The application of genetic transformation at ARC-VOPI to improve plant traits Dr. Inge Gazendam Regional Plant biotechnology forum 30 October 2014

Size: px
Start display at page:

Download "The application of genetic transformation at ARC-VOPI to improve plant traits Dr. Inge Gazendam Regional Plant biotechnology forum 30 October 2014"

Transcription

1 The application of genetic transformation at ARC-VOPI to improve plant traits Dr. Inge Gazendam Regional Plant biotechnology forum 30 October 2014 ARC-Roodeplaat, Vegetable and Ornamental Plant Institute, Pretoria

2 Overview Background History of projects at the institute Recent projects Virus tolerant Ornithogalum Drought tolerant potato Personal comments

3 Background Discovery of tumor inducing principle in Agrobacterium Smith and Townsend 1907 Ti plasmid development Schell 1974 Application on model system A. thaliana Somerville 1994 Requirements Tissue culture Genes Methods of transfer

4 Biolistics Target tissue: Callus, embryos, meristems, cell suspensions GUS staining of transformed cells Particle inflow gun DNA adhered to tungsten/gold particles

5 Agrobacterium Target tissue: wounded explant Cut into small pieces & pre-culture Plant regeneration Infect with Agrobacterium = co-culture stage

6 History of projects Crops Traits Genes Tobacco Potato Ornithogalum Soybean A. thaliana Sweetpotato Tomato Melon Tolerance to: Fungus Virus Insects (PTM) Drought Herbicide Delayed ripening GUS PGIP, Peroxidase PLRV, PVY, TSWV, SPFM, OrMV CryIa1 (Bt) LEA5, P5CR, SOD BASTA Inducible promoters: lupin, GST1

7 Drought tolerant potato Recent projects Virus tolerant Ornithogalum

8 A transgenic approach to improve the drought tolerance of potato

9 Objective Create a more drought tolerant potato through genetic transformation Enhance the transcription of drought-protective genes Use potato s own TF gene (StMYB1R-1) Cis-genic approach more readily accepted

10 Strategy Desiccation stress activate rd29a promoter Stress-inducible promoter StMYB1R-1 TF gene Transcription factor gene activate Gene 1 Gene 2 Gene 3 Gene 4 Gene Downstream drought protective genes A. thaliana S. tuberosum

11 Methodology 1. Gene isolation and cloning 2. Plant transformation 3. Molecular characterisation 1. PCR 2. GUS activity assays 3. RT-qPCR 4. Southern blot 4. Greenhouse drought trial

12 1. Gene isolation and cloning StMYB1R-1 RT-PCR BP1 potato rd29a prom PCR A. thaliana

13 1. Gene isolation and cloning Plant transformation constructs A pbi121 CaMV 35S GUS B pbi121-rd29ap:gus rd29ap GUS C pbi121-camv:stmyb1r-1 CaMV 35S StMYB1R-1 D pbi121-rd29ap:stmyb1r-1 rd29ap StMYB1R-1 E pbi121-neg GUS

14 2. Plant transformation A B C Transform BP1 potato by Agrobacterium infection A:Transformed stem explants on selective medium B: Regeneration of shoots from transformed potato callus C: Shoots transferred into rooting medium

15 3. Molecular analysis PCR with 6 different primer combinations StMYB1R-1, rd29ap, GUS, vector-specific 92 plants selected for genomic DNA isolations 83 lines were found to contain the expected inserted genes Constructs Correct genes M A CaMV prom GUS vector 10 9 B rd29a prom GUS vector C CaMV prom StMYB1R-1 vector D rd29a prom StMYB1R-1 vector M E - GUS vector

16 3. Molecular analysis D: rd29ap:stmyb1r-1 Transgenic StMYB1R-1 expression levels D lines: inducible transgenic StMYB1R-1 expression

17 3. Molecular analysis C: CaMV:StMYB1R-1 D: rd29ap:stmyb1r-1 M BP1 C2 C3 C9 C11 C16 C22 BP1 M BP1 D6 D16 D18 D19 D21 D23 BP copies copies 904 bp copies Southern blot of 12 selected lines

18 Measure: 4. Greenhouse drought trial a) Relative water content (RWC) b) Visual appearance c) Survival after drought stress d) Yield of biomass (tubers & leaves) Control Stress 8 dwow

19 4. Greenhouse drought trial Visual appearance Trial 1 Foliar tissue drooping after 11 days Stress Control BP1 C3 D6 BP1 C3 D6 One representative of each line

20 Results Greenhouse trials for improved drought tolerance First greenhouse trial: Three transgenic lines (D6, C3 and D16) perform better under drought stress than wild-type BP1 RWC, visual appearance and survival Second greenhouse trial: Confirm RWC% results for only line D6 Biomass yield difference under drought (fresh and dried leaf and tubers) between transgenic lines and BP1 was not significant

21 Conclusion Successfully transformed a local cultivar (BP1) with a potato TF gene Enhance the transcription of drought-protective genes Stable insertion into genome and expression of transcript Greenhouse trials for evaluating improved drought tolerance Differences in responses between transgenic lines and BP1 under drought conditions was not significant Same strategy not necessarily successful when applied to different organism and using other gene

22 Transformation of Ornithogalum for virus resistance

23 Background: Ornithogalum Indigenous flower species Popular for pot plants and cut flowers Important for the South African flower industry Problem: highly susceptible to viruses, especially Ornithogalum mosaic virus (OrMV) Virus symptoms on leaves Yellow flower of Ornithogalum hybrid A2

24 Objective The release of a transgenic Ornithogalum line with effective resistance against OrMV Benefit: Economic benefit to the South African cut flower industry Use this line to incorporate virus resistance into other susceptible Ornithogalum varieties in a breeding program Reduce yield losses of growers Yield products of higher quality

25 Methods OrMV coat protein and OrMV replicase genes Virus resistance through gene silencing (RNAi) Post-transcriptional silencing (PTGS) Use OrMV coat protein gene to silence virus gene Self-complementary hairpin RNA (hprna)

26 Methods Gene synthesis and cloning Coat protein gene of a South African isolate of OrMV Add two pairs of restriction sites during PCR pstarling-a vector from CSIRO Commonwealth Scientific and Industrial Research Organisation, Australia Amp resistance M13F(-20) tml terminator T7 primer pstarling Hairpin 7521 bp OMVCP cre intron Ubi prom & intro OMVCP

27 Methods pcambia1300 plant transformation vector cre intron tml terminator OMVCP T border (R) pvs1 Sta OMVCP pcam1300-rnai OMVCP A bp pvs1-rep Ubi prom & intron pbr322 bom site pbr322 ori PlacZ kanamycin R CaMV35S T border (L) Hygromycin R Agrobacterium-mediated transformation CaMV 3'UTR (polya signal) leaf explants of Ornithogalum A2 Regenerate putative transgenic plants from transformed callus Hygromycin antibiotic selection

28 Results Callus Shoots Root Excise

29 Results PCR screening with OrMV-CP primers 18 lines positive out of 20 screened M pl pc A2 - M M pl pc A2 - M PCR screen results with OrMV-CP specific primers pl+: positive plasmid control pc: pcambia1300 transgenic A2: Untransformed Ornithogalum line A2 - : Negative water control

30 Results Multiplication of the selected transgenic lines Between 37 and 154 in vitro plantlets each of 18 individual transgenic lines Transgenic Ornithogalum plants that are being multiplied in vitro in tubs

31 Greenhouse efficacy trials Require pure OrMV source for virus infection trials Screen diseased plants from flower breeding program with RT-PCR Electron microscopy of virus-infected plant samples Sequencing of cloned coat protein RT-PCR products Mechanical infection method Very low transmission rates Symptoms visible only after 8 weeks Virus symptoms on infected Ornithogalum plant OrMV successfully transmitted to only 2 out of 30 healthy plants

32 Greenhouse efficacy trials Greenhouse trial planted on 30 July replicates of each transgenic line Ready for infection as soon as successful infection method is identified Establishment rate 2 months later = 97% Dripper irrigated pots before planting Hardening off in vitro transgenic Ornithogalum plants Transgenic Ornithogalum plants after 2 months in the greenhouse

33 Way forward To perform virus resistance efficacy trial: Multiplied 18 transgenic events in vitro Have OrMV source Mechanical infection method After virus infection: Track progression of infection with ELISA and visual assessments Yes Yes Optimise Pending Molecular characterisation of transgenic lines: gdna isolation without polysaccharides Southern blot to verify stable integration of OrMV-CP DNA into plant genome Northern blots of sirna expression levels Optimise Pending Pending

34 Personal comments 29 th International Horticultural Congress (IHC2014), August 2014, Brisbane, Australia

35 Personal comments Regulatory issues Red zone: deregulation and commercialization Scientists out of their comfort zone Don t get anywhere if you listen to what you hear Dennis Gonsalves Refine technology = new plant breeding techniques Site-directed nucleases (SDN) Introduce foreign stretch of DNA into specific site Oligonucleotide directed mutagenesis (ODM) Repair mismatched oligonucleotide = single mutation at defined site Genome editing TALENs (Transcription activator-like effector nuclease) CRISPR-Cas (Clustered regularly interspaced palindromic repeat associated proteins) Regulatory considerations = GMO or not? Regulate product and not technology that produced it

36 Personal comments 1 st generation GMO was to producer benefit Good examples Bt toxin, little collateral damage Alternative to toxic spraying Phytophtora resistant potato GMO 35 genes, years, durable Classical breeding: 1 R gene, 45 years, cross with Andes potato lose qualities Transgenic papaya resistant to ringspot virus Dennis Gonsalves (Hawaii) Pathogen derived resistance, vaccinate with PRSV coat protein gene Bad example started in 1991, demonstration to farmers present: Hawaii island Puna all papaya are transgenic Roundup Ready Excessive spraying throughout cropping season Residues in food

37 Personal comments Next generation should be to consumer benefit Relative advantage must be obvious to consumer e.g. nutritional value (β-carotene, iron, folate, fatty acid composition) health benefits (amylose) sustainability ornamental (flower and plant architecture) pest and disease resistance Off-putting terms Genetic, modified, engineered, TALENs, editing, Zinc fingers

38

GM (Genetically Modified) Plants. Background

GM (Genetically Modified) Plants. Background 1 GM (Genetically Modified) Plants Background Genetically modified crops (GM) have been used since 1996 in the U.S. GM crops contain foreign genetic material The DNA may be from another plant or from a

More information

Generated by Foxit PDF Creator Foxit Software For evaluation only. Biotechnology in Plant Pathology

Generated by Foxit PDF Creator Foxit Software  For evaluation only. Biotechnology in Plant Pathology Biotechnology in Plant Pathology Plant Biotechnology Definition: The use of tissue culture & genetic engineering techniques to produce genetically modified plants that show improved desirable characteristics.

More information

Emerging technology and prospects of genetic engineering to increase food production and quality. Crop Yield 9/12/2012

Emerging technology and prospects of genetic engineering to increase food production and quality. Crop Yield 9/12/2012 Emerging technology and prospects of genetic engineering to increase food production and quality Dr. Joe Kuhl Dept. of Plant, Soil, & Entomological Sciences September 12, 2012 Crop Yield Thomas Malthus

More information

Could benefit organic: High use in Hawaii has lowered virus levels to allow organic production. Herd immunity

Could benefit organic: High use in Hawaii has lowered virus levels to allow organic production. Herd immunity Advances in Crop Biotechnology- Cisgenics and Genome Editing Michael M. Neff Ph.D. Thoughts from previous talk Many examples of GMO bacteria in medicine (e.g. insulin, taxol) and food (vitamins, chymosin

More information

Barley as a model for cereal engineering and genome editing. Wendy Harwood

Barley as a model for cereal engineering and genome editing. Wendy Harwood Barley as a model for cereal engineering and genome editing Wendy Harwood MonoGram 29 th April 2015 www.bract.org BRACT Transformation Platform Over-expression of single genes RNAi based silencing Promoter

More information

New Plant Breeding Technologies

New Plant Breeding Technologies New Plant Breeding Technologies Ricarda A. Steinbrecher, PhD EcoNexus / ENSSER Berlin, 07 May 2015 r.steinbrecher@econexus.info distributed by EuropaBio What are the NPBTs? *RNAi *Epigenetic alterations

More information

Lectures 28 and 29 applications of recombinant technology I. Manipulate gene of interest

Lectures 28 and 29 applications of recombinant technology I. Manipulate gene of interest Lectures 28 and 29 applications of recombinant technology I. Manipulate gene of interest C A. site-directed mutagenesis A C A T A DNA B. in vitro mutagenesis by PCR T A 1. anneal primer 1 C A 1. fill in

More information

Advances in Crop BiotechnologyCisgenics and Genome Editing

Advances in Crop BiotechnologyCisgenics and Genome Editing Advances in Crop BiotechnologyCisgenics and Genome Editing Michael M. Neff Ph.D. mmneff@wsu.edu Washington State University Department of Crop and Soil Sciences Molecular Plant Sciences Graduate Program

More information

Plant Biotechnology. The Genetic Manipulation of Plants OXPORD VNIVERSITY PRESS. Adrian Slater, Nigel W. Scott. Mark R. Fowler.

Plant Biotechnology. The Genetic Manipulation of Plants OXPORD VNIVERSITY PRESS. Adrian Slater, Nigel W. Scott. Mark R. Fowler. Plant Biotechnology The Genetic Manipulation of Plants Adrian Slater, Nigel W. Scott and Mark R. Fowler De Montfort University OXPORD VNIVERSITY PRESS Preface List of Abbreviations Foreword v xiii xxi

More information

Chapter 7 Agricultural Biotechnology

Chapter 7 Agricultural Biotechnology Chapter 7 Agricultural Biotechnology Outline: 7.1 Introduction 7.2 Plant tissue culture 7.3 Genetically Modified Plant 7.4 Animal cloning 7.5 Genetically modified animal 2 Learning outcomes: Describe the

More information

Groups of new plant breeding techniques

Groups of new plant breeding techniques WORKSHOP COMPERATIVE SITUATION OF NEW PLANT BREEDING TECHNIQUES 12-13 SEPTEMBER 2011 SEVILLE, SPAIN Groups of new plant breeding techniques Maria Lusser Joint Research Centre, European Commission Workshop

More information

Molecular assessment of GMOs Ilona Kryspin Sørensen PhD DTU Food Division for Risk Assessment and Nutrition

Molecular assessment of GMOs Ilona Kryspin Sørensen PhD DTU Food Division for Risk Assessment and Nutrition Molecular assessment of GMOs Ilona Kryspin Sørensen PhD DTU Food Division for Risk Assessment and Nutrition Objective : to assess the level of documentation necessary for the evaluation of the insertion

More information

Research Advances in the Development of Transgenic and Gene Edited Products in Sri Lanka

Research Advances in the Development of Transgenic and Gene Edited Products in Sri Lanka Research Advances in the Development of Transgenic and Gene Edited Products in Sri Lanka Dr. Pradeepa C.G. Bandaranayake Director, Agricultural Biotechnology Centre Faculty of Agriculture University of

More information

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory 13 Biotechnology Concept 13.1 Recombinant DNA Can Be Made in the Laboratory It is possible to modify organisms with genes from other, distantly related organisms. Recombinant DNA is a DNA molecule made

More information

Genetic Engineering Methods

Genetic Engineering Methods Genetic Engineering Methods Outline Why do it? Research examples: poplar trees Plant gene transfer concepts and methods Getting genes ready for transfer (recombinant DNA/plasmids) Analysis of transgenic

More information

Innovative Trait Development Tools in Plant Breeding will be Crucial for Doubling Global Agricultural Productivity by 2050

Innovative Trait Development Tools in Plant Breeding will be Crucial for Doubling Global Agricultural Productivity by 2050 Innovative Trait Development Tools in Plant Breeding will be Crucial for Doubling Global Agricultural Productivity by 2050 Greg Gocal, Ph.D., Senior Vice President, Research and Development CRISPR Precision

More information

[ 2 ] [ 3 ] WHAT IS BIOTECHNOLOGY? HOW IS BIOTECHNOLOGY DIFFERENT FROM THE TRADITIONAL WAY OF IMPROVING CROPS?

[ 2 ] [ 3 ] WHAT IS BIOTECHNOLOGY? HOW IS BIOTECHNOLOGY DIFFERENT FROM THE TRADITIONAL WAY OF IMPROVING CROPS? WHAT IS BIOTECHNOLOGY? Biotechnology is a modern technology that makes use of organisms (or parts thereof) to make or modify products; improve and develop microorganisms, plants or animals; or develop

More information

Lab 10: Exploring GMOs

Lab 10: Exploring GMOs Lab 10: Exploring GMOs Notebook Lab Objectives To understand how genetic engineering supplements traditional methods of plant breeding to generate new traits in crop plants To understand how changing the

More information

Recombinant DNA Technology. The Role of Recombinant DNA Technology in Biotechnology. yeast. Biotechnology. Recombinant DNA technology.

Recombinant DNA Technology. The Role of Recombinant DNA Technology in Biotechnology. yeast. Biotechnology. Recombinant DNA technology. PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 8 Recombinant DNA Technology The Role of Recombinant DNA Technology in Biotechnology Biotechnology?

More information

Chapter 8 Recombinant DNA Technology. 10/1/ MDufilho

Chapter 8 Recombinant DNA Technology. 10/1/ MDufilho Chapter 8 Recombinant DNA Technology 10/1/2017 1 MDufilho The Role of Recombinant DNA Technology in Biotechnology Biotechnology? Recombinant deoxyribonucleic acid (DNA) technology Intentionally modifying

More information

Biotechnology and its Applications

Biotechnology and its Applications Biotechnology and its Applications Very Short Answers Questions: 1. Give different types of cry genes and pests which are controlled by the proteins encoded by these genes? A: cryiac, cryiiab and cry IAb

More information

The Future of Agriculture: Grand Challenges and Technological Change

The Future of Agriculture: Grand Challenges and Technological Change The Future of Agriculture: Grand Challenges and Technological Change Moscow, March 3. 2016 National Research University Higher School of Economics Molecular mutagenesis by genome editing Ervin Balázs MTA

More information

A Lot of Cutting and Pasting Going on Here Recombinant DNA and Biotechnology

A Lot of Cutting and Pasting Going on Here Recombinant DNA and Biotechnology A Lot of Cutting and Pasting Going on Here Recombinant DNA and Biotechnology How Are Large DNA Molecules Analyzed? Naturally occurring enzymes that cleave and repair DNA are used in the laboratory to manipulate

More information

TABLE OF CONTENTS. Acknowledgements Table of contents List of abbreviations Executive summary. Chapter 1: Introduction

TABLE OF CONTENTS. Acknowledgements Table of contents List of abbreviations Executive summary. Chapter 1: Introduction TABLE OF CONTENTS Acknowledgements Table of contents List of abbreviations Executive summary Molecular aspects of drought tolerance Objectives and major results Tobacco Potatoes Cotton Maize Conclusion

More information

BIO1PS 2012 Plant Science Topic 4 Lectures 2 and 3 Introduction to Plant Biotechnology

BIO1PS 2012 Plant Science Topic 4 Lectures 2 and 3 Introduction to Plant Biotechnology BIO1PS 2012 Plant Science Topic 4 Lectures 2 and 3 Introduction to Plant Biotechnology Dr. Michael Emmerling Department of Botany Room 410 m.emmerling@latrobe.edu.au Some Key Words Agrobacterium Ti plasmid

More information

The demonstration that wild-type T-DNA coding region can be replaced by any DNA sequence without any effect on its transfer from A.

The demonstration that wild-type T-DNA coding region can be replaced by any DNA sequence without any effect on its transfer from A. The demonstration that wild-type T-DNA coding region can be replaced by any DNA sequence without any effect on its transfer from A. tumefaciens to the plant inspired the promise that A. tumefaciens might

More information

Experimental Tools and Resources Available in Arabidopsis. Manish Raizada, University of Guelph, Canada

Experimental Tools and Resources Available in Arabidopsis. Manish Raizada, University of Guelph, Canada Experimental Tools and Resources Available in Arabidopsis Manish Raizada, University of Guelph, Canada Community website: The Arabidopsis Information Resource (TAIR) at http://www.arabidopsis.org Can order

More information

12/31/16. I. Manipulating DNA (9.1) A. Scientists use several techniques to manipulate DNA. 1. DNA is a very large molecule

12/31/16. I. Manipulating DNA (9.1) A. Scientists use several techniques to manipulate DNA. 1. DNA is a very large molecule I. Manipulating DNA (9.1) A. Scientists use several techniques to manipulate DNA 1. DNA is a very large molecule 3. Led to many biotechnology applications- genetic engineering, DNA fingerprinting, cloning,

More information

New Plant Breeding Techniques Group 1 Targeted Mutagenesis

New Plant Breeding Techniques Group 1 Targeted Mutagenesis WORKSHOP COMPERATIVE SITUATION OF NEW PLANT BREEDING TECHNIQUES 12-13 SEPTEMBER 2011 SEVILLE, SPAIN New Plant Breeding Techniques Group 1 Targeted Mutagenesis Maria Lusser Joint Research Centre, European

More information

Enhancing Water Use Efficiency in Corn. Michael Luethy Jacqueline Heard March 5, 2007

Enhancing Water Use Efficiency in Corn. Michael Luethy Jacqueline Heard March 5, 2007 Enhancing Water Use Efficiency in Corn Michael Luethy Jacqueline Heard March 5, 2007 Impact of drought on maize yield Blister Dough Early vegetative Late vegetative Pollination Grain fill 5-10 % 10-25%

More information

Testing GM crops. Mitesh Shrestha

Testing GM crops. Mitesh Shrestha Testing GM crops Mitesh Shrestha GMO food/feed testing is based on some fundamental principles of genetic engineering and cellular physiology: DNA: The introduction of foreign DNA into a recipient plant

More information

Cisgenics, Intragenics and Site-specific Mutagenesis

Cisgenics, Intragenics and Site-specific Mutagenesis Cisgenics, Intragenics and Site-specific Mutagenesis K. Veluthambi School of Biotechnology Madurai Kamaraj University kveluthambi@rediffmail.com South Asia Biosafety Conference September 18-19, 2013 1

More information

The Biotechnology Toolbox

The Biotechnology Toolbox Chapter 15 The Biotechnology Toolbox Cutting and Pasting DNA Cutting DNA Restriction endonuclease or restriction enzymes Cellular protection mechanism for infected foreign DNA Recognition and cutting specific

More information

GENE TECHNOLOGY LEGISLATION

GENE TECHNOLOGY LEGISLATION NBTS AND AND AUSTRALIAN GENE TECHNOLOGY LEGISLATION Dr. Michael Dornbusch Office of the Gene Technology Regulator Australia Integrated Regulation of GMOs & GM Products OGTR regulates GMOs. Some overlap

More information

CHAPTER 08: RECOMBINANT DNA TECHNOLOGY Pearson Education, Inc.

CHAPTER 08: RECOMBINANT DNA TECHNOLOGY Pearson Education, Inc. CHAPTER 08: RECOMBINANT DNA TECHNOLOGY The Role of Recombinant DNA Technology in Biotechnology Biotechnology the use of microorganisms to make practical products Recombinant DNA technology Intentionally

More information

Cibus. Harnessing the Power of Bio-Diversity. Cibus Rapid Trait Development system (RTDS ) is an environmentally friendly smart breeding tool.

Cibus. Harnessing the Power of Bio-Diversity. Cibus Rapid Trait Development system (RTDS ) is an environmentally friendly smart breeding tool. Cibus Harnessing the Power of Bio-Diversity Cibus Rapid Trait Development system (RTDS ) is an environmentally friendly smart breeding tool. 1. Cibus Development stage company with offices located in San

More information

1. Introduction Drought stress and climate change Three strategies of plants in response to water stress 3

1. Introduction Drought stress and climate change Three strategies of plants in response to water stress 3 Contents 1. Introduction 1 1.1 Drought stress and climate change 3 1.2 Three strategies of plants in response to water stress 3 1.3 Three closely related species of Linderniaceae family are experimental

More information

2014 Pearson Education, Inc. CH 8: Recombinant DNA Technology

2014 Pearson Education, Inc. CH 8: Recombinant DNA Technology CH 8: Recombinant DNA Technology Biotechnology the use of microorganisms to make practical products Recombinant DNA = DNA from 2 different sources What is Recombinant DNA Technology? modifying genomes

More information

Field Tests on Transgenic Potatoes in Mexico

Field Tests on Transgenic Potatoes in Mexico The 3rd JlRCAS Symposium: The 4th International Symposium on the Biosafety Results of Field Tests Field Tests on Transgenic Potatoes in Mexico Victor M. Villalobos 1 and Rafael Rivera~Bustamante 1 Abstract

More information

Methods for Reverse genetics References:

Methods for Reverse genetics References: Methods for Reverse genetics References: 1. Alonso JM, Ecker JR. Moving forward in reverse: genetic technologies to enable genomewide phenomic screens in Arabidopsis. Nat Rev Genet. 2006 Jul;7(7):524-36.

More information

Genetic Engineering & Recombinant DNA

Genetic Engineering & Recombinant DNA Genetic Engineering & Recombinant DNA Chapter 10 Copyright The McGraw-Hill Companies, Inc) Permission required for reproduction or display. Applications of Genetic Engineering Basic science vs. Applied

More information

Bart Williams, PhD Van Andel Research Center

Bart Williams, PhD Van Andel Research Center A History of Genome Editing in the Laboratory Implications for Translational Applications Bart Williams, PhD Van Andel Research Center Introduction by Matthew Denenberg, MD DeVos Childrens Hospital Disclosures:

More information

CH 8: Recombinant DNA Technology

CH 8: Recombinant DNA Technology CH 8: Recombinant DNA Technology Biotechnology the use of microorganisms to make practical products Recombinant DNA = DNA from 2 different sources What is Recombinant DNA Technology? modifying genomes

More information

6 th Annual National Biosafety Conference, KSMS 3 rd - 6 th October, 2017

6 th Annual National Biosafety Conference, KSMS 3 rd - 6 th October, 2017 Evaluation of Transformed cassava Lines for Resistance to CBSD and CMD in Kenya Were, HK 1, Ememwa I 1, Wabwile MW 1, Were MN 1,Vernderschuren H 2 and Gruissem W 2 1 Department of Biological Sciences,

More information

What is Biotechnology?

What is Biotechnology? What is Biotechnology? Biotechnology is a modern technology that makes use of organisms (or parts thereof) to: make or modify products; improve and develop microorganisms, plants or animals; or develop

More information

Biotechnology and DNA Technology

Biotechnology and DNA Technology 11/27/2017 PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College CHAPTER 9 Biotechnology and DNA Technology Introduction to Biotechnology Learning Objectives Compare

More information

GENETICALLY MODIFIED ORGANISMS. Julian Kinderlerer

GENETICALLY MODIFIED ORGANISMS. Julian Kinderlerer GENETICALLY MODIFIED ORGANISMS Julian Kinderlerer Genetically modified? There has been enormous controversy around the world about human intervention in producing new varieties of organisms through the

More information

GMO Detection Methods

GMO Detection Methods GMO Detection Methods by George Ngundo, KEPHIS, Nairobi 22 March 2012 Gene construction for plant transformation 1. Selectable Marker 2. Transgene 3. Promoter 4. Terminator New Traits 1. Insect Resistance

More information

Do we really need GMOs, gene editing and other new technologies?

Do we really need GMOs, gene editing and other new technologies? Do we really need GMOs, gene editing and other new technologies? Peter Goldsbrough Department of Botany and Plant Pathology Purdue University goldsbrough@purdue.edu Why I am interested in GMOs and agricultural

More information

GMO Investigator Kit Is your food genetically modified?

GMO Investigator Kit Is your food genetically modified? GMO Investigator Kit Is your food genetically modified? GMO Workshop Time Line Introduction to GM foods DNA extraction of food products Set up PCR reactions Electrophorese PCR products Analysis and interpretation

More information

Developing New GM Products and Detection Methods

Developing New GM Products and Detection Methods Developing New GM Products and Detection Methods Dave Grothaus Monsanto Company Slides Thanks to: International Life Sciences Institute Crop Life International Indus try Colleagues Hope Hart - Syngenta

More information

Genome research in eukaryotes

Genome research in eukaryotes Functional Genomics Genome and EST sequencing can tell us how many POTENTIAL genes are present in the genome Proteomics can tell us about proteins and their interactions The goal of functional genomics

More information

DNA REPLICATION & BIOTECHNOLOGY Biology Study Review

DNA REPLICATION & BIOTECHNOLOGY Biology Study Review DNA REPLICATION & BIOTECHNOLOGY Biology Study Review DNA DNA is found in, in the nucleus. It controls cellular activity by regulating the production of, which includes It is a very long molecule made up

More information

Regulation of New Plant Breeding Techniques in Canada and the United States

Regulation of New Plant Breeding Techniques in Canada and the United States Regulation of New Plant Breeding Techniques in Canada and the United States New Breeding Techniques RNA interference Cisgenesis and intragenesis Oligonucleotide directed mutagenesis Grafting (on transgenic

More information

Loomis/CBC Joint Symposium and Workshop Genome Editing Putting Together the Pieces Innovation and USDA Regulation of the Products of Biotechnology

Loomis/CBC Joint Symposium and Workshop Genome Editing Putting Together the Pieces Innovation and USDA Regulation of the Products of Biotechnology Loomis/CBC Joint Symposium and Workshop Genome Editing Putting Together the Pieces Innovation and USDA Regulation of the Products of Biotechnology May 9, 2018 Sally L. McCammon Science Advisor Biotechnology

More information

Dr. Gary Mumaugh. DNA Technology

Dr. Gary Mumaugh. DNA Technology Dr. Gary Mumaugh DNA Technology Genetic Engineering Recombinant DNA Technology Times Recombinant DNA Production Recombinant DNA Applications Recombinant DNA Usages Recombinant DNA Social Considerations

More information

BIOTECHNOLOGY : PRINCIPLES AND PROCESSES

BIOTECHNOLOGY : PRINCIPLES AND PROCESSES CHAPTER 11 BIOTECHNOLOGY : PRINCIPLES AND PROCESSES POINTS TO REMEMBER Bacteriophage : A virus that infects bacteria. Bioreactor : A large vessel in which raw materials are biologically converted into

More information

Using accelerated genetics to improve food: biological and social realities

Using accelerated genetics to improve food: biological and social realities Using accelerated genetics to improve food: biological and social realities Professor Caitilyn Allen UW-Madison Dep t of Plant Pathology FRI-IFSH Food waste and sustainability: strategies to improve food

More information

Genome editing. Knock-ins

Genome editing. Knock-ins Genome editing Knock-ins Experiment design? Should we even do it? In mouse or rat, the HR-mediated knock-in of homologous fragments derived from a donor vector functions well. However, HR-dependent knock-in

More information

STUDY GUIDE SECTION 13-1 DNA Technology

STUDY GUIDE SECTION 13-1 DNA Technology STUDY GUIDE SECTION 13-1 DNA Technology Name Period Date Multiple Choice-Write the correct letter in the blank. 1. To cut DNA molecules into pieces at specific sequences of nucleotides, genetic engineers

More information

Modern Agricultural Biotechnology: Progress in genetic improvement of plum

Modern Agricultural Biotechnology: Progress in genetic improvement of plum Modern Agricultural Biotechnology: Progress in genetic improvement of plum Ralph Scorza USDA-ARS Appalachian Fruit Research Station Kearneysville, West Virginia ralph.scorza@ars.usda.gov World-Wide Adoption

More information

Chapter 10 Genetic Engineering: A Revolution in Molecular Biology

Chapter 10 Genetic Engineering: A Revolution in Molecular Biology Chapter 10 Genetic Engineering: A Revolution in Molecular Biology Genetic Engineering Direct, deliberate modification of an organism s genome bioengineering Biotechnology use of an organism s biochemical

More information

Transgenic Papaya in Hawaii and Beyond

Transgenic Papaya in Hawaii and Beyond Transgenic Papaya in Hawaii and Beyond AgBioForum, 7(1&2): 36-40. 2004 AgBioForum. Dennis Gonsalves United States Department of Agriculture Agricultural Research Service, US Pacific Basin Agricultural

More information

Chapter 20 Recombinant DNA Technology. Copyright 2009 Pearson Education, Inc.

Chapter 20 Recombinant DNA Technology. Copyright 2009 Pearson Education, Inc. Chapter 20 Recombinant DNA Technology Copyright 2009 Pearson Education, Inc. 20.1 Recombinant DNA Technology Began with Two Key Tools: Restriction Enzymes and DNA Cloning Vectors Recombinant DNA refers

More information

Plant Breeding. Opportunities of New Plant Breeding Techniques. Breeding projects at WUR-Plant Breeding

Plant Breeding. Opportunities of New Plant Breeding Techniques. Breeding projects at WUR-Plant Breeding Opportunities of New Plant Breeding Techniques Jan Schaart Plant Breeding Important for crop improvement Combining of genetic variation Based on the steps of crossing and selection Limitations polyploidy,

More information

Chapter 15 Gene Technologies and Human Applications

Chapter 15 Gene Technologies and Human Applications Chapter Outline Chapter 15 Gene Technologies and Human Applications Section 1: The Human Genome KEY IDEAS > Why is the Human Genome Project so important? > How do genomics and gene technologies affect

More information

What Role Will Biotechnology Play In the Produce Sector? Steve Savage

What Role Will Biotechnology Play In the Produce Sector? Steve Savage What Role Will Biotechnology Play In the Produce Sector? Steve Savage May 18, 2016 In Twenty Years of Commercial GMO Crops only a few have been fruit or vegetables Flavr Savr Tomato NewLeaf Beetle Resistant

More information

AGROBACTERIUM - MEDIATED TRANSFORMATION OF SECONDARY SOMATIC EMBRYOS FROM ROSA HYBRIDA L. AND RECOVERY OF TRANSGENIC PLANTS

AGROBACTERIUM - MEDIATED TRANSFORMATION OF SECONDARY SOMATIC EMBRYOS FROM ROSA HYBRIDA L. AND RECOVERY OF TRANSGENIC PLANTS AGROBACTERIUM - MEDIATED TRANSFORMATION OF SECONDARY SOMATIC EMBRYOS FROM ROSA HYBRIDA L. AND RECOVERY OF TRANSGENIC PLANTS A. Borissova, T. Hvarleva, I. Bedzhov, V. Kondakova, A. Atanassov, I. Atanassov

More information

Chapter 6: Plant Biotechnology

Chapter 6: Plant Biotechnology Chapter 6: Plant Biotechnology Chapter Contents 6.1 The Future of Agriculture: Plant Transgenics 6.2 Methods Used in Plant Transgenesis 6.3 Practical Applications 6.4 Health and Environmental Concerns

More information

Refresher on gene expression - DNA: The stuff of life

Refresher on gene expression - DNA: The stuff of life Plant Pathology 602 Plant-Microbe Interactions Lecture 2 Molecular methods for studying hostpathogen interactions I Sophien Kamoun kamoun.1@osu.edu The Ohio State University Ohio Agricultural Research

More information

An approach to improve nutritional properties of potato varieties by genome editing

An approach to improve nutritional properties of potato varieties by genome editing An approach to improve nutritional properties of potato varieties by genome editing Sadia Iqbal, Stephen Milroy, Stephen Wiley and Michael G.K. Jones Centre for Crop and Food Innovation/Potato Research

More information

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 20 Biotechnology PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

Horticulture and GMOs Current Status and the Future

Horticulture and GMOs Current Status and the Future Horticulture and GMOs Current Status and the Future Kevin M. Folta Professor and Chairman Horticultural Sciences Department kfolta@ufl.edu kfolta.blogspot.com @kevinfolta Current Status and Current Traits

More information

Gene Ecology versus Reductionism in Biology. Thomas Bøhn PhD Scientific Director, GenØk

Gene Ecology versus Reductionism in Biology. Thomas Bøhn PhD Scientific Director, GenØk Gene Ecology versus Reductionism in Biology Thomas Bøhn PhD Scientific Director, GenØk This talk Human as beaver Two contrasting knowledge systems Organisms are composed of traits coded by genes Understanding

More information

Biosc10 schedule reminders

Biosc10 schedule reminders Biosc10 schedule reminders Review of molecular biology basics DNA Is each person s DNA the same, or unique? What does DNA look like? What are the three parts of each DNA nucleotide Which DNA bases pair,

More information

Molecular Cell Biology - Problem Drill 11: Recombinant DNA

Molecular Cell Biology - Problem Drill 11: Recombinant DNA Molecular Cell Biology - Problem Drill 11: Recombinant DNA Question No. 1 of 10 1. Which of the following statements about the sources of DNA used for molecular cloning is correct? Question #1 (A) cdna

More information

Research techniques in genetics. Medical genetics, 2017.

Research techniques in genetics. Medical genetics, 2017. Research techniques in genetics Medical genetics, 2017. Techniques in Genetics Cloning (genetic recombination or engineering ) Genome editing tools: - Production of Knock-out and transgenic mice - CRISPR

More information

Biotechnolog y and DNA Technology

Biotechnolog y and DNA Technology PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 9 Biotechnolog y and DNA Technology Introduction to Biotechnology Biotechnology: the use of microorganisms,

More information

PLNT2530 (2018) Unit 9. Genome Editing

PLNT2530 (2018) Unit 9. Genome Editing PLNT2530 (2018) Unit 9 Genome Editing Unless otherwise cited or referenced, all content of this presenataion is licensed under the Creative Commons License Attribution Share-Alike 2.5 Canada 1 Genome Editing

More information

DFPT Deciduous Fruit Producers Trust Submit to: Louise Liebenberg Suite 275, Postnet X5061 Stellenbosch, 7599 Tel: +27 (0) /1

DFPT Deciduous Fruit Producers Trust Submit to: Louise Liebenberg Suite 275, Postnet X5061 Stellenbosch, 7599 Tel: +27 (0) /1 CFPA Canning Fruit Producers Assoc. Submit to: Wiehahn Victor PO Box 426 Paarl, 7620 Tel: +27 (0)21 872 1501 inmaak@mweb.co.za DFPT Deciduous Fruit Producers Trust Submit to: Louise Liebenberg Suite 275,

More information

CHAPTER 9: GENETIC ENGINEERING DR. BERTOLOTTI

CHAPTER 9: GENETIC ENGINEERING DR. BERTOLOTTI CHAPTER 9: GENETIC ENGINEERING DR. BERTOLOTTI Essential Question How and why do scientists manipulate DNA in living cells? 1 What is selective breeding used for? Application of Genetic Engineering Video:

More information

CRISPR/Cas9 Genome Editing: Transfection Methods

CRISPR/Cas9 Genome Editing: Transfection Methods CRISPR/ Genome Editing: Transfection Methods For over 20 years Mirus Bio has developed and manufactured high performance transfection products and technologies. That expertise is now being applied to the

More information

Chapter 9 Genetic Engineering

Chapter 9 Genetic Engineering Chapter 9 Genetic Engineering Biotechnology: use of microbes to make a protein product Recombinant DNA Technology: Insertion or modification of genes to produce desired proteins Genetic engineering: manipulation

More information

Plant Cell, Tissue and Organ Culture

Plant Cell, Tissue and Organ Culture Supplementary materials for Plant Cell, Tissue and Organ Culture Article tile: Agrobacterium mediated Genetic Transformation of Miscanthus sinensis Authors: Ok-Jin Hwang 1, Mi-Ae Cho 1, Yun-Jeong Han 1,

More information

Basic Concepts and History of Genetic Engineering. Mitesh Shrestha

Basic Concepts and History of Genetic Engineering. Mitesh Shrestha Basic Concepts and History of Genetic Engineering Mitesh Shrestha Genetic Engineering AKA gene manipulation, gene cloning, recombinant DNA technology, genetic modification, and the new genetics. A technique

More information

OVERVIEW - STATUS OF SCIENCE AND TECHNOLOGY ADVANCES IN AGRICULTURE BIOTECHNOLOGY

OVERVIEW - STATUS OF SCIENCE AND TECHNOLOGY ADVANCES IN AGRICULTURE BIOTECHNOLOGY OVERVIEW - STATUS OF SCIENCE AND TECHNOLOGY ADVANCES IN AGRICULTURE BIOTECHNOLOGY Jaipur, 9-10 October 2014 Peter Kearns, PhD OECD New Plant Breeding Techniques Working Group on Harmonization of Regulatory

More information

BIOTECHNOLOGY. Sticky & blunt ends. Restriction endonucleases. Gene cloning an overview. DNA isolation & restriction

BIOTECHNOLOGY. Sticky & blunt ends. Restriction endonucleases. Gene cloning an overview. DNA isolation & restriction BIOTECHNOLOGY RECOMBINANT DNA TECHNOLOGY Recombinant DNA technology involves sticking together bits of DNA from different sources. Made possible because DNA & the genetic code are universal. 2004 Biology

More information

Plants Fight it out Intrinsic defence mechanism The magic world of Gene silencing

Plants Fight it out Intrinsic defence mechanism The magic world of Gene silencing I LOVE YOU Plants Fight it out Intrinsic defence mechanism The magic world of Gene silencing Over expression of Chalcone synthase gene to get Purple Petunias Napoli, Lemieux & Jorgensen,1990 Desired Effect

More information

The Toolbox. The Solutions: Current Technologies. Transgenic DNA Sequences. The Toolbox. 128 bp

The Toolbox. The Solutions: Current Technologies. Transgenic DNA Sequences. The Toolbox. 128 bp The Solutions: Current Technologies Anne R. Bridges, Ph.D. Technical Director AACC International annebridges001@earthlink.net Acknowledgement: Ray Shillito, Bayer Corp. The Toolbox Mutation creation produce

More information

Leonard P. Gianessi Cressida S. Silvers Sujatha Sankula Janet E. Carpenter

Leonard P. Gianessi Cressida S. Silvers Sujatha Sankula Janet E. Carpenter Plant Biotechnology: Current and Potential Impact For Improving Pest Management In U.S. Agriculture An Analysis of 40 Case Studies June 2002 Viral Resistant Peanut Leonard P. Gianessi Cressida S. Silvers

More information

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech )

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech ) NOTES - CH 15 (and 14.3): DNA Technology ( Biotech ) Vocabulary Genetic Engineering Gene Recombinant DNA Transgenic Restriction Enzymes Vectors Plasmids Cloning Key Concepts What is genetic engineering?

More information

FDA Regulation of Food

FDA Regulation of Food FDA Regulation of Food from New Plant Varieties Patrick Cournoyer, PhD U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition Office of Food Additive Safety Does FDA regulate genome

More information

What are Genetically Modified Crops and how are they made? Professor Idah Sithole-Niang Department of Biochemistry, UZ GMASSURE - UZ

What are Genetically Modified Crops and how are they made? Professor Idah Sithole-Niang Department of Biochemistry, UZ GMASSURE - UZ What are Genetically Modified Crops and how are they made? Professor Idah Sithole-Niang Department of Biochemistry, UZ GMASSURE - UZ Outline Definitions Concept of Genetic Modification Agricultural context

More information

TRANSGENIC ANIMALS. transient. stable. - Two methods to produce transgenic animals:

TRANSGENIC ANIMALS. transient. stable. - Two methods to produce transgenic animals: Only for teaching purposes - not for reproduction or sale CELL TRANSFECTION transient stable TRANSGENIC ANIMALS - Two methods to produce transgenic animals: 1- DNA microinjection 2- embryonic stem cell-mediated

More information

Testing Non-Transgenic CRISPR Technology for Wheat Improvement 13 TH IWGS - TULLN, AUSTRIA

Testing Non-Transgenic CRISPR Technology for Wheat Improvement 13 TH IWGS - TULLN, AUSTRIA Testing Non-Transgenic CRISPR Technology for Wheat Improvement KALI M BRANDT, HILARY L GUNN, BRETT L BUSCHKE, ADAM HEESACKER, NATHALIA MORET TI, ALEXANDER KARASEV, ROBERT S ZEMETRA 13 TH IWGS - TULLN,

More information

Molecular Cloning. Restriction Enzymes and Ligases

Molecular Cloning. Restriction Enzymes and Ligases Tools in Genetic engineering The science of using living systems to benefit humankind is called biotechnology. Technically speaking, the domestication of plants and animals through farming and breeding

More information

Plant Biotechnology I METHODOLOGY. Centre of the Region Haná for Biotechnological and Agricultural Research Olomouc, Czech Republic.

Plant Biotechnology I METHODOLOGY. Centre of the Region Haná for Biotechnological and Agricultural Research Olomouc, Czech Republic. Plant Biotechnology I METHODOLOGY Centre of the Region Haná for Biotechnological and Agricultural Research Olomouc, Czech Republic Ivo Frébort Summary of the plant biotechnology lectures Plant Biotechnology

More information

2 Gene Technologies in Our Lives

2 Gene Technologies in Our Lives CHAPTER 15 2 Gene Technologies in Our Lives SECTION Gene Technologies and Human Applications KEY IDEAS As you read this section, keep these questions in mind: For what purposes are genes and proteins manipulated?

More information

Identification of a Cucumber mosaic virus Subgroup II Strain Associated with Virus-like Symptoms on Hosta in Ohio

Identification of a Cucumber mosaic virus Subgroup II Strain Associated with Virus-like Symptoms on Hosta in Ohio 2013 Plant Management Network. Accepted for publication 18 December 2012. Published. Identification of a Cucumber mosaic virus Subgroup II Strain Associated with Virus-like Symptoms on Hosta in Ohio John

More information

Biotechnology: Genomics: field that compares the entire DNA content of different organisms

Biotechnology: Genomics: field that compares the entire DNA content of different organisms Biotechnology: New Terms Today: Genome Genetic engineering, transgenic organisms, GM food, Reproductive and therapeutic cloning Stem cells, plouripotent, totipotent Gene therapy Genomics: field that compares

More information