Methods Available for the Analysis of Data from Dominant Molecular Markers

Size: px
Start display at page:

Download "Methods Available for the Analysis of Data from Dominant Molecular Markers"

Transcription

1 Methods Available for the Analysis of Data from Dominant Molecular Markers Lisa Wallace Department of Biology, University of South Dakota, 414 East Clark ST, Vermillion, SD February, 2003 In the following descriptions, locus = band (these are observable on a gel); an allele is an estimated entity based on dominant data. I. Descriptive statistics of levels of diversity Descriptive population genetic statistics can be calculated based on phenotypic (i.e., band presence/absence) or genotypic (i.e., allele frequencies) data. If you choose to calculate allele frequencies, you are assuming Hardy-Weinberg equilibrium in populations, an outcrossing mating system, and nearly random mating. If you have information from other sources on the mating system or extent of random mating (e.g., from allozymes), that can be incorporated in your estimates of diversity based on dominant data. Only two alleles are considered to exist for a dominant marker locus, the dominant allele (or present; this does not imply that the presence of a band is dominant over the absence in a Mendelian sense) and the null (or visually absent) allele. The presence of a band indicates either a heterozygote or a homozygote for the dominant allele. Thus, allele frequencies are calculated based on the frequency of the null allele (i.e., the number of individuals without the band). Where q i represents the frequency of the null allele, and p i represents the frequency of the dominant allele, q i = # individuals for which the band was NOT present 1/2 total # individuals surveyed p i = 1- q i Several descriptive measures of diversity can be calculated, including: 1. Band frequencies (phenotypic data) 1

2 2. Allele frequencies (genotypic data) 3. Number of bands per primer, population, taxon, etc. 4. Number and frequencies of rare bands (it s up to you to determine and defend what constitutes rarity) 5. Percentage of polymorphic loci the number of loci where the band was observed in some individuals and not in other individuals. This too can be determined at various levels (e.g., population, taxon) 6. Gene diversity often indicated as Nei s heterozygosity or expected heterozygosity. Even calculated from allele frequencies, this is still only an estimate of the expected heterozygosity because the allele frequencies are an estimate of expected allele frequencies. Thus, estimates of this statistic should not be compared directly to estimates of heterozygosity that are based on true allele frequencies from allozymes or other codominant markers. The following estimates of diversity are from Mariette et al. (2002). a. Phenotypic gene diversity: H p = 1 P 2 i - Q i 2, where P i and Q i are the frequencies of band presence and absence, respectively. Estimates of H p are calculated for each locus, and the mean over all loci is used as the overall estimate of diversity at whatever hierarchical level you are interested in quantifying. b. Genotypic gene diversity: H g = 1 p 2 i - q i 2, where p 2 i - q i 2 are the frequencies of the dominant and null alleles, respectively. Calculate for each locus, and then the mean over all loci just as for phenotypic diversity described above. c. I do not know of a program that will calculate H p in this manner, but both POPGENE and TFPGA will calculate H g. With POPGENE, you can specify if you want to assume complete inbreeding, complete outcrossing, or something inbetween in the estimates of H g. In TFPGA, though, you only have the option of assuming complete outcrossing (i.e., Hardy-Weinberg equilibrium) in populations. TFPGA will give three estimates of genotypic diversity or heterozygosity. These include a direct count, expected heterozygosity under HWE, and Nei s (1978) unbiased heterozygosity. The first two measures should be the same and are H g. I don t recommend using Nei s estimate because I don t fully understand how the program calculates it. POPGENE calculates Nei s 2

3 diversity (1973), which should also be H g. I calculated estimates of H p by hand in a spreadsheet. You just need to do a lot of adding, multiplying, and subtracting. 7. Differences in the various estimates of diversity among taxa (populations are the experimental units) can be determined using non-parametric tests such as Kruskal-Wallis followed by Dunn s multiple comparisons if you find significant overall differences. See Zar (1996) or Sokal and Rohlf (1995) for formulas. You could also test for differences across populations using loci as the experimental units. II. Comparative statistics of diversity Genetic identities or distances are useful for getting an overall idea of how similar (or different) populations and taxa are. Like estimates of levels of diversity, genetic identities/distances can be calculated based on phenotypic or genotypic data. For phenotypic data, the similarity coefficient of Nei and Li (1979; = Dice s coefficient) is a commonly used measure, and can be calculated using NTSYS-pc. ARLEQUIN will calculate a raw estimate of the differences (i.e., the mean number of pairwise differences in bands within and between populations and taxa and inter-taxic distances are corrected to account for relative differences found within species). For genotypic data, any number of measures can be used, and the reader is referred to the manuals of TFPGA and POPGENE. Once calculated, identities/distances can be used in multivariate analyses (e.g., principal coordinates analysis) and in tree-building algorithms (UPGMA or Neighbor-joining). NTSYSpc will perform multivariate analyses and build trees. For PCO, generate a Dice similarity matrix of the data, DCENTER the matrix, and use the double centered matrix in EIGEN. For a tree, put the Dice similarity matrix into the NJOIN program or SAHN (for UPGMA). POPGENE and TFPGA only do UPGMA. I recommend using the NEIGHBOR algorithm in PHYLIP for a neighbor-joining analysis because you can then view the tree easily in TreeView. PAUP will also implement the neighbor-joining algorithm. Bootstrap support for trees can be determined in PAUP or with the RAPD programs developed by Bill Black. Use RAPDPLOT or RAPDDIST to generate multiple pseudo-replicate datasets of distances. Then, move this file over into the PHYLIP directory, and use NEIGHBOR to generate a tree from each of the distance matrices. Rename the resulting treefile and outfile to something like treefile1 3

4 and outfile1. Input treefile1 into CONSENSE to generate a consensus tree of the trees generated in NEIGHBOR. The bootstrap values will be in the outfile. The consensus tree can be viewed from the treefile in TreeView. These programs have limits on the number of populations and loci that can be used. Therefore, it might be easier to use PAUP to construct and bootstrap a tree. Similarity/distance matrices can also be compared to matrices based on other sets of data using a Mantel test (e.g., to compare physical distance among populations with how genetically similar/dissimilar they are or to compare taxonomic similarity based on molecular and morphological data). Mantel tests are most easily implemented using NTSYS-pc. III. Genetic structure Estimates of genetic structure or the degree of differentiation among populations can be estimated using a variety of measures, including an analysis of molecular variance (AMOVA), and by using ratios of other diversity statistics. I recommend using AMOVA. AMOVA can be implemented using ARLEQUIN, and the help file that comes with the program is quite thorough in its explanation of how to carry out the analysis. Should you wish to use ratios of estimates of diversity (e.g., H p or H g ) to determine population differentiation, the following is a guide: Amount of variation within populations = mean pop diversity/total species diversity Amount of variation among populations = [total species diversity mean pop diversity]/ total species diversity = 1 amount of variation within pops. If you are interested in genetic structure at more than two levels, then just adjust the above to match the number of levels you do have. For example, if you want to determine the amount of divergence among multiple regions as well as among populations, then the following would apply: Amount of variation among groups = [total species diversity mean regional diversity]/total species diversity 4

5 A new program call HICKORY and developed by Kent Holsinger and Paul Lewis at the University of Connecticut will calculate F-statistics, including F ST, and the inbreeding coefficient, f. Some of the analyses included in this software using Bayesian statistics to estimate population genetic parameters. See Holsinger et al. (2002) for more details about analyses performed by HICKORY. Programs and where to find them: NTSYS-pc (F.J. Rohlf) $230 for the latest version 2.1 from Exeter Software, Setauket, NY. ARLEQUIN (S. Schneider, D. Roessli, L. Excoffier) Free at POPGENE (F. Yeh, R. Yang, T. Boyle) Free at TFPGA (M. Miller) Free at PHYLIP (J. Felsenstein) Free at RAPD programs (B. Black) Free at ftp://lamar.colostate.edu/pub/wcb4/ TreeView (R. Page) Free at HICKORY (K. Holsinger, P. Lewis) Free at References Holsinger, K. E., P. O. Lewis, and D. K. Dey A Bayesian approach to inferring population structure from dominant markers. Molecular Ecology 11: Mariette, S., V. Le Corre, F. Austerlitz, and A. Kremer Sampling within the genome for measuring within-population diversity: trade-offs between markers. Molecular Ecology 11: Nei, M Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, USA 70: Nei, M Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:

6 Nei, M. and W. H. Li Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, USA 76: Sokal, R. R. and F. J. Rohlf Biometry. Freeman, NY. Zar, J. H Biostatistical Analysis. Prentice Hall, Upper Saddle River, NJ. 6

Papers for 11 September

Papers for 11 September Papers for 11 September v Kreitman M (1983) Nucleotide polymorphism at the alcohol-dehydrogenase locus of Drosophila melanogaster. Nature 304, 412-417. v Hishimoto et al. (2010) Alcohol and aldehyde dehydrogenase

More information

b. less precise, but more efficient at detecting variation

b. less precise, but more efficient at detecting variation I. Proteins A. Electrophoretic detection 1. SDS PAGE polyacrylamide gel electrophoresis a. denaturing conditions b. separation by size (MW) 2. Isoelectric focusing a. ph gradient b. separation by charge

More information

Why do we need statistics to study genetics and evolution?

Why do we need statistics to study genetics and evolution? Why do we need statistics to study genetics and evolution? 1. Mapping traits to the genome [Linkage maps (incl. QTLs), LOD] 2. Quantifying genetic basis of complex traits [Concordance, heritability] 3.

More information

Lecture 5: Genetic Variation and Inbreeding. September 7, 2012

Lecture 5: Genetic Variation and Inbreeding. September 7, 2012 Lecture 5: Genetic Variation and Inbreeding September 7, 01 Announcements I will be out of town Thursday Sept 0 through Sunday, Sept 4 No office hours Friday, Sept 1: Prof. Hawkins will give a guest lecture

More information

An Introduction to Population Genetics

An Introduction to Population Genetics An Introduction to Population Genetics THEORY AND APPLICATIONS f 2 A (1 ) E 1 D [ ] = + 2M ES [ ] fa fa = 1 sf a Rasmus Nielsen Montgomery Slatkin Sinauer Associates, Inc. Publishers Sunderland, Massachusetts

More information

Exam 1, Fall 2012 Grade Summary. Points: Mean 95.3 Median 93 Std. Dev 8.7 Max 116 Min 83 Percentage: Average Grade Distribution:

Exam 1, Fall 2012 Grade Summary. Points: Mean 95.3 Median 93 Std. Dev 8.7 Max 116 Min 83 Percentage: Average Grade Distribution: Exam 1, Fall 2012 Grade Summary Points: Mean 95.3 Median 93 Std. Dev 8.7 Max 116 Min 83 Percentage: Average 79.4 Grade Distribution: Name: BIOL 464/GEN 535 Population Genetics Fall 2012 Test # 1, 09/26/2012

More information

Studies on the Genetic Diversity of Wild Populations of Masu Salmon, Oncorhynchus mason mason, by Microsatellite DNA Markers

Studies on the Genetic Diversity of Wild Populations of Masu Salmon, Oncorhynchus mason mason, by Microsatellite DNA Markers Studies on the Genetic Diversity of Wild Populations of Masu Salmon, Oncorhynchus mason mason, by Microsatellite DNA Markers Daiki NOGUCHI1,2 and Nobuhiko TANIGUCHI1,2 Abstract: A large number of hatchery

More information

PopGen1: Introduction to population genetics

PopGen1: Introduction to population genetics PopGen1: Introduction to population genetics Introduction MICROEVOLUTION is the term used to describe the dynamics of evolutionary change in populations and species over time. The discipline devoted to

More information

Basics of AFLP and. microsatellite analysis

Basics of AFLP and. microsatellite analysis Basics of AFLP and microsatellite analysis Amplified Fragment Length Polymorphism Pros: Large number of markers with relatively little lab effort No prior information about genome needed Genome wide overage

More information

GENE FLOW AND POPULATION STRUCTURE

GENE FLOW AND POPULATION STRUCTURE 3 GENE FLOW AND POPULATION STRUCTURE Objectives Model two subpopulations that exchange individuals through gene flow Determine equilibrium allele frequencies as a result of gene flow Calculate H (heterozygosity)

More information

Variation Chapter 9 10/6/2014. Some terms. Variation in phenotype can be due to genes AND environment: Is variation genetic, environmental, or both?

Variation Chapter 9 10/6/2014. Some terms. Variation in phenotype can be due to genes AND environment: Is variation genetic, environmental, or both? Frequency 10/6/2014 Variation Chapter 9 Some terms Genotype Allele form of a gene, distinguished by effect on phenotype Haplotype form of a gene, distinguished by DNA sequence Gene copy number of copies

More information

5/18/2017. Genotypic, phenotypic or allelic frequencies each sum to 1. Changes in allele frequencies determine gene pool composition over generations

5/18/2017. Genotypic, phenotypic or allelic frequencies each sum to 1. Changes in allele frequencies determine gene pool composition over generations Topics How to track evolution allele frequencies Hardy Weinberg principle applications Requirements for genetic equilibrium Types of natural selection Population genetic polymorphism in populations, pp.

More information

COMPUTER SIMULATIONS AND PROBLEMS

COMPUTER SIMULATIONS AND PROBLEMS Exercise 1: Exploring Evolutionary Mechanisms with Theoretical Computer Simulations, and Calculation of Allele and Genotype Frequencies & Hardy-Weinberg Equilibrium Theory INTRODUCTION Evolution is defined

More information

University of York Department of Biology B. Sc Stage 2 Degree Examinations

University of York Department of Biology B. Sc Stage 2 Degree Examinations Examination Candidate Number: Desk Number: University of York Department of Biology B. Sc Stage 2 Degree Examinations 2016-17 Evolutionary and Population Genetics Time allowed: 1 hour and 30 minutes Total

More information

Population stratification. Background & PLINK practical

Population stratification. Background & PLINK practical Population stratification Background & PLINK practical Variation between, within populations Any two humans differ ~0.1% of their genome (1 in ~1000bp) ~8% of this variation is accounted for by the major

More information

Questions we are addressing. Hardy-Weinberg Theorem

Questions we are addressing. Hardy-Weinberg Theorem Factors causing genotype frequency changes or evolutionary principles Selection = variation in fitness; heritable Mutation = change in DNA of genes Migration = movement of genes across populations Vectors

More information

Population Genetics. If we closely examine the individuals of a population, there is almost always PHENOTYPIC

Population Genetics. If we closely examine the individuals of a population, there is almost always PHENOTYPIC 1 Population Genetics How Much Genetic Variation exists in Natural Populations? Phenotypic Variation If we closely examine the individuals of a population, there is almost always PHENOTYPIC VARIATION -

More information

Population genetic structure. Bengt Hansson

Population genetic structure. Bengt Hansson Population genetic structure Bengt Hansson Conservation: Greater prairie chicken Population structure? Geographical isolation? Dispersal? Effective population size? Phylogeography: Chorthippus parallelus

More information

A Primer of Ecological Genetics

A Primer of Ecological Genetics A Primer of Ecological Genetics Jeffrey K. Conner Michigan State University Daniel L. Hartl Harvard University Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A. Contents Preface xi Acronyms,

More information

Conifer Translational Genomics Network Coordinated Agricultural Project

Conifer Translational Genomics Network Coordinated Agricultural Project Conifer Translational Genomics Network Coordinated Agricultural Project Genomics in Tree Breeding and Forest Ecosystem Management ----- Module 3 Population Genetics Nicholas Wheeler & David Harry Oregon

More information

Measuring Evolution of Populations. SLIDE SHOW MODIFIED FROM KIM

Measuring Evolution of Populations. SLIDE SHOW MODIFIED FROM KIM Measuring Evolution of Populations SLIDE SHOW MODIFIED FROM KIM FOGLIA@explorebiology.com 5 Agents of evolutionary change Mutation Gene Flow Non-random mating Genetic Drift Selection Populations & gene

More information

Lecture 5: Inbreeding and Allozymes. Sept 1, 2006

Lecture 5: Inbreeding and Allozymes. Sept 1, 2006 Lecture 5: Inbreeding and Allozymes Sept 1, 2006 Last Time Tandem repeats and recombination Organellar DNA Introduction to DNA in populations Organelle Inheritance Organelles can be excluded from one parent's

More information

Conservation Genetics Population Genetics: Diversity within versus among populations

Conservation Genetics Population Genetics: Diversity within versus among populations Conservation Genetics : Diversity within versus among populations Exercise James Gibbs Reproduction of this material is authorized by the recipient institution for nonprofit/non-commercial educational

More information

POPULATION GENETIC STRUCTURE OF RARE AND ENDANGERED PLANTS USING MOLECULAR MARKERS

POPULATION GENETIC STRUCTURE OF RARE AND ENDANGERED PLANTS USING MOLECULAR MARKERS Technical Report HCSU-0036 POPULATION GENETIC STRUCTURE OF RARE AND ENDANGERED PLANTS USING MOLECULAR MARKERS Jennifer A. Raji 1 and Carter T. Atkinson 2 1 Hawai`i Cooperative Studies Unit, P.O. Box 44

More information

Mapping and Mapping Populations

Mapping and Mapping Populations Mapping and Mapping Populations Types of mapping populations F 2 o Two F 1 individuals are intermated Backcross o Cross of a recurrent parent to a F 1 Recombinant Inbred Lines (RILs; F 2 -derived lines)

More information

Summary for BIOSTAT/STAT551 Statistical Genetics II: Quantitative Traits

Summary for BIOSTAT/STAT551 Statistical Genetics II: Quantitative Traits Summary for BIOSTAT/STAT551 Statistical Genetics II: Quantitative Traits Gained an understanding of the relationship between a TRAIT, GENETICS (single locus and multilocus) and ENVIRONMENT Theoretical

More information

Measuring Evolution of Populations

Measuring Evolution of Populations Measuring Evolution of Populations 5 Agents of evolutionary change Mutation Gene Flow Non-random mating Genetic Drift Selection Populations & gene pools Concepts u a population is a localized group of

More information

1) (15 points) Next to each term in the left-hand column place the number from the right-hand column that best corresponds:

1) (15 points) Next to each term in the left-hand column place the number from the right-hand column that best corresponds: 1) (15 points) Next to each term in the left-hand column place the number from the right-hand column that best corresponds: natural selection 21 1) the component of phenotypic variance not explained by

More information

Park /12. Yudin /19. Li /26. Song /9

Park /12. Yudin /19. Li /26. Song /9 Each student is responsible for (1) preparing the slides and (2) leading the discussion (from problems) related to his/her assigned sections. For uniformity, we will use a single Powerpoint template throughout.

More information

Package snpready. April 11, 2018

Package snpready. April 11, 2018 Version 0.9.6 Date 2018-04-11 Package snpready April 11, 2018 Title Preparing Genotypic Datasets in Order to Run Genomic Analysis Three functions to clean, summarize and prepare genomic datasets to Genome

More information

"Genetics in geographically structured populations: defining, estimating and interpreting FST."

Genetics in geographically structured populations: defining, estimating and interpreting FST. University of Connecticut DigitalCommons@UConn EEB Articles Department of Ecology and Evolutionary Biology 9-1-2009 "Genetics in geographically structured populations: defining, estimating and interpreting

More information

Introduction to population genetics. CRITFC Genetics Training December 13-14, 2016

Introduction to population genetics. CRITFC Genetics Training December 13-14, 2016 Introduction to population genetics CRITFC Genetics Training December 13-14, 2016 What is population genetics? Population genetics n. In culture: study of the genetic composition of populations; understanding

More information

Lecture 10: Introduction to Genetic Drift. September 28, 2012

Lecture 10: Introduction to Genetic Drift. September 28, 2012 Lecture 10: Introduction to Genetic Drift September 28, 2012 Announcements Exam to be returned Monday Mid-term course evaluation Class participation Office hours Last Time Transposable Elements Dominance

More information

POPULATION GENETICS: The study of the rules governing the maintenance and transmission of genetic variation in natural populations.

POPULATION GENETICS: The study of the rules governing the maintenance and transmission of genetic variation in natural populations. POPULATION GENETICS: The study of the rules governing the maintenance and transmission of genetic variation in natural populations. DARWINIAN EVOLUTION BY NATURAL SELECTION Many more individuals are born

More information

Association Mapping in Plants PLSC 731 Plant Molecular Genetics Phil McClean April, 2010

Association Mapping in Plants PLSC 731 Plant Molecular Genetics Phil McClean April, 2010 Association Mapping in Plants PLSC 731 Plant Molecular Genetics Phil McClean April, 2010 Traditional QTL approach Uses standard bi-parental mapping populations o F2 or RI These have a limited number of

More information

Monday, November 8 Shantz 242 E (the usual place) 5:00-7:00 PM

Monday, November 8 Shantz 242 E (the usual place) 5:00-7:00 PM Review Session Monday, November 8 Shantz 242 E (the usual place) 5:00-7:00 PM I ll answer questions on my material, then Chad will answer questions on his material. Test Information Today s notes, the

More information

Conifer Translational Genomics Network Coordinated Agricultural Project

Conifer Translational Genomics Network Coordinated Agricultural Project Conifer Translational Genomics Network Coordinated Agricultural Project Genomics in Tree Breeding and Forest Ecosystem Management ----- Module 7 Measuring, Organizing, and Interpreting Marker Variation

More information

Analysis of geographically structured populations: (Traditional) estimators based on gene frequencies

Analysis of geographically structured populations: (Traditional) estimators based on gene frequencies Analysis of geographically structured populations: (Traditional) estimators based on gene frequencies Peter Beerli Department of Genetics, Box 357360, University of ashington, Seattle A 9895-7360, Email:

More information

Edexcel (B) Biology A-level

Edexcel (B) Biology A-level Edexcel (B) Biology A-level Topic 8: Origins of Genetic Variation Notes Meiosis is reduction division. The main role of meiosis is production of haploid gametes as cells produced by meiosis have half the

More information

Quantitative Genetics

Quantitative Genetics Quantitative Genetics Polygenic traits Quantitative Genetics 1. Controlled by several to many genes 2. Continuous variation more variation not as easily characterized into classes; individuals fall into

More information

Constancy of allele frequencies: -HARDY WEINBERG EQUILIBRIUM. Changes in allele frequencies: - NATURAL SELECTION

Constancy of allele frequencies: -HARDY WEINBERG EQUILIBRIUM. Changes in allele frequencies: - NATURAL SELECTION THE ORGANIZATION OF GENETIC DIVERSITY Constancy of allele frequencies: -HARDY WEINBERG EQUILIBRIUM Changes in allele frequencies: - MUTATION and RECOMBINATION - GENETIC DRIFT and POPULATION STRUCTURE -

More information

Population Genetics and Evolution

Population Genetics and Evolution Population Genetics and Evolution Forces of Evolution DETERMINISTIC: direction of change predictable Mutation Migration Natural Selection STOCHASTIC: direction of change unknowable (none exp.) Genetic

More information

Biology 445K Winter 2007 DNA Fingerprinting

Biology 445K Winter 2007 DNA Fingerprinting Biology 445K Winter 2007 DNA Fingerprinting For Friday 3/9 lab: in your lab notebook write out (in bullet style NOT paragraph style) the steps for BOTH the check cell DNA prep and the hair follicle DNA

More information

Genetic diversity and relationships among tea (Camellia sinensis) cultivars as revealed by RAPD and ISSR based fingerprinting

Genetic diversity and relationships among tea (Camellia sinensis) cultivars as revealed by RAPD and ISSR based fingerprinting Indian Journal of Biotechnology Vol 8, October 2009, pp 370-376 Genetic diversity and relationships among tea (Camellia sinensis) cultivars as revealed by RAPD and ISSR based fingerprinting S C Roy* and

More information

How well do evolutionary trees describe genetic relationships among populations?

How well do evolutionary trees describe genetic relationships among populations? (009) 0, 0 & 009 Macmillan Publishers Limited All rights reserved 00-0X/09 $.00 ORIGINAL ARTICLE www.nature.com/hdy How well do evolutionary trees describe genetic relationships among populations? Department

More information

The Modern Synthesis. Terms and Concepts. Evolutionary Processes. I. Introduction: Where do we go from here? What do these things have in common?

The Modern Synthesis. Terms and Concepts. Evolutionary Processes. I. Introduction: Where do we go from here? What do these things have in common? Evolutionary Processes I. Introduction - The modern synthesis Reading: Chap. 25 II. No evolution: Hardy-Weinberg equilibrium A. Population genetics B. Assumptions of H-W III. Causes of microevolution (forces

More information

Population Genetics. Ben Hecht CRITFC Genetics Training December 11, 2013

Population Genetics.   Ben Hecht CRITFC Genetics Training December 11, 2013 Population Genetics http://darwin.eeb.uconn.edu/simulations/drift.html Ben Hecht CRITFC Genetics Training December 11, 2013 1 Population Genetics The study of how populations change genetically over time

More information

Genotype AA Aa aa Total N ind We assume that the order of alleles in Aa does not play a role. The genotypic frequencies follow as

Genotype AA Aa aa Total N ind We assume that the order of alleles in Aa does not play a role. The genotypic frequencies follow as N µ s m r - - - - Genetic variation - From genotype frequencies to allele frequencies The last lecture focused on mutation as the ultimate process introducing genetic variation into populations. We have

More information

b. (3 points) The expected frequencies of each blood type in the deme if mating is random with respect to variation at this locus.

b. (3 points) The expected frequencies of each blood type in the deme if mating is random with respect to variation at this locus. NAME EXAM# 1 1. (15 points) Next to each unnumbered item in the left column place the number from the right column/bottom that best corresponds: 10 additive genetic variance 1) a hermaphroditic adult develops

More information

POPULATION GENETICS. Evolution Lectures 1

POPULATION GENETICS. Evolution Lectures 1 POPULATION GENETICS Evolution Lectures 1 POPULATION GENETICS The study of the rules governing the maintenance and transmission of genetic variation in natural populations. Population: A freely interbreeding

More information

Lab 2: Mathematical Modeling: Hardy-Weinberg 1. Overview. In this lab you will:

Lab 2: Mathematical Modeling: Hardy-Weinberg 1. Overview. In this lab you will: AP Biology Name Lab 2: Mathematical Modeling: Hardy-Weinberg 1 Overview In this lab you will: 1. learn about the Hardy-Weinberg law of genetic equilibrium, and 2. study the relationship between evolution

More information

Evolution of Populations (Ch. 17)

Evolution of Populations (Ch. 17) Evolution of Populations (Ch. 17) Doonesbury - Sunday February 8, 2004 Beak depth of Beak depth Where does Variation come from? Mutation Wet year random changes to DNA errors in gamete production Dry year

More information

MEASURES OF GENETIC DIVERSITY

MEASURES OF GENETIC DIVERSITY 23 MEASURES OF GENETIC DIVERSITY Objectives Estimate allele frequencies from a sample of individuals using the maximum likelihood formulation. Determine polymorphism for a population, P. Determine heterozygosity

More information

HISTORICAL LINGUISTICS AND MOLECULAR ANTHROPOLOGY

HISTORICAL LINGUISTICS AND MOLECULAR ANTHROPOLOGY Third Pavia International Summer School for Indo-European Linguistics, 7-12 September 2015 HISTORICAL LINGUISTICS AND MOLECULAR ANTHROPOLOGY Brigitte Pakendorf, Dynamique du Langage, CNRS & Université

More information

Molecular Characterization of Heterotic Groups of Cotton through SSR Markers

Molecular Characterization of Heterotic Groups of Cotton through SSR Markers International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 03 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.703.050

More information

7-1. Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium)

7-1. Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium) 7-1 Biology 1001 Lab 7: POPULATION GENETICS PREPARTION Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium) OBECTIVES At the end of

More information

Introduction to Quantitative Genomics / Genetics

Introduction to Quantitative Genomics / Genetics Introduction to Quantitative Genomics / Genetics BTRY 7210: Topics in Quantitative Genomics and Genetics September 10, 2008 Jason G. Mezey Outline History and Intuition. Statistical Framework. Current

More information

Using molecular marker technology in studies on plant genetic diversity Final considerations

Using molecular marker technology in studies on plant genetic diversity Final considerations Using molecular marker technology in studies on plant genetic diversity Final considerations Copyright: IPGRI and Cornell University, 2003 Final considerations 1 Contents! When choosing a technique...!

More information

Genetic variation of Garra rufa fish in Kermanshah and Bushehr provinces, Iran, using SSR microsatellite markers A B S T R A C T

Genetic variation of Garra rufa fish in Kermanshah and Bushehr provinces, Iran, using SSR microsatellite markers A B S T R A C T Molecular Biology Research Communications 2013; 2(3):81-88 Original Article Open Access Genetic variation of Garra rufa fish in Kermanshah and Bushehr provinces, Iran, using SSR microsatellite markers

More information

January 6, 2005 Bio 107/207 Winter 2005 Lecture 2 Measurement of genetic diversity

January 6, 2005 Bio 107/207 Winter 2005 Lecture 2 Measurement of genetic diversity January 6, 2005 Bio 107/207 Winter 2005 Lecture 2 Measurement of genetic diversity - in his 1974 book The Genetic Basis of Evolutionary Change, Richard Lewontin likened the field of population genetics

More information

The Evolution of Populations

The Evolution of Populations Microevolution The Evolution of Populations C H A P T E R 2 3 Change in allele frequencies over generations Three mechanisms cause allele frequency change: Natural selection (leads to adaptation) Genetic

More information

Genes in Populations: Hardy Weinberg Equilibrium. Biostatistics 666

Genes in Populations: Hardy Weinberg Equilibrium. Biostatistics 666 Genes in Poulations: Hardy Weinberg Equilibrium Biostatistics 666 Previous Lecture: Primer In Genetics How information is stored in DNA How DNA is inherited Tyes of DNA variation Common designs for genetic

More information

A little knowledge is a dangerous thing. So is a lot. Albert Einstein. Distribution of grades: Exam I. Genetics. Genetics. Genetics.

A little knowledge is a dangerous thing. So is a lot. Albert Einstein. Distribution of grades: Exam I. Genetics. Genetics. Genetics. A little knowledge is a dangerous thing. So is a lot. Albert Einstein Percentage Distribution of grades: Exam I.5.4.3.2. A B C D F Grade If Huntington s disease is a dominant trait, shouldn t most people

More information

Two-locus models. Two-locus models. Two-locus models. Two-locus models. Consider two loci, A and B, each with two alleles:

Two-locus models. Two-locus models. Two-locus models. Two-locus models. Consider two loci, A and B, each with two alleles: The human genome has ~30,000 genes. Drosophila contains ~10,000 genes. Bacteria contain thousands of genes. Even viruses contain dozens of genes. Clearly, one-locus models are oversimplifications. Unfortunately,

More information

Assessment of Genetic Variation and Distribution Pattern of Thalictrum petaloideum Detected by RAPDs

Assessment of Genetic Variation and Distribution Pattern of Thalictrum petaloideum Detected by RAPDs Acta Botanica Sinica 2004, 46 (2): 165 170 http://www.chineseplantscience.com Assessment of Genetic Variation and Distribution Pattern of Thalictrum petaloideum Detected by RAPDs XIE Lei, LI Liang-Qian

More information

BST227 Introduction to Statistical Genetics. Lecture 3: Introduction to population genetics

BST227 Introduction to Statistical Genetics. Lecture 3: Introduction to population genetics BST227 Introduction to Statistical Genetics Lecture 3: Introduction to population genetics!1 Housekeeping HW1 will be posted on course website tonight 1st lab will be on Wednesday TA office hours have

More information

Population genetics. Population genetics provides a foundation for studying evolution How/Why?

Population genetics. Population genetics provides a foundation for studying evolution How/Why? Population genetics 1.Definition of microevolution 2.Conditions for Hardy-Weinberg equilibrium 3.Hardy-Weinberg equation where it comes from and what it means 4.The five conditions for equilibrium in more

More information

HARDY-WEINBERG EQUILIBRIUM

HARDY-WEINBERG EQUILIBRIUM 29 HARDY-WEINBERG EQUILIBRIUM Objectives Understand the Hardy-Weinberg principle and its importance. Understand the chi-square test of statistical independence and its use. Determine the genotype and allele

More information

Introduction to Population Genetics. Spezielle Statistik in der Biomedizin WS 2014/15

Introduction to Population Genetics. Spezielle Statistik in der Biomedizin WS 2014/15 Introduction to Population Genetics Spezielle Statistik in der Biomedizin WS 2014/15 What is population genetics? Describes the genetic structure and variation of populations. Causes Maintenance Changes

More information

International Journal of Science, Environment and Technology, Vol. 6, No 1, 2017,

International Journal of Science, Environment and Technology, Vol. 6, No 1, 2017, International Journal of Science, Environment and Technology, Vol. 6, No 1, 2017, 702 707 ISSN 2278-3687 (O) 2277-663X (P) MICROSATELLITE MARKER ANALYSIS IN NELLORE BREED OF SHEEP S. Vani *, B. Punyakumari,

More information

Gene Flow and Paternity Analysis. Oct 6, 2006

Gene Flow and Paternity Analysis. Oct 6, 2006 Gene Flow and Paternity Analysis Oct 6, 2006 Last Time Variation among populations: F- statistics Indirect estimates of gene flow Today Lab recap More about indirect measures of gene flow Direct measures

More information

Linkage Disequilibrium

Linkage Disequilibrium Linkage Disequilibrium Why do we care about linkage disequilibrium? Determines the extent to which association mapping can be used in a species o Long distance LD Mapping at the tens of kilobase level

More information

Lesson: Measuring Microevolution

Lesson: Measuring Microevolution Lesson: Measuring Microevolution Recall that a GENE is a unit of inheritance. Different forms of the same gene are called LLELES (uh-leelz ) lleles arise from an original gene via the process of MUTTION.

More information

Distinguishing Among Sources of Phenotypic Variation in Populations

Distinguishing Among Sources of Phenotypic Variation in Populations Population Genetics Distinguishing Among Sources of Phenotypic Variation in Populations Discrete vs. continuous Genotype or environment (nature vs. nurture) Phenotypic variation - Discrete vs. Continuous

More information

Week 7 - Natural Selection and Genetic Variation for Allozymes

Week 7 - Natural Selection and Genetic Variation for Allozymes Week 7 - Natural Selection and Genetic Variation for Allozymes Introduction In today's laboratory exercise, we will explore the potential for natural selection to cause evolutionary change, and we will

More information

HWE Tutorial (October 2007) Mary Jo Zurbey PharmD Candidate 2008

HWE Tutorial (October 2007) Mary Jo Zurbey PharmD Candidate 2008 HWE Tutorial (October 2007) Mary Jo Zurbey PharmD Candidate 2008 Definition: The Hardy-Weinberg equation, which relates genotype and allele frequencies for a population, is as follows, where p = the frequency

More information

POPULATION GENETICS. Evolution Lectures 4

POPULATION GENETICS. Evolution Lectures 4 POPULATION GENETICS Evolution Lectures 4 POPULATION GENETICS The study of the rules governing the maintenance and transmission of genetic variation in natural populations. Population: A freely interbreeding

More information

RESEARCH NOTE. Introduction. Material and methods. M. FALAHATI-ANBARAN 1,2, A. A. HABASHI 2, M. ESFAHANY 3, S. A. MOHAMMADI 2,4 and B.

RESEARCH NOTE. Introduction. Material and methods. M. FALAHATI-ANBARAN 1,2, A. A. HABASHI 2, M. ESFAHANY 3, S. A. MOHAMMADI 2,4 and B. c Indian Academy of Sciences RESEARCH NOTE Population genetic structure based on SSR markers in alfalfa (Medicago sativa L.) from various regions contiguous to the centres of origin of the species M. FALAHATI-ANBARAN

More information

International Journal of Science, Environment and Technology, Vol. 6, No 1, 2017,

International Journal of Science, Environment and Technology, Vol. 6, No 1, 2017, International Journal of Science, Environment and Technology, Vol. 6, No 1, 2017, 303 307 ISSN 2278-3687 (O) 2277-663X (P) GENETIC DIVERSITY AND BOTTLENECK STUDIES IN PUNGANUR CATTLE THROUGH MICROSATELLITE

More information

Evolutionary and statistical properties of three genetic distances

Evolutionary and statistical properties of three genetic distances Molecular Ecology (2002), 263 273 Blackwell Science, Ltd INVITED REVIEW Evolutionary and statistical properties of three genetic distances STEVEN T. KALINOWSKI Conservation Biology Division, Northwest

More information

PYPOP: A SOFTWARE FRAMEWORK FOR POPULATION GENOMICS: ANALYZING LARGE-SCALE MULTI-LOCUS GENOTYPE DATA

PYPOP: A SOFTWARE FRAMEWORK FOR POPULATION GENOMICS: ANALYZING LARGE-SCALE MULTI-LOCUS GENOTYPE DATA PYPOP: A SOFTWARE FRAMEWORK FOR POPULATION GENOMICS: ANALYZING LARGE-SCALE MULTI-LOCUS GENOTYPE DATA ALEX LANCASTER, MARK P. NELSON, DIOGO MEYER AND GLENYS THOMSON Department of Integrative Biology, University

More information

The evolutionary significance of structure. Detecting and describing structure. Implications for genetic variability

The evolutionary significance of structure. Detecting and describing structure. Implications for genetic variability Population structure The evolutionary significance of structure Detecting and describing structure Wright s F statistics Implications for genetic variability Inbreeding effects of structure The Wahlund

More information

Virtual Lab 2 Hardy-Weinberg

Virtual Lab 2 Hardy-Weinberg Name Period Assignment # Virtual Lab 2 Hardy-Weinberg http://www.phschool.com/science/biology_place/labbench/lab8/intro.html Read the introduction Click Next 1) Define allele 2) Define Hardy-Weinberg equilibrium

More information

Conifer Translational Genomics Network Coordinated Agricultural Project

Conifer Translational Genomics Network Coordinated Agricultural Project Conifer Translational Genomics Network Coordinated Agricultural Project Genomics in Tree Breeding and Forest Ecosystem Management ----- Module 4 Quantitative Genetics Nicholas Wheeler & David Harry Oregon

More information

BST227 Introduction to Statistical Genetics. Lecture 3: Introduction to population genetics

BST227 Introduction to Statistical Genetics. Lecture 3: Introduction to population genetics BST227 Introduction to Statistical Genetics Lecture 3: Introduction to population genetics 1 Housekeeping HW1 due on Wednesday TA office hours today at 5:20 - FXB G11 What have we studied Background Structure

More information

Chapter 25 Population Genetics

Chapter 25 Population Genetics Chapter 25 Population Genetics Population Genetics -- the discipline within evolutionary biology that studies changes in allele frequencies. Population -- a group of individuals from the same species that

More information

February 10, 2005 Bio 107/207 Winter 2005 Lecture 12 Molecular population genetics. I. Neutral theory

February 10, 2005 Bio 107/207 Winter 2005 Lecture 12 Molecular population genetics. I. Neutral theory February 10, 2005 Bio 107/207 Winter 2005 Lecture 12 Molecular population genetics. I. Neutral theory Classical versus balanced views of genome structure - like many controversies in evolutionary biology,

More information

Molecular characterization of Aspergillus niger isolates inciting black mould rot of onion through RAPD

Molecular characterization of Aspergillus niger isolates inciting black mould rot of onion through RAPD International Journal of Agriculture, Environment and Biotechnology Citation: IJAEB: 9(4): 637-642 August 2016 DOI Number: 10.5958/2230-732X.2016.00083.8 2016 New Delhi Publishers. All rights reserved

More information

TEST FORM A. 2. Based on current estimates of mutation rate, how many mutations in protein encoding genes are typical for each human?

TEST FORM A. 2. Based on current estimates of mutation rate, how many mutations in protein encoding genes are typical for each human? TEST FORM A Evolution PCB 4673 Exam # 2 Name SSN Multiple Choice: 3 points each 1. The horseshoe crab is a so-called living fossil because there are ancient species that looked very similar to the present-day

More information

CS273B: Deep Learning in Genomics and Biomedicine. Recitation 1 30/9/2016

CS273B: Deep Learning in Genomics and Biomedicine. Recitation 1 30/9/2016 CS273B: Deep Learning in Genomics and Biomedicine. Recitation 1 30/9/2016 Topics Genetic variation Population structure Linkage disequilibrium Natural disease variants Genome Wide Association Studies Gene

More information

Biotools: an R function to predict spatial gene diversity via an individual-based approach

Biotools: an R function to predict spatial gene diversity via an individual-based approach Biotools: an R function to predict spatial gene diversity via an individual-based approach A.R. da Silva 1, G. Malafaia 2 and I.P.P. Menezes 3 1 Laboratório de Estatística Aplicada, Instituto Federal Goiano,

More information

Review. Molecular Evolution and the Neutral Theory. Genetic drift. Evolutionary force that removes genetic variation

Review. Molecular Evolution and the Neutral Theory. Genetic drift. Evolutionary force that removes genetic variation Molecular Evolution and the Neutral Theory Carlo Lapid Sep., 202 Review Genetic drift Evolutionary force that removes genetic variation from a population Strength is inversely proportional to the effective

More information

B) You can conclude that A 1 is identical by descent. Notice that A2 had to come from the father (and therefore, A1 is maternal in both cases).

B) You can conclude that A 1 is identical by descent. Notice that A2 had to come from the father (and therefore, A1 is maternal in both cases). Homework questions. Please provide your answers on a separate sheet. Examine the following pedigree. A 1,2 B 1,2 A 1,3 B 1,3 A 1,2 B 1,2 A 1,2 B 1,3 1. (1 point) The A 1 alleles in the two brothers are

More information

Office Hours. We will try to find a time

Office Hours.   We will try to find a time Office Hours We will try to find a time If you haven t done so yet, please mark times when you are available at: https://tinyurl.com/666-office-hours Thanks! Hardy Weinberg Equilibrium Biostatistics 666

More information

(a) Describe an experiment that could be used to test whether this is an evolutionary response or phenotypic plasticity.

(a) Describe an experiment that could be used to test whether this is an evolutionary response or phenotypic plasticity. EEB 2245 Evolutionary Biology Spring 2015 Problem Set 1 1. In a population of 100,000 flour beetles there exists a recessive genetic disease that causes antennae to develop in a Z shape when in the homozygous

More information

Average % If you want to complete quiz corrections for extra credit you must come after school Starting new topic today. Grab your clickers.

Average % If you want to complete quiz corrections for extra credit you must come after school Starting new topic today. Grab your clickers. Average 50.83% If you want to complete quiz corrections for extra credit you must come after school Starting new topic today. Grab your clickers. Evolution AP BIO Pacing Evolution Today Mutations Gene

More information

The Hardy-Weinberg Principle. Essential Learning Objectives 1.A.1 (g) and 1.A.1 (h)

The Hardy-Weinberg Principle. Essential Learning Objectives 1.A.1 (g) and 1.A.1 (h) The Hardy-Weinberg Principle Essential Learning Objectives 1.A.1 (g) and 1.A.1 (h) Evolution of Populations Individuals do not evolve, but rather, populations evolve Scientists use mathematical models

More information

GBS Usage Cases: Non-model Organisms. Katie E. Hyma, PhD Bioinformatics Core Institute for Genomic Diversity Cornell University

GBS Usage Cases: Non-model Organisms. Katie E. Hyma, PhD Bioinformatics Core Institute for Genomic Diversity Cornell University GBS Usage Cases: Non-model Organisms Katie E. Hyma, PhD Bioinformatics Core Institute for Genomic Diversity Cornell University Q: How many SNPs will I get? A: 42. What question do you really want to ask?

More information

Chapter 3 Some Basic Concepts from Population Genetics

Chapter 3 Some Basic Concepts from Population Genetics Chapter 3 Some Basic Concepts from Population Genetics The study of allele frequencies and how they vary over time and over geographic regions has led to many discoveries concerning evolutionary history,

More information