Fiber Laser Welding of High Integrity Implantable Medical Devices

Size: px
Start display at page:

Download "Fiber Laser Welding of High Integrity Implantable Medical Devices"

Transcription

1 Fiber Laser Welding of High Integrity Implantable Medical Devices Authors: Sergey Safarevich, Serdar Unal, Silke Pflueger, Tony Hoult, David Braman LaserStar Technologies Corporation, One Industrial Court, Riverside, RI 02915, USA w w w. l a s e r s t a r. n e t

2 FIBER LASER WELDING OF HIGH INTEGRITY IMPLANTABLE MEDICAL DEVICES Paper (Paper Number) Sergey Safarevich 1, Serdar Unal 1, Silke Pflueger 2, Tony Hoult 2, David Braman 3 1 St. Jude Medical, Valley View Court, Sylmar, CA, 91342, USA 2 SPI Lasers LLC, 1700 Wyatt Drive, Suite 1, Santa Clara, CA, 95054, USA 3 Crafford LaserStar Technologies Corporation, 1 Industrial Court, Riverside, RI 02915, USA Abstract Medical implantable devices like pacemakers, ICDs and leads are progressively becoming more compact and lighter. Some of the components used for hermetic and structural welding are still large and thick enough for conventional Nd:YAG pulsed lasers. However, some of the welded components, particularly used for electrical connections, have become so small and thin that the conventional Nd:YAG laser performs like a big and rough tool. The greatest challenge for welding is that the miniature components have limited heat sink ability, particularly if the components contain heat sensitive elements, such as electronic chips, lower melting point plastics, and organic materials. Properly selected laser beam characteristics, such as diameter of the beam and energy distribution within the focused spot in welding area, may significantly improve welding process increasing yield during production. The results of this study have identified three fundamental criteria relating to the laser beam welding of the miniature components. First is a comparable diameter of the beam in welding area. Second is the consistency of energy output. Third is the minimization of the component heat input. The presentation discusses the analysis made on the application of the FiberStar portable laser workstation, which incorporates the SPI High Power 1090 nm 100W air-cooled fiber laser engine, to production components such as super thin Pt, Cu-Ni, Cu and MP35N conductors, cables, electrodes and compact electronic subassemblies. Introduction Unique properties of Nd:YAG pulsed-laser beam has found wide array of applications in medical devices such as pacemakers, ICD and leads. For example, average device may contain more than dozen laser weld joints, which provide hermeticity, mechanical strength for the device body and reliable electrical connection for the electrical circuits. Each type of weld joint (hermetic, structural and for electrical connections) has specific requirements [1], which reflect functional characteristics of the joint. These devices are designed to be implanted in humans for many years improving and some times saving people s lives. Some of the weld joints are relatively big and massive for the conventional laser welding application. These joints easy withstand much heat generated during welding and accept output energy variation of approximately +/- 10% and more. However, all the implantable devices have a tendency to be designed smaller and smaller. Due to this trend, some of the welded components are now so small, even the precise laser beam becomes a relatively big and rough tool. To weld miniature components successfully three fundamental requirements to the laser beam must be met. They are a small diameter of the beam in focus, which has to be comparable to the component size, consistent pulse-to-pulse energy output and minimal heat input into the components. Hermetic Welding It is important for a hermetic joint, that weld has deep penetration, which provides reliable hermetic sealing between welded components. Components for hermetic welding usually built from relatively thick ( ) Titanium. Figure 1 shows typical hermetic welds. To provide pure atmosphere inside the device, hermetic welding occurs in controlled atmosphere glove boxes with integrated lasers and CNC motion, which provide reliable and repeatable processes. Laser parameters allow sealing the joints with weld penetration deeper than at least 30% of the component thickness. This can be achieved using approximately 2.0 Joules consequent laser pulses with ~80% overlap. The beam diameter in focus should be adjusted to produce relatively wide weld (approximately ). The wide weld minimizes welding rejects caused by possible gap and mismatch between the components. The hermetic welding of the implantable devices is successful area for conventional laser application.

3 Seam Weld Coil to Electrode Weld Feedthrough Weld Crimp Slug to Ring Weld Case Seam Weld Brace to Case Weld Feedthrough to Case Weld Figure 2 Typical structural joints welded using conventional laser. Component thickness is around Width of the welds is around Figure 1 Hermetic welds (using conventional laser) of Titanium components with thickness of Weld widths are around Structural Welding Mechanical strength is the major requirement for structural joints. Usually the welded joint consists of large and strong components. Some of them could withstand even more than 50 lbs of tensile force. These joints have to have large fusion areas between the components, which can be provided by the conventional lasers. Fig 2 exhibits typical structural joints. Many of structural joints are used as elements of electrical circuits. In this case, large fusion areas provide excessive electrical continuity. Coil and crimp slug structural welds are large and strong (Figure 2). Electrical connection in the joints is assured, and the joints have overwhelming strength. Electrical Connection Joints For an electrical joint, weld must provide reliable electrical continuity for the device circuit with minimum electrical resistance. Components and fusion area do not need to be big and strong, as it required for structural welding. Contrary to hermetic and structural, joints, electrical connections may contain very small and thin components close to range (see Figure 3) or even less. Some of new generation of implantable leads equipped with miniature electronic components (chips, diodes, etc.), which are encapsulated inside the leads closer to the heart. The leads may have tens of welded electrical joints located in limited space surrounded and connected to the electronic elements. This sets very special and strict requirements to the laser beam size, minimization of heat input and energy output pulse-topulse stability.

4 High-Reflectivity FBG ( >99% ) GTWave Gain Medium Output Coupler FBG (~5% Reflectivity) High Brightness 915nm/977nm Diode Pumps / Modules Tap couplers + Monitor Diodes Output Fiber / Beam Delivery Optics Figure 4 Block diagram of fiber laser Quality of the beam Figure 3 Conductor ribbon thickness and width needs to be welded inside the ring electrode. Wall thickness of the ring electrode is Fiber Lasers for Welding The resonator of the fiber laser is single mode optical fiber, as is the delivery fiber to the work piece. A single mode fiber only allows a TEM00 mode to exist and be transmitted, resulting in a beam with a diffraction limited beam quality of M 2 =1.1 to 1.5. In the beam delivery optic, the laser is coupled out of the fiber and collimated while preserving the beam quality. Fig. 5 shows a beam scan of the fiber laser. Fiber lasers were introduced commercially in the 1990s mainly for printing applications. They have now become a production standard for many printing and medical device applications due to their size and reliability. Where standard Nd:YAG lasers are lamp pumped crystals with external resonators that may be fiber coupled, fiber lasers are truly generated in a fiber. Figure 4 shows the schematic of a fiber laser. The diode pump lasers are directly fiber coupled, bundled, and then spliced to the main laser fiber. The mirrors are fiber optical elements, so called Fiber Bragg Gratings, which are also spliced to the laser fiber. A spliced-in power pickup in the form of a tap coupler allows monitoring and controlling the forward laser power and monitors for any back reflections to prevent damage to the laser. The laser beam is brought to the work piece via an external fiber and beam delivery optic. At the beam delivery optic, the laser beam exits the fiber and is collimated with a lens. Figure 5 Beam shape measurements of 100W fiber laser Pulse-to-pulse Stability Pulse-to-pulse stability is a good measure of how a laser performs when modulated. Fig. 6 shows a measurement of a pulse train of 5J pulses, 100W peak, 50ms pulse length. The measurement shows good stability, with 99% of pulses within +/-0.5% of the average energy. Fig. 7 shows a similar measurement, with pulse energy plotted vs. time. Pulse Energy Distribution for 10Hz, 50msec pulses at 100W No. Pulses Avg 4.857J Min 4.832J 20 Max 4.882J 10 Sigma 0.007J Pulse Energy (J)

5 Figure 6 Pulse-to-pulse stability for modulated CWM fiber laser 0.11 Pulse Energy (J) :59:59 16:00:03 16:00:07 16:00:12 16:00:16 16:00:20 time(h) Figure 7 Short term power stability over 20 second at 100Hz, 2 ms pulse length, 50 W peak power and 10 W average power [2] This energy stability is achieved twofold: Fiber lasers have a closed loop feedback for power which keeps the output power constant by controlling the pump diode power. This system has a response time in the microsecond region, keeping the power within less than 0.5% when run cw or modulated. For spot welding applications, the laser is modulated with pulses in the millisecond region. The length of the pulse is controlled with an external pulse generator, which can keep pulse lengths extremely stable, guaranteeing a stable pulse. Portable Fiber Lasers Systems for Welding The advent of compact and air cooled fiber laser engines made it possible to incorporate this technology into a complete portable welding system. The FiberStar Laser System (Fig. 8) is a next generation complete laser workstation incorporating the latest technology and advances to ensure precise control of the laser pulse wattage, pulse energy, pulse width, and beam diameter using either a keypad or joysticks.. This accurate control of the laser energy is important to the reliability of the weld for miniature components as discussed. Figure 8 FiberStar portable welding system The laser pulse energy and pulse widths are controlled with repetition rates to 20 Hz and pulse widths to 250 ms, also allowing pulse shaping. The control and high energy stability is maintained by constantly monitoring and adjusting the laser engine laser energy. The cw mode allows for use with other applications. The system has incorporated the feature to limit or prohibit the operator from making adjustments or other changes to weld parameters. Operator safety is maintained through redundant monitoring by the control systems and engineering design. The system incorporates a dual window large triopening welding chamber with the capability of adding deep trays. This design also allows for easy access of hands thru ergonomically designed hand openings. Automation stages are easily incorporated. The precise alignment of the microscope cross hair to the laser beam is accurately and easily accomplished using a refined alignment device. This precise alignment is needed when working with the extremely small components being discussed and the small laser spot size. Fiber Laser Welding Applications The experience of using the FiberStar laser demonstrates that the laser can be used not only for welding extra small electrical components, but for some structural joints as well. In the pictures below, the examples of the components (electrical joints) welded using the FiberStar are shown. Figure 9 exhibits examples of welded miniature electrical joints demonstrating significant advantage of fiber laser an ability to concentrate welding heat in the extremely small area. That is why the dimension of the fusion zone is as small as the size of the miniature conductors (see Figure 9 left and middle).

6 Figure 9 Application of FiberStar laser. Top left: conductor is a solid wire with diameter of welded to a ribbon. Top right: conductor is a cable with diameter of welded to a ribbon. Bottom: small conductor ribbon with thickness of welded to the ring electrode In Figure 10, the MP35N cables welded to the thin (0.002 ) Platinum conductors. The welds placed with close proximity to the electronic component. In Figure 11, the wire diameter single filar micro-coil (MP35N) welded to the thick Platinum conductor. The weld placed with close proximity to the electronic components. In both cases, no damage of electronic components found. Figure 12 exhibits the fiber laser welding of cables. Cables are used widely in implantable leads as electrical conductors. Usually they consist of more than seven strings bundled together. The cable could be welded to other components or to another cable as well. Next fiber laser application is splicing of Pt/Ir wires. The laser is capable to weld the wires using a single pulse for each joint demonstrating excellent consistency of the weld characteristics (see Figure 13). Figure 10 Application of FiberStar laser. MP35N cable welded to Platinum attached to diode weld conductor. The welds are within a few mils of the electronic component

7 Figure 11 Application of FiberStar laser wire diameter single filar micro-coil (MP35N) welded to the thick Platinum conductor Figure 13. Application of FiberStar laser. Splicing of Pt/Ir wires with diameter of The laser provides excellent consistency of the weld quality and appearance The fiber laser could be useful for structural welding as well. See Figure 14 where two relatively big and thick components circumferentially welded together. In this application fiber laser provides excessive mechanical strength of the joint. Figure 12 Application of FiberStar laser. Top: cable termination. Middle: Cables joining. Bottom: Cable to ring electrode electrical connection weld

8 received his Masters and Bachelor s in Electrical Engineering from the University of RI. He has a number of patents in dimensional measurement instruments, resistive welding and machinery automation. Figure 14. Application of FiberStar laser. Set screw housing structural weld References [1] Safarevich, S., (2006) Laser Welding of Implantable Devices, in Proceedings ALAC 2006 Medical Devices, Vol. 10. [2] K. Kleine, W. Fox, K. Watkins (2004) Micro Welding with Pulsed Single Mode Fiber Lasers, in Proceedings of 23rd International Congress of Lasers and Electro-Optics Dr. Tony Hoult is trained as a Materials Engineer. He has now been working in the laser industry for many years as a Laser Materials Processing specialist in both industry and in academia. He is currently Applications Manager for SPI Lasers, a major industrial fiber laser supplier. Using these novel laser sources, he has improved a number of existing leading edge laser applications and has identified entirely new processing regimes in others. Dr. Silke Pflueger has 20 years of experience in industrial lasers and their applications and is currently the Director Sales North America for SPI Lasers. Before joining SPI Lasers in 2004, she held Engineering and Marketing positions in SDL / JDSU working with high power laser diodes and fiber lasers. Ms. Pflueger received her Ph.D. in Mechanical Engineering from the Technical University in Aachen, Germany, where she worked at the Fraunhofer Institute for Laser Technology. Meet the Author(s) Dr. Sergey Safarevich is the Senior Principal Engineer of St. Jude Medical in Sylmar, CA. He is responsible for welding (development and manufacturing) of pacemakers, ICD and leads. He received his Ph. D. in laser welding in 1986 and M.S. in welding engineering in 1974 from St. Petersburg Technical University, Russia. He has 20 patents and 19 international publications related to the laser robotic systems, FMS and precision welding technology including laser and micro plasma. FiberStar Workstation Manufacturer s Information - Contact: Crafford-LaserStar Technologies Corporation One Industrial Court, Riverside, RI USA T: F: sales@laserstar.net Mr. Serdar Unal is a Process Engineer III at St. Jude Medical in Sylmar, CA. He is responsible for developing and supporting laser welding processes for Leads manufacturing. He received his Masters and Bachelor s in Mechanical Engineering from University of Missouri-Rolla in 2000 and 1998, respectively. He is currently attending distance learning program at California Polytechnic State University, San Luis Obispo to receive his Master s degree in Biomedical Engineering. Mr. David P. Braman is the Vice President of Engineering at Crafford-LaserStar Technologies Corporation in Riverside, RI. He is responsible for all laser product development and engineering. He

PULSED LASER WELDING

PULSED LASER WELDING PULSED LASER WELDING Girish P. Kelkar, Ph.D. Girish Kelkar, Ph.D, WJM Technologies, Cerritos, CA 90703, USA Laser welding is finding growing acceptance in field of manufacturing as price of lasers have

More information

In-Process Monitoring and Adaptive Control in Micro Welding with a Single-Mode Fiber Laser.

In-Process Monitoring and Adaptive Control in Micro Welding with a Single-Mode Fiber Laser. Title Author(s) In-Process Monitoring and Adaptive Control in Micro Welding with a Single-Mode Fiber Laser KAWAHITO, Yousuke; KATAYAMA, Seiji Citation Transactions of JWRI. 38(2) P.5-P.11 Issue Date 2009-12

More information

In-process Monitoring and Adaptive Control for Laser Spot and Seam Welding of Pure Titanium

In-process Monitoring and Adaptive Control for Laser Spot and Seam Welding of Pure Titanium In-process Monitoring and Adaptive Control for Laser Spot and Seam Welding of Pure Titanium Yousuke KAWAHITO*, Masayuki KITO* and Seiji KATAYAMA* * Osaka University, Joining and Welding Research Institute

More information

In-process Monitoring and Adaptive Control during Micro Welding with CW Fiber Laser

In-process Monitoring and Adaptive Control during Micro Welding with CW Fiber Laser In-process Monitoring and Adaptive Control during Micro Welding with CW Fiber Laser Yousuke KAWAHITO*, Masaharu KAWASAKI* and Seiji KATAYAMA* * Osaka University, Joining and Welding Research Institute

More information

Copyright 1999 Society of Manufacturing Engineers FUNDAMENTAL MANUFACTURING PROCESSES Welding NARRATION (VO):

Copyright 1999 Society of Manufacturing Engineers FUNDAMENTAL MANUFACTURING PROCESSES Welding NARRATION (VO): Copyright 1999 Society of Manufacturing Engineers --- 1 --- FUNDAMENTAL MANUFACTURING PROCESSES Welding SCENE 1. CG: Fusion Welding Processes white text centered on black SCENE 2. tape 528, 14:18:33-14:18:52

More information

Micro-Precision Coil and Formed Wire Products for the Medical Device Industry

Micro-Precision Coil and Formed Wire Products for the Medical Device Industry Micro-Precision Coil and Formed Wire Products for the Medical Device Industry Precision Metal Components For Medical Devices Specialized, complex parts and sub-assemblies Extreme diameter and length capabilities

More information

Diode Pumped Miniature Eye-Safe Laser Q-Switched by Passive Materials

Diode Pumped Miniature Eye-Safe Laser Q-Switched by Passive Materials Diode Pumped Miniature Eye-Safe Laser Q-Switched by Passive Materials Presented at SPIE AeroSense 22 Ruikun Wu, J.D. Myers, M.J. Myers, Christopher R. Hardy Kigre, Inc.1 Marshland Road, Hilton Head Island,

More information

Low Energy Consumption, High-Speed Productivity LCG 3015 AJ. Fiber Laser Cutting System

Low Energy Consumption, High-Speed Productivity LCG 3015 AJ. Fiber Laser Cutting System Low Energy Consumption, High-Speed Productivity LCG 3015 AJ Fiber Laser Cutting System Development Concept The LCG 3015 AJ is the latest addition to Amada's line of fiber laser cutting systems. The 2kW

More information

Aluminum / Copper oscillation welding with a 500 W direct diode laser

Aluminum / Copper oscillation welding with a 500 W direct diode laser Application Note Issued: 2016-06-01 Aluminum / Copper oscillation welding with a 500 W direct diode laser SUMMARY The performance of the 500 W DirectProcess direct diode laser for oscillating welding by

More information

Automotive joining of light-weight materials enabled by fiber lasers

Automotive joining of light-weight materials enabled by fiber lasers Automotive joining of light-weight materials enabled by fiber lasers 26 APR 2017, GALM, Birmingham, UK Mark Thompson Director of Sales & Service, UK T h e P o w e r t o T r a n s f o r m TM Nasdaq: IPG

More information

Adaptive Gap Control in Butt Welding with a Pulsed YAG Laser

Adaptive Gap Control in Butt Welding with a Pulsed YAG Laser Transactions of JWRI, Vol.36 (2007), No. 2 Adaptive Gap Control in Butt Welding with a Pulsed YAG Laser KAWAHITO Yousuke*, KITO Masayuki** and KATAYAMA Seiji*** Abstract The gap is one of the most important

More information

Multispot laser welding to improve process stability

Multispot laser welding to improve process stability Lasers in Manufacturing Conference 2015 Multispot laser welding to improve process stability K.S. Hansen a *, F.O. Olsen a, M. Kristiansen b, O. Madsen b a IPU Technology Development, Produktionstorvet

More information

Introduction. Online course on Analysis and Modelling of Welding. G. Phanikumar Dept. of MME, IIT Madras

Introduction. Online course on Analysis and Modelling of Welding. G. Phanikumar Dept. of MME, IIT Madras Introduction Online course on Analysis and Modelling of Welding G. Phanikumar Dept. of MME, IIT Madras Classification of Manufacturing Processes Manufacturing Processes Ingot Casting Shape Casting Power

More information

QINEO PULSE. The versatile welding machine for industry

QINEO PULSE. The versatile welding machine for industry QINEO PULSE The versatile welding machine for industry Some ideas set the trend for future times. PULSE 2 CLOOS: Your brand for innovative welding technology! Providing added value for our customers! This

More information

Fig1: Melt pool size of LAMP vs. µlamp. The LAMP process s melt pool is x the area of the LAMP s melt pool.

Fig1: Melt pool size of LAMP vs. µlamp. The LAMP process s melt pool is x the area of the LAMP s melt pool. Proceedings of the 4th Annual ISC Research Symposium ISCRS 2010 April 21, 2010, Rolla, Missouri LOW COST IMAGING OF MELTPOOL IN MICRO LASER AIDED MANUFACTURING PROCESS (µlamp) ABSTRACT This paper describes

More information

Tensile Strength and Pseudo-elasticity of YAG Laser Spot Melted Ti-Ni Shape Memory Alloy Wires

Tensile Strength and Pseudo-elasticity of YAG Laser Spot Melted Ti-Ni Shape Memory Alloy Wires Materials Transactions, Vol. 45, No. 4 (24) pp. 17 to 176 Special Issue on Frontiers of Smart Biomaterials #24 The Japan Institute of Metals Tensile Strength and Pseudo-elasticity of YAG Laser Spot Melted

More information

QINEO Product overview

QINEO Product overview Product overview Carl Cloos Schweißtechnik GmbH Industriestraße D-35708 Haiger Telefon +49 (0)2773 85-0 Telefax +49 (0)2773 85-275 E-Mail info@cloos.de www.qineo.de CLOOS: Your brand for innovative welding

More information

High Power Operation of Cryogenic Yb:YAG. K. F. Wall, B. Pati, and P. F. Moulton Photonics West 2007 San Jose, CA January 23, 2007

High Power Operation of Cryogenic Yb:YAG. K. F. Wall, B. Pati, and P. F. Moulton Photonics West 2007 San Jose, CA January 23, 2007 High Power Operation of Cryogenic Yb:YAG K. F. Wall, B. Pati, and P. F. Moulton Photonics West 2007 San Jose, CA January 23, 2007 Outline Early work on cryogenic lasers MPS laser technology Recent program

More information

MANUFACTURE AND REPAIR OF AERO ENGINE COMPONENTS USING LASER TECHNOLOGY (INVITED PAPER) Paper (405)

MANUFACTURE AND REPAIR OF AERO ENGINE COMPONENTS USING LASER TECHNOLOGY (INVITED PAPER) Paper (405) Proceedings of the 3 rd Pacific International Conference on Application of Lasers and Optics 2008 MANUFACTURE AND REPAIR OF AERO ENGINE COMPONENTS USING LASER TECHNOLOGY (INVITED PAPER) Paper (405) Ingomar

More information

Overview Ablating Cutting Drilling Welding Boston Costa Rica Dayton San Diego

Overview Ablating Cutting Drilling Welding Boston Costa Rica Dayton San Diego Overview Ablating Cutting Drilling Welding Boston Costa Rica Dayton San Diego Who is Resonetics? Mission Resonetics will be the leader in laser micro manufacturing for the life sciences industry by providing

More information

Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding Keyword: 16.1 Selection of pulse parameters

Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding Keyword: 16.1 Selection of pulse parameters Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding This chapter presents the influence of process parameters of pulse TIG welding process on the development of sound weld joint. Further, the

More information

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015 LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS Dr. Saad Ahmed XENON Corporation November 19, 2015 Topics Introduction to Pulsed Light Photonic sintering for Printed Electronics R&D Tools for

More information

Challenges and Future Directions of Laser Fuse Processing in Memory Repair

Challenges and Future Directions of Laser Fuse Processing in Memory Repair Challenges and Future Directions of Laser Fuse Processing in Memory Repair Bo Gu, * T. Coughlin, B. Maxwell, J. Griffiths, J. Lee, J. Cordingley, S. Johnson, E. Karagiannis, J. Ehrmann GSI Lumonics, Inc.

More information

LaserPipe In-bore laser welding feasibility study

LaserPipe In-bore laser welding feasibility study LaserPipe In-bore laser welding feasibility study Feasibility study part funded by Innovate UK Thursday, 19 th November 2015 Agenda LaserPipe demonstration day Partner company overviews LaserPipe project

More information

Micro processing with laser radiation

Micro processing with laser radiation Micro processing with laser radiation Trends and perspectives Miniaturization and highly integrated functionalization are the driving factors in the production of innovative products in almost every industrial

More information

Microstructural Characteristics and Mechanical Properties of Single-Mode Fiber Laser Lap-Welded Joint in Ti and Al Dissimilar Metals

Microstructural Characteristics and Mechanical Properties of Single-Mode Fiber Laser Lap-Welded Joint in Ti and Al Dissimilar Metals Transactions of JWRI, Vol.42 (2013), No. 1 Microstructural Characteristics and Mechanical Properties of Single-Mode Fiber Laser Lap-Welded Joint in Ti and Al Dissimilar Metals Su-Jin LEE Su-Jin*, LEE*,

More information

Cladding with High Power Diode Lasers

Cladding with High Power Diode Lasers White Paper Cladding with High Power Diode Lasers Cladding is a well established process used in a variety of industries for improving the surface and near surface properties (e.g. wear, corrosion or heat

More information

Optical Components: Laser Crystals

Optical Components: Laser Crystals Optical Components: Laser Crystals Table of Contents Crystals Introduction... 2 Nd: YVO 4... 3 Nd:YAG... 6 Nd:YLF... 7 Cr:YAG... 9 1 Crystals Introduction Sinoceramics supplies many types of crystals for

More information

Joining. 10. Tool Design for Joining. Joining. Joining. Physical Joining. Physical Joining

Joining. 10. Tool Design for Joining. Joining. Joining. Physical Joining. Physical Joining Joining 10. Tool Design for Joining Nageswara Rao Posinasetti The joining processes are generally divided into two classes: mechanical and physical. Mechanical joining does not ordinarily involve changes

More information

Small-Scale Resistance Welding for Medical and Industrial Applications

Small-Scale Resistance Welding for Medical and Industrial Applications Small-Scale Resistance Welding for Medical and Industrial Applications Girish P. Kelkar, Ph.D. (author of The Weld Nugget ) http://www.welding-consultant.com/ Excellence In Material Joining Difference

More information

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon Chapter 5 Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon 5.1 Introduction In this chapter, we discuss a method of metallic bonding between two deposited silver layers. A diffusion

More information

11.3 Polishing with Laser Radiation

11.3 Polishing with Laser Radiation 196 E. Willenborg 11.3 Polishing with Laser Radiation Edgar Willenborg The surface roughness of a part or product strongly influences its properties and functions. Among these can be counted abrasion and

More information

In-Process Monitoring and Adaptive Control during Pulsed YAG Laser Spot Welding of Aluminum Alloy Thin Sheets

In-Process Monitoring and Adaptive Control during Pulsed YAG Laser Spot Welding of Aluminum Alloy Thin Sheets JLMN-Journal of Laser Micro/Nanoengineering, Vol.1, No. 1, 2006 In-Process Monitoring and Adaptive Control during Pulsed YAG Laser Spot Welding of Aluminum Alloy Thin Sheets Yousuke KAWAHITO * and Seiji

More information

Solutions in Steel Innovative Technologies for Smart Solutions

Solutions in Steel Innovative Technologies for Smart Solutions Solutions in Steel Innovative Technologies for Smart Solutions Company Montanstahl is a dynamic family-owned company active in the production and supply of high quality special steel shapes. Established

More information

Introduction. Learning Objectives. On completion of this topic you will be able to:

Introduction. Learning Objectives. On completion of this topic you will be able to: Introduction Learning Objectives On completion of this topic you will be able to: 1. Applications of Lasers in cutting and welding 2. Applications of Lasers Laser in heat treatment 3. Applications of Lasers

More information

Coatings. Ion Assisted Deposition (IAD) process Advance Plasma Source (APS) plasma-ion assisted Deposition. Coatings on Optical Fibers

Coatings. Ion Assisted Deposition (IAD) process Advance Plasma Source (APS) plasma-ion assisted Deposition. Coatings on Optical Fibers Anti-Reflection Custom Ion Assisted Deposition (IAD) process Advance Plasma Source (APS) plasma-ion assisted Deposition Anti-Reflection on Optical Fibers OptoSigma supplies a wide selection of optical

More information

SPECIAL SPECIFICATION 1663 Fiber Optic Cable

SPECIAL SPECIFICATION 1663 Fiber Optic Cable 1993 Specifications CSJ 0192-01-080 SPECIAL SPECIFICATION 1663 Fiber Optic Cable 1. Description. This Item shall govern for the furnishing and installation of fiber optic cable in designated locations

More information

COURSE: ADVANCED MANUFACTURING PROCESSES. Module No. 4: ADVANCED WELDING PROCESSES

COURSE: ADVANCED MANUFACTURING PROCESSES. Module No. 4: ADVANCED WELDING PROCESSES COURSE: ADVANCED MANUFACTURING PROCESSES Module No. 4: ADVANCED WELDING PROCESSES Lecture No-2: Resistance Welding Process Resistance welding process makes use of the electrical resistance for generating

More information

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304 A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304 Chen Zhang, Ming Gao, Geng Li, Xiaoyan Zeng Wuhan National Laboratory for Optoelectronics,

More information

Laser Welding of Engineering Plastics

Laser Welding of Engineering Plastics Laser Welding of Engineering Plastics Technical Information Further information on individual products: www.ultramid.de www.ultradur-lux.basf.com www.ultrason.de www.plasticsportal.eu/ultraform 2 LASER

More information

Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions

Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions Xidong Duan, Chen Wang, Jonathan Shaw, Rui Cheng, Yu Chen, Honglai Li, Xueping Wu, Ying Tang, Qinling Zhang, Anlian Pan,

More information

LASER BEAM DEFOCUSING EFFECTS ON LASER WELDS SURFACES

LASER BEAM DEFOCUSING EFFECTS ON LASER WELDS SURFACES HENRI COANDA GERMANY GENERAL M.R. STEFANIK AIR FORCE ACADEMY ARMED FORCES ACADEMY ROMANIA SLOVAK REPUBLIC INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER AFASES 2011 Brasov, 26-28 May 2011 LASER BEAM DEFOCUSING

More information

BASED ON WELDING/JOINING TECHNOLOGIES

BASED ON WELDING/JOINING TECHNOLOGIES UDC 621.791:008 Generalized Additive Manufacturing BASED ON WELDING/JOINING TECHNOLOGIES GUAN QIAO Beijing Aeronautical Manufacturing Technology Research Institute P O Box 863, 100024 Beijing, China Being

More information

POSSIBILITIES OF STAINLESS STEEL LASER MARKING. Michal ŠVANTNER, Martin KUČERA, Šárka HOUDKOVÁ

POSSIBILITIES OF STAINLESS STEEL LASER MARKING. Michal ŠVANTNER, Martin KUČERA, Šárka HOUDKOVÁ POSSIBILITIES OF STAINLESS STEEL LASER MARKING Michal ŠVANTNER, Martin KUČERA, Šárka HOUDKOVÁ University of West Bohemia, Univerzitní 8, 30614 Plzeň, msvantne@ntc.zcu.cz Abstract Laser techniques are one

More information

Laser Synthesis of Metal Oxide Crystals with the Use of Carbon Nanotubes

Laser Synthesis of Metal Oxide Crystals with the Use of Carbon Nanotubes Open Journal of Composite Materials, 2013, 3, 16-20 http://dx.doi.org/10.4236/ojcm.2013.32a003 Published Online April 2013 (http://www.scirp.org/journal/ojcm) Laser Synthesis of Metal Oxide Crystals with

More information

10 Manor Parkway, Suite C Salem, New Hampshire

10 Manor Parkway, Suite C Salem, New Hampshire Micro-Precision Technologies (MPT) is an independent manufacturer of hybrid integrated circuits, multichip modules, and high-precision thick film substrates for the military, medical, avionics, optoelectronics,

More information

Diode laser beam absorption in laser transformation hardening of low alloy steel

Diode laser beam absorption in laser transformation hardening of low alloy steel Diode laser beam absorption in laser transformation hardening of low alloy steel Henrikki Pantsar and Veli Kujanpää Citation: Journal of Laser Applications 16, 147 (2004); doi: 10.2351/1.1710879 View online:

More information

Non-contact temperature measurement from 50 C to 2200 C

Non-contact temperature measurement from 50 C to 2200 C high-temperature Applications Non-contact temperature measurement from 50 C to 2200 C Infrared thermometers, infrared cameras and their applications Innovative Infrared Technology High temperature applications

More information

HERMETIC SEALING USING LOW IMPEDANCE PROJECTION WELDING. By T.E.Salzer

HERMETIC SEALING USING LOW IMPEDANCE PROJECTION WELDING. By T.E.Salzer HERMETIC SEALING USING LOW IMPEDANCE PROJECTION WELDING By T.E.Salzer Over many years, various studies, articles, and inventions have been published relating the dynamics of resistance/projection welding

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

DESIGN OF EXPERIMENT TO OPTIMIZE ABSORBER IN RESIN WELDING PARAMETERS

DESIGN OF EXPERIMENT TO OPTIMIZE ABSORBER IN RESIN WELDING PARAMETERS DESIGN OF EXPERIMENT TO OPTIMIZE ABSORBER IN RESIN WELDING PARAMETERS Michelle M. Burrell, William H. Cawley and Joseph P. Verespy GENTEX Corporation Carbondale, PA 18407-0315, USA Abstract Through Transmission

More information

Welding characteristics and structures of same and different metal specimens using ultrasonic complex vibration welding equipments

Welding characteristics and structures of same and different metal specimens using ultrasonic complex vibration welding equipments Proceedings of 20 th International Congress on Acoustics, ICA 2010 23-27 August 2010, Sydney, Australia Welding characteristics and structures of same and different metal specimens using ultrasonic complex

More information

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio Plasmonics using Metal Nanoparticles Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio April 1, 2007 Motivation Why study plasmonics? Miniaturization of optics and photonics to subwavelength scales

More information

Die Hardfacing and Remanufacturing using Direct Metal Deposition (DMD) B. Dutta POM Group, Inc., Auburn Hills, MI-48326

Die Hardfacing and Remanufacturing using Direct Metal Deposition (DMD) B. Dutta POM Group, Inc., Auburn Hills, MI-48326 Die Hardfacing and Remanufacturing using Direct Metal Deposition (DMD) B. Dutta POM Group, Inc., Auburn Hills, MI-48326 OUTLINE Company Overview of Direct Metal Deposition DMD Systems DMD Application in

More information

Titanium Welding Technology

Titanium Welding Technology UDC 669. 295 : 621. 791. 754 Titanium Welding Technology Tadayuki OTANI* 1 Abstract In order to establish titanium welding technology TIG arc weldability and MIG arc weldability were surveyed. For TIG

More information

Single Pulse Resistance Welder Instruction Pamphlet CD125SP High Accuracy CD Welder

Single Pulse Resistance Welder Instruction Pamphlet CD125SP High Accuracy CD Welder EN G IN EERI N G Single Pulse Resistance Welder Instruction Pamphlet CD125SP High Accuracy CD Welder Fundamentals of Capacitive Discharge Resistance Welding deliver repeatable welds even during line voltage

More information

Development of ATI 425 Alloy Flat Rolled Products ITA 2010

Development of ATI 425 Alloy Flat Rolled Products ITA 2010 Development of ATI 425 Alloy Flat Rolled Products ITA 2010 Orlando FL October 5, 2010 2010 ATI Luis Ruiz-Aparicio, PhD Outline ATI 425 Alloy Introduction Cold-Rolled & Annealed Coil Processing Mechanical

More information

Advances in Intense Pulsed Light Solutions For Display Manufacturing. XENON Corporation Dr. Saad Ahmed Japan IDW 2016

Advances in Intense Pulsed Light Solutions For Display Manufacturing. XENON Corporation Dr. Saad Ahmed Japan IDW 2016 Advances in Intense Pulsed Light Solutions For Display Manufacturing XENON Corporation Dr. Saad Ahmed Japan IDW 2016 Talk Outline Introduction to Pulsed Light Applications in Display UV Curing Applications

More information

Issue 51 September 2013

Issue 51 September 2013 Laser Decapsulation By Christopher Henderson Historically, failure analysts used either mechanical or chemical means to decapsulate integrated circuits. They used primarily mechanical means on hermetically-sealed

More information

MECHANICAL PROPERTIES OF PURE TITANIUM MODELS PROCESSED BY SELECTIVE LASER MELTING

MECHANICAL PROPERTIES OF PURE TITANIUM MODELS PROCESSED BY SELECTIVE LASER MELTING MECHANICAL PROPERTIES OF PURE TITANIUM MODELS PROCESSED BY SELECTIVE LASER MELTING Edson Santos*, F. Abe, Y. Kitamura*, K. Osakada* and M. Shiomi* *Division of Mechanical Science, Graduate School of Mechanical

More information

lumasense IMPAC Pyrometers Product Overview Highly Accurate Infrared Thermometers for Non-contact Temperature Measurements

lumasense IMPAC Pyrometers Product Overview Highly Accurate Infrared Thermometers for Non-contact Temperature Measurements lumasense IMPAC Pyrometers Product Overview Highly Accurate Infrared Thermometers for Non-contact Temperature Measurements LumaSense s IMPAC pyrometers are temperature measurement instruments that operate

More information

FAST SPOTTER WT-FS-5.0

FAST SPOTTER WT-FS-5.0 . FAST SPOTTER WT-FS-5.0 Installation, Operating and Maintenance Manual WELDING TECHNOLOGIES www.weldingnet.com 1365 Horseshoe Dr., Blue Bell, PA 19422 Phone: 610-278-9325 Fax: 610-278-9325 Toll Free Number:

More information

MicroPulse 302MFK. English

MicroPulse 302MFK. English MicroPulse 302MFK English The Power Source MicroPulse 302MFK Multi Process Portable MIG MAG Synergic MIG MAG Pulse / Double Pulse NEW POWER SOURCE INVERTER MIG MAG SYNERGIC W.ECO Technology Inside POWER

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 9/13/2007 Fabrication Technology Lecture 1 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world)

More information

Trench Structure Improvement of Thermo-Optic Waveguides

Trench Structure Improvement of Thermo-Optic Waveguides International Journal of Applied Science and Engineering 2007. 5, 1: 1-5 Trench Structure Improvement of Thermo-Optic Waveguides Fang-Lin Chao * Chaoyang University of Technology, Wufong, Taichung County

More information

Structural changes of austenitic steel obtained by 532 nm and 1064 nm Nd:YAG laser radiation

Structural changes of austenitic steel obtained by 532 nm and 1064 nm Nd:YAG laser radiation JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 8, No. 1, February 2006, p, 230-234 Structural changes of austenitic steel obtained by 532 nm and 1064 nm Nd:YAG laser radiation M. I. RUSU *, R.

More information

AILU Technology Workshop

AILU Technology Workshop AILU Technology Workshop Welding of metals using high power fiber delivered diode laser beams Dipl.-Ing. Mark Daichendt Laserline GmbH Mülheim-Kärlich Germany www.laserline.de 1 Outline Laserline company

More information

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments * Experiment 2b X-Ray Diffraction* Adapted from Teaching General Chemistry: A Materials Science Companion by A. B. Ellis et al.: ACS, Washington, DC (1993). Introduction Inorganic chemists, physicists,

More information

Marking Decorative Features to Stainless Steel with Fiber Laser

Marking Decorative Features to Stainless Steel with Fiber Laser Marking Decorative Features to Stainless Steel with Fiber Laser Petri Laakso, Ville Mehtälä VTT Technical Research Centre of Finland Henrikki Pantsar Fraunhofer Color marking on stainless steel has been

More information

What if your diffractometer aligned itself?

What if your diffractometer aligned itself? Ultima IV Perhaps the greatest challenge facing X-ray diffractometer users today is how to minimize time and effort spent on reconfiguring of the system for different applications. Wade Adams, Ph.D., Director,

More information

Effects of Laser Peening Parameters. on Plastic Deformation in Stainless Steel

Effects of Laser Peening Parameters. on Plastic Deformation in Stainless Steel Effects of Laser Peening Parameters on Plastic Deformation in Stainless Steel Miho Tsuyama* 1, Yasuteru Kodama* 2, Yukio Miyamoto* 2, Ippei Kitawaki* 2, Masahiro Tsukamoto* 3 and Hitoshi Nakano* 1 *1 Faculty

More information

Grain Sizes and Surface Roughness in Platinum and Gold Thin Films. L.L. Melo, A. R. Vaz, M.C. Salvadori, M. Cattani

Grain Sizes and Surface Roughness in Platinum and Gold Thin Films. L.L. Melo, A. R. Vaz, M.C. Salvadori, M. Cattani Journal of Metastable and Nanocrystalline Materials Vols. 20-21 (2004) pp. 623-628 online at http://www.scientific.net 2004 Trans Tech Publications, Switzerland Grain Sizes and Surface Roughness in Platinum

More information

Heat-fraction-limited CW Yb:YAG cryogenic solid-state laser with 100% photon slope efficiency

Heat-fraction-limited CW Yb:YAG cryogenic solid-state laser with 100% photon slope efficiency Heat-fraction-limited CW Yb:YAG cryogenic solid-state laser with 100% photon slope efficiency David C. Brown*, Thomas M. Bruno, and Joseph M. Singley Snake Creek Lasers, LLC, Hallstead, PA, 18822, USA

More information

Vacuum deposition of TiN

Vacuum deposition of TiN J.Lorkiewicz DESY.27.10.02 Vacuum deposition of TiN (TiN coating of high power coupler elements as an anti-multipactor remedy at DESY) The scope of the project: - reducing secondary electron emission and

More information

Tackling the optical interconnection challenge for the Integrated Photonics Revolution

Tackling the optical interconnection challenge for the Integrated Photonics Revolution Tackling the optical interconnection challenge for the Integrated Photonics Revolution Dr. Ir. TU Delft, Precision and Microsystems Engineering m.tichem@tudelft.nl Microfabrication and MEMS Si microfabrication

More information

Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics. Chris Nadovich

Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics. Chris Nadovich Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics Chris Nadovich Research Objective The novel combination of a forked holographic grating with a Bragg coupler structure to create

More information

LD21 NEW MATERIALS FOR LARGE-CALIBER ROTATING BANDS FOR HIGH CHARGES. M. Schupfer1, K. Steinhoff2, R. Röthlisberger1 1.

LD21 NEW MATERIALS FOR LARGE-CALIBER ROTATING BANDS FOR HIGH CHARGES. M. Schupfer1, K. Steinhoff2, R. Röthlisberger1 1. LD21 19th International Symposium of Ballistics, 7 11 May 2001, Interlaken, Switzerland NEW MATERIALS FOR LARGE-CALIBER ROTATING BANDS FOR HIGH CHARGES M. Schupfer1, K. Steinhoff2, R. Röthlisberger1 1

More information

talk to experts Industrial-grade Magnetic Pulse (MP) and Electro-hydraulic (EH) systems for FORMING, WELDING, CRIMPING and EXPANSION

talk to experts Industrial-grade Magnetic Pulse (MP) and Electro-hydraulic (EH) systems for FORMING, WELDING, CRIMPING and EXPANSION talk to experts Industrial-grade Magnetic Pulse (MP) and Electro-hydraulic (EH) systems for FORMING, WELDING, CRIMPING and EXPANSION the company Bmax is the global leading provider of advanced metal processing

More information

Materials & Processes in Manufacturing

Materials & Processes in Manufacturing 2003 Bill Young Materials & Processes in Manufacturing ME 151 Chapter 37 Arc Processes Chapter 38 Resistance Welding Chapter 39 Brazing and Soldering 1 Introduction Arc welding processes produce fusion

More information

Resistance Welding. Resistance Welding (RW)

Resistance Welding. Resistance Welding (RW) Resistance Welding (RW) Resistance Welding 1 Resistance Welding is a welding process, in which work pieces are welded due to a combination of a pressure applied to them and a localized heat generated by

More information

Sputter-free and reproducible laser welding of electric or electronic copper contacts with a green laser

Sputter-free and reproducible laser welding of electric or electronic copper contacts with a green laser Abstract Lasers in Manufacturing Conference 2015 Sputter-free and reproducible laser welding of electric or electronic copper contacts with a green laser Kaiser, Elke*; Pricking, Sebastian; Stolzenburg,

More information

Low Divergence atomic beam using laser ablation of thin film

Low Divergence atomic beam using laser ablation of thin film Low Divergence atomic beam using laser ablation of thin film Kamlesh Alti, Susanta Das, Bulumani Kalita, Pratima Agarwal and Alika Khare* Department of Physics Indian Institute of Technology Guwahati,

More information

Industrial 3D-Printing of Metal Parts on a Micron Scale

Industrial 3D-Printing of Metal Parts on a Micron Scale Optonet Industrial 3D-Printing of Metal Parts on a Micron Scale Jena, 2013/11/06 www.3dmicroprint.com joachim.goebner@3dmicroprint.com +49 (0)172 / 842 5378 Additive Manufacturing Miniaturization Overall

More information

Aluminum Alloys for Additive Manufacturing

Aluminum Alloys for Additive Manufacturing Aluminum Alloys for Additive Manufacturing A Metallurgical Perspective of the Modern Economy Joseph R Croteau, MS Materials Engineer NanoAl LLC nanoal.com 8025 Lamon Ave, Suite 446 Skokie, IL 60077 jcroteau@nanoal.com

More information

U. REISGEN, M. SCHLESER RWTH Aachen University, ISF Welding and Joining Institute, Germany.

U. REISGEN, M. SCHLESER RWTH Aachen University, ISF Welding and Joining Institute, Germany. UDC 621.791/621.792 Welding or Adhesive Bonding Is this a question for the future? U. REISGEN, M. SCHLESER RWTH Aachen University, ISF Welding and Joining Institute, Germany. E-mail: office@isf.rwth-aachen.de

More information

Measurement data at orders of magnitude lower cost than other techniques BENEFITS Simple UVC source ideal for compact sensors

Measurement data at orders of magnitude lower cost than other techniques BENEFITS Simple UVC source ideal for compact sensors Optan The Optan Ball Lens, with integrated focusing optics, is the first choice for discerning professionals developing sensors and instruments in demanding measurement applications. Designed for and proven

More information

LASER GUIDED AND STABILIZED GAS METAL ARC WELDING PROCESSES (LGS-GMA)

LASER GUIDED AND STABILIZED GAS METAL ARC WELDING PROCESSES (LGS-GMA) LASER GUIDED AND STABILIZED GAS METAL ARC WELDING PROCESSES (LGS-GMA) Jörg Hermsdorf Laser Zentrum Hannover, Germany OUTLINE Motivation Innovation Technology Project Concept Welding and Cladding Results

More information

Study on Effect of Welding Speed on Micro Structure and Mechanical Properties of Pulsed Current Micro Plasma Arc Welded Inconel 625 Sheets

Study on Effect of Welding Speed on Micro Structure and Mechanical Properties of Pulsed Current Micro Plasma Arc Welded Inconel 625 Sheets Journal of Minerals and Materials Characterization and Engineering, 2012, 11, 1027-1033 Published Online October 2012 (http://www.scirp.org/journal/jmmce) Study on Effect of Welding Speed on Micro Structure

More information

Corning RC Specialty Fibers Reduced Cladding Fibers Enable Miniaturization and Device Integration

Corning RC Specialty Fibers Reduced Cladding Fibers Enable Miniaturization and Device Integration Corning RC Specialty Fibers Reduced Cladding Fibers Enable Miniaturization and Device Integration Photonic Materials PI1442 Issued: July 2005 Supersedes: August 2003 Featuring ultra-tight specifications,

More information

REVIEW OF LASER PLASTIC WELDING PROCESS

REVIEW OF LASER PLASTIC WELDING PROCESS REVIEW OF LASER PLASTIC WELDING PROCESS Kalpesh More 1, Rushikesh Aher 2, Makrand Bharaskar 3 1,2,3 Mechanical, Sandip Institute Technology and Research Centre/Pune University, (India) ABSTRACT There are

More information

Features. Benefits. Min Typical Max Min Max. OPTAN-250H-BL 245 nm 250 nm 255 nm 0.5 mw 1.0 mw. OPTAN-255H-BL 250 nm 255 nm 260 nm 0.5 mw 1.

Features. Benefits. Min Typical Max Min Max. OPTAN-250H-BL 245 nm 250 nm 255 nm 0.5 mw 1.0 mw. OPTAN-255H-BL 250 nm 255 nm 260 nm 0.5 mw 1. DATA SHEET OPTAN BALL LENS UVC LEDS IN A TO-39 PACKAGE WHICH OFFERS SUPERIOR LIGHT OUTPUT, EXCELLENT SPECTRAL QUALITY AND LONG LIFETIMES. AVAILABLE IN PEAK WAVELENGTHS FROM 25 nm-28 nm AND OPTICAL OUTPUT

More information

Right down to every weld, all systems are built with quality and pride in the USA!

Right down to every weld, all systems are built with quality and pride in the USA! Beamer Laser Systems 7136 Sheridan Rd Flushing, MI 48433 Lasers are our passion. For over a decade, the perfect laser marking system has evolved! Beamer Laser Marking Systems provide the ability to mark

More information

Lecture 23. Chapter 30 Fusion Welding Processes. Introduction. Two pieces are joined together by the application of heat

Lecture 23. Chapter 30 Fusion Welding Processes. Introduction. Two pieces are joined together by the application of heat Lecture 23 Chapter 30 Fusion Welding Processes Introduction Fusion welding Two pieces are joined together by the application of heat Melting and fusing the interface Filler metal Extra metal added (melted)

More information

APPLIED. OiW-100 Oil in Water Analyzer

APPLIED. OiW-100 Oil in Water Analyzer Continuous analysis of total petroleum concentration in water. As global oil production grows each year, so does the amount of water being released into the environment from refining and other processes.

More information

Reaching around the. world to bring you. the future in THERMOELECTRICS

Reaching around the. world to bring you. the future in THERMOELECTRICS Reaching around the world to bring you the future in THERMOELECTRICS CUSTOM AND STANDARD THERMOELECTRIC ASSEMBLIES TE Technology, Inc. provides all aspects of thermoelectric assembly design, manufacturing,

More information

Application of Forced Freeze during Flash-Butt Welding for Coil Joining of Advanced High Strength Steels (AHSS)

Application of Forced Freeze during Flash-Butt Welding for Coil Joining of Advanced High Strength Steels (AHSS) Application of Forced Freeze during Flash-Butt Welding for Coil Joining of Advanced High Strength Steels (AHSS) Michael Prokop * and Jerry E. Gould ** * Taylor-Winfield Technologies ** EWI Abstract Recent

More information

Improvement of Laser Fuse Processing of Fine Pitch Link Structures for Advanced Memory Designs

Improvement of Laser Fuse Processing of Fine Pitch Link Structures for Advanced Memory Designs Improvement of Laser Fuse Processing of Fine Pitch Link Structures for Advanced Memory Designs Joohan Lee, Joseph J. Griffiths, and James Cordingley GSI Group Inc. 60 Fordham Rd. Wilmington, MA 01887 jlee@gsig.com

More information

Cree EZ-p LED Chips Handling and Packaging Recommendations

Cree EZ-p LED Chips Handling and Packaging Recommendations Cree EZ-p LED Chips Handling and Packaging Recommendations INTRODUCTION This application note provides the user with an understanding of Cree s EZ-p p-pad up (anode up) LED devices, as well as recommendations

More information

IJETST- Vol. 03 Issue 05 Pages May ISSN

IJETST- Vol. 03 Issue 05 Pages May ISSN International Journal of Emerging Trends in Science and Technology Parametric Study Of Hole Taper In Laser Micro-Drilling Of Copper Sheet K. K. Mandal 1, B. Chatterjee 2, A. S. Kuar 3 and S. Mitra 4 1

More information

PROJECT FINAL REPORT. Title: Public Final Report

PROJECT FINAL REPORT. Title: Public Final Report PROJECT FINAL REPORT Title: Public Final Report Grant Agreement number: 260153 Project acronym: QCOALA Project title: Quality Control of Aluminium Laser-welded Assemblies Funding Scheme: FP7-2010-NMP-ICT-FoF

More information