An overview of the main research activities of the Biomass and Bioenergy Lab

Size: px
Start display at page:

Download "An overview of the main research activities of the Biomass and Bioenergy Lab"

Transcription

1 An overview of the main research activities of the Biomass and Bioenergy Lab Speaker: Cristiano Varrone Giulio Izzo, Giulia Massini, Antonella Signorini, Fabrizio De Poli, Antonella Marone, Floriana Fiocchetti, Andrea Aliboni, Chiara Patriarca, Silvia Rosa, Luciano Mentuccia, Elena De Luca, Cristiano Varrone. Laboratory of Biomass and Bioenergy Head of Laboratory: Dott. Giulio Izzo / giulio.izzo@enea.it

2 IDROBIO Project: coupling dark and light fermentation L bioreactor operated at 80 C and inoculated withthermotoga neapolitana ; a yield of 3.9 mol H2/mol glucose was obtained, with a production rate of 51 ml/l/h L bioreactor with 1.8 L working volume (BFM medium; 10g/L glucose, 37 C; ph 6.8), inoculated with 1g of sediments from the Averno lake; a yield of 1.7 mol H2/mol glucose was obtained, with a production rate of 1.8 L H 2 /L/day and 54.6% of H2 content 50 L Tubular Photobioreactor tested under natural light conditions (in cooperation with UO CNR-ISE), using Rp. palustris 42 OL grown on a synthetic medium. Mean H2 production rate = 17 ml/l/h. 50 L bioreactor for the culture of T. neapolitana, with 25 L working volume. 1.2 L planar Photobioreactor (in cooperation with UO ENEA) with a surface of m2 containing Rp. palustris AV33 isolated from Averno sediments. Max H2 production rate : 1,4 L / L / day

3 Continuous Flow Reactor using a mixed pools l H 2 / l day mol H 2 /mol gluc. max rate (l H 2 /l h) H 2 (%) Continuum 1300 h ,

4 Dark Fermentation of waste products Hydrogen/biogas production by dark anaerobic fermentation of organic wastes is a promising strategy to obtain renewable and clean energy in a sustainable way The Approach: It can lead to the conversion of organic waste and feedstock into a host of valuable chemicals and energy One way to improve the efficiency of H 2 production is to explore the potentials offered by the microbial biodiversity, both in natural and artificial environment, identify and to select bacterial strains with high H 2 producing abilities from different substrates, and to characterize the microbial metabolism, in order to understand and optimize the whole process.

5 Synthetic Overview HYDROGEN PRODUCTION FROM: Isolation of hydrogen producing bacteria from vegetable waste for bioaugmentation: L/L/d Selection and acclimatation of microbial mixed pools for degradation of agri- and zootecnical waste: L/L/d Bioconversion of crude glycerol into H2 and ethanol from enriched activity sludge: 3 L/L/d

6 MSE-ENEA project: H 2 production from vegetal waste isolation and characterization of meso-philic bacterial strains contained in the waste for bioaugmentation Vegetable waste Isolation of bacterial strains Selection of H 2 -producers and cellulolytic bacteria 1 V (leaf shaped vegetable waste); 2 VP (80% leaf shaped vegetable waste + 20% potato peels);. Test on cellulose and hydrolysis products DNA extraction glucose xylose cellobiose arabinose Identification: Sequencing of amplified 16S rdna PCR amplification 16S rdna gene

7 Cumulative H2 production (ml H2/gVS) Cumulative H2 production (ml H2/gVS) Improvement of the H 2 production from self-fermentation of Vegetal Waste performing Bioaugmentation V Fermentation time (h) Buttiauxella sp.4 Rahnella sp. 10 Raoultella sp. 47 Consortium Self-fermentation VP Effect of the artificial consortium on vegetal waste Fermentation time (h) Buttiauxella sp.4 Rahnella sp. 10 Raoultella sp. 47 Consortium Self-fermentation Marone et al., 2012 International Journal of Hydrogen; 37(7): Substrati Inoculo H 2 (%) L H 2 /l/d ml H 2 /g VS m 3 H 2 /t substrate Vegetal waste Self-fermentation Vegetal waste Bio-agumentation

8 Bioconversion of agri- and zootechnical waste Degradation of Organic Matter : 1 Phase Hydrolysis of macromolecules 2 Phase Digestion of hydrolisates 3 Phase Acidogenesis 4 Phase Methanogenesis Wood Vegetables BIOMASS Sugars Aminoacids Fatty acids H 2 /CO 2 BIOGAS CH 4 /CO 2 Manure Glycerol Carboxylic acids Alcohols Acetate Theoretic Yield from Glucose Energetic efficiency C 6 H 12 O 6 3CH 4+ 3CO % C 6 H 12 O H 2 O 2CH 3 COOH + 2CO 2 + 4H % 2CH 3 COOH 2CH 4 + 2CO 2 C 6 H 12 O H 2 O 2CO 2 + 2CH 4 + 4H %

9 Marea project: coupling H 2 and CH 4 production from agri- and zootecnical waste Substrati Inoculo H 2 (%) L H 2 /l/d Cheese whey Cow manure Glycerol consorzio IDROBIO consorzio IDROBIO consorzio IDROBIO ml H 2 /g VS m 3 H 2 /t substrate Serb. Alim. Liquam i Glicerolo Microorganism i idrolitici Alim entazione Q Al bruciatore Idrogeno,CO2 Brodo in ferm entazione Bioreattore 1 Q Al bruciatore Metano, CO2 Microorganism i m etanogeni Bioreattore 2 C.M = 66%, C.W. = 33% L/Ld (H 2 = 34-40%) Mixture Design Q Acqua Risc./Raff Pompa 1 Pompa 2 Al Bioreattore 2 Pompa 3 Digestato 3.86 L/Ld Enhanced production of methane by bioaugmentation of H 2 producing community

10 Statistical Optimization of Glycerol Fermentation In optimized conditions it was possible to obtain a max hydrogen production rate of more than L H 2 /L/day (yield > 0.94 mol H 2 / mol crude glycerol), while reaching a max EtOH concentration of almost 8g/L (yield ~ 1), without adding any vitamins, minerals, triptone or yeast extract. H 2 concentration in the biogas reached more than 50%, and the H 2 /medium ratio (ml/ml) was found to be around 4 (max value obtained was 4,5 at 18g/L of glycerol). Cristiano Varrone et al.,2012. International Journal of Hydrogen Energy (in press,

11 Scale-up Tests 3 L BioFlo 115 Benchtop Fermentor P max R max l R 2 Rate Yield (ml) (ml/h) (h) (ml/l/d) (mol/mol) Novaol Itabiol Pure Gly Modified Gomperzt equation Rate= Pmax/(l+Pmax/Rmax) N.S. Novaol

12 Future project: Pilot Plant Acqua Glicerolo Microorganism i Idrogeno Alla "torcia" We are now evaluating the possibility to set up a 1000L pilot plant, which might produce up to: Serb. Alim. Pompa 2 Bioreattore Etanolo (95 %) Acqua + ac. organici Kg EtOH/t of glycerol (with an estimated value of 350 /t glycerol) m 3 H 2 /t of glycerol (with an estimated value of 70 /t glycerol; based on national subsidies of 0,28 cents/kwh) Pompa 1 Acqua+etanolo+acidi organici Simulated industrial plant showed a production of 100 m 3 H 2 /d and L EtOH/d, correspoing to 80 GWh/anno from H 2 and 540 GWh/anno from EtOH, with an energy efficiency of 39%. PATENT APPLICATION: Bioconversion of crude glycerol into hydrogen and ethanol (Number: RM2011A000480) Applying data: 13/09/2011. Inventor: Cristiano Varrone Link: (ENEA patent nr. 735) ENTERPRISE EUROPE NETWORK: (Reference: 12 IT 56Z7 3PF3)

13 THANK YOU FOR YOUR ATTENTION

From waste to fuel: bioconversion of domestic food wastes to energy carriers

From waste to fuel: bioconversion of domestic food wastes to energy carriers From waste to fuel: bioconversion of domestic food wastes to energy carriers M. Alexandropoulou 1,2, N. Menis 1, G. Antonopoulou 2, I. Ntaikou 2, G. Lyberatos 1,2 1 School of Chemical Engineering, National

More information

Investigation of anaerobic digestion in a two-stage bioprocess producing hydrogen and methane

Investigation of anaerobic digestion in a two-stage bioprocess producing hydrogen and methane 15 th European biosolids and organic resources, Leeds, Nov. 2010 : Two-stage anaerobic digestion S. Hiligsmann 1 15 th European biosolids and organic resources Leeds 15-17 th nov. 2010 Investigation of

More information

FERMENTATIVE HYDROGEN PRODUCTION FROM FOOD-INDUSTRY WASTES

FERMENTATIVE HYDROGEN PRODUCTION FROM FOOD-INDUSTRY WASTES Proceedings of the 13 th International Conference on Environmental Science and Technology Athens, Greece, 5-7 September 213 FERMENTATIVE HYDROGEN PRODUCTION FROM FOOD-INDUSTRY WASTES M. ALEXANDROPOULOU

More information

Valorisation of agroindustrial waste for the production of energy, biofuels and biopolymers

Valorisation of agroindustrial waste for the production of energy, biofuels and biopolymers Valorisation of agroindustrial waste for the production of energy, biofuels and biopolymers Prof. Gerasimos Lyberatos National Technocal University of Athens Industrial Waste & Wastewater Treatment & Valorisation

More information

Biogas Production from Lignocellulosic Biomass

Biogas Production from Lignocellulosic Biomass Biogas Production from Lignocellulosic Biomass Dr. Ram Chandra Scientist, Energy Bioscience Overseas Fellow Centre for Rural Development & Technology Indian Institute of Technology Delhi 1 Biomass to Energy

More information

Waste to energy conversion Dr. Prasenjit Mondal Department of Chemical Engineering Indian Institute of Technology, Roorkee

Waste to energy conversion Dr. Prasenjit Mondal Department of Chemical Engineering Indian Institute of Technology, Roorkee Waste to energy conversion Dr. Prasenjit Mondal Department of Chemical Engineering Indian Institute of Technology, Roorkee Lecture 26 Energy production from Organic Wastes Through Anaerobic Digestion-1

More information

Using household food waste as a source of energy in a single-chamber microbial fuel cell

Using household food waste as a source of energy in a single-chamber microbial fuel cell Using household food waste as a source of energy in a single-chamber microbial fuel cell Antonopoulou G. 1,2, Ntaikou I. 1,2, Alexandropoulou M. 1,2, Tremouli A. 1, Pastore C. 3, Bitonto L. 3, Bebelis

More information

Hydrogen production from biomass by fermentation

Hydrogen production from biomass by fermentation Hydrogen production from biomass by fermentation Freda Hawkes Hydrogen Research Unit University of Glamorgan Wales, UK H2NET Summer Meeting 24 June 2005 Renewable H 2 production routes (not considering

More information

Introduction to BIOFUELS. David M. Mousdale. CRC Press. Taylor & Francis Group Boca Raton London New York

Introduction to BIOFUELS. David M. Mousdale. CRC Press. Taylor & Francis Group Boca Raton London New York Introduction to BIOFUELS David M. Mousdale CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business Contents Preface Acknowledgments

More information

The effect of acid pretreatment on bio-ethanol and bio-hydrogen production from sunflower straw

The effect of acid pretreatment on bio-ethanol and bio-hydrogen production from sunflower straw nd International Conference on Sustainable Solid Waste Management The effect of acid pretreatment on bio-ethanol and bio-hydrogen production from sunflower straw G. Antonopoulou 1, G. Dimitrellos 1, D.

More information

Municipal Organic Solid Waste as an Alternative Urban Bioenergy Source

Municipal Organic Solid Waste as an Alternative Urban Bioenergy Source Municipal Organic Solid Waste as an Alternative Urban Bioenergy Source WANG Jing-Yuan Associate Professor, School of Civil & Environmental Engineering Director, Environmental Engineering Research Centre

More information

UMWEKO GmbH, Dr Konrad Schleiss

UMWEKO GmbH, Dr Konrad Schleiss 3. Biology of anaerobic digestion (after Peter Weiland, Institute of Technology and Biosystems Engineering Federal Agricultural Research Centre, Braunschweig, Germany) Microbiology and biochemistry of

More information

Modeling of Anaerobic Digestion of Sludge

Modeling of Anaerobic Digestion of Sludge Engineering Conferences International ECI Digital Archives Wastewater and Biosolids Treatment and Reuse: Bridging Modeling and Experimental Studies Proceedings Spring 6-8-2014 Modeling of Anaerobic Digestion

More information

Project carried out by: Joanna Grebosz, Prof Mike Larkin, Dr Chris Allen, Dr Leonid Kulakov QUB, School of Biological Sciences

Project carried out by: Joanna Grebosz, Prof Mike Larkin, Dr Chris Allen, Dr Leonid Kulakov QUB, School of Biological Sciences Project carried out by: Joanna Grebosz, Prof Mike Larkin, Dr Chris Allen, Dr Leonid Kulakov QUB, School of Biological Sciences Marie Curie s homeland Molecular Biotechnologist (MSc in University of Warmia

More information

Industrial microbiology

Industrial microbiology Industrial microbiology pp. 166-173, 1032-1038, 1039-1045,1046-1050 Ed van Niel Ed.van_Niel@tmb.lth.se We are here Industrial microbiology biotechnology Why the increased interest Microbiological versus

More information

14 th Lecture Biogas and Biohydrogen

14 th Lecture Biogas and Biohydrogen Biotechnology and Energy Conservation Prof. Dr.oec.troph. Ir. Krishna Purnawan Candra, M.S. Program Magister Ilmu Lingkungan Universitas Mulawarman 14 th Lecture Biogas and Biohydrogen The Aim: Students

More information

IBBA Malmö Yara s Biogas Production Optimiser. Günter Doppelbauer / Sara Ekström 10 September 2015

IBBA Malmö Yara s Biogas Production Optimiser. Günter Doppelbauer / Sara Ekström 10 September 2015 IBBA Malmö Yara s Biogas Production Optimiser Günter Doppelbauer / Sara Ekström 10 September 2015 Yara Global Player with Sales to >150 Countries Yara Plants Joint Venture Plants Sales Officies Development

More information

Laboratory of Biochemical Engineering and Environmental Technology

Laboratory of Biochemical Engineering and Environmental Technology Laboratory of Biochemical Engineering and Environmental Technology Founded in 1990 Main research area is Biochemical Engineering as applied to: Advanced water and wastewater treatment (nutrient removal,

More information

The objective of this study was to compare two start-up strategies for hydrogen production using granular sludge without any thermal pre-treatment.

The objective of this study was to compare two start-up strategies for hydrogen production using granular sludge without any thermal pre-treatment. Comparison of two start-up strategies for hydrogen production with granular anaerobic sludge C. E. Hernández-Mendoza, Iván Moreno-Andrade and Germán Buitrón* Laboratory for Research on Advanced Processes

More information

Co Digestion Food Waste with Cow Manure for Efficient Biogas Generation

Co Digestion Food Waste with Cow Manure for Efficient Biogas Generation Co Digestion Food Waste with Cow Manure for Efficient Biogas Generation Akhouri Prashant Sinha I. INTRODUCTION In the present day energy has become a resource of primary importance. With the constant increase

More information

Integrated Biological Hydrogen Production. Alan Guwy

Integrated Biological Hydrogen Production. Alan Guwy Integrated Biological Hydrogen Production Alan Guwy University of South Wales Sustainable Environment Research Centre H2FC SUPERGEN Conference All-Energy AECC Aberdeen 21 st May 2013 University of South

More information

Biomass conversion into low-cost and sustainable chemicals*

Biomass conversion into low-cost and sustainable chemicals* Biomass conversion into low-cost and sustainable chemicals Dr. Stephan Freyer Chemical Engineering Biotechnology Chemicals Research & Engineering BASF SE, Ludwigshafen, Germany Foto: R. Hromniak Biomass

More information

to-wheels Graduate Enterprise: Bioprocessing Initiatives

to-wheels Graduate Enterprise: Bioprocessing Initiatives A Wood-to to-wheels Graduate Enterprise: Bioprocessing Initiatives David R. Shonnard Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931 Presentation to MEDC and Other

More information

Optimizing anaerobic digestion of agricultural substrates

Optimizing anaerobic digestion of agricultural substrates Optimizing anaerobic digestion of agricultural substrates Claudia Pabón Pereira MSc PhD candidate Tania Fernandes MSc PhD candidate Environmental Technology Anaerobic digestion process Rate limiting step

More information

Vermont Tech Community Anaerobic Digester! Harvesting renewable energy & recycling nutrients for a more sustainable community

Vermont Tech Community Anaerobic Digester! Harvesting renewable energy & recycling nutrients for a more sustainable community Vermont Tech Community Anaerobic Digester! Harvesting renewable energy & recycling nutrients for a more sustainable community!"#$%& '(%)*+&,-$).%($#& www.digester.! VTCAD 3 April! It takes a village! Major

More information

ENVE 424 Anaerobic Treatment

ENVE 424 Anaerobic Treatment ENVE 424 Anaerobic Treatment Lecture 3 The Microbiology of Anaerobic Treatment 2012 2013 Fall 27-28 Sept 2012 Assist. Prof. A. Evren Tugtas Anaerobic Digestion Ref: Gerardi M. H. The Microbiology of Anaerobic

More information

The Carboxylate Platform

The Carboxylate Platform The Carboxylate Platform Nigel Horan Lecture Outline The industry why it should innovate What is the carboxylate platform? Potential benefits Retrofitting and new build Conclusions AD Industry Now over

More information

Module 1d. The Bioenergy Chain. new technologies HTU, supercritical gasification, pyrolysis importance of energy condensed bio-fuels

Module 1d. The Bioenergy Chain. new technologies HTU, supercritical gasification, pyrolysis importance of energy condensed bio-fuels Module 1d The Bioenergy Chain Overview presentation introduction conversion-technologies combustion gasification anaerobe digestion bio transport fuels new technologies HTU, supercritical gasification,

More information

5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2015)

5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2015) 5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 215) Experimental study on optimization of multiple substrates anaerobic co-digestion Xuemei Wang 1, a, Zifu li

More information

Production of Biofuels and Value-Added Products

Production of Biofuels and Value-Added Products Metabolically engineered microbial systems and the conversion of agricultural biomass into simple sugars Microbial for the production Systems of biofuels For and The valueadded products Production of Biofuels

More information

Efficient Hydrogen Fermentation for 2 - Stage Anaerobic Digestion Processes: Conversion of Sucrose Containing Substrates

Efficient Hydrogen Fermentation for 2 - Stage Anaerobic Digestion Processes: Conversion of Sucrose Containing Substrates Efficient Hydrogen Fermentation for 2 - Stage Anaerobic Digestion Processes: Conversion of Sucrose Containing Substrates Silvia Noebauer*, Wolfgang Schnitzhofer Profactor GmbH, Innovative Energy Systems,

More information

Fermentative hydrogen production using organic substrates in batch and continuous conditions

Fermentative hydrogen production using organic substrates in batch and continuous conditions Fermentative hydrogen production using organic substrates in batch and continuous conditions Gustavo Davila-Vazquez, Elías Razo-Flores* División de Ciencias Ambientales. Instituto Potosino de Investigación

More information

XyloFerm - Yeast strains for efficient conversion of lignocellulose into ethanol

XyloFerm - Yeast strains for efficient conversion of lignocellulose into ethanol XyloFerm - Yeast strains for efficient conversion of lignocellulose into ethanol Nicklas Bonander, Ph.D Principal Scientist Taurus Energy AB, Lund, Sweden Taurus Energy AB, Lund, SWEDEN SEKAB, Biorefinery

More information

Harnessing biogas plants for the production of value-added products

Harnessing biogas plants for the production of value-added products Harnessing biogas plants for the production of value-added products Elina Tampio, Satu Ervasti, Erika Winquist, Saija Rasi Content Introduction Volatile fatty acid (VFA) production in biogas plants Materials

More information

Microbiology in Anaerobic Digesters Examples for Process Inhibition and Control. Heike Sträuber, Dept. Environmental Microbiology

Microbiology in Anaerobic Digesters Examples for Process Inhibition and Control. Heike Sträuber, Dept. Environmental Microbiology Microbiology in Anaerobic Digesters Examples for Process Inhibition and Control Heike Sträuber, Dept. Environmental Microbiology Workshop Large Scale Bioenergy Lab 2, Flensburg/Oeversee, 29 th January

More information

Ho Nam Chang. Bioenergy II

Ho Nam Chang. Bioenergy II Bioenergy II (RIO DE JANEIRO 8-13 March, 2009) Biofuels Production from Volatile Fatty Acid Platform Ho Nam Chang Biofuel Professor of Biochemical Engineering Department of Chemical & Biomolecular Engineering,

More information

BIOMETHANE DIGESTATE FROM HORSE MANURE, A NEW WASTE USABLE IN COMPOST FOR GROWING THE BUTTON MUSHROOM, AGARICUS BISPORUS?

BIOMETHANE DIGESTATE FROM HORSE MANURE, A NEW WASTE USABLE IN COMPOST FOR GROWING THE BUTTON MUSHROOM, AGARICUS BISPORUS? BIOMETHANE DIGESTATE FROM HORSE MANURE, A NEW WASTE USABLE IN COMPOST FOR GROWING THE BUTTON MUSHROOM, AGARICUS BISPORUS? SAVOIE J.-M. 1, VEDIE R. 2, BLANC F. 3, MINVIELLE N. 1, ROUSSEAU T. 2, DELGENES

More information

Introduction into Digester Biology

Introduction into Digester Biology Introduction into Digester Biology Workshop for international experts Oberschleißheim, 12 October 2015 Katrin Kayser 1 Conversion process 1. biochemical 2. physical Organic matter Digester biogas CHP Electricity

More information

Cells and Cell Cultures

Cells and Cell Cultures Cells and Cell Cultures Beyond pure enzymes, whole cells are used and grown in biotechnological applications for a variety of reasons: cells may perform a desired transformation of a substrate, the cells

More information

Biogas Production from Lignocellulosic Biomass

Biogas Production from Lignocellulosic Biomass Biogas Production from Lignocellulosic Biomass Dr. Ram Chandra Scientist, Energy Bioscience Overseas Fellow Centre for Rural Development & Technology Indian Institute of Technology Delhi 1 Introduction

More information

Anaerobic Digestion of Vegetable Waste

Anaerobic Digestion of Vegetable Waste Anaerobic Digestion of Vegetable Waste Azadeh Babaee, Jalal Shayegan * School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran shayegan@sharif.edu Fruit and vegetable

More information

Anaerobic Digestion of Biomass Waste : A Comprehensive Review

Anaerobic Digestion of Biomass Waste : A Comprehensive Review 2018 IJSRSET Volume 4 Issue 4 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section : Engineering and Technology Anaerobic Digestion of Biomass Waste : A Comprehensive Review ABSTRACT P. C. Roy*

More information

Microbial Fuel Cells: Carbohydrates to Electricity in a Single Step. Korneel Rabaey, Peter Aelterman, Peter Clauwaert, Willy Verstraete

Microbial Fuel Cells: Carbohydrates to Electricity in a Single Step. Korneel Rabaey, Peter Aelterman, Peter Clauwaert, Willy Verstraete Microbial Fuel Cells: Carbohydrates to Electricity in a Single Step Korneel Rabaey, Peter Aelterman, Peter Clauwaert, Willy Verstraete GHENT UNIVERSITY Wastewater treatment Electricity out of biomass

More information

SEPARATE PRODUCTION OF HYDROGEN AND METHANE FROM ETHANOL WASTEWATER USING TWO-STAGE UASB SYSTEM

SEPARATE PRODUCTION OF HYDROGEN AND METHANE FROM ETHANOL WASTEWATER USING TWO-STAGE UASB SYSTEM SEPARATE PRODUCTION OF HYDROGEN AND METHANE FROM ETHANOL WASTEWATER USING TWO-STAGE UASB SYSTEM Songphol Jaikeaw a, Sumaeth Chavadej a,b, Malinee Leethochawalit *,c a The Petroleum and Petrochemical College,

More information

Performing operations and calculations involving dates requires that one acquires familiarity with some of Excel s Date and Time Functions.

Performing operations and calculations involving dates requires that one acquires familiarity with some of Excel s Date and Time Functions. Performing operations and calculations involving dates requires that one acquires familiarity with some of Excel s Date and Time Functions. The DATEDIF worksheet Function in Excel calculates the difference

More information

Contents. Preface. A. Overview and Outlook

Contents. Preface. A. Overview and Outlook Preface xv A. Overview and Outlook 1. The Route of Anaerobic Waste (Water) Treatment toward Global Acceptance 1 G. Lettinga 1 Introduction... 1 2 Roots of Modern High Rate AnWT... 3 2.1 Historical aspects

More information

Microalgae as future bioresources for biofuels and chemical production

Microalgae as future bioresources for biofuels and chemical production Microalgae as future bioresources for biofuels and chemical production Jo Shu Chang Department of Chemical Engineering Center for Bioscience and Biotechnology Research Center for Energy Technology and

More information

26/04/2013 Improving productivities in fermentation processes. Heleen De Wever Köln, April 2013

26/04/2013 Improving productivities in fermentation processes. Heleen De Wever Köln, April 2013 26/04/2013 Improving productivities in fermentation processes Heleen De Wever Köln, 23 25 April 2013 Bio based production chemicals Aspect Substrate Microorganisms Operation mode Sterilization equipment

More information

Application of Hycura in Municipal Waste Digestion Recovering Biogas

Application of Hycura in Municipal Waste Digestion Recovering Biogas Application of Hycura in Municipal Waste Digestion Recovering Biogas M. M. Manyuchi mmanyuchi@uj.ac.za C. Mbohwa cmbohwa@uj.ac.za E. Muzenda emuzenda@uj.ac.za S. Masebinu somasebinu@uj.ac.za Abstract Disposal

More information

The Effect of Temperature on the biogas Production from Olive Pomace

The Effect of Temperature on the biogas Production from Olive Pomace The Effect of Temperature on the biogas Production from Olive Pomace Abstract : Dr. Mahmud B Rashed Faculty of Engineering - Sabrata Department of Environmental Engineering Zawia University The effect

More information

Department of Food and Nutritional Sciences

Department of Food and Nutritional Sciences Department of Food and Nutritional Sciences THERMAL PRE-TREATMENT OF LIGNOCELLULOSIC BIOMASS AS A SUBSTRATE FOR ANAEROBIC DIGESTION F. Kaldis, D. Cysneiros, A. Chatzifragkou, K.A. Karatzas Copyright University

More information

Production of Bioenergy Using Filter Cake Mud in Sugar Cane Mill Factories

Production of Bioenergy Using Filter Cake Mud in Sugar Cane Mill Factories Production of Bioenergy Using Filter Cake Mud in Sugar Cane Mill Factories Carmen Baez-Smith, P.E. Smith Baez Consulting, Inc. Loxahatchee, Florida, USA Sugar Processing Research Institute 2008 Conference

More information

REALIZING RENEWABLE ENERGY POTENTIAL

REALIZING RENEWABLE ENERGY POTENTIAL REALIZING RENEWABLE ENERGY POTENTIAL BY Patrick Hirl, PE Renewable natural gas (RNG) is a universal fuel that enhances energy supply diversity; uses municipal, agricultural and commercial organic waste;

More information

Anaerobic Digestion not just biogas production. FARM BIOGAS Methane consulting cc

Anaerobic Digestion not just biogas production. FARM BIOGAS Methane consulting cc Anaerobic Digestion not just biogas production FARM BIOGAS Methane consulting cc Use of fire - the greatest achievement of the human race FARM BIOGAS Methane consulting cc Reduction of GHG s emission FARM

More information

Lactic acid fermentation of a combined agro-food waste substrate

Lactic acid fermentation of a combined agro-food waste substrate Lactic acid fermentation of a combined agro-food waste substrate Ljiljana Mojović *, Aleksandra Djukić-Vuković*, Dragana Mladenović *, Jelena Pejin** * University of Belgrade, Faculty of Technology and

More information

Electrochemical Systems for Enhanced Product Recovery from Anaerobic Fermentations

Electrochemical Systems for Enhanced Product Recovery from Anaerobic Fermentations Electrochemical Systems for Enhanced Product Recovery from Anaerobic Fermentations Integration of Chemical, Biochemical and Thermal Process to Maximise Biomass Resource Potential Joint AD Network/SUPERGEN

More information

VALORPLUS: VALORISING BIOREFINERY BY-PRODUCTS. FP7 EC KBBE-CALL 7- Project No

VALORPLUS: VALORISING BIOREFINERY BY-PRODUCTS. FP7 EC KBBE-CALL 7- Project No VALORPLUS: VALORISING BIOREFINERY BY-PRODUCTS FP7 EC KBBE-CALL 7- Project No. 613802 VALORPLUS: VALORISING BIOREFINERY BY-PRODUCTS Valorisation of biorefinery by-products leading to closed loop systems

More information

lntemational Symposium on Southeast Asian Water Environment, Vol.9, 2011 (Part l)

lntemational Symposium on Southeast Asian Water Environment, Vol.9, 2011 (Part l) Effects of Acid-Pretreatment of Inoculums and Substrate Concentration for Batch Thermophilic Biohydrogen Production from Starch-Rich Synthetic Wastewater Billy Andreas 1)*) Ilona S. Horvath 2), Khamdan

More information

Thomas Grotkjær Biomass Conversion, Business Development

Thomas Grotkjær Biomass Conversion, Business Development NOVOZYMES AND BETA RENEWABLES DEPLOY WORLD CLASS CELLULOSIC ETHANOL TECHNOLOGY TO MARKET FROM BIOMASS TO BIOENERGY BIO WORLD CONGRESS, PHILADELPHIA, 13 MAY 2014 Thomas Grotkjær Biomass Conversion, Business

More information

Technical overview and benefits

Technical overview and benefits Technical overview and benefits Overview Terms used in anaerobic digestion Different types of digesters Benefits of anaerobic digestion Total Solids, Volatile Solids Total Solids (TS)= Dry matter content

More information

Biomass to Renewables Which Technology and Which Product

Biomass to Renewables Which Technology and Which Product Biomass to Renewables Which Technology and Which Product 6 th World RE Tech Congress 2015 New Delhi 22 August 2015 Arvind Lali DBT ICT Centre for Energy Biosciences Institute of Chemical Technology (UDCT)

More information

What type of Digester Configurations should be employed to produce Biomethane from Grass Silage?

What type of Digester Configurations should be employed to produce Biomethane from Grass Silage? What type of Digester Configurations should be employed to produce Biomethane from Grass Silage? Nizami Abdul-Sattar, Biofuels Research Group, ERI T: 353 (0)21 4901995 F: 353 (0)21 4901932 E: nizami_pk@yahoo.com

More information

Aerobic and Anaerobic Biodegradation

Aerobic and Anaerobic Biodegradation Polimernet Plastik San.Tic.Ltd.Şti. Tel:+90 216 393 77 46 / Email: info@polimernet.com www.polimernet.com 1 Aerobic and Anaerobic Biodegradation This document provides an in depth explanation, detailing

More information

AU M.Sc. (Third Semester) Examination, 2014 BIOTECHNOLOGY. (LBTM 301: Bioprocess Engineering & Technology) Maximum Marks: 60.

AU M.Sc. (Third Semester) Examination, 2014 BIOTECHNOLOGY. (LBTM 301: Bioprocess Engineering & Technology) Maximum Marks: 60. AU-6260 M.Sc. (Third Semester) Examination, 2014 BIOTECHNOLOGY (LBTM 301: Bioprocess Engineering & Technology) Maximum Marks: 60 (i) (a) Enrichment method (ii) (a) µx-k d X (iii) (b) Foam separation (iv)

More information

Genetic Engineering for Biofuels Production

Genetic Engineering for Biofuels Production Genetic Engineering for Biofuels Production WSE 573 Spring 2013 Greeley Beck INTRODUCTION Alternative transportation fuels are needed in the United States because of oil supply insecurity, oil price increases,

More information

UNIT 5. Biomass energy

UNIT 5. Biomass energy UNIT 5 1 Biomass energy SYLLABUS 5.1 Types of Biomass Energy Sources 5.2 Energy content in biomass of different types 5.3 Types of Biomass conversion processes 5.4 Biogas production 2 WHAT IS BIOMASS?

More information

Renewable Energy Systems

Renewable Energy Systems Renewable Energy Systems 9 Buchla, Kissell, Floyd Chapter Outline Biomass Technologies 9 9-1 THE CARBON CYCLE 9-2 BIOMASS SOURCES 9-3 BIOFUELS: ETHANOL 9-4 BIOFUELS: BIODIESEL AND GREEN DIESEL 9-5 BIOFUELS

More information

USE OF BIO- ENZYMATIC PREPARATIONS FOR ENHANCEMENT BIOGAS PRODUCTION

USE OF BIO- ENZYMATIC PREPARATIONS FOR ENHANCEMENT BIOGAS PRODUCTION ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS Volume LIX 26 Number 3, 2011 USE OF BIO- ENZYMATIC PREPARATIONS FOR ENHANCEMENT BIOGAS PRODUCTION T. Vítěz, M. Haitl, Z. Karafiát,

More information

Why did DSM step into this?

Why did DSM step into this? Why did DSM step into this? Every innovation starts with a dream believe promise crisis unsolved customer need technology breakthrough Page 1 Future has Origin 1980s NASA s CELSS (Closed Environment Life

More information

Anaerobic digestion of microalgal biomass in lab-scale digesters for the production of volatile fatty acids

Anaerobic digestion of microalgal biomass in lab-scale digesters for the production of volatile fatty acids Anaerobic digestion of microalgal biomass in lab-scale digesters for the production of volatile fatty acids Jean-Claude Frigon, Marvin Gruhn and Serge R. Guiot 11 th World Congress on Industrial Biotechnology.

More information

Evaluation of Agricultural Wastes for Biogas Production

Evaluation of Agricultural Wastes for Biogas Production Thammasat International Journal of Science and Technology Vol. 19, No. 1, January-March 214 Evaluation of Agricultural Wastes for Biogas Production Malee Suntikunaporn *, Snunkheam Echaroj, and Warangkana

More information

Protocol for the determination of potential biogas production

Protocol for the determination of potential biogas production Protocol for the determination of potential biogas production Johan W. van Groenestijn TNO November 16 2015 General principle Samples of biomass are mixed with a mixture of anaerobic bacteria (sludge),

More information

Alternative Feed-stocks for Bioconversion to Ethanol: a techno-commercial appraisal

Alternative Feed-stocks for Bioconversion to Ethanol: a techno-commercial appraisal Alternative Feed-stocks for Bioconversion to Ethanol: a techno-commercial appraisal Subhash Chand Formerly, Professor & Head: Department of Biochemical Engineering & Biotechnology Indian Institute of Technology

More information

INFLUENCE OF TEMPERATURE VARIATION ON BIOGAS YIELD FROM INDUSTRIAL WASTES AND ENERGY PLANTS

INFLUENCE OF TEMPERATURE VARIATION ON BIOGAS YIELD FROM INDUSTRIAL WASTES AND ENERGY PLANTS INFLUENCE OF TEMPERATURE VARIATION ON BIOGAS YIELD FROM INDUSTRIAL WASTES AND ENERGY PLANTS Kestutis Navickas, Kestutis Venslauskas, Arnas Petrauskas, Vidmantas Zuperka Aleksandras Stulginskis University,

More information

Anaerobic Digester Microbial Community, Metadata, and Outcomes. Alison Ling, Barr Engineering in collaboration with Microbe Detectives

Anaerobic Digester Microbial Community, Metadata, and Outcomes. Alison Ling, Barr Engineering in collaboration with Microbe Detectives Anaerobic Microbial Community, Metadata, and Outcomes Alison Ling, Barr Engineering in collaboration with Microbe Detectives Can we give operators more tools to troubleshoot digesters, especially with

More information

Is it possible to start-up a biogas plant from manure in only 4 months?

Is it possible to start-up a biogas plant from manure in only 4 months? Is it possible to start-up a biogas plant from manure in only 4 months? Nordic Biogas Conference 2016-09-07 Erik Nordell Tekniska verken i Linköping AB, Sweden in co-operation with Greve Biogass AS, Tønsberg,

More information

WASTEWATER TREATMENT. Lili sugiyarto

WASTEWATER TREATMENT. Lili sugiyarto WASTEWATER TREATMENT Lili sugiyarto Lili_sugiyarto@uny.ac.id The primary goal The removal and degradation of organic matter under controlled condition Three major steps Primary treatment Secondary treatment

More information

NOVONUTRIENTS. Food from CO 2. Microbial Factories. Food. Industrial CO 2. Feed

NOVONUTRIENTS. Food from CO 2. Microbial Factories. Food. Industrial CO 2. Feed NOVONUTRIENTS Food from CO 2 Microbial Factories Food Industrial CO 2 Feed 1 Our Approach Biological CO 2 capture and conversion using hydrogenpowered bacteria 2 3 4 5 6 NovoNutrients Microbial Factories

More information

Analysis and Processing of Kitchen waste using portable Bio-Methanation Digester

Analysis and Processing of Kitchen waste using portable Bio-Methanation Digester Analysis and Processing of Kitchen waste using portable Bio-Methanation Digester Pavan Bharadwaj Pisipati Mechanical Engineering M.V.S.R Engineering College ABSTRACT Biogas technology can be sustainable

More information

Florida Water Availability and Water Needs In 2020, Chuck Aller Florida Department of Agriculture and Consumer Services February 28, 2008

Florida Water Availability and Water Needs In 2020, Chuck Aller Florida Department of Agriculture and Consumer Services February 28, 2008 Florida Water Availability and Water Needs In 2020, 2060 Chuck Aller Florida Department of Agriculture and Consumer Services February 28, 2008 Florida Agriculture Today 41,000 farms and ranches 14.3 million

More information

ClearFuels Technology Inc.

ClearFuels Technology Inc. ClearFuels Technology Inc. Hawai i Energy Policy Forum Wednesday, October 12, 2005 -- 10:00 a.m. - 2:30 p.m. Production of Ethanol from Biomass Enabling Highly Efficient Low Cost Sustainable Energy Production

More information

Comparison between the Steady State Anaerobic Digestion Model and ADM1 for Anaerobic Digestion of Sewage Sludge

Comparison between the Steady State Anaerobic Digestion Model and ADM1 for Anaerobic Digestion of Sewage Sludge Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Comparison

More information

PHOTOSYNTHETIC FERMENTATIVE FUEL CELL USED IN A BIOFUEL PROCESSING FACILITY

PHOTOSYNTHETIC FERMENTATIVE FUEL CELL USED IN A BIOFUEL PROCESSING FACILITY PHOTOSYNTHETIC FERMENTATIVE FUEL CELL USED IN A BIOFUEL PROCESSING FACILITY E.E. Powell, G.A. Hill, R.W. Evitts, and J.C. Bolster Bioenergy II Conference, Rio de Janeiro, Brazil June 8-13, 2009 Outline

More information

ENERGY REQUIREMENTS FOR THE CONTINUOUS BIOHYDROGEN PRODUCTION FROM SPIROGYRA BIOMASS IN A SEQUENTIAL BATCH REACTOR

ENERGY REQUIREMENTS FOR THE CONTINUOUS BIOHYDROGEN PRODUCTION FROM SPIROGYRA BIOMASS IN A SEQUENTIAL BATCH REACTOR 2 nd DISCUSSION FORUM ON INDUSTRIAL ECOLOGY AND LIFE-CYCLE MANAGEMENT Coimbra, March 5-6 2015 ENERGY REQUIREMENTS FOR THE CONTINUOUS BIOHYDROGEN PRODUCTION FROM SPIROGYRA BIOMASS IN A SEQUENTIAL BATCH

More information

Non-photosynthetic Biological CO 2 Fixation

Non-photosynthetic Biological CO 2 Fixation Non-photosynthetic Biological CO 2 Fixation Developing a Research Agenda for Utilization of Gaseous Carbon Waste Streams National Academies Tuesday, March 6 th, 2018 Dr. Benjamin M. Woolston Postdoctoral

More information

Biofuels: What, When and How

Biofuels: What, When and How Biofuels: What, When and How Arvind M Lali & Annamma A. Odaneth Institute of Chemical Technology Mumbai, India Biofuels : Need or Interest Energy security High energy dependence on politically unstable

More information

Process Modeling and Life Cycle Assessment of Biomass Conversion

Process Modeling and Life Cycle Assessment of Biomass Conversion Process Modeling and Life Cycle Assessment of Biomass Conversion Dr. Wen Zhou Department of Chemical Engineering Michigan Tech October 12, 2017 Conversion Pathways Hemicellulose-Cellulosic Substrate Comparison

More information

Biofuel production using total sugars from lignocellulosic materials. Diego Alonso Zarrin Fatima Szczepan Bielatowicz Oda Kamilla Eide

Biofuel production using total sugars from lignocellulosic materials. Diego Alonso Zarrin Fatima Szczepan Bielatowicz Oda Kamilla Eide Biofuel production using total sugars from lignocellulosic materials Diego Alonso Zarrin Fatima Szczepan Bielatowicz Oda Kamilla Eide scope of the presentation 1. Available lignocellulosic materials 2.

More information

Proceedings of the 13 th International Conference on Environmental Science and Technology Athens, Greece, 5-7 September 2013

Proceedings of the 13 th International Conference on Environmental Science and Technology Athens, Greece, 5-7 September 2013 Proceedings of the 13 th International Conference on Environmental Science and Technology Athens, Greece, 5-7 September 213 BIOHYDROGEN PRODUCTION FROM CRUDE GLYCEROL USING IMMOBILIZED ACIDOGENIC CULTURES:

More information

This week we are moving on from chemical conversions to biological conversions.

This week we are moving on from chemical conversions to biological conversions. http://www.valtra.com/dual-fuel.aspx http://www.valtra.com/268.aspx This week we are moving on from chemical conversions to biological conversions. When you have a chance please look up the Valtra biogas

More information

Abstract. Introduction

Abstract. Introduction Development of Efficient Heterologous Expression System For Production Of Enzymes To Convert Industrial Organic Residues To Value Added Products Or Energy Abstract In Today s society, there is a great

More information

Flexible Platform Technologies for Resource Recovery from Food Waste

Flexible Platform Technologies for Resource Recovery from Food Waste Flexible Platform Technologies for Resource Recovery from Food Waste Kartik Chandran Columbia University Rutgers University April 27 th, 2016 Brief overview of biological sewage treatment Solids, inerts

More information

THERMOPHILIC ENZYMES FOR BIOMASS CONVERSION

THERMOPHILIC ENZYMES FOR BIOMASS CONVERSION Bioenergy- II: Fuels and Chemicals from Renewable Resources THERMOPHILIC ENZYMES FOR BIOMASS CONVERSION Dr. Francesco La Cara Institute of Protein Biochemistry C.N.R. Naples - Italy THERMOPHILIC ENZYMES

More information

Sustainable Energy Recovery from Organic Waste

Sustainable Energy Recovery from Organic Waste Sustainable Energy Recovery from Organic Waste Waste 2012 Conference - Australia Coffs Harbour ; Elmar Offenbacher www.bdi-bioenergy.com Energy Recovery from Waste Waste Combustion Typical MSW has a moisture

More information

THE ORGANIC WASTE FRACTIONS RATIO OPTIMIZATION IN THE ANAEROBIC CO-DIGESTION PROCESS FOR THE INCREASE OF BIOGAS YIELD

THE ORGANIC WASTE FRACTIONS RATIO OPTIMIZATION IN THE ANAEROBIC CO-DIGESTION PROCESS FOR THE INCREASE OF BIOGAS YIELD S1525 THE ORGANIC WASTE FRACTIONS RATIO OPTIMIZATION IN THE ANAEROBIC CO-DIGESTION PROCESS FOR THE INCREASE OF BIOGAS YIELD by a* Ana J. MOM^ILOVI], Gordana M. STEFANOVI] a, Predrag M. RAJKOVI] a, Nenad

More information

Anaerobic Degradation of Organics

Anaerobic Degradation of Organics Anaerobic Degradation of Organics Nur Hidayat Anaerobic sludge treatment methane production Anaerobic wastewater treatment - Anaerobic wastewater treatment Sedimentasi floc-forming bacteria dan recycling

More information

336098: DYNAMIC MODELLING AND SIMULATION OF ANAEROBIC DIGESTER FOR HIGH ORGANIC STRENGTH WASTE

336098: DYNAMIC MODELLING AND SIMULATION OF ANAEROBIC DIGESTER FOR HIGH ORGANIC STRENGTH WASTE 336098: DYNAMIC MODELLING AND SIMULATION OF ANAEROBIC DIGESTER FOR HIGH ORGANIC STRENGTH WASTE POOJA SHARMA, U K GHOSH, A K RAY Department of Polymer & Process Engineering Indian Institute of Technology,

More information

Harvesting Energy from Wastewater Treatment. Bruce Logan Penn State University

Harvesting Energy from Wastewater Treatment. Bruce Logan Penn State University Harvesting Energy from Wastewater Treatment Bruce Logan Penn State University Energy Costs? 5-7% of electricity used in USA is for water &wastewater Global Energy & Health Issues 1 Billion people lack

More information

Optimization of biomethanization processes through trace metals supplementation

Optimization of biomethanization processes through trace metals supplementation Engineering Conferences International ECI Digital Archives BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals Proceedings Spring 6-13-2013 Optimization of biomethanization

More information

Report on the application of BlueSens gas sensor in continuous bioh 2 process optimization

Report on the application of BlueSens gas sensor in continuous bioh 2 process optimization Report on the application of BlueSens gas sensor in continuous bioh 2 process optimization Péter Bakonyi, Nándor Nemestóthy, Katalin Bélafi-Bakó Research Institute on Bioengineering, Membrane Technology

More information