, carbonates) Organic Phosphorus (CaP, FeP, MnP, AIP)

20 Historical Sources of Phosphorus Fertilizer A brief history of phosphorus: From the philosopher s stone to nutrient recovery and reuse K. Ashley,D. Cordell, D.Mavinic Chemosphere 84 (2011)

21 Future Scenarios Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options D. Cordell, A. Rosemarin, J.J. Schröder, A.L. Smit - Chemosphere 84 (2011)

22 Phosphorus is a limited resource 23,000,000

23 Asimov on Chemistry We may be able to substitute nuclear power for coal power, and plastics for wood, and yeast for meat, and friendliness for isolation, but for phosphorus there is neither substitute nor replacement. Isaac Asimov

24 Concept of Complete Phosphorus Recovery Adapted from Petzet & Cornel, 2010

25 Incinerator Ash Deposit in dedicated site for future recovery

26 Japan

27 North America Struvite Mg.NH 4.PO 4. 6 H 2 O Also recovers up to 20% of nitrogen

28 Ostara Plant at Rock Creek OR

29 Treatment of Industrial Waste at Olburgen

30 Using corn for bio-fuel production With 40% of the grain crop going to bio-fuels for no gain in energy and enormous subsidies

31 The Ultimate Nutrient Recycle Urine Recovery

32 Urine recovery Urine contains 70% to 80% of the Nitrogen and Phosphorus in domestic wastewater When urine is separated and stored ammonia is hydrolyzed and the ph goes up Within a few weeks the urine is totally free or pathogens Research underway to recover struvite Excess ammonia recovered with stripping and production of ammonia sulphate

33 Dual flush toilet

34 Backyard garden Kampala Uganda

35 MOTTO OF THE DAY What doesn t kill you makes you stronger!!!!!!!!

36

Cycling and Biogeochemical Transformations of N, P and S

Cycling and Biogeochemical Transformations of N, P and S Cycling and Biogeochemical Transformations of N, P and S OCN 401 - Biogeochemical Systems Reading: Schlesinger,, Chapter 6 1. Nitrogen cycle Soil nitrogen cycle Nitrification Emissions of N gases from

More information

Cycling and Biogeochemical Transformations of N, P and S

Cycling and Biogeochemical Transformations of N, P and S Cycling and Biogeochemical Transformations of N, P and S OCN 401 - Biogeochemical Systems Reading: Schlesinger, Chapter 6 1. Nitrogen cycle Soil nitrogen cycle Nitrification Emissions of N gases from soils

More information

Cycling and Biogeochemical Transformations of N, P, S, and K

Cycling and Biogeochemical Transformations of N, P, S, and K Cycling and Biogeochemical Transformations of N, P, S, and K OCN 401 - Biogeochemical Systems 24 September 2013 Reading: Schlesinger & Bernhardt, Chapter 6 1. Nitrogen cycle Soil nitrogen cycle Nitrification

More information

Cycling and Biogeochemical Transformations of N, P, S, and K

Cycling and Biogeochemical Transformations of N, P, S, and K Cycling and Biogeochemical Transformations of N, P, S, and K OCN 401 - Biogeochemical Systems 18 September 2012 Reading: Schlesinger, Chapter 6 1. Nitrogen cycle Soil nitrogen cycle Nitrification Emissions

More information

Cycling and Biogeochemical Transformations of N, P, S, and K

Cycling and Biogeochemical Transformations of N, P, S, and K Cycling and Biogeochemical Transformations of N, P, S, and K OCN 401 - Biogeochemical Systems 23 September 2014 Reading: Schlesinger & Bernhardt, Chapter 6 2014 Frank Sansone 1. Nitrogen cycle Soil nitrogen

More information

Source separated wastewater a new resource for producing mineral fertilizer

Source separated wastewater a new resource for producing mineral fertilizer Source separated wastewater a new resource for producing mineral fertilizer L. Vråle and P. D. Jenssen* * Department of Mathematical Sciences and Technology The Norwegian University of Life Sciences 3rd.

More information

Cycling and Biogeochemical Transformations of N, P, S, and K

Cycling and Biogeochemical Transformations of N, P, S, and K Cycling and Biogeochemical Transformations of N, P, S, and K OCN 401 - Biogeochemical Systems 19 September 2016 Reading: Schlesinger & Bernhardt, Chapter 6 2017 Frank Sansone Outline 1. Nitrogen cycle

More information

Nitrogen A pop quiz!!! John Lamb SMBSC Grower Seminar Willmar, MN January 24, 2018

Nitrogen A pop quiz!!! John Lamb SMBSC Grower Seminar Willmar, MN January 24, 2018 Nitrogen A pop quiz!!! John Lamb SMBSC Grower Seminar Willmar, MN January 24, 2018 Question 1. Where is the largest pool of available N on earth? 1. Ocean 2. Atmosphere 3. Plants and Animals 4. Soil 5.

More information

Cycling and Biogeochemical Transformations of N, P, S, and K

Cycling and Biogeochemical Transformations of N, P, S, and K Cycling and Biogeochemical Transformations of N, P, S, and K OCN 401 - Biogeochemical Systems 20 September 2016 Reading: Schlesinger & Bernhardt, Chapter 6 2016 Frank Sansone 1. Nitrogen cycle Soil nitrogen

More information

HOW TO ECONOMICALLY USE FERTILIZER IN PASTURE-BASED

HOW TO ECONOMICALLY USE FERTILIZER IN PASTURE-BASED HOW TO ECONOMICALLY USE FERTILIZER IN PASTURE-BASED DAIRY SYSTEMS Robert Kallenbach University of Missouri BEFORE YOU FERTILIZE ASK WHY? Some good reasons s to fertilize e You expect good growing conditions

More information

1. Energy to do work 2. Raw material to build/repair things (nutrients)

1. Energy to do work 2. Raw material to build/repair things (nutrients) 1. Energy to do work 2. Raw material to build/repair things (nutrients) Living things are built from water Nutrients: carbon, hydrogen, nitrogen, and oxygen 3. Essential nutrients are cycled through environment

More information

2/11/16. Materials in ecosystems are constantly reused Three cycles: The Carbon Cycle The Nitrogen Cycle The Phosphorus Cycle

2/11/16. Materials in ecosystems are constantly reused Three cycles: The Carbon Cycle The Nitrogen Cycle The Phosphorus Cycle Materials in ecosystems are constantly reused Three cycles: The Carbon Cycle The Nitrogen Cycle The Cycle Carbon is essential in proteins, fats, and carbohydrates, which make up all organisms Carbon cycle

More information

Nutrient Cycling in Soils

Nutrient Cycling in Soils Nutrient Cycling in Soils Kristin A. Fisher, Ph.D. Nutrient Management Specialist Agricultural Nutrient Management Program University of Maryland, College Park Nutrient Cycling in Soils N, P & K cycles

More information

Nutrient Cycling in Soils: The Big 3 and Carbon

Nutrient Cycling in Soils: The Big 3 and Carbon Fundamentals of Nutrient Management Nutrient Cycling in Soils: The Big 3 and Carbon Gurpal Toor Department of Environmental Science & Technology University of Maryland College Park @ToorUMD N deficiency

More information

NUTRIENT CYCLES REVIEW

NUTRIENT CYCLES REVIEW 52 Name A.P. Environmental Science Date Mr. Romano NUTRIENT CYCLES REVIEW 1. Which of the following chain of events would occur as a result of land clearing/deforestation? (vocabulary check: efflux means

More information

Chapter 15: Ecosystem Dynamics

Chapter 15: Ecosystem Dynamics Chapter 15: Ecosystem Dynamics Lecture Outline Enger, E. D., Ross, F. C., & Bailey, D. B. (2012). Concepts in biology (14th ed.). New York: McGraw- Hill. 1 15-1 What is ecology? Ecology is the branch of

More information

3 3 CYCLES OF MATTER

3 3 CYCLES OF MATTER 3 3 CYCLES OF MATTER REVIEW: 1. What is an element? 2. What is a compound? 3. What are the 6 elements that are most important to living things? Matter = a substance that takes up space. BIOGEOCHEMICAL

More information

Nutrient Cycling. Day 27 November 18, NREM 301 Forest Ecology & Soils

Nutrient Cycling. Day 27 November 18, NREM 301 Forest Ecology & Soils NREM 301 Forest Ecology & Soils Day 27 November 18, 2008 Nutrient Cycling Uganda Study Abroad Information Meeting 5 pm 118 Horticulture - Today China - Nov 19 noon - 9 Curtiss More Info Ag Study Abroad

More information

OPTION C.6 NITROGEN & PHOSPHORUS CYCLES

OPTION C.6 NITROGEN & PHOSPHORUS CYCLES OPTION C.6 NITROGEN & PHOSPHORUS CYCLES C.6 A Cycle INTRO https://www.thewastewaterblog.com/single-post/2017/04/29/-cycle-and-other-graphics IB BIO C.6 3 The nitrogen cycle describes the movement of nitrogen

More information

Available sources of nitrogen (N 2 )

Available sources of nitrogen (N 2 ) Nitrogen Metabolism Available sources of nitrogen (N 2 ) Atmospheric nitrogen Nitrogen in rocks Lightning Inorganic fertilizers Nitrogen Fixation Animal Residues Crop residues Organic fertilizers Forms

More information

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid?

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid? 2.2 Nutrient Cycles in Ecosystems Review How energy flows What is the difference between a food chain, food web, and food pyramid? https://www.youtube.com/watch?v=xhr1iebeops https://www.youtube.com/watch?v=alusi_6ol8m

More information

3 3 Cycles of Matter

3 3 Cycles of Matter 3 3 Cycles of Matter Recycling in the Biosphere Energy - one way flow matter - recycled within and between ecosystems. biogeochemical cycles matter Elements, chemical compounds, and other forms passed

More information

THE CYCLING OF NUTRIENTS

THE CYCLING OF NUTRIENTS Unit 4 THE CYCLING OF NUTRIENTS LEARNING OBJECTIVES 1. Recognize the need for the recycling of the earth s chemicals and the consequences if this is not done. 2. Learn the difference between a global cycle

More information

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem?

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem? 2 of 33 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? 3 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the

More information

Ch. 5 - Nutrient Cycles and Soils

Ch. 5 - Nutrient Cycles and Soils Ch. 5 - Nutrient Cycles and Soils What are Nutrient (biogeochemical) Cycles? a process by which nutrients are recycled between living organisms and nonliving environment. The three general types of nutrient

More information

EQ: How are nutrients recycled throughout the environment?

EQ: How are nutrients recycled throughout the environment? EQ: How are nutrients recycled throughout the environment? Biogeochemical Cycles Recall that matter is neither created nor destroyed; but it can transform and be passed on. Biogeochemical cycles: how water,

More information

BC Science Nutrient Cycles in Ecosystems

BC Science Nutrient Cycles in Ecosystems BC Science 10 2.2 Nutrient Cycles in Ecosystems Notes Nutrients are chemicals required for growth and other life processes. Nutrients move through the biosphere in nutrient cycles (n.c), or exchanges.

More information

PHOSPHORUS DYNAMICS & POLLUTION

PHOSPHORUS DYNAMICS & POLLUTION PHOSPHORUS DYNAMICS & POLLUTION (Source of some of the notes Zaimes & Shultz 2002 Phosphorus literature review Sharpley et al. 1999 Agricultural phosphorus & eutrophication) Introduction A major player

More information

Nutrient Cycles. Why? Model 1 The Water Cycle. How are nutrients recycled through ecosystems?

Nutrient Cycles. Why? Model 1 The Water Cycle. How are nutrients recycled through ecosystems? Why? Nutrient Cycles How are nutrients recycled through ecosystems? We have learned the importance of recycling our trash. It allows us to use something again for another purpose and prevents the loss

More information

13.5. Cycling of Matter. Water cycles through the environment.

13.5. Cycling of Matter. Water cycles through the environment. 13.5 Cycling of Matter VOCABULARY hydrologic cycle biogeochemical cycle nitrogen fixation KEY CONCEPT Matter cycles in and out of an ecosystem. Main Ideas Water cycles through the environment. Elements

More information

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein!

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! Nitrogen Cycle 2.2 WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! In animals, proteins are vital for muscle function. In plants, nitrogen is important for growth. NITROGEN Nitrogen

More information

3 3 Cycles of Matter Slide 1 of 33

3 3 Cycles of Matter Slide 1 of 33 1 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within and between ecosystems.

More information

NREM 301 Forest Ecology & Soils Day 25 November 17, Nutrient Cycling Lab Field Quiz/Exercise Quiz Thursday in class

NREM 301 Forest Ecology & Soils Day 25 November 17, Nutrient Cycling Lab Field Quiz/Exercise Quiz Thursday in class NREM 301 Forest Ecology & Soils Day 25 November 17, 2009 Nutrient Cycling Lab Field Quiz/Exercise Quiz Thursday in class Closed Notes - Group Activity On poster paper prepare a Labeled diagram of the N

More information

The rest of this article describes four biogeochemical cycles: the water cycle, carbon cycle, nitrogen cycle, and phosphorous cycle.

The rest of this article describes four biogeochemical cycles: the water cycle, carbon cycle, nitrogen cycle, and phosphorous cycle. BIOGEOCHEMICAL CYCLES The chemical elements and water that are needed by living things keep recycling over and over on Earth. These cycles are called biogeochemical cycles. They pass back and forth through

More information

Elements essential for life also cycle through ecosystems.

Elements essential for life also cycle through ecosystems. 13.5 Cycling of Matter KEY CONCEPT Matter cycles in and out of an ecosystem. MAIN IDEAS Water cycles through the environment. Elements essential for life also cycle through ecosystems. VOCABULARY hydrologic

More information

Cycles in Nature Standard 1 Objective 2:

Cycles in Nature Standard 1 Objective 2: Cycles in Nature Standard 1 Objective 2: Explain relationships between matter cycles and Energy a) use diagrams to trace the movement of matter through a cycle b) Explain how water is a limiting factor

More information

2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE. nutrients: aka.

2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE. nutrients: aka. 2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE nutrients: stores: aka Nutrients are accumulated for short or long periods

More information

Improvement of phosphorus availability by agricultural practices: crop residues management & recycling OM waste first results

Improvement of phosphorus availability by agricultural practices: crop residues management & recycling OM waste first results Improvement of phosphorus availability by agricultural practices: crop residues management & recycling OM waste first results Barbieux Sophie & Gilles Colinet Water Soil - Plant Exchanges AgricultureIsLife

More information

Nutrient Cycles. & how Humans impact nutrient cycling. Accel Bio. Where do energy & nutrients come from?

Nutrient Cycles. & how Humans impact nutrient cycling. Accel Bio. Where do energy & nutrients come from? Nutrient Cycles & how Humans impact nutrient cycling Accel Bio Where do energy & nutrients come from? What are nutrients? What else do organisms need to survive and grow? Organisms need, Energy, water

More information

Monitoring carbon budgets

Monitoring carbon budgets Monitoring carbon budgets Suess effect on 14 C/ 12 C in CO 2, from Stuiver and Quay, 1981, EPSL 53:349-362 1 Figure from IPCC 4 th assessment report 2 Biogeochemical cycling (on land) Living tissue C H

More information

Climate, Water, and Ecosystems: A Future of Surprises

Climate, Water, and Ecosystems: A Future of Surprises Climate, Water, and Ecosystems: A Future of Surprises Robert Harriss Houston Advanced Research Center Changsheng Li Steve Frolking University of New Hampshire Climate change is not uniform geographically

More information

NITROGEN CYCLE. Big Question. Dr. B. K. Bindhani Assistant Professor KIIT School of Biotechnology KIIT University, Bhubaneswar, Orissa, Indi.

NITROGEN CYCLE. Big Question. Dr. B. K. Bindhani Assistant Professor KIIT School of Biotechnology KIIT University, Bhubaneswar, Orissa, Indi. ITROGE CYCLE Big Question Why Are Biogeochemical Cycles Essential to Long-Term Life on Earth? Dr. B. K. Bindhani Assistant Professor KIIT School of Biotechnology KIIT University, Bhubaneswar, Orissa, Indi.a

More information

Resource recovery from waste and wastewater «new» challenge for the cities

Resource recovery from waste and wastewater «new» challenge for the cities 14/02/2017 «Cities: new challenges and issues for research in agriculture, environment and nutrition Resource recovery from waste and wastewater «new» challenge for the cities Mathieu Spérandio Cities

More information

1. Where are nutrients accumulated or stored for short or long periods?

1. Where are nutrients accumulated or stored for short or long periods? Use with textbook pages 68 87. Nutrient cycles Answer the questions below. Comprehension 1. Where are nutrients accumulated or stored for short or long periods? 2. Name a biotic process and an abiotic

More information

2.2 Nutrient Cycles in Ecosystems

2.2 Nutrient Cycles in Ecosystems 2.2 Nutrient Cycles in Ecosystems are chemicals required for growth and other life processes. Nutrients move through the biosphere in Nutrients often accumulate in areas called Without interference, generally

More information

Yakın Doğu Üniversitesi Mimarlık Fakültesi Peyzaj Mimarlığı Bölümü. PM 317 Human and Environment Assoc. Prof. Dr. Salih GÜCEL

Yakın Doğu Üniversitesi Mimarlık Fakültesi Peyzaj Mimarlığı Bölümü. PM 317 Human and Environment Assoc. Prof. Dr. Salih GÜCEL Yakın Doğu Üniversitesi Mimarlık Fakültesi Peyzaj Mimarlığı Bölümü PM 317 Human and Environment Assoc. Prof. Dr. Salih GÜCEL Composition of Living Organisms All organisms are composed of matter, and although

More information

3 3 Cycles of Matter. EOC Review

3 3 Cycles of Matter. EOC Review EOC Review A freshwater plant is placed in a salt marsh. Predict the direction in which water will move across the plant s cell wall, and the effect of that movement on the plant. a. Water would move out

More information

Ohio Water Environment Association Present and Future Technologies for Nutrient Removal

Ohio Water Environment Association Present and Future Technologies for Nutrient Removal Ohio Water Environment Association Present and Future Technologies for Nutrient Removal James L Barnard, Ph.D., D.Ing. h.c. BCEE, WEF Fellow, Dist. MASCE Contents Problems relating to Nutrients Wastewater

More information

Wastewater Treatment in Soils

Wastewater Treatment in Soils Wastewater Treatment in Soils James L. Anderson, PhD David Gustafson Aziz Amoozegar, PhD David Lindbo, PhD Model Decentralized Wastewater Practitioner Curriculum NDWRCDP Disclaimer This work was supported

More information

Biogeochemical Cycles. Nutrient cycling at its finest!

Biogeochemical Cycles. Nutrient cycling at its finest! Biogeochemical Cycles Nutrient cycling at its finest! Four Criteria for Sustainability Sustainable Ecosystems Need: Reliance on Solar Energy High Biodiversity Population Control Nutrient Cycling This note

More information

Global Phosphorus Research Initiative

Global Phosphorus Research Initiative Global Phosphorus Research Initiative submission to the Public consultation on the Raw Materials Initiative About the Global Phosphorus Research Initiative The Global Phosphorus Research Initiative (GPRI)

More information

The Green Revolution

The Green Revolution The Green Revolution Since the 1950s, most increases in global food production have come from increased yields per unit area of cropland. This green revolution has been brought about through the development

More information

13.1 Ecologists Study Relationships. KEY CONCEPT Ecology is the study of the relationships among organisms and their environment.

13.1 Ecologists Study Relationships. KEY CONCEPT Ecology is the study of the relationships among organisms and their environment. KEY CONCEPT Ecology is the study of the relationships among organisms and their environment. Ecologists study environments at different levels of organization. Ecology is the study of the interactions

More information

ECOSYSTEMS. Follow along in chapter 54. *Means less important

ECOSYSTEMS. Follow along in chapter 54. *Means less important ECOSYSTEMS Follow along in chapter 54 *Means less important How do ecosystems function? What is an ecosystem? All living things in an area and their abiotic environment Ecosystem function can be easily

More information

Guide 34. Ecosystem Ecology: Energy Flow and Nutrient Cycles. p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/

Guide 34. Ecosystem Ecology: Energy Flow and Nutrient Cycles. p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/ Guide 34 Ecosystem Ecology: Energy Flow and Nutrient Cycles p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/ Overview: Ecosystems, Energy, and Matter An ecosystem consists

More information

Objectives: Define the term biogeochemical cycles. Compare and contrast how carbon, phosphorus, nitrogen, and water cycle through the environment.

Objectives: Define the term biogeochemical cycles. Compare and contrast how carbon, phosphorus, nitrogen, and water cycle through the environment. Objectives: Define the term biogeochemical cycles. Compare and contrast how carbon, phosphorus, nitrogen, and water cycle through the environment. Explain how human impact is affecting biogeochemical cycles

More information

Manure-DNDC: Building a Process-Based Biogeochemical Tool for Estimating Ammonia and GHG Emissions from California Dairies

Manure-DNDC: Building a Process-Based Biogeochemical Tool for Estimating Ammonia and GHG Emissions from California Dairies Manure-DNDC: Building a Process-Based Biogeochemical Tool for Estimating Ammonia and GHG Emissions from California Dairies William Salas*, Applied Geosolutions, LLC Changsheng Li, University of New Hampshire,

More information

Ohio Water Environment Association. Contents. Microcystis Poisoning 11/21/2013. Present and Future Technologies for Nutrient Removal

Ohio Water Environment Association. Contents. Microcystis Poisoning 11/21/2013. Present and Future Technologies for Nutrient Removal Ohio Water Environment Association Present and Future Technologies for Nutrient Removal James L Barnard, Ph.D., D.Ing. h.c. BCEE, WEF Fellow, Dist. MASCE Contents Problems relating to Nutrients Wastewater

More information

Untying the Wastewater Knot: Resource Recovery and Energy

Untying the Wastewater Knot: Resource Recovery and Energy Untying the Wastewater Knot: Resource Recovery and Energy Dr. Tim Evans, TIM EVANS ENVIRONMENT www.timevansenvironment.com O 2 Environmental Technology Assessment Group Water Technology Market Experts

More information

The Enigma of Soil Nitrogen George Rehm, University of Minnesota

The Enigma of Soil Nitrogen George Rehm, University of Minnesota The Enigma of Soil Nitrogen George Rehm, University of Minnesota 1. Introduction Throughout the northern and western Corn Belt, nitrogen (N) is the most dominant nutrient in the world of plant nutrition.

More information

Biological Nutrient Removal - Quo Vadis

Biological Nutrient Removal - Quo Vadis 93 rd Annual Conference 2018 Biological Nutrient Removal - Quo Vadis James L Barnard, Ph.D., D.Ing. h.c. BCEE, WEF Fellow Contents Historical Background The development of activated sludge Eutrophication

More information

Ion exchange for concentration of phosphorus in wastewater and recovery as struvite. Patrick Mullen Dr. Brooke Mayer Marquette University

Ion exchange for concentration of phosphorus in wastewater and recovery as struvite. Patrick Mullen Dr. Brooke Mayer Marquette University Ion exchange for concentration of phosphorus in wastewater and recovery as struvite Patrick Mullen Dr. Brooke Mayer Marquette University About Me 1st year M.S. at Marquette University in Environmental

More information

Managing Nitrogen for Yield and Protein in Winter Wheat

Managing Nitrogen for Yield and Protein in Winter Wheat Wheat Academy 2015 Managing Nitrogen for Yield and Protein in Winter Wheat Haiying Tao Aaron Esser Department of Crop and Soil Sciences Haiying.tao@wsu.edu 509-335-4389 Outline N Cycle in the soil-plant-atmosphere

More information

Natural Ecosystem Change

Natural Ecosystem Change Environmental Science Set 3 of 9 Natural Ecosystem Change Presentation MEDIA Version 2 BIOZONE International 2009, 2013 Processes in Carbon Cycling Carbon cycles between the living (biotic) and non-living

More information

Nutrient Cycles. Nutrient cycles involve flow of high quality energy from the sun through the environment & of elements.

Nutrient Cycles. Nutrient cycles involve flow of high quality energy from the sun through the environment & of elements. Nutrient Cycles Nutrient cycles (= biogeochemical cycles): natural processes that involve the flow of nutrients from the environment (air, water, soil, rock) to living organisms ( ) & back again. Nutrient

More information

AP Biology. Ecosystems

AP Biology. Ecosystems Ecosystems Studying organisms in their environment organism population community ecosystem biosphere Essential questions What limits the production in ecosystems? How do nutrients move in the ecosystem?

More information

ES 1.7: Cycles in the Ecosystem. Nature Recycles

ES 1.7: Cycles in the Ecosystem. Nature Recycles ES 1.7: Cycles in the Ecosystem Nature Recycles Law of Conservation of Mass: states that mass is neither created nor destroyed in any ordinary chemical reaction In a natural ecosystem, most mass/matter

More information

Nutrient Cycling. Hydrologic (Water) Cycle. Nitrogen Cycle: Atmospheric Gases

Nutrient Cycling. Hydrologic (Water) Cycle. Nitrogen Cycle: Atmospheric Gases Nutrient Cycling Laws of Energy and Matter Conservation of Matter In any physical or chemical change, matter is neither created nor destroyed, but merely changes from one form to another Conservation of

More information

Studying organisms in their environment

Studying organisms in their environment Ecosystems (Ch. 3) Studying organisms in their environment organism population community ecosystem biosphere Essential questions What limits the production in ecosystems? How does energy move through the

More information

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Biology 1 of 33 2 of 33 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? 3 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move

More information

The Precarious Global Geopolitics of Phosphorus. Arno Rosemarin & Ian Caldwell Stockholm Environment Institute

The Precarious Global Geopolitics of Phosphorus. Arno Rosemarin & Ian Caldwell Stockholm Environment Institute The Precarious Global Geopolitics of Phosphorus Arno Rosemarin & Ian Caldwell Stockholm Environment Institute The Story Line Little is published on the risks and limitations of global supply and demand

More information

Autotrophs vs. Heterotrophs

Autotrophs vs. Heterotrophs How Ecosystems Work Autotrophs vs. Heterotrophs Autotrophs make their own food so they are called PRODUCERS Heterotrophs get their food from another source so they are called CONSUMERS Two Main forms of

More information

Institute of Ag Professionals

Institute of Ag Professionals Institute of Ag Professionals Proceedings of the 2014 Crop Pest Management Shortcourse & Minnesota Crop Production Retailers Association Trade Show www.extension.umn.edu/agprofessionals Do not reproduce

More information

The Nitrogen Cycle. ) in the atmosphere is converted into ammonium ions ( NH 4 + ).

The Nitrogen Cycle. ) in the atmosphere is converted into ammonium ions ( NH 4 + ). The Nitrogen Cycle Nitrogen is essential for many processes; it is crucial for all life on Earth. It is in all amino acids, is incorporated into proteins, and is present in the bases that make up nucleic

More information

CYCLES OF MATTER NATURAL WORLD

CYCLES OF MATTER NATURAL WORLD CYCLES OF MATTER NATURAL WORLD Objectives Describe how matter cycles between the living and nonliving parts of an ecosystem. Explain why nutrients are important in living systems. Describe how the availability

More information

Do Now. Take out your activity you completed on Friday when I wasn t here!

Do Now. Take out your activity you completed on Friday when I wasn t here! Do Now Take out your activity you completed on Friday when I wasn t here! Biogeochemical Cycles 37.18-37.23 Objectives Identify and describe the flow of nutrients in each biogeochemical cycle Explain the

More information

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Cycles of Matter 1 of 33 The purpose of this lesson is to learn the water, carbon, nitrogen, and phosphorus cycles. This PowerPoint will provide most of the required information you need to accomplish

More information

Chapter 2.3. Manure and Fertilizer as Sources of Nutrients and Potential Environmental Hazards. learning objectives

Chapter 2.3. Manure and Fertilizer as Sources of Nutrients and Potential Environmental Hazards. learning objectives Chapter 2.3 Manure and Fertilizer as Sources of Nutrients and Potential Environmental Hazards learning objectives Describe the advantages and disadvantages of fertilizer and manure as sources of nutrients

More information

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Biology 1 of 33 2 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within

More information

2.1 Energy Flow in Ecosystems Student Notes

2.1 Energy Flow in Ecosystems Student Notes 2.1 Energy Flow in Ecosystems Student Notes General Information Biomass is Biomass is also sometimes used to measure the mass of organic materials that are used to produce biofuels such as biogas. Biomass

More information

Biogeochemical Cycles. {Living World

Biogeochemical Cycles. {Living World Biogeochemical Cycles {Living World What Sustains Life on Earth? Solar energy, the cycling of matter, and gravity sustain the earth s life. Earth's Spheres Atmosphere layer of air that surrounds the Earth

More information

Chapter 3 Reading/Homework Quiz

Chapter 3 Reading/Homework Quiz Name Chapter 3 Reading/Homework Quiz Date APES 1. Scientists estimate that tropical rain forests contain up to half of the earth s land plants and animal species. What percentage of the world s land surface

More information

Nutrient Sources, are not all Equal. John Lauzon

Nutrient Sources, are not all Equal. John Lauzon Nutrient Sources, are not all Equal John Lauzon Managing Organic Sources of Nutrients Organic forms of nitrogen aregenerally not plant available Need an understanding of if, and how much plant available

More information

Biogeochemical Cycles

Biogeochemical Cycles Biogeochemical Cycles SB4b. Explain the flow of matter and energy through ecosystems by explaining the need for cycling of major nutrients (C, O, H, N, P). Biogeochemical Cycles describe the flow of essential

More information

Ecosystems. Studying Organisms In Their Environment. Division Ave. High School AP Biology. organism. population. community. ecosystem.

Ecosystems. Studying Organisms In Their Environment. Division Ave. High School AP Biology. organism. population. community. ecosystem. Ecosystems Studying Organisms In Their Environment organism population community ecosystem biosphere 1 Essential questions What limits the production in ecosystems? How do nutrients move in the ecosystem?

More information

AP Biology. Ecosystems

AP Biology. Ecosystems Ecosystems Studying organisms in their environment organism population community ecosystem biosphere Essential questions What limits the production in ecosystems? How do nutrients move in the ecosystem?

More information

ACTIVE HUMIC TECHNOLOGY

ACTIVE HUMIC TECHNOLOGY www.organocat.com ACTIVE HUMIC TECHNOLOGY ACTIVE HUMIC TECHNOLOGY What are Humic Substances? Humic Substances are very stable, organic compounds found in brown and oxidized black coal, peat, manure, compost,

More information

Wetland Phosphorus Cycle

Wetland Phosphorus Cycle Diffusion Sedimentation Diffusion allows dissolved forms of Phosphorus to be transferred from the incoming surface water into the soil and back again on occasion. A concentration gradient is what allows

More information

BIOGEOCHEMICAL CYCLES

BIOGEOCHEMICAL CYCLES BIOGEOCHEMICAL CYCLES BIOGEOCHEMICAL CYCLES A biogeochemical cycle or cycling of substances is a pathway by which a chemical element or molecule moves through both biotic and abiotic compartments of Earth.

More information

Managing Phosphorus Cycling for Food Security

Managing Phosphorus Cycling for Food Security Phosphorus as a Resource Sustainable Solutions for Infrastructure, Food Security and the Environment Ryerson University, Toronto, Ontario 19 June 2014 Managing Phosphorus Cycling for Food Security Tom

More information

Ecosystem ecology ECOSYSTEM ECOLOGY. Thermodynamics. Energy moves through ecosystems. Energy 11/25/2017

Ecosystem ecology ECOSYSTEM ECOLOGY. Thermodynamics. Energy moves through ecosystems. Energy 11/25/2017 ECOSYSTEM ECOLOGY Ecosystem ecology Chapter 55 Study of biological communities and abiotic environment Thermodynamics First Law of Thermodynamics - Energy is neither created nor destroyed Second Law of

More information

10/18/2010 THINK ABOUT IT CHAPTER 3 THE BIOSHPERE RECYCLING IN THE BIOSPHERE RECYCLING IN THE BIOSPHERE

10/18/2010 THINK ABOUT IT CHAPTER 3 THE BIOSHPERE RECYCLING IN THE BIOSPHERE RECYCLING IN THE BIOSPHERE THINK ABOUT IT CHAPTER 3 THE BIOSHPERE 3.4 Mrs. Michaelsen A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them

More information

AARHUS UNIVERSITY. FarmAC model. Nick Hutchings & Ib Kristensen. Training session 1

AARHUS UNIVERSITY. FarmAC model. Nick Hutchings & Ib Kristensen. Training session 1 FarmAC model Nick Hutchings & Ib Kristensen Training session 1 1 Schedule for day 09:00* 10:00 Overview of the science behind FarmAC (Nick) 10:00 11:00 Using the model via the user interface (Ib). 11:00

More information

Nutrient Cycles How are nutrients recycled through ecosystems?

Nutrient Cycles How are nutrients recycled through ecosystems? Nutrient Cycles How are nutrients recycled through ecosystems? Why? We have learned the importance of recycling our trash. It allows us to use something again for another purpose and prevents the loss

More information

Enhancing Soil Fertility with Cover Crops. Mike Daniels Professor, Extension Water Quality and Nutrient Management

Enhancing Soil Fertility with Cover Crops. Mike Daniels Professor, Extension Water Quality and Nutrient Management Enhancing Soil Fertility with Cover Crops Mike Daniels Professor, Extension Water Quality and Nutrient Management Outline Definitions and Basics How Cover Crops enhance Soil Fertility Cover Crops and Water

More information

Nutrient Cycling & Soils

Nutrient Cycling & Soils Nutrient Cycling & Soils tutorial by Paul Rich Outline 1. Nutrient Cycles What are nutrient cycles? major cycles 2. Water Cycle 3. Carbon Cycle 4. Nitrogen Cycle 5. Phosphorus Cycle 6. Sulfur Cycle 7.

More information

Chapter 34 Nature of Ecosystems. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 34 Nature of Ecosystems. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 34 Nature of Ecosystems 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 34.1 The Biotic Components of Ecosystems Ecosystems Abiotic components include

More information

PHOSPHORUS RECOVERY FROM SEWAGE SLUDGE USING THE AQUACRITOX SUPERCRITICAL WATER OXIDATION PROCESS

PHOSPHORUS RECOVERY FROM SEWAGE SLUDGE USING THE AQUACRITOX SUPERCRITICAL WATER OXIDATION PROCESS 14 th European Biosolids and Organic Resources Conference and Exhibition 1 PHOSPHORUS RECOVERY FROM SEWAGE SLUDGE USING THE AQUACRITOX SUPERCRITICAL WATER OXIDATION PROCESS O Callaghan,P. 1 and O Regan,

More information

UNIT 1 SUSTAINING ECOSYSTEMS

UNIT 1 SUSTAINING ECOSYSTEMS UNIT 1 SUSTAINING ECOSYSTEMS Chapter 2 Biogeochemical Cycles Science 10 Change & Recovery in Ecosystems (you do not need to copy) What happens to the materials that make up a truck when it begins to rust?

More information